

Trabajo Fin de Grado

Anexo Técnico

Adrián Rosales Serrano

Director/es

José Luis Villarroel Salcedo

ESCUELA DE INGENIERIA Y ARQUITECTURA

2017

Tabla de contenido
1. Diseño Hardware. Sensor de aceleración. .. 3

2. Diseño Hardware. Unidad lógica ... 5

3. Diseño Hardware. GNSS .. 5

4. Diseño detallado. Sensor de aceleración. Toma de datos. ... 6

5. Diseño detallado. Sensor de aceleración. Tratado de datos. .. 7

6. Diseño detallado. GPS. Experimentación previa ... 10

7. Futuro del prototipo. QFD para garantizar la calidad. .. 11

1. Diseño Hardware. Sensor de aceleración.
Como ya se ha comentado, para resolver el problema de la cadencia de la embarcación, se

ha decidido utilizar un acelerómetro. Debe registrar la aceleración a la que es sometida a la
altura de las pedalinas.

El centro de masas se encuentra, aproximadamente, en el punto medio del bote, pero al
tratarse de un movimiento longitudinal y suponiendo que la aceleración es homogénea en toda
la embarcación, se ha decidido registrar la aceleración en las pedalinas.

De este modo evitará instalaciones innecesarias en el bote y hará que la pantalla sea visible
para el deportista.

Los requerimientos del proyecto dicen que la función del acelerómetro ha de ser detectar la
cadencia del bote y nada más.

Las altas frecuencias son despreciables ya que se quiere obtener el periodo de una señal
pseudoperiódica cuya frecuencia fundamental oscila entre los 0,25Hz y los 0,6Hz.

Para obtener una señal relativamente fiel a la real y que no la convierta en una sinusoide se
tendrá que tener en cuenta la inclusión de las componentes frecuenciales con una frecuencia
superior.

Por este motivo en el acelerómetro que se necesita el ancho de banda de éste, no será un
problema, en todo caso será algo a solucionar debido al posible ruido de alta frecuencia que
pueda introducir.

La sensibilidad del acelerómetro que se necesita será relativamente baja. Al tratarse de un
dispositivo que se desliza en el agua, no vamos a encontrarnos con cambios excesivamente
bruscos debido a la naturaleza del movimiento a medir, al contrario de lo que podría pasar en
un movimiento en el que hubiese detenciones en seco o impactos y rebotes.

Los valores de aceleración rara vez superan el rango de ± 1g, solamente en casos de mala
ejecución de la técnica empleada en la recuperación, hará obtener valores menores de -1g, pero
será del todo irrelevante conocer la magnitud exacta.

La aplicación trata más de un reconocimiento de forma de onda, mediante la determinación
del periodo que de una reconstrucción o una obtención de información de dicha señal. Por este
motivo se tendrá que elegir un acelerómetro que mida aceleraciones dentro del rango de ±1g.

El método de adquisición de datos tiene que permitir elegir la frecuencia de muestreo
fácilmente, ya que, al tratarse de una señal tan lenta, no tendría sentido utilizar las frecuencias
de muestreo típicas de las aplicaciones que leen aceleraciones, es decir, tendremos que
determinar una frecuencia de muestreo óptima para nuestro propósito, que es calcular de la
manera más eficientemente posible la cadencia de la embarcación.

Los valores de alimentación del acelerómetro son poco relevantes, aunque a la hora de
realizar pruebas y por compatibilidades con el resto del proyecto se valorará la posibilidad de
que sea conectable a 5V.

El gasto energético será un elemento a tener en cuenta debido al alto consumo del GPS y la
pantalla LCD en comparación con el resto de elementos del proyecto.

De las tecnologías disponibles en sensores de aceleración, se vio que los más comunes eran
los de:

- Tecnología capacitiva
- Tecnología piezoeléctrica.

Estos últimos se descartaron debido a que están diseñados para medir valores de aceleración
elevados y a unas frecuencias muy altas.

Por el contrario, los acelerómetros basados en tecnología capacitiva están preparados para
medir aceleraciones de menor frecuencia y de rangos muchísimo menores.

El método por el cual vamos a leer esos valores de aceleración es la principal decisión de
diseño para el proyecto. Las distintas opciones eran:

- Acelerómetro ADXL202 que muestra unos valores de aceleración codificados en una
señal PWM, de tal manera que nosotros tendríamos que contar los tiempos entre
flancos de subida y bajada (saber el tiempo en alto) y calcular el valor de aceleración.

- Acelerómetro ADXL345 que genera interrupciones y transmite la información a
través de una interfaz de comunicación serie.

- Acelerómetro MMA7361 que muestra una tensión proporcional a la aceleración y se
leerá en un ADC externo o del propio microcontrolador.

Primero se estudió el uso del acelerómetro ADXL202 que medía la aceleración en 2 ejes y
permitía añadir unos condensadores para el filtrado de la entrada.

Una vez filtrada la tensión que mostraba, digitalizaba los valores obtenidos y a través de
“dutty cycle modulator”, codificaba la información con una señal PWM de periodo variable
mediante una resistencia conectada a la patilla Rset.

Inicialmente se utilizó este acelerómetro. Para su gestión se implementaron interrupciones
en el microcontrolador, éstas estaban asociadas a los flancos de subida y bajada, para
posteriormente matemáticamente obtener el “dutty” de la señal. Para obtener el valor de
aceleración se utilizó la formula proporcionada por el fabricante.

Este acelerómetro se descartó porque para la posible modificación del periodo de muestreo,
sería necesario modificar el hardware de la etapa, además no disponía de modo de bajo
consumo. También existía la limitación de que había que realizar la medición a través de los
flancos, por ello se pensó que sería mejor utilizar otro interfaz de lectura que me permitiese
medir la aceleración en el momento que quisiera, sin hacer estas mediciones rigurosamente (sin
saltar ninguna).

El segundo acelerómetro que se barajó fue el ADXL345, que a priori parecía el óptimo, ya que
tenía integrada una interfaz de comunicación serie para pasar los valores de aceleración
periódicamente. Disponía de dos patillas de interrupción que saltaban con la detección de
máximos o mínimos, pero dada la relevancia que quería que tuviese el proyecto, se descartó ya
que prefería utilizar un acelerómetro más barato y que me permitiese el desarrollo del método
óptimo de detección de cadencia en base a muestras tomadas en la embarcación. Llegamos a la
conclusión de que dicho acelerómetro eliminaría una parte muy importante del trabajo a
realizar, que estaba muy interesado en desarrollar.

El acelerómetro elegido finalmente es el módulo MMA7361 que muestra

- Tensión proporcional a la aceleración
- Dispone de un filtro de orden 1 con frecuencia de corte de 1,5Khz para filtrar el ruido

de CLK
- Mide en los 3 ejes espaciales
- Sensor de caída libre
- Modo de bajo consumo.

Se ha elegido por su simplicidad su modularidad y su precio.

2. Diseño Hardware. Unidad lógica
Para la elección del microcontrolador, se necesitaba un micro que permitiese testear

cómodamente en placa blanca y de una gran comunidad trabajando con él para facilitar lo
máximo posible la programación del prototipo. La idea principal era trabajar con
microcontroladores con los que se había trabajado anteriormente de forma que ya
estuviésemos familiarizados con ellos.

Dada la naturaleza del problema y estimando la complejidad de las tareas a realizar, se llegó
a la conclusión de que la arquitectura del microcontrolador debería de ser de 8 bits. Ya que un
microcontrolador de una arquitectura superior sería del todo innecesario.

Inicialmente se barajó la posibilidad de usar el microcontrolador utilizado en las prácticas de
la asignatura de Sistemas Electrónicos programables.

Una de las dificultades que encontré fue que el espacio entre patillas no era el que tienen las
placas de montaje rápido. Dada la necesidad de hacer pruebas con el microcontrolador montado
fuera de su placa de programación decidí recurrir al microcontrolador atmega328p,
principalmente porque era un microcontrolador que ya había utilizado previamente y encajaba
en las “placas de montaje rápido”.

