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Abstract 

Purpose. The aim of this work is to develop a scalable continuous system suitable for the 

formulation of polymeric nanoparticles using membrane-assisted nanoprecipitation. One of the 

hurdles to overcome in the use of nanostructured materials as drug delivery vectors is their 

availability at industrial scale. Innovation in process technology is required to translate laboratory 

production into mass production while preserving their desired nanoscale characteristics. 

Methods. Membrane-assisted nanoprecipitation has been used for the production of Poly[(D,L 

lactide-co-glycolide)-co-poly ethylene glycol] diblock) (PLGA-PEG) nanoparticles using a pulsed 

back-and-forward flow arrangement. Tubular Shirasu porous glass membranes (SPG) with pore 

diameters of 1 and 0.2 μm were used to control the mixing process during the nanoprecipitation 

reaction. 

Results. The size of the resulting PLGA-PEG nanoparticles could be readily tuned in the range 

from 250 to 400 nm with high homogeneity (PDI lower than 0.2) by controlling the dispersed phase 

volume/continuous phase volume ratio. Dexamethasone was successfully encapsulated in a 

continuous process, achieving an encapsulation efficiency and drug loading efficiency of 50% and 

5%, respectively. The dexamethasone was released from the nanoparticles following Fickian 

kinetics. 

Conclusions. The method allowed to produce polymeric nanoparticles for drug delivery with a high 

productivity, reproducibility and easy scalability. 
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Abbreviations 

CP: continuous phase  

DEX: dexamethasone 

DLE: drug loading efficiency 

DP: dispersed phase  

EE: encapsulation efficiency 

MANA: membrane-assisted nanoprecipitacion 

NPs: nanoparticles 

NSBTR: nanoprecipitation in a stirred batch-type reactor  

PDI: polydispersity index 

PEG: poly ethylene glycol 

PGA: glycolic acids 

PLA: lactic acid 

PLGA-PEG: Poly[(D,L lactide-co-glycolide)-co-poly ethylene glycol] diblock 

SEM: Scanning Electron Microscopy  
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Introduction 

Polymeric nanoparticles (NPs) are intensely investigated due to their high potential, particularly, for 

diagnosis and drug-delivery applications [1]. They can be degraded in vivo, either enzymatically or 

by hydrolysis or both, to produce biocompatible, toxicologically safe by-products which are further 

eliminated by the normal metabolic pathways [2]. However, only a few of the drug-loaded 

nanoparticle systems investigated are able to reach the market. Among the main reasons for this are 

the difficulties regarding the scale-up of the manufacturing process, regulation standards and failure 

in clinical trials [3–5]. 

PLGA (poly-d,l-lactide-co-glycolide) is a FDA-approved polymer, used for the preparation of 

biodegradable nanosystems [2,6]. The rate of drug release from PLGA nanoparticles can be tuned 

by modifying the relative amount between lactic (PLA) and glycolic acids (PGA) in the polymer 

composition [2]. The release rate increases as the proportion of lactic acid decreases, due to the 

hydrophilicity increase in the matrix. The fastest degradation is achieved with PLGA 50% 

(PLA/PGA) [2,7]. On the other hand, PEG (poly ethylene glycol) is a hydrophilic and inert polymer 

that provides a steric barrier on the surface of the nanoparticles and minimizes their protein binding 

(opsonization). Adding PEG is useful to prolong NPs circulation (avoiding a fast clearance by 

macrophages) and to decrease premature drug release. Because of this, several copolymers of 

PLGA with PEG have been synthesized, encapsulating a wide variety of therapeutic drugs [8].  

Different production techniques (i.e. nanoprecipitation, emulsion/solvent diffusion, spray drying, 

salting-out, supercritical antisolvent precipitation, etc.) have been reported for the synthesis of 

PLGA-PEG nanoparticles [9–12]. Among them, nanoprecipitation is highly attractive due to the 

low energy input required. Generally, the nanoprecipitation process yields nanoparticles after 

mixing a solution of the polymer in an organic solvent (i.e., acetone), with a non-solvent (i.e., 

water), where the polymer is not soluble. Consequently, the resulting nanoparticles are quite 

sensitive to the mixing process and solvents miscibility. NPs are formed due to the nucleation of 

small aggregates of polymeric macromolecules, followed by the aggregation of the formed nuclei to 

Con formato: Inglés (Reino Unido)
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generate a stable polymer nanoassembly. The aggregation stage is suppressed as soon as colloidal 

stability is reached. [13] 

The main challenge in polymeric NPs production by nanoprecipitation process is to achieve a fine 

control of the mixing processes. This is crucial in order to tune with good accuracy, the size and 

physicochemical properties of the nanoparticles [14,15]. Producing polymeric NPs by an approach 

that meets clinics requirements remains highly challenging: it requires an operator independent, 

scalable and size-adjustable synthesis [16]. Typically, multistep batch laboratory procedures are not 

suitable for large-scale production due to the low reproducibility between batches [3]. A 

compromise often has to be accepted between the high throughput rates required and the ability to 

control the desired nanoscale features. Consequently, new technologies are required to overcome 

these challenges and significantly accelerate the clinical translation of nanomedicines [3,16].  

The use of nanoprecipitation methods at industrial scale is still hindered by the lack of a robust 

technique able to translate the results from laboratory scale to mass production. Only few studies 

deal with the design of a reliable scale up of NPs production by nanoprecipitation [17]. Typically, a 

continuous system like a “T mixer” is used for large scale production where the two phases diffuse 

into each other forming the NPs. The work of [18] is a good example of this approach. However, 

the results achieved by these authors showed differences in terms of drug loading and particle size 

at laboratory scale and at pilot scale due to the higher turbulence generated in the continuous pilot 

scale mode (responsible of the drug diffusion in the external aqueous phase before the polymer 

chains aggregated to form the NPs) [18]. Automatically controlled devices, such as Semi-

Automated Nanoprecipitation-System and high-throughput dynamic light scattering have been 

advocated to enable a good control over processing parameters while following a high-throughput 

approach [13,17,19].  

