000069435 001__ 69435
000069435 005__ 20180314135129.0
000069435 0247_ $$2doi$$a10.1007/s10444-014-9355-2
000069435 0248_ $$2sideral$$a104445
000069435 037__ $$aART-2015-104445
000069435 041__ $$aeng
000069435 100__ $$0(orcid)0000-0002-3312-5710$$aCalvo, Manuel$$uUniversidad de Zaragoza
000069435 245__ $$aRunge-Kutta projection methods with low dispersion and dissipation errors
000069435 260__ $$c2015
000069435 5060_ $$aAccess copy available to the general public$$fUnrestricted
000069435 5203_ $$aIn this paper new one-step methods that combine Runge–Kutta (RK) formulae with a suitable projection after the step are proposed for the numerical solution of Initial Value Problems. The aim of this projection is to preserve some first integral in the numerical integration. In contrast with standard orthogonal projection, the direction of the projection at each step is obtained from another suitable embed- ded formula so that the overall method is affine invariant. A study of the local errors of these projection methods is carried out, showing that by choosing proper embedded formulae the order can be increased for the harmonic oscillator. Particular embedded formulae for the third order method by Bogacki and Shampine (BS3) are provided. Some criteria to get appropriate dynamical directions for general problems as well as sufficient conditions that ensure the existence of RK methods embedded in BS3 according to them are given. Finally, some numerical experiments to test the behaviour of the new projection methods are presented.
000069435 536__ $$9info:eu-repo/grantAgreement/ES/MINECO/MTM2010-21630-C02-01
000069435 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/
000069435 590__ $$a1.325$$b2015
000069435 591__ $$aMATHEMATICS, APPLIED$$b56 / 254 = 0.22$$c2015$$dQ1$$eT1
000069435 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000069435 700__ $$0(orcid)0000-0002-0122-8926$$aLaburta, María Pilar$$uUniversidad de Zaragoza
000069435 700__ $$0(orcid)0000-0001-6120-4427$$aMontijano, Juan Ignacio$$uUniversidad de Zaragoza
000069435 700__ $$0(orcid)0000-0002-4238-3228$$aRández, Luis$$uUniversidad de Zaragoza
000069435 7102_ $$12005$$2595$$aUniversidad de Zaragoza$$bDepartamento de Matemática Aplicada$$cMatemática Aplicada
000069435 773__ $$g41, 1 (2015), 231-251$$pAdv. comput. math.$$tADVANCES IN COMPUTATIONAL MATHEMATICS$$x1019-7168
000069435 8564_ $$s339918$$uhttp://zaguan.unizar.es/record/69435/files/texto_completo.pdf$$yPostprint
000069435 8564_ $$s56199$$uhttp://zaguan.unizar.es/record/69435/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000069435 909CO $$ooai:zaguan.unizar.es:69435$$particulos$$pdriver
000069435 951__ $$a2018-03-14-13:06:06
000069435 980__ $$aARTICLE