Gracias a que dispone de una amplia comunidad, que había creado y hacía uso de librerías
me facilitó enormemente la tarea de programación.

Destacando las siguientes ventajas:

- Es un micro que se puede alimentar a 5V que dado la modularidad es muy conveniente
en mi proyecto.

- Dispone de patillas con ADC que me permiten leer los valores de tensión que muestra mi
acelerómetro.

- Tiene suficientes puertos digitales para controlar los botones y el display que mostrará
las variables necesarias para el entrenamiento.

- Dispone de patillas de interrupción digital para los pulsadores.
- Tiene un UART que se utilizará para leer las tramas del módulo GPS.

3. Diseño Hardware. GNSS
Para la elección del GPS se necesitaba un módulo que facilitara la lectura de las tramas

obtenidas, puesto que la aplicación tiene unos tiempos de respuesta lentos, se optó por la
simplicidad.

Los errores de precisión no inciden de una manera relevante en este trabajo debido a que
nos interesa medir un desplazamiento “lineal” a lo largo del tiempo y no necesitábamos
precisión milimétrica para el desarrollo de la aplicación, es decir, sabiendo que describo una
trayectoria lineal, nos es indiferente que dicha trayectoria esté desplazada en cualquiera de los
ejes; ya que el dato relevante es la longitud de esa trayectoria y no los puntos exactos por los
que transcurre.

En cuanto a la dispersión de nuestro error, tampoco nos afecta notablemente ya que los
valores de velocidad en los que nos movemos hacen que porcentualmente hablando el error no
suponga más de +- 2,5m.

Inicialmente se utilizó un módulo GPS (Fastrax IT500) de un proyecto anterior con el que él
había trabajado, pero al examinarlo, nos dimos cuenta de que su tamaño (el módulo tenía una
antena externa muy aparatosa que habría sido difícilmente integrable en mi dispositivo) y su
coste (70€) no se ajustaba a las necesidades del proyecto. y teniendo en cuenta que uno de los
principales requisitos de mi proyecto era el precio del producto final, decidimos continuar la
búsqueda de un módulo que se ajustase más a mis necesidades.

Se buscó módulos GPS con una interfaz serie sencilla, que tuvieran antena integrada, debido
a que el uso del dispositivo se iba a dar siempre en entornos al aire libre y que además me
permitiese la rápida conexión con un ordenador y en una placa de montaje rápido para
facilitarme la etapa de configuración y puesta a punto.

Tras la búsqueda, el dispositivo elegido fue un módulo GPS de U-Block que integra el GPS
NEO-6M-000-1.

- Se trata de un módulo que dispone de 4 patillas: VCC, GND Rx y Tx.
- Su consumo es sólo de 50 mA.
- Para su conexión al ordenador únicamente se necesita un cable de TTL UART 5V.

- descargar desde su página web un programa llamado u-centre que permite
la configuración del módulo mediante una interfaz visual y te permite
seleccionar todos los parámetros necesarios como, por ejemplo:

- Las tramas GPS que envía.
- El tipo de arranque que usa el GPS.
- La frecuencia de las tramas.
- El modo de funcionamiento.

Por todos estos motivos y principalmente por su precio, ha sido el módulo GPS elegido para
el proyecto.

4. Diseño detallado. Sensor de aceleración. Toma de datos.
Respecto a las limitaciones de la tarjeta SD. su principal inconveniente es que para realizar

un acceso a un fichero y escribir los datos almacenados en el buffer, requiere de demasiado
tiempo (unos 14 milisegundos). Este problema podría ser resuelto guardando una gran cantidad
de datos en un buffer y realizar el volcado cada mucho tiempo, de forma que existiese ese
retraso de 14 milisegundos cada muchas muestras tomadas, pero el tamaño del buffer es de 512
bytes, por lo que me alcanza para almacenar unas 60 muestras.

Debido a esto se ha barajado la posibilidad de codificar las muestras tomadas de forma que
escribamos en la SD únicamente el incremento de la aceleración en vez del valor de la muestra,
pero como he comentado antes, el problema de la tarjeta SD es de tiempo de acceso a fichero,
no de tiempo de escritura de la trama, por esto, codificando la información lo único que
conseguiríamos sería aumentar el número de valores tomados entre cada desfase de escritura
de forma que cada muestra en lugar de ocupar 12 bytes debido a que la trama es de esta forma:
xxx/tyyy/r/t y de esta forma codificada pasa a x/ty/r/t. de esta forma aumentaríamos el tamaño
de la ristra de datos tomados un 50%, a pesar de que el problema seguiría estando pero menos
frecuentemente. De esta forma tomaríamos 100 muestras a 200 Hz y sufriríamos el retraso de
escritura de 14 ms cada 500 ms.

Por tanto, se optó por tomar las muestras de forma codificada siendo conscientes de que
cada vez que se escribe la trama almacenada se pierden 2 tomas de datos.

Quedando de esta forma el diagrama de flujo de la tarea encargada de esto:

5. Diseño detallado. Sensor de aceleración. Tratado de datos.
Para el diseño del filtro paso bajo:

En el filtro paso bajo de primer orden que aplicamos a la muestra, se partió haciendo un
diseño del filtro continuo:

𝐻(𝑠) =
1

1 + 𝜏𝑠
 𝑦 𝑠𝑎𝑏𝑖𝑒𝑛𝑑𝑜 𝑞𝑢𝑒 𝑠 = 𝑗2𝜋𝐹 → 𝐻(𝐹) =

𝑌(𝐹)

𝑋(𝐹)
=

1

1 + 𝜏𝑗2𝜋𝐹

Al tratarse de una función compleja, hallaremos su módulo

|𝐻(𝐹)| =
1

√1 + (𝜏𝑗2𝜋𝐹)2
 𝑑𝑜𝑛𝑑𝑒 𝑝𝑜𝑑𝑒𝑚𝑜𝑠 𝑐𝑜𝑚𝑝𝑟𝑜𝑏𝑎𝑟 ∶

𝑆𝑖 𝐹 = 0 → 𝐻(𝐹) = 1 𝑦 𝑆𝑖 𝐹 = ∞ → 𝐻(𝐹) = 0

Que efectivamente se trata de un filtro paso bajo. Por tanto, igualando al valor que tomará
en su frecuencia de corte y despejando 𝜏.

1

√2
=

1

√1 + (𝜏𝑗2𝜋𝐹𝑐)2
 → 𝜏 =

1

2𝜋𝐹𝑐

Como ya se explicado antes, al realizar el filtro con 𝐹𝑐=0.6Hz, el ruido de la señal seguía
estando presente, y teniendo en cuenta que los armónicos de una frecuencia superior a esa
frecuencia nunca son armónicos relevantes y tienen una amplitud (potencia) mayor, puedo
permitirme ajustar más la frecuencia de corte de mi filtro y aunque no se encuentren en la banda
de paso (se van a ver atenuadas) me servirá para:

- Igualar la potencia con las frecuencias más bajas.
- Quitar más ruido sin recurrir a un filtro de orden superior.

Probando distintos filtros el que daba una señal más limpia, ha sido el de una 𝐹𝑐=0.3Hz, que
sustituyendo en la fórmula (), me daba una 𝜏 ≈ 0.5. De este modo, discretizando el filtro, se
calculó la función de transferencia del filtro en tiempo discreto:

𝐺(𝑠) =
1

1 + 0.5𝑠
 → 𝑐𝑜𝑛 𝑇 = 10𝑚𝑠 → 𝐺(𝑧) =

0.2

𝑧 − 0.98

Del que despejando 𝑌𝑘:

𝑌𝑘 = 0.02𝑋𝑘−1 + 0.98𝑌𝑘−1

En la siguiente figura vamos a ver la respuesta en frecuencia del filtro implementado, en la
que he marcado aproximadamente la frecuencia de corte:

Tras este desarrollo, surge otro problema, el coste computacional del filtrado. Para cada uno
de los valores (100 por segundo), se deben realizar 2 multiplicaciones, una por 0.02 y otra por
0.98. además, una suma de los dos valores obtenidos.