Membranes are being increasingly used as the system of choice for scaling up the production of 

emulsions and particles. Membrane emulsification, also combined with secondary solidification 

reactions, is a well-established technology with demonstrated scale-up capabilities [20–23]. 

Con formato: Inglés (Reino Unido)
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However, the study of nanoprecipitation in combination with membrane processing (membrane-

assisted nanoprecipitacion or MANA) has opened a new window on the application of membrane 

science in the last years [24–28].  

In the present work, the production of PLGA-PEG NPs by MANA has been investigated for the 

first time. Our aim is to develop a scalable continuous system suitable for the formulation of PLGA-

PEG NPs using MANA. We have studied process development and drug release aspects that are 

essential regarding a potential clinic translation and industrial scale production. Dexamethasone has 

been selected as a model drug in view of its well-known properties as an anti-inflammatory and 

immunosuppressant corticosteroid widely used for the treatment of different pathologies including 

arthritis, allergy, joint pain, skin and eye disorders, leukemia, lymphoma, multiple myeloma, 

cancer-associated side effects, inflammation, and immune-system disorders. Being a hydrophobic 

drug, encapsulation is often proposed to increase its bioavailability [29]. In this work, we have 

evaluated the encapsulation efficiency and drug loading efficiency of dexamethasone in PLGA-

PEG NPs as well as its delivery profile to unveil the release mechanism.  

 

 

2.  Materials and Methods 

2.1. Materials 

Poly[(D,L-lactide-co-glycolide)- co-PEG] diblock) (PLGA-PEG) polymer: RESOMER Select 5050 

DLG mPEG 5000 (Diblock PLGA (50:50) PEG (5kDa, 5%)) were purchased from EVONIK 

Industries AG. Pluronic F127 and Acetone were purchased from Sigma-Aldrich. Deionized water 

was used in all the experiments. All chemicals used were reagent grade.  

 

2.2. Production of PLGA-PEG nanoparticles by membrane –assisted nanoprecipitation  

A polymeric solution of PLGA-PEG (10 mg mL-1) in acetone was used as dispersed phase (DP) and 

Pluronic F127 in water (11.6 mg mL-1) was used as continuous phase (CP). For the study of 

Con formato: Inglés (Reino Unido)
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dexamethasone (DEX) encapsulation efficiency and release, the DP was modified by including 

DEX (PLGA-PEG at 10 mg mL-1 and DEX at 1 mg mL-1in acetone) 

The preparation of polymeric nanoparticles was carried out by using a Shirasu porous glass (SPG, 

Miyazaki, Japan) hydrophilic tubular membrane. Membranes with a pore size of 1 and 0.2 µm were 

tested. The effective membrane area was 31.3 cm2. The schematic figure of the membrane 

apparatus used for nanoparticles preparation is illustrated in Figure 1. A pump was used to inject the 

dispersed phase through the membrane pores. The continuous phase was pulsed back-and forward 

(pulsed cross-flow mode) at a fixed amplitude and frequency along the lumen side of the membrane 

by a programmable peristaltic pump (Digi-Staltic double-Y Masterflex® pump Micropump, model 

GJ-N23.JF1SAB1). The value of the amplitude was fixed at 4.7 10-2 m and the frequency was 

modified in the range between 1.48 and 3.57 Hz. The maximum shear stress (τmax) [Pa] is a function 

of the amplitude (a) and the frequency (f) of the pulsed flow according to equation 1 [30]: 

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 1                         τmax =2 a (π f)
3
2 (µc ρc )

1
2  

Where τmax is the shear stress (Pa), α a is the amplitude, f is the frequency, μc is the continuous 

phase viscosity (Pa s) and ρc is the continuous phase density (kg m-3).  

The disperse phase flux (Jd) was determined by the volumetric flow, measuring the dispersed phase 

consumption from the graduated feed cylinder. Jd (L h-1 m-2) is given by the following equation 2: 

Equation 2   Jd = Qd / A 

Where, Qd is the dispersed phase flow rate (L h-1) and A is the membrane area (m-2). The dispersed 

phase flow rate was varied between 9.6 10-3 and 6 L h-1 that corresponds to a dispersed phase flux 

between 3 and 1917 Lh-1m-2. Polymeric NPs are formed after the controlled diffusion of the 

dispersed phase into the continuous phase (Figure 1-b). 

Different ratios of dispersed phase volume /continuous phase volume (DP/CP) were tested in the 

range from 0.16 32 to 1.22. Dispersed phase/continuous phase (DP/CP) ratio was calculated using 

equation 3. The DP volume corresponds to the total volume of polymeric solution permeated trough 
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the membrane at time t while the CP volume was constant and equal to 50mL. As a result, the 

DP/CP ratios increased as a function of time  

Equation 3   DP/CP ratio (t) = DP Volume (t) / CP Volume  

At the end of each experiment, the produced droplets were collected and left under the fume hood 

for 3 hours to allow acetone evaporation. The resulting particles were centrifuged at 2100 g for 10 

min, and the pellet washed three times with Milli-Q water using the centrifuge. Tthe supernatant 

collected after each centrifugation cycle was stored for further analysis and the pellet was 

lyophilized for 24h (0.01 bar, - 40oC) using a LyoAlfa 10/15 lyophiler from Telstar.  

