Computational techniques for ECG analysis and interpretation in light of their contribution to medical advances
Resumen: Widely developed for clinical screening, electrocardiogram (ECG) recordings capture the cardiac electrical activity from the body surface. ECG analysis can therefore be a crucial first step to help diagnose, understand and predict cardiovascular disorders responsible for 30% of deaths worldwide. Computational techniques, and more specifically machine learning techniques and computational modelling are powerful tools for classification, clustering and simulation, and they have recently been applied to address the analysis of medical data, especially ECG data. This review describes the computational methods in use for ECG analysis, with a focus on machine learning and 3D computer simulations, as well as their accuracy, clinical implications and contributions to medical advances. The first section focuses on heartbeat classification and the techniques developed to extract and classify abnormal from regular beats. The second section focuses on patient diagnosis from whole recordings, applied to different diseases. The third section presents real-time diagnosis and applications to wearable devices. The fourth section highlights the recent field of personalized ECG computer simulations and their interpretation. Finally, the discussion section outlines the challenges of ECG analysis and provides a critical assessment of the methods presented. The computational methods reported in this review are a strong asset for medical discoveries and their translation to the clinical world may lead to promising advances.
Idioma: Inglés
DOI: 10.1098/rsif.2017.0821
Año: 2018
Publicado en: Journal of the Royal Society Interface 15, 138 (2018), 20170821[18 pp]
ISSN: 1742-5689

Financiación: info:eu-repo/grantAgreement/ES/DGA/Grupo Consolidado BSICoS
Financiación: info:eu-repo/grantAgreement/ES/MINECO/DPI2016-75458-R
Tipo y forma: Revisión (Versión definitiva)
Área (Departamento): Teoría de la Señal y Comunicaciones (Departamento de Ingeniería Electrónica y Comunicaciones)

Creative Commons Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace. No puede utilizar el material para una finalidad comercial. Si remezcla, transforma o crea a partir del material, no puede difundir el material modificado.


Exportado de SIDERAL (2018-02-16-15:23:06)

Este artículo se encuentra en las siguientes colecciones:
Artículos > Artículos por área > Teoría de la Señal y Comunicaciones



 Registro creado el 2018-02-16, última modificación el 2018-02-17


Versión publicada:
 PDF
Valore este documento:

Rate this document:
1
2
3
 
(Sin ninguna reseña)