Para el diseño del filtro de media móvil:

La implementación de este filtro consiste en que cada uno de los valores, es la suma
ponderada de los últimos n valores de forma que cuanto mayor sea n, menor es la frecuencia
de corte.

Probando distintos valores de media, se determinó que con el valor que más parecida
quedaba la muestra al filtro paso bajo, era con 100. De esta forma, para cada valor nuevo, el
filtro hacía la media ponderada junto con los 99 valores anteriores.

Esta forma de ejecución tiene un problema de exceso de operaciones. Pero deduje que, para
cada valor, en lugar de cada iteración del filtro calcular el valor medio, variaremos el valor de la
suma, utilizando una variable que almacene el sumatorio de los últimos 100 valores, de forma
que quitando el primer elemento del sumatorio y añadiendo en su lugar el nuevo valor, se
evitará realizar el sumatorio constantemente. Al tratarse de números en base diez y siendo el
valor a ponderar 0.01, conseguiremos el valor medio corriendo la coma a la izquierda dos
posiciones de la variable suma de forma fácil.

En la siguiente figura veremos el diagrama de bode de la respuesta en frecuencia del filtro de
media móvil:

D

Como podemos observar, su frecuencia de corte queda más cercano al punto teórico
establecido anteriormente en este apartado. Inicialmente, el tamaño de los lóbulos que se ven
en su bode puede parecer excesivo, por ello, comprobé que una posibilidad de este filtro
consiste en aplicarlo consecutivamente varias veces, de forma que la banda de paso se
estrechaba y el tamaño de los lóbulos disminuía considerablemente con cada iteración.

6. Diseño detallado. GPS. Experimentación previa
En este apartado se puede ver el diagrama de bloques de la tarea del GPS.

7. Futuro del prototipo. QFD para garantizar la calidad.
Existen actualmente algunos modelos de cuenta paladas en el mercado que van desde los

muy sofisticados y precisos a otros que incluso pueden ser descargados en un Smartphone. El
producto presentado en este proyecto pretende satisfacer a un consumidor que disfrute de la
actividad del remo a modo de pasatiempo y no de una forma profesional: un aparato que
contabilice las variables necesarias para definir un entrenamiento (número de paladas
efectuadas, tiempo a los 500 m etc.), suficientemente preciso y con un precio asequible. Con
estas especificaciones se procedió a elaborar un prototipo que las solucionara lo mejor posible.

Tras su fabricación, se quiso estudiar la aceptación de éste entre los clientes objetivo
consultándoles qué características valorarían más en un dispositivo de este tipo y qué les parecía
el propuesto. También se les preguntó por otros dispositivos del mercado que clasificaremos
como “Gama alta” y “Gama baja” atendiendo a características como su resolución de palada, la
duración de su batería o la precisión de su GPS.

Con vistas en una futura comercialización y para asegurar la calidad del diseño y del
desarrollo de nuevos productos mejorados derivados de éste, realizamos un QFD (despliegue
funcional de la calidad) a partir de las opiniones recogidas entre el equipo de remo del Club
Deportivo Helios.

El QFD es una técnica que se emplea en el ámbito industrial cuya finalidad es el
aseguramiento de la calidad del nuevo producto permitiendo al cliente tomar parte en este
proceso proporcionando su opinión. Al final de su realización podrá determinarse qué
características de este son más valoradas por el cliente y, por tanto, las que deberán mejorarse
(si el producto no las tenía de antemano).

El QFD comienza con la elaboración de la matriz “Qués frente a Cómos” en la que nos
plantearemos qué características son relevantes en un cuentapaladas y cómo se cuantifican. La
matriz de la derecha determina la importancia que el mercado da a cada “Qué”, la de debajo la
evaluación técnica del producto y de la competencia y la de arriba (el tejado) confronta las
características según su relación entre ellas.

La matriz QFD se presenta a continuación:

CONCLUSIONES:

- El punto que más tenemos que mejorar es la duración de las baterías ya que es
nuestro punto más débil y dista bastante de la calidad disponible en la competencia.
Se es consciente de que al tratarse de un prototipo modular y haberse utilizado
componentes incrustados en módulos que tienen leds o componentes innecesarios,
ha aumentado el consumo significativamente.

- Aunque no son de las características a mejorar que más prioritarias, convendría en
un futuro contemplar la mejora de la resolución del cronómetro y el GPS para
equipararnos más a los de nuestra competencia, pero sin aumentar el precio, que es
nuestro punto distintivo frente a los demás modelos.

- La evaluación técnica realizada del producto coincide con la evaluación del mercado
por lo que no ha supuesto diferencia en el resultado final.

11

10

9 3

8

7

6 -3 3

5 -9

4 3

3 9 9 9 -3 9

2 9 9 -3

1 9 3 -9 9 -3

¿
C

Ó
M

O
's

?

A
C

C
E

S
O

R
IO

S
 R

E
Q

U
E

R
ID

O
S

C
A

P
A

C
ID

A
D

 D
E

 M
E

M
O

R
IA

P
R

E
C

IO

P
A

L
A

D
A

S
 P

O
R

 M
IN

U
T

O

S
E

G
U

N
D

O
S

T
IE

M
P

O
 D

E
 D

U
R

A
C

IÓ
N

M
E

T
R

O
S

P
L
A

T
A

F
O

R
M

A
S

 D
IS

P
O

N
IB

L
E

S

S
E

N
C

IL
L
E

Z
 I
N

T
E

R
F

A
Z

T
IE

M
P

O
 D

E
 I
N

S
T

A
L
A

C
IÓ

N

T
E

C
N

O
L
O

G
ÍA

 A
D

A
P

T
A

B
L
E

Im
p
o
rt

a
n
c
ia

V
a
lo

ra
c
io

n
 d

e
l m

e
rc

a
d
o

N
u
e
s
tr

o
 p

ro
d
u
c
to

C
o
m

p
e
te

n
c
ia

 X
 (

g
a
m

a
 a

lta
)

C
o
m

p
e
te

n
c
ia

 Y
 (

g
a
m

a
 b

a
ja

)

O
b
je

tiv
o

R
a
tio

 d
e
 m

e
jo

ra

A
rg

u
m

e
n
to

 d
e
 v

e
n
ta

P
o
n
d
e
ra

c
io

n
 a

b
s
o
lu

ta

P
o
n
d
e
ra

c
io

n
 r

e
la

tiv
a

O
rd

e
n
 d

e
 im

p
o
rt

a
n
c
ia

¿QUÉ's? 1 2 3 4 5 6 7 8 9 10 11 1 2 3 4 5 6 4 8 9 10 11 12

INTERCAMBIABLE ENTRE BOTES 1 9 9 1 9 3 5 3 5 5 1 5 1 1,5 7,5 0,1 2

MEMORIA PARA ALMACENAR DATOS 2 9 3 1 9 9 1 4 1 5 1 1 1 1 1 0 6

ECONOMICO 3 9 9 9 3 9 9 9 9 9 9 5 5 5 1 3 5 1 1,5 7,5 0,1 2

RESOLUCIÓN DE PALADA 4 3 9 1 3 3 3 5 4 3 1 1 3 0 5

RESOLUCIÓN DEL CRONOMETRO 5 9 1 3 3 3 5 3 4 1,3 1 4 0,1 4

DURACIÓN BATERÍAS 6 1 3 9 3 9 3 1 4 5 2 5 5 5 2,5 1,5 15 0,2 1

PRECISION DEL GPS 7 9 3 9 3 3 4 2 5 1 3 1,5 1 4,5 0,1 3

COMPATIBILIDAD CON DISPOSITIVOS 8 1 3 9 1 9 3 1 1 1 5 1 1 1 1 1 0 6

FACILIDAD DE USO 9 3 9 1 3 9 3 5 4 5 2 5 5 1 1,5 8 0,1 2

FACILIDAD DE INSTALACIÓN 10 9 3 9 5 4 5 3 1 5 1 1,5 7,5 0,1 2

ADAPTABILIDAD PARA MINUSVALIDOS 11 1 9 1 9 5 1 5 5 1 5 1 1,5 7,5 0,1 2

Orientación deseada 1 D D D U U U U D U D U

Ponderación absoluta 2 3,8 2,9 6,5 0,8 1,2 3,5 1,6 2,3 2,5 3,5 2,6

Ponderación relativa 3 0,1 0,1 0,2 0 0 0,1 0,1 0,1 0,1 0,1 0,1 U = Flecha hacia arriva