 

2.3. Production of PLGA-PEG nanoparticles by nanoprecipitation in stirred batch-type 

reactor  

The nanoprecipitation process was carried out in a beaker (batch-type reactor) and mixing was 

produced by magnetic stirring (300 rpm) at room temperature. In this case, the dispersed phase was 

added into the continuous phase drop by drop. The composition of the dispersed and continuous 

phases was the same as the one used for conducting the experiments with the MANA process.  

A 150 mL batch-type reactor was filled with 50 mL of CP and the DP volume was gradually added 

(from 16 mL to 55 mL) to obtain a DP /CP volumetric ratios from 0.32 32 to 1.122. This procedure 

reproduces the conditions used by using the membrane equipment. For each DP/CP volume ratio 

studied, the produced droplets were collected and left under the fume hood for 3 hours to allow 

acetone evaporation. The resulting particles were centrifuged at 2100 g for 10 min, and the pellet 

washed three times with Milli-Q water using the centrifuge. The supernatant collected after each 

centrifugation cycle and the pellet was lyophilized for 24h (0.01 bar, -40oC) using a LyoAlfa 10/15 

lyophilazer from Telstar.  

 

2.4.  Particles characterization 

2.4.1.  Particle analysis  
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Particle size and polydispersity (PDI) of the nanoparticles were measured by Dynamic light-

scattering (ZetaSize NanoZS, Malvern Instrument). The software used to collect and analyse the 

data was ZetaSizer Sofware 7.1 from Malvern. The measurements were made at a controlled 

temperature of 25°C. The Z-average diameter (Z-Average) and the polydispersity index (PDI) were 

obtained from the autocorrelation function using a refractive index of 1.55.  

Morphological analysis of the nanoparticles was carried out by Scanning Electron Microscopy 

(SEM, Inspect F50; FEI, Eindhoven, the Netherlands) at the LMA-INA-Universidad Zaragoza 

facilities operated at 10–15 kV. Purified-collected samples were stained by mixing 200 uL of 

nanoparticles colloid with 200uL of phosphotungstic acid solution (75 mg/mL) during 1.5 hours. 

The resulting dispersion was washed three times with Milli-Q water using a centrifuge. Finally, 10 

uL of resulting nanoparticles suspension was added on a glass slide, dried in air, and sputtered with 

platinum.  

 

2.4.2 Encapsulation Efficiency and Drug Loading Efficiency 

The encapsulation efficiency (EE) and drug loading efficiency (DLE) were calculated using an 

indirect method. The particles were separated from the liquid using Centrifugal Ultrafiltration 

Devices (Vivaspin) from Sartorius Stedim. DEX concentration in supernatant was measured 

directly after the centrifugation using HPLC analysis. DEX encapsulated was calculated by mass 

balance.  

HPLC analysis was performed at 40 °C, using a reversed-phase C18 column (2.6 µm, 50x4.6mm 

Phenomenex kinetex) and eluted isocratically with acetonitrile/water (50/50 v/v). The flow rate was 

fixed at 0.4 mL/min and detection was obtained by UV detection at 260 nm. The linear regression 

coefficient determined in the range 0.01–30 μg mL-1 was 0.9993 (n=10).  

The EE and DLE were calculated according to equations 4 and 5, respectively.  

Equation 4                                EE = (DEX encap)/(DEX total)*100 

Equation 5                               DLE = (DEX encap)/(PLGA-PEG total)*100 
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Where EE is encapsulation efficiency (%), DEX encap is Dexamethasone mass encapsulated (mg) 

and it was calculated from the difference of the DEX total (the initial Dexamethasone mass in the 

dispersed phase (mg)) and the amount of Dexamethasone in supernatant solutions, collected after 

each cycle of centrifugation (water continuous phase and washing solutions)., DEX total is the 

Initial Dexamethasone mass in the dispersed phase (mg), DLE is drug loading efficiency (%) and 

PLGA-PEG total is Initial PLGA-PEG mass in the dispersed phase (mg) 

 

2.4.3. In vitro drug release study 

About 10 mg of lyophilized dexamethasone-loaded nanoparticles were transferred to the dialyzer 

and suspended in 200 uL of release media (0.1 M PBS pH 7.4) at 37ºC. The dialyzer was then 

introduced into an eppendorf vial containing release media (1 mL), which was stirred at 100 rpm 

using a magnetic stir bar. Dexamethasone release was assessed by intermittently sampling the 

contents of the release media, the buffer was replaced with fresh solution after sampling. Drug 

content during the release study was evaluated by HPLC using the same method described above.   

The release profiles were evaluated by fitting the experimental data to equations describing 

different kinetic release. Linear regression analyses of the experimental data obtained from in-vitro 

drug release studies were made for four different models: zero order, first order, Korsmeyer–Peppas 

and Higuchi. A description of the method is reported in supporting information S3. 

 

3. Results and Discussion 

This section is structured in two main parts. The first deals with the investigation of the effect of 

phases composition, fluid dynamic conditions (dispersed phase flux and wall shear stress) and 

membrane pore size on the particle size and particle size distribution of PLGA-PEG nanoparticles 

produced by membrane-assisted nanoprecipitation. The second part includes the evaluation of 

encapsulation efficiency (EE), drug loading efficiency (DLE) and in vitro release of 
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dexamethasone-loaded PLGA-PEG nanoparticles prepared by membrane-assisted 

nanoprecipitation.  