Orden de importancia 4 2 5 1 11 10 4 9 8 7 3 6 D= Flecha hacia abajo

Valoración técnica 5 3 4 5 3 3 5 4 1 4 4 1

Nuestro producto 6 5 1 5 3 3 2 2 1 5 5 5

Competencia X 7 5 5 1 5 5 5 5 5 2 3 5

Competencia Y 8 1 1 3 4 3 5 1 1 5 1 1

Objetivo técnico 9 5 1 5 3 4 5 3 1 5 5 5

Trabajo Fin de Grado

Anexo de Código

Adrián Rosales Serrano

Director/es

José Luis Villarroel Salcedo

ESCUELA DE INGENIERIA Y ARQUITECTURA

2017

Tabla de contenido
1. Código de la toma de datos... 3

2. Código del filtrado de la señal. .. 4

3. Código de la representación del diagrama de Bode de los filtros. 6

4. Código del algoritmo de detección de máximos y mínimos. .. 7

5. Código del algoritmo integrador. .. 9

6. Código del algoritmo seguidor de tensión. ... 10

7. Código del algoritmo seguidor de tensión en tiempo real.. 11

8. Código final del prototipo. .. 12

1. Código de la toma de datos

//*****************************

//INCLUIMOS LIBRERÍAS NECESRIAS

//*****************************

#include <TimerOne.h>

#include <SPI.h>

#include <SD.h>

//************************

//DECLARAMOS LAS VARIABLES

//************************

const int chipSelect = 4;

long counter = 1;

String dataString = "";

int sensorX = 0;

int sensorZ = 0;

int sensorXant = 0;

int sensorZant = 0;

int incrementoX = 0;

int incrementoZ = 0;

//**************

//INICIALIZACIÓN

//**************

void setup(void)

{

 sensorX = analogRead(0); //Leo valor inicial del eje X

 dataString += String(sensorX); //Lo concateno al string

 dataString += "\t"; //Concateno un tabulador al string

 sensorZ = analogRead(1); //Leo valor inicial del eje X

 dataString += String(sensorZ); //Lo concateno al string

 dataString += "\r\n"; //Concateno un retorno de carro al

string

 if (!SD.begin(chipSelect)) { //Inicializo tarjeta SD

 return;

 }

 Timer1.initialize(5000); // configuro interrupción periodica

cada 5 ms (200Hz)

 Timer1.attachInterrupt(ISR_Data); // Activa la interrupcion y la asocia

a ISR_Data

}

//*************************

//INTERRUPCIÓN ACELERÓMETRO

//*************************

void ISR_Data()

{

 sensorXant = sensorX; //Asigno valor anterior del eje X

 sensorX = analogRead(0); //Leo el eje X

 incrementoX = sensorX - sensorXant; //Calculo el incremento del eje X

 dataString += String(incrementoX); //Lo concateno al string

 dataString += "\t"; //Concateno un tabulador al string

 sensorZant = sensorZ; //Asigno valor anterior del eje Z

 sensorZ = analogRead(1); //Leo el eje Z

 incrementoZ = sensorZ - sensorZant; //Calculo el incremento del eje X

 dataString += String(incrementoZ); //Lo concateno al string

 dataString += "\r\n"; //Concateno un retorno de carro al

string

 counter++; //Incremento contador

}

//***************

//BUCLE PRINCIPAL

//***************

void loop(void){

 if (counter > 100) { //Si ha habido 100 interrupciones

 Timer1.stop(); //Detengo la interrupción periódica

 File dataFile = SD.open("datalog.txt", FILE_WRITE); //Accedo al fichero

 if (dataFile) {

 dataFile.print(dataString); //Escribo el String

 dataFile.close();

 }

 else {

 }

 dataString = ""; //Reinicializo la interrupción

 counter = 1;

 Timer1.resume();

 }

}

2. Código del filtrado de la señal.

3. %Declaro variables muestra, frecuencia de muestreo, periodo, tamaño y vector t.

4. %A = A';

5. Fs = 100;

6. T = 1/Fs;

7. L = 105000;

8. t = 0:0.01:1049.99;

9.

10. %FILTRO VENTANA
11. windowSize = 100;
12. b = (1/windowSize)*ones(1,windowSize);
13. a = 1;
14. B = filter(b,a,A);
15.
16. %FIGURA 1 FILTRO VENTANA
17. %Muestro la señal y la señal filtrada por filtro de ventana
18. figure(1);
19. subplot(1,2,1);
20. plot(t,A); ylim([450 1000]);xlim([0 1050]);
21. hold on
22. plot(t,B)
23. title('Filtro de ventana 100')
24. xlabel('t (segundos)')
25. ylabel('Valor acelerometro)')
26. legend('Input Data','Filtered Data')
27. %Calculo FFT de la señal y la señal filtrada.
28. Y = fft(A);
29. P2 = abs(Y/L);
30. P1 = P2(1:L/2+1);
31. P1(2:end-1) = 2*P1(2:end-1);
32. f = Fs*(0:(L/2))/L;
33.
34. figure(1);
35. subplot(1,2,2);
36. title('Especro muestra')
37. xlabel('f (Hz)')
38. ylabel('|P1(f)|')
39.
40. Ys = fft(B);
41. P2s = abs(Ys/L);
42. P1s = P2s(1:L/2+1);
43. P1s(2:end-1) = 2*P1s(2:end-1);
44. fs = Fs*(0:(L/2))/L;
45. plot(f,P1);ylim([0 8]);xlim([0 50]);
46. hold on
47. plot(fs,P1s);ylim([0 8]);xlim([0 50]);legend('Input Data','Filtered Data');
48. title('Espectro de la muestra')
49. xlabel('f (Hz)')
50. ylabel('|P1(f)|')
51.
52.
53. %FIGURA 2 ESPECTRO DE LA MUESTRA
54. % figure(2);
55. % plot(f,P1);ylim([0 8]);xlim([0 50]);
56. % title('Espectro de la muestra')
57. % xlabel('f (Hz)')
58. % ylabel('|P1(f)|')
59.
60.
61. %APLICO FILTRO PASO BAJO A LA SEÑAL
62. A1= [0];
63. tic;
64. for c = 2:1:105000;
65.
66. i=0.02*A(1,c-1)+0.98*A1(1,c-1);
67. A1 = [A1 i];
68. % t1 = [t1 t(1,c)];
69. %L1 =L1+1;
70. end
71. toc;
72.
73. %FIGURA 3
74. %Muestro la señal y la señal filtrada por filtro paso bajo
75. figure(3);
76. subplot(1,2,1);
77. plot(t,A); ylim([450 1000]);xlim([0 1050]);
78. hold on
79. plot(t,A1)
80. title('FILTRO PASO BAJO fc=0.5Hz')
81. xlabel('t (segundos)')
82. ylabel('Valor acelerometro)')
83. legend('Input Data','Filtered Data')
84. %junto con sus FFTs
85. subplot(1,2,2);

86. Ys = fft(A1);
87. P2s = abs(Ys/L);
88. P1s = P2s(1:L/2+1);
89. P1s(2:end-1) = 2*P1s(2:end-1);
90. fs = Fs*(0:(L/2))/L;
91. plot(f,P1);ylim([0 8]);xlim([0 50]);
92. hold on
93. plot(fs,P1s);ylim([0 8]);xlim([0 50]);legend('Input Data','Filtered Data');
94. title('Espectro de la muestra')
95. xlabel('f (Hz)')
96. ylabel('|P1(f)|')
97.
98. %FILTRO DE MEDIA MÓVIL
99. tic;
100. asd = zeros(1,100);
101. contador = 1;
102. suma = 0;
103. AFO = [0];
104. for c = 2:1:105000;
105. suma = suma + A(1,c) - asd(1,contador);
106. asd(1,contador) = A(1,c);
107. contador = contador + 1;
108. if contador == 101
109. contador =1;
110. end
111. AFO = [AFO suma/100];
112. end
113. AFO = round(AFO,0);
114. toc;
115. figure(2);
116. plot(t,AFO);ylim([450 1000]);xlim([0 1050]);

3. Código de la representación del diagrama de Bode de los

filtros.

%diagrama de bode de filtro analogico paso bajo FC 0,32

%la respues en fase no me interesa por que es lineal en la banda de paso y

%puesto que las frecuencis mayores que son relevantes estan cercanas a la

%fc, su desfase será minimo.

tau = 0.5;

F=0:0.01:50;

H_F_1= 1./(1+tau*2*pi*F*j);

dB_1 = mag2db(abs(H_F_1));

%FIGURA 1

%Diagrama de bode del filtro paso bajo.

figure(1);

semilogx(F,dB_1),grid on;

title('Diagrama de bode del filtro Fc=0.3Hz')

xlabel('F(en Hz)')

ylabel('DBs')

%diagrama de bode de filtro media móvil, muestras a 100 HZ y tamaño ventana = 100

F_m=100;

M=100;

f=0:0.0001:0.5;

H_f=(sin(pi*f*M))./(M*sin(pi*f));

F=f*F_m

% figure(2);

% plot(F,abs(H_f));

% Transformación a frecuencias analógicas

dB_2 = mag2db(abs(H_f));

%FIGURA 3

%Diagrama de bode del filtro de media móvil

figure(3);

semilogx(F,dB_2),grid on,ylim([-45 0])

title('Diagrama de bode del filtro de media móvil M=100')

xlabel('F(en Hz)')

ylabel('DBs')

%FIGURA 4

%Comparación de los diagramas de bode de los dos filtros.

figure(4);

semilogx(F,dB_1),grid on;

hold on;

semilogx(F,dB_2),grid on,ylim([-45 0])

title('Comparación diagramas bode')

xlabel('F(en Hz)')

ylabel('DBs')

legend('low pass filter','window average filter')

4. Código del algoritmo de detección de máximos y mínimos.

%AFO = AFO';

t = 0:0.01:1049.99;

L=0;

AFO1 = 0;

t1 = 0;

max = 0;

min = 0;

tmax = 0;

tmin = 0;

tic;

%EMPECEMOS POR SUBMUESTREAR LA SEÑAL.

for c = 1:20:105000;

 AFO1 = [AFO1 AFO(1,c)];

 t1 = [t1 t(1,c)];

 L=L+1;

end

%busquemos máximos y mínimos.

ultimoesmaximo = false;

valmax=0;

valmin=0;

for c = 7:1:L-6;

 %DETECTO MAXIMOS

 if ultimoesmaximo == false %Si lo último detectado es un mínimo.

 if AFO1(1,c+4)<AFO1(1,c-1)%Si la señal vale menos, 5 muestras más tarde

 if AFO1(1,c-2) < AFO1(1,c-1) %Si tiene esta forma .

 if AFO1(1,c-1) > AFO1(1,c) % . .

 if AFO1(1,c-1)-valmin >4 %Dista más de 4 unidades del mínimo anterior

 valmax = AFO1(1,c-1);%ES UN MAXIMO

 max = [max AFO1(1,c-1)];

 tmax = [tmax t1(1,c-1)];

 ultimoesmaximo = true;

 end

 end

 end

 if AFO1(1,c-3)< AFO1(1,c-2) %Si tiene esta forma ..

 if AFO1(1,c-2)== AFO1(1,c-1) % . .

 if AFO1(1,c-1)> AFO1(1,c)

 if AFO1(1,c-1)-valmin >4 %Dista más de 4 unidades del mínimo anterior

 valmax = AFO1(1,c-1); %ES UN MAXIMO

 max = [max AFO1(1,c-1)];

 tmax = [tmax t1(1,c-1)];

 ultimoesmaximo = true;

 end

 end

 end

 end

 if AFO1(1,c-4)< AFO1(1,c-3) %Si tiene esta forma ...

 if AFO1(1,c-3)== AFO1(1,c-2) % . .

 if AFO1(1,c-2)== AFO1(1,c-1)

 if AFO1(1,c-1)> AFO1(1,c)

 if AFO1(1,c-1)-valmin >4%Dista más de 4 unidades del mínimo anterior

 valmax = AFO1(1,c-1); %ES UN MAXIMO

 max = [max AFO1(1,c-1)];

 tmax = [tmax t1(1,c-1)];

 ultimoesmaximo = true;

 end

 end

 end

 end

 end

 end

 end

 %DETECTO MINIMOS

 %Lógica inversa a los máximos para detección de mínimos.

 if ultimoesmaximo == true

 if AFO1(1,c-6)>AFO1(1,c-1)

 if AFO1(1,c-2) > AFO1(1,c-1)

 if AFO1(1,c-1) < AFO1(1,c)

 if valmax-AFO1(1,c-1)>4

 valmin = AFO1(1,c-1);

 min = [min AFO1(1,c-1)];

 tmin = [tmin t1(1,c-1)];

 ultimoesmaximo = false;

 end

 end

 end

 if AFO1(1,c-3)> AFO1(1,c-2)

 if AFO1(1,c-2)== AFO1(1,c-1)

 if AFO1(1,c-1)< AFO1(1,c)

 if valmax-AFO1(1,c-1)>4

 valmin = AFO1(1,c-1);

 min = [min AFO1(1,c-1)];

 tmin = [tmin t1(1,c-1)];

 ultimoesmaximo = false;

 end

 end

 end

 end

 if AFO1(1,c-4)> AFO1(1,c-3)

 if AFO1(1,c-3)== AFO1(1,c-2)

 if AFO1(1,c-2)== AFO1(1,c-1)

 if AFO1(1,c-1)< AFO1(1,c)

 if valmax-AFO1(1,c-1)>4

 valmin = AFO1(1,c-1);

 min = [min AFO1(1,c-1)];

 tmin = [tmin t1(1,c-1)];

 ultimoesmaximo = false;

 end

 end

 end

 end

 end

 end

 end

end

cadencia =0;

tcadencia=0;

for c = 5:1:402;

 if 60/(tmax(1,c)-tmax(1,c-1))<15;

 comprobacion = 0;

 else

 comprobacion = 60/((tmax(1,c)-tmax(1,c-2))/2)

 if comprobacion < 15

 comprobacion = 0;

 elseif comprobacion > 40

 comprobacion = 40;

 end

 end

 comprobacion = round(comprobacion,0);

 comprobacion = comprobacion*10;

 cadencia = [cadencia, comprobacion];

 tcadencia = [tcadencia, tmax(1,c)];

end

toc;

figure(1);

plot(t,AFO)

title('Algoritmo de detección de máximos y mínimos')

xlabel('t (segundos)')

ylabel('Valor acelerometro)')

hold on;

plot(t1,AFO1)

hold on;

plot(tmax,max,'o','MarkerEdgeColor','red')

hold on;

plot(tmin,min,'o','MarkerEdgeColor','blue')

hold on;

plot(tcadencia,cadencia)

5. Código del algoritmo integrador.
%AFO = AFO';

t = 0:0.01:1049.99;

%PRIMERO SUBMUESTREAMOS LA SEÑAL

AFO1=0;

t1=0;

L=0;

SSM=0;

SSSM=0;

t2=0;

max = 0;

tmax = 0;

tic;

for c = 1000:70:105000;