 

3.1 Effect of phases composition 

PLGA-PEG concentration was kept constant at 10 mg ml-1, a sufficiently diluted concentration to 

result in polymer nucleation [31]. The amounts of PLGA-PEG, acetone and water were modified in 

order to identify the respective polymer, solvent and non-solvent amounts required to obtain stable 

colloidal formulations at the defined ouzo region [32]. The construction of “Ouzo diagram” 

represents a meaningful resource for nanoprecipitation. To the best of our knowledge, no data are 

available in the literature for the ternary system PLGA-PEG/Acetone/water. On the other hand, a 

ternary diagram for PLGA, acetone, and water (containing 0.1 wt % of poloxamer 188) system, at 

25°C, was determined by Beck-Broichsitter et al [33]. This ouzo diagram has been used as a 

reference in the present work to select the respective polymer, solvent and non-solvent amounts that 

resulted in nanoparticles production by solvent displacement. This assumption was considered 

correct because the physicochemical properties of PLGA-PEG and PLGA are similar, and then both 

polymers are expected to show a similar behaviour in the same acetone/water ternary system [34]. 

Both solubility and interaction parameters (such as solvent-water and polymer-solvent interaction) 

are reported to influence the phase mixing of the nanoprecipitation process [34]. PLGA-PEG mass 

fraction (fPLGA-PEG) and solvent mass fraction (fAcetone) studied in the present work were plotted 

together with the data obtained from the literature for PLGA in the ternary system water/acetone. 

Three regions have been identified: one phase region, stable ouzo region and unstable ouzo region 

(Figure 2) [33] obtained at different DP/CP volumetric ratios while maintaining constant the PLGA-

PEG amount. Four samples were considered representative of the nanoprecipitation process: sample 

1 (facetone: 0.20; fPLGA: 2.5*10-3; DP/CP ratio: 0.32); sample 2 (facetone: 0.35; fPLGA: 4.5*10-3; DP/CP 

ratio: 0.70), sample 3 (facetone: 0.49; fPLGA: 6.1*10-3; ratio DP/CP: 1.22) and sample 4 (facetone: 0.7; 

fPLGA: 9.7*10-3; DP/CP ratio: 3). SEM images from samples 1-3 confirm the stability of the colloids 
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formed in the stable Ouzo region (Figure 2). Those nanoparticles were uniform (PDI = 0.17 ± 0.05) 

and the particle size varied from 261 ± 28 nm to 390 ± 40nm. SEM images of the particles produced 

in the unstable ouzo region (sample 4) by nanoprecipitation, reveal the presence of a bimodal size 

distribution (PDI=0.5) with one population of particles in the range of 300 nm and the other in the 

range of 1000 nm. These results are in agreement with some previous systems not based on PLGA-

PEG [35], where the production of monodisperse nanoparticles or a bimodal distribution of particles 

(nanoparticles + microparticles) was dependant on the location of synthesis conditions in relation to 

the stable and unstable ouzo regions, respectively. Data obtained in this work indicate that the 

PLGA-PEG nanoparticles can be produced by nanoprecipitation in the same range of acetone/water 

relative volume ratio as those reported for PLGA, thus validating the use of the diagram in figure 2 

for our system. A DP/CP ratio higher than 3 resulted in the production of microparticles in addition 

to nanoparticles as a result of an excess of dissolved polymer in water [33,35].  

The influence of the relative volume DP/CP on particle size and polydispersity has been evaluated 

by two approaches: 1) pulsed cross-flow membrane-assisted method and 2) a conventional stirred 

batch-type method (Figure 3). In case of pulsed cross-flow MANA, an increase of nanoparticle size 

was observed in the range from 250 to 400 nm as a function of DP/CP volumetric ratio increase. On 

the other hand, the PLGA-PEG NPs produced by nanoprecipitation in the conventional batch type 

reactor were not affected by the DP/CP ratio and NPs with a diameter of 100 nm were produced 

throughout the range explored (Figure 3). The different trend can be explained by the different 

mixing at the micro-scale obtained by these production methods. Nanoprecipitation occurs in three 

stages: 1) a nucleus is formed by several unimers of polymer; 2) nuclei growth occurs through a 

diffusion-limited process by addition of more unimers and 3) the growth process ends as a result of 

the formation of polymer brush layer on the nanoparticle surface [13]. In MANA the polymer 

solution is continuously added into the non-solvent phase, and solvent/non-solvent mixing occurs at 

the pore level where the two phases are in contact. The rate of solvent exchange is very high due to 

the steep concentration gradient and the formation of nuclei start. As soon as acetone passes through 
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the membrane pores, it gradually diffuses in the water, changing the composition of the CP. After 

nuclei formation, growth continues over time as the dispersed phase continues to flow through the 

membrane pores to achieve the required DP/CP volumetric ratio however, the fast initial decrease 

of polymer concentration prevents further generation of nuclei. The remaining dissolved polymer 

gradually precipitates over the nuclei formed as the counter-diffusion of water and acetone lowers 

its solubility. The final particle size is a result of a process of particle growth over the nuclei 

initially formed, rather than forming new entities. In contrast, the solvent-non-solvent mixing is 

instantaneous in batch nanoprecipitation, where the reagents were mixed by the vortex generated 

during the magnetic stirring. In this case the intense agitation accelerates the water-acetone mixing. 

As a consequence, all the nuclei are formed instantaneously, leading to a fast depletion of the 

polymer. In this case, the phase of gradual counter-diffusion of water and acetone does not exist and 

growth ends abruptly as soon as the polymer in the immediate vicinity of the nuclei has been used 

up. The resulting nanoparticles mean size was not a function of the mass fraction of acetone added. 