 AFO1 = [AFO1 AFO(1,c)];

 t1 = [t1 t(1,c)];

 L=L+1;

end

%EMPECEMOS QUITANDOLE LA COMPONENTE CONTINUA A LA SEÑAL.

media = mean(AFO1)

SSM=AFO1-media;

for c = 2:1:L-1;

 SSSM=[SSSM SSSM(1,c-1)+(SSM(1,c)*0.1)];

 t2 = [t2 t1(1,c)];

end

%DETECTAMOS MÁXIMOS EN LA INTEGRAL

for c = 3:1:L;

 if AFO1(1,c-2) < AFO1(1,c-1)

 if AFO1(1,c-1) > AFO1(1,c)

 max = [max AFO1(1,c-1)-660.2430];

 tmax = [tmax t1(1,c-1)];

 end

 end

end

toc;

figure(1);

plot(t1,SSM)

title('Algoritmo integrador')

xlabel('t (segundos)')

ylabel('Valor acelerometro)')

hold on;

plot(t2,SSSM)

hold on;

plot(tmax,max,'o','MarkerEdgeColor','red')

6. Código del algoritmo seguidor de tensión.
AFO = AFO';

t = 0:0.01:1049.99;

L=0;

AFO1 = 0;

t1 = 0;

max = 0;

tmax = 0;

vseg=0;

valcomp=0;

contador =0;

t_1=0;

t_2=0;

t_3=0;

cadencia=0;

valor =0;

%EMPECEMOS POR SUBMUESTREAR LA MUESTRA.

for c = 1:15:105000;

 AFO1 = [AFO1 AFO(1,c)];

 t1 = [t1 t(1,c)];

 L=L+1;

end

tic;

for c = 1:1:L;

 if AFO1(1,c)>=valcomp %Si la señal vale más que el valor del comparador

 valcomp=AFO1(1,c); %le asigno su valor

 vseg=[vseg valcomp];

 contador =0;

 else

 contador = contador +1;

 valcomp = valcomp-1;

 vseg=[vseg valcomp];

 if contador == 4 %si han pasado 5 muestras en las que su valor es inferior

 valmax = AFO1(1,c-contador); %Asigno el máximo

 max = [max AFO1(1,c-contador)];

 tmax = [tmax t1(1,c-contador)];

 %Calculo cadencia

 valor = round((60/((t1(1,c-contador)-t_3)/3)),0);

 if valor<15

 valor =0;

 end

 cadencia = [cadencia valor];

 t_3=t_2;

 t_2=t_1;

 t_1=t1(1,c-contador);

 end

 end

end

toc;

figure(1);

%plot(t,AFO)

%hold on;

plot(t1,AFO1)

title('Algoritmo seguidor de tensión')

xlabel('t (segundos)')

ylabel('Valor acelerometro)')

hold on;

plot(tmax,max,'o','MarkerEdgeColor','red')

hold on;

plot(t1,vseg)

hold on;

plot(tmax,cadencia*10)

7. Código del algoritmo seguidor de tensión en tiempo real.
%Algoritmo seguidor de tensión transladado al tiempo real con cálculo de

%cadencia.

%declaramos las variables.

%A = A';

Fs = 100;

T = 1/Fs;

L = 105000;

t = 0:0.01:1049.99;

vseg=0;

suma=0;

valoresVentana = zeros(1,100);

contadorVentana=1;

filteredSignal=0;

contadorAlgoritmo=0;

valcomp=0;

contadorDecrecimiento=0;

cadencia = 0;

tmax_3=0;

tmax_2=0;

tmax_1=0;

x=0;

y=0;

tic;

for c = 1:1:105000; %para cada interrupción del acelerómetro.

 %Calculamos el sumatorio

 suma = suma + A(1,c) - valoresVentana(1,contadorVentana);

 valoresVentana(1,contadorVentana) = A(1,c);

 contadorVentana = contadorVentana + 1;

 if contadorVentana == 101

 contadorVentana =1;

 end

 contadorAlgoritmo = contadorAlgoritmo+1;

 if contadorAlgoritmo == 15 %cada 15 interrupciones

 %Calculamos valor de la señal filtrada

 filteredSignal = round(suma/100);

 %si la señal vale más que el comparador

 if filteredSignal>=valcomp

 %Le asignamos su valor

 valcomp=filteredSignal

 vseg=[vseg valcomp];

 contadorDecrecimiento =0;

 %Anotamos tiempo de posible máximo

 posibleMaximo=t(1,c);

 else %si no

 %"descargamos" el comparador

 contadorDecrecimiento = contadorDecrecimiento +1;

 valcomp = valcomp-1;

 %si se descarga 4 veces

 if contadorDecrecimiento == 4

 %el posible máximo, era un máximo.

 tmax = posibleMaximo;

 %Calculamos la cadencia con los tiempos de máximos

 %anteriores.

 cadencia = (60/((tmax-tmax_3)/3));

 if cadencia<15

 cadencia =0;

 end

 x=[x t(1,c-4)];

 y=[y cadencia];

 tmax_3=tmax_2;

 tmax_2=tmax_1;

 tmax_1=tmax;

 end

 end

 contadorAlgoritmo = 0;

 end

end

toc;

%mostramos la cadencia.

plot (x,y);

8. Código final del prototipo.
//*****************************

//INCLUIMOS LIBRERÍAS NECESRIAS

//*****************************

#include <Tim

#include <LiquidCrystal.h>

//************************

//DECLARAMOS LAS VARIABLES

//************************

int valoresVentana[100];

unsigned long suma = 0;

int contadorVentana = 0;

int filteredSignal = 0;

int contadorDiezmado = 0;

int valcomp = 0;

int contadorDecrecimiento = 0;

int cadencia = 0;

int dato = 0;

unsigned long posibleMaximo = 0;

unsigned long tmax = 0;

unsigned long tmax_1 = 0;

unsigned long tmax_2 = 0;

unsigned long tmax_3 = 0;

String tiempoGPS;

byte horaTimestamp;

int minutoTimestamp;

int segundoTimestamp;

int hora;

int minuto;

int segundo;

int horaEntrenamiento;

int minutoEntrenamiento;

int segundoEntrenamiento;

long int duracionEntrenamiento;

long int offsetDuracionEntrenamiento;

byte horaMostrar;

byte minutoMostrar;

byte segundoMostrar;

float latitud;

float longitud;

float latitudAnt;

float longitudAnt;

float DLatitud;

float DLongitud;

float DAngulo;

float DPosicion;

const float pi = 3.14159;

const float RTierra = 3671000;

float distanciaRecorrida;

int distanciaRecorridaEntero;

int t500mNudos;

int tiempo500m[2];

String tiempoDeEntrenamientoLCD;

String paladasPorMinutoLCD;

String tiempoALos500MetrosLCD;

String distanciaRecorridaLCD;

bool primeraEjecucion = true;

bool flagGPS = true;

bool funcionando = false;

bool GPS = false;

LiquidCrystal lcd(10, 8, 7, 6, 5, 4);

//**************

//INICIALIZACIÓN

//**************

void setup(void) {

 pinMode(2, INPUT_PULLUP);

 pinMode(3, INPUT_PULLUP);

 lcd.begin(16, 2);

 lcd.setCursor(0, 0);

 lcd.print(" Pulse boton ");

 lcd.setCursor(0, 1);

 lcd.print(" para comenzar ");

 attachInterrupt(digitalPinToInterrupt(2), pulsadorReset, FALLING); //Interrupción pin digital pulsador Reset

 attachInterrupt(digitalPinToInterrupt(3), pulsadorPausa, FALLING); //Interrupción pin digital pulsador Reset

 Serial.begin(57600);

}

//**

//BUCLE PRINCIPAL

//**

void loop(void) {

 //_______1__________2_3_________4_5__________6_7____8______9___10_11_12

 //"$GPRMC,045103.000,A,3014.1984,N,09749.2872,W,0.67,161.46,030913,,,A*7C\r\n" Trama GPS

 //"$GPRMC,150734.00,A,4139.49389,N,00051.88581,W,0.256,,210617,,,A*6C"\r\n" Trama GPS

 if (Serial.available() > 0) { //Si recibo algo por el puerto serie

 //long int tiempo = millis();

 String trama = Serial.readStringUntil('\n'); //Leo trama completa

 //Serial.println(millis()-tiempo);

 Serial.println (trama);

 int indexComas [] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};

 if (trama.substring(0, 6) == "$GPRMC") { //Compruebo si empieza por "$GPRMC"

 for (int i = 1; i < 13; i++) {

 indexComas[i] = trama.indexOf(',', indexComas[i - 1] + 1); //Guardo los indices del array en los que

 //Serial.println(indexComas[i]); //hay una coma

 }

 if (trama.substring(indexComas[2] + 1, indexComas[3]) == "V") { // bit de validación ok?