This observation was supported by the experiments carried out in batch process by simulating the 

conditions used in membrane experiments, where a volume of acetone (DP) from 16 to 55 mL was 

added drop-by-drop, in 50 mL of water to reach the desired DP/CP volumetric ratio. In this case, 

similar results, in terms of particle size and PDI, were obtained in batch methodology by 

maintaining constant the DP volume varying the CP volume from 4.1 mL to 100 mL. These results 

were in agreement with previous works that also reported the lack of influence of DP/CP ratio on 

particles sizes when precipitation was carried out in a stirred batch reactor [34,36,37]. The different 

results on the influence of the relative amount of DP and CP on particle size in membrane and batch 

systems suggest that the main role of the membrane in nanoprecipitation is to govern the nuclei 

growing step by controlling the mixing of solvent with non-solvent at the pore level. A PDI lower 

than 0.2 was obtained in both membrane-assisted and batch nanoprecipitation. However, in MANA 

the growth process is characterized by the deposition of several polymer unimers on the same 

nucleus formed at nucleation stage [14,15,38]. This extends the growth phase and allows control of 

Con formato: Inglés (Reino Unido)
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the particle size. Consequently, it can be concluded that unlike batch processes, membrane-assisted 

nanoprecipitation is a versatile procedure that enables to tune the size of the polymeric 

nanoparticles by varying the DP/CP ratio, at a given range of shear stress.  

 

3.2 Effect of dispersed phase flux  

The effect of dispersed phase flow rate on particle size and particle-size distribution of PLGA-PEG 

nanoparticles has been investigated. Three different DP flow rates were tested: 0.8, 3.2 and 100 mL 

min-1, corresponding to a range of flux from 15.3 to 1917 L h-1m-2 maintaining constant the shear 

stress in 2.8 Pa. Figure 4 reports Z-average and PDI of PLGA-PEG nanoparticles produced by 

pulsed cross-flow membrane-based process as a function of DP flux. This very wide range of flow 

rate values has been selected in order to investigate the suitability of MANA to control 

nanoparticles formation over a large interval of processing rates. The high-end values of DP flux are 

sufficiently high to make the process attractive for industrial production. The results indicate that, 

for a given DP/CP ratio, particle size was almost independent on dispersed phase flow rate, giving a 

p-value >0.05 (Figure S1 in Supporting Information). Z-average values of 250 and 224 nm were 

obtained in the range of flux investigated for DP/CP ratios of 0.32 and 0.83, respectively. In 

addition, the PDI was always lower than 0.2, indicating a high uniformity on the PLGA-PEG 

nanoparticles irrespective of the DP Flux (Figure S2 in Supporting Information). This is in contrast 

with the usual results when membrane emulsification processes are used for particles production: 

the droplet size increases linearly with the dispersed phase flow rate because a necking time is 

usually required before droplets detachment from the membrane surface. During this time, an 

additional amount of the dispersed phase flows into the forming droplet [39]. However, as discussed 

above, our results indicate that in membrane-assisted nanoprecipitation, the formation of 

nanoparticle nuclei is practically instantaneous. These fast kinetics are able to accommodate the 

increased throughput (and the decreased contact time) as the flow rates of DP and CP are increased. 

Similar results were obtained in previous works [40,40]. On the contrary, Khayata et al. 2012 Con formato: Inglés (Reino Unido)
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obtained that the greater pressure of DP phase used (and then DP flow rate), the greater was the 

mean size of nanocapsules because droplets coalescence occurred during droplets formation from 

the membrane pores, supposing a drop-by-drop mechanism for nanoprecipitation membrane-

assisted as in conventional membrane emulsification [41]. To clarify the mechanism of NPs 

formation in MANA, we have evaluated the wettability of SPG membranes by the dispersed phase. 

Using PLGA-PEG in acetone at 10 mg mL-1, the membrane was immediately wetted by the polymer 

solution and an accurate measurement of the contact angle was not possible (Figure 5-A). Only 

when the polymer concentration was sufficiently high (100 mg mL-1) a contact angle of 130 °C 

was measured (Figure 5B). Because the membrane is highly wetted by the DP, we can conclude that 

under the conditions used in MANA, particle formation is not a result of a drop-by-drop mechanism 

but it is a consequence of phases micromixing at the pore level. This is also consistent with the 

results obtained in the previous section regarding the effect of the DP/CP ratio. 

From our results, membrane-assisted nanoprecipitation emerges as a promising technology for 

nanoparticles production at large scale as demonstrated by increasing the dispersed phase flux over 

two orders of magnitude. A flux of 1917 L h-1m-2 (PLGA-PEG Mass Flux 192 g h-1m-2) could be 

employed without modifying the control over particles size and size distribution. This is in contrast 

with the results found when attempting to scale up membrane emulsification processes, where the 

dispersed phase flux is strongly limited [42]. Membranes not wetted by the DP are usually required 

to obtain droplets with controlled size and size distribution, but the low dispersed phase flux 

obtained results in low productivity [43]. This limitation is overcome in case of membrane-assisted 

nanoprecipitation as shown above. Membrane emulsification is recognised as a suitable process for 

the purpose of large scale emulsions and particles production considering the scale-up ability of 

membranes [21,42,44,45]. The development of large-scale membrane emulsification processes can 

be assessed either through parallelisation or through increasing individual membrane surface area. 

In the present work, to prove that the upscaling of the process can also be assessed, further 

Con formato: Fuente:
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experiments were also carried by increasing the volume of the continuous phase vessel up to 6 times 

and a production rate of 160 mg h-1 was reached.  

 

3.3     Effect of wall shear stress  

The shear stress depends on the frequency and the amplitude of the pulsation along the lumen side 

of the membrane. Figure 6 reports Z-average and PDI of PLGA-PEG nanoparticles produced by 

pulsed cross-flow membrane-based process as a function of the shear stress. The experiments were 

carried out by keeping constant the amplitude of the pulsation while increasing the frequency. Three 

different shear stresses were used 1.12; 2.48 and 4.16 Pa. The Z-Average and PDI were found 

approximately constant as the shear stress was increased (Figure 6 and Figure S3-S4 in 

supplementary information). The same morphology was also observed for PLGA-PEG 

nanoparticles produced by using different shear stress value as shown in Figure 7. Similar results 

were reported in the production of PCL nanoparticles by Khayata et al. by using SPG membranes in 

a cross-flow membrane emulsification system [41]. In conventional membrane emulsification a 

decrease in terms of particles size is observed when the shear stress was increased [46,47][44,45]. 