 //Compruebo si el caracter de trama está OK

 GPS = false;

 Serial.println("Conectando con GPS");

 } else if (trama.substring(indexComas[2] + 1, indexComas[3]) == "A") {

 GPS = true;

 tiempoGPS = trama.substring(indexComas[1] + 1, indexComas[2]); //Guardo Hora

 //Serial.println(hora);

 if (funcionando == true) {

 //***

 //CÁLCULO DEL TIEMPO DE ENTRENAMIENTO

 //***

 hora = tiempoGPS.substring(0, 2).toInt();

 //Serial.print(hora);

 minuto = tiempoGPS.substring(2, 4).toInt();

 // Serial.print(minuto);

 segundo = tiempoGPS.substring(4, 6).toInt();

 // Serial.print(segundo);

 horaEntrenamiento = hora - horaTimestamp;

 //Serial.println(horaEntrenamiento);

 minutoEntrenamiento = minuto - minutoTimestamp;

 //Serial.println(minutoEntrenamiento);

 segundoEntrenamiento = segundo - segundoTimestamp;

 //Serial.println(segundoEntrenamiento);

 duracionEntrenamiento = horaEntrenamiento * 3600 + minutoEntrenamiento * 60 + segundoEntrenamiento +
offsetDuracionEntrenamiento;

 if (duracionEntrenamiento < 0) {

 horaEntrenamiento += 24;

 duracionEntrenamiento = horaEntrenamiento * 3600 + minutoEntrenamiento * 60 + segundoEntrenamiento +
offsetDuracionEntrenamiento;

 }

 horaMostrar = duracionEntrenamiento / 3600;

 minutoMostrar = (duracionEntrenamiento % 3600) / 60;

 segundoMostrar = ((duracionEntrenamiento % 3600) % 60);

 tiempoDeEntrenamientoLCD = horaMostrar;

 tiempoDeEntrenamientoLCD +=":";

 if(minutoMostrar < 10){

 tiempoDeEntrenamientoLCD += "0";

 tiempoDeEntrenamientoLCD += minutoMostrar;

 tiempoDeEntrenamientoLCD +=":";

 }else{

 tiempoDeEntrenamientoLCD += minutoMostrar;

 tiempoDeEntrenamientoLCD +=":";

 }

 if(segundoMostrar < 10){

 tiempoDeEntrenamientoLCD += "0";

 tiempoDeEntrenamientoLCD += segundoMostrar;

 }else{

 tiempoDeEntrenamientoLCD += segundoMostrar;

 }

 Serial.println(tiempoDeEntrenamientoLCD);

 //***

 //CÁLCULO DE LA DISTANCIA RECORRIDA

 //***

 latitud = trama.substring(indexComas[3] + 1, indexComas[3] + 3).toInt() +

 (trama.substring(indexComas[3] + 3, indexComas[4]).toFloat()) / 60.0;

 longitud = trama.substring(indexComas[5] + 1, indexComas[5] + 4).toInt() +

 (trama.substring(indexComas[5] + 4, indexComas[6]).toFloat()) / 60.0;

 if (flagGPS) { //Si es la primera ejecución del GPS

 latitudAnt = latitud;

 longitudAnt = longitud;

 horaTimestamp = tiempoGPS.substring(0, 2).toInt();

 Serial.println(horaTimestamp);

 minutoTimestamp = tiempoGPS.substring(2, 4).toInt();

 Serial.println(minutoTimestamp);

 segundoTimestamp = tiempoGPS.substring(4, 6).toInt();

 Serial.println(segundoTimestamp);

 flagGPS = false;

 }

 DLatitud = (latitud - latitudAnt) * pi / 180;

 DLongitud = (longitud - longitudAnt) * pi / 180;

 DAngulo = sqrt(DLatitud * DLatitud + DLongitud * DLongitud);

 DPosicion = DAngulo * RTierra;

 Serial.println(DPosicion);

 if (DPosicion < 0.5) {

 DPosicion = 0;

 }

 latitudAnt = latitud;

 longitudAnt = longitud;

 distanciaRecorrida += DPosicion;

 distanciaRecorridaEntero = distanciaRecorrida;

 if(distanciaRecorridaEntero > 9999){ //xxxxx

 distanciaRecorridaLCD = distanciaRecorridaEntero;

 }else if (distanciaRecorridaEntero > 999){ //0xxxx

 distanciaRecorridaLCD = "0";

 distanciaRecorridaEntero += distanciaRecorridaEntero;

 }else if (distanciaRecorridaEntero > 99){ //00xxx

 distanciaRecorridaLCD = "00";

 distanciaRecorridaLCD += distanciaRecorridaEntero;

 }else if(distanciaRecorridaEntero > 9){ //000xx

 distanciaRecorridaLCD = "000";

 distanciaRecorridaLCD += distanciaRecorridaEntero;

 }else if (distanciaRecorridaEntero < 10){ //0000x

 distanciaRecorridaLCD = "0000";

 distanciaRecorridaLCD += distanciaRecorridaEntero;

 }

 Serial.println(distanciaRecorrida);

 //***

 //CÁLCULO DEL TIEMPO A LOS 500 METROS

 //***

 t500mNudos = 971.93 / trama.substring(indexComas[7] + 1, indexComas[8]).toFloat(); //comvierto velocidad en nudos a tiempo/500m

 //tiempo500m[]={minutos,segundos}

 tiempo500m[1] = t500mNudos / 60.0;

 tiempo500m[2] = (t500mNudos % 60);

 if (tiempo500m[1] > 15 || tiempo500m[1] < 1) {

 tiempoALos500MetrosLCD = "-:-- ";

 } else if(tiempo500m[2] < 10){

 tiempoALos500MetrosLCD = tiempo500m[1];

 tiempoALos500MetrosLCD += ":0";

 tiempoALos500MetrosLCD += tiempo500m[2];

 tiempoALos500MetrosLCD += " ";

 }else if(tiempo500m[2] >10){

 tiempoALos500MetrosLCD = tiempo500m[1];

 tiempoALos500MetrosLCD += ":";

 tiempoALos500MetrosLCD += tiempo500m[2];

 tiempoALos500MetrosLCD += " ";

 }

 Serial.println(tiempoALos500MetrosLCD);

 Timer1.detachInterrupt();

 //***

 //MUESTRO DATOS CALCULADOS POR LA PANTALLA

 //***

 ///

 //tiempoDeEntrenamientoLCD paladasPorMinutoLCD //

 // //

 //tiempoALos500MetrosLCD distanciaRecorridaLCD //

 ///

 lcd.setCursor(0, 0);

 lcd.print(tiempoDeEntrenamientoLCD);

 lcd.setCursor(10, 0);

 lcd.print(paladasPorMinutoLCD);

 lcd.setCursor(0, 1);

 lcd.print(tiempoALos500MetrosLCD);

 lcd.setCursor(10, 1);

 lcd.print(distanciaRecorridaLCD);

 Timer1.attachInterrupt(ISR_Data);

 }

 }

 }

 }

}

//***

//CÁLCULO DE LA CADENCIA. Interrupción periódica cada 10 ms

//***

void ISR_Data() {

 dato = analogRead(5); //Leemos valor acelerómetro

 suma += dato; //Lo añadimos al sumatorio de los 100 últimos valores

 suma -= valoresVentana[contadorVentana]; //Quitamos el valor más antiguo

 valoresVentana[contadorVentana] = dato; //Guardamos el valor recien leído

 contadorVentana += 1;

 if (contadorVentana == 100) { //Si se han leido 100 valores

 contadorVentana = 0; //asignamos de nuevo el índice del array.

 }

 contadorDiezmado += 1;

 if (contadorDiezmado == 15) { //Si hemos realizado esta tarea 15 veces (diezmado)

 filteredSignal = suma / 100; //Calculamos el valor medio de la señal.

 if (filteredSignal > valcomp) { //Si el valor de la señal es mayor que el valor del comparador

 valcomp = filteredSignal; //Le asignamos su valor.

 contadorDecrecimiento = 0; //Rinicializamos el contador de decrecimiento.

 posibleMaximo = millis(); //Guardamos el instante de este acontecimiento como posible máximo

 }

 else { //Si el valor de la señal es menor que el valor del comparador

 contadorDecrecimiento += 1; // Incrementamos contador de decrecimiento

 //Serial.println(contadorDecrecimiento);

 valcomp -= 1; //Disminuimos valor del comparador

 if (contadorDecrecimiento == 4) { //Si el contador de decrecimiento llega a 4

 tmax = posibleMaximo; //Confirmamos que se trataba de un máximo

 cadencia = (60.0 / ((tmax - tmax_3) / 1000 / 3)); //Calculamos cadencia con las 3 últimas paladas

 if (cadencia < 15) { //Si es inferior a 15

 cadencia = 0; //Le asignamos valor 0

 }

 paladasPorMinutoLCD = cadencia;

 tmax_3 = tmax_2; //Reasignamos tiempos de paladas anteriores

 tmax_2 = tmax_1;

 tmax_1 = tmax;

 }

 }

 contadorDiezmado = 0; //Reinicializamos contador para el diezmado

 }

}

//***

//INTERRUPCIÓN PULSADOR RESET

//***

void pulsadorReset() {

delay(250);

 if (digitalRead(2) == LOW) {

 Serial.println("reset");

 }

 offsetDuracionEntrenamiento = 0;

 duracionEntrenamiento = 0;

}

//***

//INTERRUPCIÓN PULSADOR PAUSA

//***

void pulsadorPausa() {

 delay(250);

 if (digitalRead(3) == LOW) {

 Serial.println("Pausa");

 if (GPS == true) {

 if (primeraEjecucion == true){

 lcd.setCursor(0, 0);

 lcd.print(" ");

 lcd.setCursor(0, 1);

 lcd.print(" ");

 primeraEjecucion = false;

 }

 if (funcionando == false) {

 funcionando = true;

 horaTimestamp = tiempoGPS.substring(0, 2).toInt();

 //Serial.println(horaTimestamp);

 minutoTimestamp = tiempoGPS.substring(2, 4).toInt();

 //Serial.println(minutoTimestamp);

 segundoTimestamp = tiempoGPS.substring(4, 6).toInt();

 //Serial.println(segundoTimestamp);

 flagGPS = true;

 Timer1.initialize(10000);

 Timer1.attachInterrupt(ISR_Data);

 }else if (funcionando == true) {

 funcionando = false;

 offsetDuracionEntrenamiento = duracionEntrenamiento;

 Timer1.detachInterrupt();

 }

 }

 }

}

Trabajo Fin de Grado

Anexo de Planos

Adrián Rosales Serrano

Director/es

José Luis Villarroel Salcedo

ESCUELA DE INGENIERIA Y ARQUITECTURA

2017

IOREF
RESET
3.3V
5V
GND
Vin
A0
A1
A2
A3
A4
A5

AREF
GND

13
12
11
10
9
8
7
6
5
4
3
2

TX->1
RX<-0

USB

1

2

3

4

5

7

8

9

10

6

VCC

C1

100nF

GND

A5
VCC

VREF

GND

X

Y

Z

SL

0G

5V

3V3

GND

GS

ST

MMA7361
MÓDULOACELERÓMETRO

GND

1

2

3

4

GND

TXD

RXD

VCC

GPSNEO
MÓDULOGPS

VCC

RXD

GND PIN TOMA TIERRA
PIN DESCRIPCIÓN

VCC PIN TENSION ALIMENTACIÓN 5V
V REF PIN REFERENCIA TENSIÓN ADC
A5 PIN ANALÓGICO 5
RXD PIN LECTURA PUERTO SERIE

GND

LCD

GND

VCC

3
2

1

10
K

R1

VSS

DP10

GND
DP8

VDD
VO
RS
R/W
E
DB0
DB1
DB2
DB3

16
X2

 L
CD

DP7
DP6
DP5
DP4

DB4
DB5
DB6
DB7
A
K

GND

2 4
1 3

I1

R2

220
VCC

GND

2 4
1 3 DP2

S1

GND

2 4
1 3 DP3

S2

GND PIN TOMA TIERRA

PIN DESCRIPCIÓN
VCC PIN TENSION ALIMENTACIÓN 5V

DP2
DP3
DP4
DP5
DP6
DP7

PIN DIGITAL 2
PIN DIGITAL 3
PIN DIGITAL 4
PIN DIGITAL 5
PIN DIGITAL 6
PIN DIGITAL 7

DP8 PIN DIGITAL 8
DP10 PIN DIGITAL 10

(ADC5)PC5 28

(ADC4)PC4 27

(ADC3)PC3 26

(ADC2)PC2 25

(ADC1)PC1 24

(ADC0)PC0) 23

(SCK)PB5 19

(MISO)PB4 18

(MOSI)PB3 17

(SS)PB2 16

(OC1)PB1 15

(ICP)PB0 14

(AIN1)PD7 13

(AIN0)PD6 12

(T1)PD5 11

(T0)PD4 6

(INT1)PD3 5

(INT0)PD2 4

(TXD)PD1 3

(RXD)PD0 2

GND8 VCC7

AVCC20 AREF21

XTAL19

XTAL210

RESET1

AGND22

1 2
3 4
5 6

1
2
3
4
5
6
7
8

1
2
3
4
5
6
7
8
9
10

1
2
3
4
5
6

1
1

2
2

3 3

1
2
3
4P$

1
P$

1
P$

2
P$

2

1

IN3 OUT 4
2

(AIN0/INT1)PD1 7

(AIN2/PCINT11)PC2 5

(CTS/HWB/AIN6/TO/INT7)PD7 13

(INT4/ICP1/CLK0)PC7 22

(INT5/AIN3)PD4 10

(OC0B/INT0)PD0 6

(OC1A/PCINT8)PC6 23

(PCINT5)PB5 19(PCINT6)PB6 20(PCINT7/OC0A/OC1C)PB7 21

(PCINT9/OC1B)PC5 25

(PCINT10)PC4 26

(PD0/MISO/PCINT3)PB3 17

(PDI/MOSI/PCINT2)PB2 16

(RTS/AIN5/INT6)PD6 12

(RXD1/AIN1/INT2)PD2 8

(SCLK/PCINT1)PB1 15

(SS/PCINT0)PB0 14

(T1/PCINT4)PB4 18

(TXD1/INT3)PD3 9

(XCK/AIN4/PCINT12)PD5 11

AVCC32

D+29 D-30

GND3

PAD33

RESET(PC1/DW)24

UCAP27

UGND28

UVCC31

VCC4

XTAL11

XTAL2(PC0)2

1 2
3 4
5 6

2 1

21

1
8

27

36

4
5

1
8

2
7

3
6

4
5

18

27

3 6

4 5

18

2 7

3 6

45

1
2

3
4

2

3
1

6

5
7

8
4

12
34

5

IN1

ON/OFF3

NC/FB 4

OUT 5

GND2
1
2
3
4
5
6
7
8

2
1