The different trend can be explained considering that in nanoprecipitation the appropriate mixing 

between solvent and antisolvent controls the particles production instead of the balance between the 

shear force, exerted on the forming droplet by the continuous phase, and the interfacial tension as in 

membrane emulsification. The range of value of the shear stress selected in the present work did not 

allow to improve the solvent-antisolvent mixing however PDI lower than 0.2 indicates high 

uniformity of PLG-PEG-nanoparticles produced.  

 

3.4.  Effect of membrane pore size  

The effect of membrane pore size on the mean size of PLGA-PEG nanoparticles prepared by 

pulsed-cross flow MANA process is reported in Figure 8. The mean nanoparticle size increased by 
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increasing the membrane pore size, and the effect was more pronounced at low DP/CP ratio (0.32). 

The average particle size increased from 210 to 288 nm (37%) and from 261 to 300 nm (15%), 

when membranes with pore sizes of 0.2 and 1 um were used, respectively. Z-average values also 

show to be significantly influenced by the pore size of the membrane (p value < 0.05 Figure S5) 

while PDI values were not significantly influenced by the pore size of the membrane (p value > 

0.05 Figure S6). Although the results show that in nanoprecipitation particle size is sensitive to the 

membrane pore size, it should be highlighted that the particle size did not varied linearly with the 

pore size, which is the general trend observed in membrane emulsification process. These findings 

are in agreement with the results obtained by Charcosset et al. and Othman et al. [24,25]. In 

conventional membrane emulsification, a linear relationship exists between the pore size of the 

membrane and the droplet size, and membranes with a mean pore size smaller than the target 

particle size are required. In contrast, the membrane-assisted nanoprecipitation technique enables 

the production of particles significantly smaller in size than the pore size of the membrane. The 

production of Polycaprolactone (PCL) nanoparticles by nanoprecipitation in the range of size 

between 100 to 300 nm was obtained by using membranes with the pore size in the range between 6 

to 100 nm [24] and 20 to 40 µm [25]. These results can be explained by considering that the contact 

area between solvent and antisolvent is higher in case of big-pore membranes. Nucleation is 

extremely fast in nanoprecipitation (as discussed in section 3.1 above), therefore nuclei are quickly 

formed, as soon as the DP comes into contact with the CP. In a small-pore membrane, the supply of 

polymer to the formed nuclei is slower, so the particle does not have time to grow much until it is 

entrained into the CP. Growth is limited to the sphere of diffusion around the nuclei. As the pore 

size increases, diffusion is faster and nuclei grow into larger particles before entrainment in the CP 

(Figure 8). 

 

3.5  Reproducibility of nanoprecipitation membrane-assisted process 
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Figure 9 reports the reproducibility achieved in the production of nanoparticles prepared by pulsed-

cross flow membrane-assisted nanoprecipitation technique. Once a manufacturing process has been 

developed and have a good performance, it is required to go further and study if the process is 

consistent “in control” or it is unpredictable “out of control” [48][46]. Control charts are an 

excellent tool to inspect the process performance and enable to measure, monitor and control the 

production process. These facts make the control charts being widely used in pharmaceutical and 

biopharmaceuticals manufacturing processes [48–50][46–48]. Control charts of nanoprecipitation 

membrane-assisted process (Z- Average and PDI) were performed using 6 lots with the following 

operative conditions: DP/CP ratio of 0.32, shear stress of 2.48 Pa and DP flux of 61.3 L h-1m-2 

control chart methodology was employed and media, upper control limit (UCL) and the lower 

control limit (LCL) was calculated (see Supporting Information). Figure 9-a, in which the Z-

average is plotted against the different batches of nanoparticles produced, shows that there is no 

variability between the samples and all the range of measurements are fairly narrow and close to the 

mean (250 nm). On the other hand, the analysis of PDI variations between lots also confirms the 

reproducibility between lots, obtaining a narrow PDI variation (Figure 9-b).  

 

3.6 Encapsulation efficiency (EE) and drug loading efficiency (DLE) 

Figure 10 depicts the effect of DP/CP ratio on the dexamethasone encapsulation efficiency (EE) and 

drug loading efficiency (DLE) of PLGA-PEG nanoparticles produced by pulsed-cross flow MANA. 

DLE is highly relevant in drug delivery because achieving a high drug loading allows reducing the 

content of the carrier material [51][49]. However, in terms of productivity, EE has a relevant 

economic impact considering that drugs are usually the most expensive components of 

pharmaceutical formulations. Consequently, it is desirable to maximize both parameters, EE and 

DLE. According to the results obtained in this work, the EE decreases in the range from 52.3 % to 

34 % as a function of the increase of DP/CP ratio. The same trend was obtained in case of DLE. 

These insights about the DC/CP influence are in agreement with previously reported data where a 
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variety of drugs were encapsulated in different polymers by nanoprecipitation procedure [34,52–

54][34,50–52]. A large volume of the non-solvent phase (i.e., a low DP/CP ratio) provides a high 

concentration gradient of the organic solvent across the phase boundary, leading to fast 

solidification of the particles [55][53]. Conversely, at high DP/CP ratio, the diffusion of acetone is 

delayed by the presence of the acetone in water. In addition, the solubility of dexamethasone in the 

water phase is an important parameter determining the maximum amount of drug that can be 

dissolved in the external phase, during the solidification step. Dexamethasone is a hydrophobic drug 

with a water solubility of 0.1 mg mL-1. The diffusion of acetone out of particle together with the 

drug occurs during polymer precipitation and the partition between the organic and the aqueous 

phases continues until the equilibrium is reached, decreasing the entrapment into the nanoparticles 

[56][54]. Our results are in agreement with the data reported in literature by Campus et al. They 

obtained an EE of 48% for dexamethasone-loaded PLGA nanoparticles, using acetone as solvent 

and a DP/CP ratio of 0.25. [57][55].  

 

3.7 Release studies from the drug loaded nanoparticles  

In vitro release studies of dexamethasone from PLGA-PEG nanoparticles were carried out during 

15 days. The delivery profile showed: 1) a low release of dexamethasone during the first 2 h 

(induction time) of the test that can be attributed to nonecapsulated drug or drug on the surface, 2) 

an increase of drug release for the following 4 days that can be attributed to drug diffusion through 

pores and 3) a constant release rate that could be related with the polymer degradation and a slow 

drug diffusion (Figure 11). The initial burst release is commonly observed for biodegradable 

polymeric systems, where a high percentage of the biomolecule is released [58][56]. Initial burst 

release is expected to increase for drugs with a higher solubility and also as the drug is located on 

the surface of the nanoparticles, where the diffusion paths are negligible. In this case the relatively 

low burst release observed is noteworthy since dexamethasone is not a highly hydrophobic drug, 

with a significant water solubility of 0.1 mg mL-1. For instance, in a previous work [59][57] with 
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dexamethasone-loaded PLGA nanoparticles, a burst release of 60% in the first two days was found. 

This indicates a good distribution of dexamethasone in the PLGA-PEG nanoparticles, and also 

points to the effectiveness of PEG to reduce burst release. The complete release of the drug in 

PLGA polymeric particles could require one month due to the polymer hydrolysis. However in this 

case release was performed during 15 days because this period is enough to study the kinetics of the 

system [2].  

A variety of release models were selected and used to fit the experimental data. Table 1 summarizes 

the most important kinetic parameters for each model obtained from statistical data fitting: the 

release constant (K), release exponent (n), and regression coefficient (R2).  

On the basis of best fit with the highest correlation value (R2), it is concluded that model that better 

fits the experimental data obtained from in vitro drug release studies is the Korsmeyer-Peppas 

model (R2 = 0.97). The magnitude of the release exponent n was found to be smaller than 0.5 

(0.31), indicating that the mechanism of dexamethasone release from PLGA-PEG nanoparticles 

during 15 days preferentially followed a Fickian diffusion process. Fickian diffusional release 

occurs by the usual molecular diffusion of the drug due to a chemical potential gradient while non-

Fickian predominates when there are also effects of swelling, erosion, degradation, stresses, 

structural changes and relaxation of the material [60,61][58,59]. The findings obtained are in 

agreement with literature, where Fickian diffusion was predominant at early times in PLGA-PEG 

systems. Vega et al [62][60], reported the cumulative in vitro release profile of flurbiprofen-loaded 

PLGA-PEG nanoparticles, achieving the best fitting with Korsmeyer-Peppas model (R2 =0.94, 

release exponent = 0.16). Assuming that Fickian diffusion is directing the dexamethasone release 

implies that PLGA-PEG nanoparticles were not substantially degraded during the release interval. 

In fact, after the release interval the amount of dexamethasone loaded in PLGA-PEG nanoparticles 

was higher that 40%. The initial release intervals in PLGAs based polymeric particles are normally 

associated to the Fickian transport and Non-Fickian is gradually predominant as the erosion and 

degradation phenomena are evident by the formation of new pores in the polymeric matrix. Higuchi 
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model, a Fickian model, was also evaluated to fit the experimental release data, but a correlation 

factor R = 0.87 was obtained (Table 1). It implies that dexamethanose release from PLGA-PEG 

nanoparticles is not a pure diffusion process. This fact can be justified because the release analysis 

is usually made global, presenting always one transport type more predominant than the other 

[59][57].  

 

4.  Conclusions 

In this work, the efficiency of membrane-assisted nanoprecipitation (MANA) process to tune 

PLGA-PEG nanoparticles size with high producibility has been demonstrated. PLGA-PEG 

nanoparticle size in the range from 250 to 400 nm and with a PDI lower than 0.2 were continuously 

obtained. The main role of the membrane was to govern nuclei formation and subsequent growth 

into nanoparticles by controlling the mixing of solvent and non-solvent at the pore level. Particle 

size and particle size distribution have been demonstrated to be independent on the dispersed phase 

flux. High fluxes of 1917 L h-1m-2 could be employed while maintaining control over particles size 

and size distribution, showing a high potential for large scale production.  

The highest dexamethasone encapsulation efficiency (54 %) and drug loading (5.2 %) were 

achieved at the lower dispersed phase volume/continuous volume ratio, i.e., in the presence of a 

high concentration gradient of the solvent across the phase boundary, leading to fast solidification 

of the particles. The dexamethasone release from PLGA-PEG nanoparticles was found to 

preferentially follow a Fickian diffusion process. A comparatively low initial burst release was 

obtained. 

In summary, MANA seems a highly promising alternative as a reproducible, productive and low-

energy method for the continuous production of size-tuneable drug-loaded nanoparticles. 
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Legend to Figures  

• Figure 1. a) Membrane-assisted nanoprecipitation set-up. b) Schematic representation of 

nanoparticles production by nanoprecipitation at the membrane level (green colour refers to 

the polymer dissolved in the solvent, yellow colour refers to the antisolvent). 

• Figure 2. Location of the experimental points obtained in the present study for PLGA-PEG 

polymer (in red color) in the Ouzo diagram obtained by Beck-Broichsitter et al. (2015). 

SEM images of nanoparticles produced by nanoprecipitation membrane-assisted. Sample 1 

(DP/CP ratio: 0.32). Sample 2 (DP/CP ratio: 0.70). Sample 3 (DP/CP ratio: 1.22). Sample 4 

(DP/CP ratio: 3).  

• Figure 3: Influence of DP/CP ratio on PLGA-PEG nanoparticles produced by using 

membrane–assisted nanoprecipitation approach (MANA) and nanoprecipitation in a stirred 

batch-type reactor (NSBTR) A) PLGA-PEG nanoparticles Z-Average; B) PLGA-PEG 

nanoparticles polydispersity index (PDI)  

• Figure 4. The effect of dispersed phase flux on nanoparticle size and particle-size 

distribution of PLGA-PEG nanoparticles produced by membrane-assisted nanoprecipitation 

(Shear stress: 2.8 Pa). 

• Figure 5. Contact angles of PLGA-PEG in acetone on SPG hydrophilic membrane A) 

PLGA-PEG 10 mg mL-1 B) PLGA-PEG 100 mg mL-1  

• Figure 6. Influence of wall shear stress on nanoparticle size and particle-size distribution of 

PLGA-PEG nanoparticles produced by membrane-assisted nanoprecipitation (DP flux: 

61.3L h-1m-2; DP/CP ratio: 0.32). 

• Figure 7. SEM images of PLGA-PEG nanoparticles produced by membrane-assisted 

nanoprecipitation at different shear stress values: A) 1.12 Pa B) 4.16 Pa. 

• Figure 8. Influence of membrane pore size on nanoparticle size and particle size distribution 

of PLGA-PEG nanoparticles produced by membrane-assisted nanoprecipitation.  
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• Figure 9: Control Chart of 6 nanoparticles lots produced by nanoprecipitation membrane-

assisted process (operating conditions: DP/CP ratio of 0.32, shear stress of 2.48 Pa and DP 

flux of 61.3 L h-1m-2): A) Z-Average B) PDI 

• Figure 10. Influence of DP/CP ratio on Encapsulation efficiency and Drug Loading of 

Dexamethasone encapsulated in PLGA-PEG nanoparticles produced by membrane-assisted 

nanoprecipitation.  

• Figure 11. Dexamethasone release from PLGA-PEG nanoparticles produced by membrane-

assisted nanoprecipitation. 

 

Tables Captions 

Table 1. Interpretation of R2 values and rate constants of dexamethasone release kinetics of PLGA-

PEG nanoparticles 
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Figure 1. a) Membrane-assisted nanoprecipitation set-up. b) Schematic representation of 

nanoparticles production by nanoprecipitation at the membrane level (green colour refers to the 

polymer dissolved in the solvent, yellow colour refers to the antisolvent). 
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Figure 2. Location of the experimental points obtained in the present study for PLGA-PEG polymer 

(in red color) in the Ouzo diagram obtained by Beck-Broichsitter et al. (2015). SEM images of 

nanoparticles produced by nanoprecipitation membrane-assisted. Sample 1 (DP/CP ratio: 0.32). 

Sample 2 (DP/CP ratio: 0.70). Sample 3 (ratio DP/CP: 1.22). Sample 4 (DP/CP ratio: 3).  
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Figure 3: Influence of DP/CP ratio on PLGA-PEG nanoparticles produced by using membrane–

assisted nanoprecipitation approach (MANA) and nanoprecipitation in a stirred batch-type reactor 

(NSBTR) A) PLGA-PEG nanoparticles Z-Average; B) PLGA-PEG nanoparticles polydispersity 

index (PDI)  
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Figure 4. The effect of dispersed phase flux on nanoparticle size and particle-size distribution of 

PLGA-PEG nanoparticles produced by membrane-assisted nanoprecipitation (Shear stress: 2.8 Pa). 
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Figure 5. Contact angles of PLGA-PEG in acetone on SPG hydrophilic membrane A) PLGA-PEG 

10 mg mL-1 B) PLGA-PEG 100 mg mL-1  
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Figure 6. Influence of wall shear stress on nanoparticle size and particle-size distribution of PLGA-

PEG nanoparticles produced by membrane-assisted nanoprecipitation (DP flux: 61.3 L h-1m-2; 

DP/CP ratio: 0.32). 
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Figure 7. SEM images of PLGA-PEG nanoparticles produced by membrane-assisted 

nanoprecipitation at different shear stress values: A) 1.12 Pa B) 4.16 Pa. 
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Figure 8. Influence of membrane pore size on nanoparticle size and particle size distribution of 

PLGA-PEG nanoparticles produced by membrane-assisted nanoprecipitation.   
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Figure 9: Control Chart of 6 nanoparticles lots produced by nanoprecipitation membrane-assisted 

process (operating conditions: DP/CP ratio of 0.32, shear stress of 2.48 Pa and DP flux of 61.3 L h-

1m-2): A) Z-Average B) PDI 
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Figure 10. Influence of DP/CP ratio on Encapsulation efficiency and Drug Loading of 

Dexamethasone encapsulated in PLGA-PEG nanoparticles produced by membrane-assisted 

nanoprecipitation.  
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Figure 11. Dexamethasone release from PLGA-PEG nanoparticles produced by membrane-assisted 

nanoprecipitation. 
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Table 1. Interpretation of R2 values and rate constants of dexamethasone release kinetics of PLGA-

PEG nanoparticles 

Model Release constant (K) Release exponent (n) Regression coefficient 

(R2) 

Zero Order 3.99 - 0.73 

First Order 0.06 - 0.53 

Korsmeyer-

Peppas 

0.47 0.31 0.97 

Higuchi 0.32 - 0.87 

 

 

 

 

 

 

 

 

 

 

 

 


