000070307 001__ 70307
000070307 005__ 20191127155501.0
000070307 0247_ $$2doi$$a10.3389/fmicb.2018.00516
000070307 0248_ $$2sideral$$a105784
000070307 037__ $$aART-2018-105784
000070307 041__ $$aeng
000070307 100__ $$aZoran, T.
000070307 245__ $$aAzole-resistance in Aspergillus terreus and related species: An emerging problem or a rare Phenomenon?
000070307 260__ $$c2018
000070307 5060_ $$aAccess copy available to the general public$$fUnrestricted
000070307 5203_ $$aObjectives: Invasive mold infections associated with Aspergillus species are a significant cause of mortality in immunocompromised patients. The most frequently occurring aetiological pathogens are members of the Aspergillus section Fumigati followed by members of the section Terrei. The frequency of Aspergillus terreus and related (cryptic) species in clinical specimens, as well as the percentage of azole-resistant strains remains to be studied. Methods: A global set (n = 498) of A. terreus and phenotypically related isolates was molecularly identified (beta-tubulin), tested for antifungal susceptibility against posaconazole, voriconazole, and itraconazole, and resistant phenotypes were correlated with point mutations in the cyp51A gene. 
Results: The majority of isolates was identified as A. terreus (86.8%), followed by A. citrinoterreus (8.4%), A. hortai (2.6%), A. alabamensis (1.6%), A. neoafricanus (0.2%), and A. floccosus (0.2%). One isolate failed to match a known Aspergillus sp., but was found most closely related to A. alabamensis. According to EUCAST clinical breakpoints azole resistance was detected in 5.4% of all tested isolates, 6.2% of A. terreus sensu stricto (s.s.) were posaconazole-resistant. Posaconazole resistance differed geographically and ranged from 0% in the Czech Republic, Greece, and Turkey to 13.7% in Germany. In contrast, azole resistance among cryptic species was rare 2 out of 66 isolates and was observed only in one A. citrinoterreus and one A. alabamensis isolate. The most affected amino acid position of the Cyp51A gene correlating with the posaconazole resistant phenotype was M217, which was found in the variation M217T and M217V. 
Conclusions: Aspergillus terreus was most prevalent, followed by A. citrinoterreus. Posaconazole was the most potent drug against A. terreus, but 5.4% of A. terreus sensu stricto showed resistance against this azole. In Austria, Germany, and the United Kingdom posaconazole-resistance in all A. terreus isolates was higher than 10%, resistance against voriconazole was rare and absent for itraconazole.
000070307 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000070307 590__ $$a4.259$$b2018
000070307 591__ $$aMICROBIOLOGY$$b32 / 133 = 0.241$$c2018$$dQ1$$eT1
000070307 592__ $$a1.633$$b2018
000070307 593__ $$aMicrobiology (medical)$$c2018$$dQ1
000070307 593__ $$aMicrobiology$$c2018$$dQ1
000070307 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000070307 700__ $$aSartori, B.
000070307 700__ $$aSappl, L.
000070307 700__ $$aAigner, M.
000070307 700__ $$aSánchez-Reus, F.
000070307 700__ $$0(orcid)0000-0001-7294-245X$$aRezusta, A.$$uUniversidad de Zaragoza
000070307 700__ $$aChowdhary, A.
000070307 700__ $$aTaj-Aldeen, S.J.
000070307 700__ $$aArendrup, M.C.
000070307 700__ $$aOliveri, S.
000070307 700__ $$aKontoyiannis, D.P.
000070307 700__ $$aAlastruey-Izquierdo, A.
000070307 700__ $$aLagrou, K.
000070307 700__ $$aCascio, G.L.
000070307 700__ $$aMeis, J.F.
000070307 700__ $$aBuzina, W.
000070307 700__ $$aFarina, C.
000070307 700__ $$aDrogari-Apiranthitou, M.
000070307 700__ $$aGrancini, A.
000070307 700__ $$aTortorano, A.M.
000070307 700__ $$aWillinger, B.
000070307 700__ $$aHamprecht, A.
000070307 700__ $$aJohnson, E.
000070307 700__ $$aKlingspor, L.
000070307 700__ $$aArsic-Arsenijevic, V.
000070307 700__ $$aCornely, O.A.
000070307 700__ $$aMeletiadis, J.
000070307 700__ $$aPrammer, W.
000070307 700__ $$aTullio, V.
000070307 700__ $$aVehreschild, J.-J.
000070307 700__ $$aTrovato, L.
000070307 700__ $$aLewis, R.E.
000070307 700__ $$aSegal, E.
000070307 700__ $$aRath, P.-M.
000070307 700__ $$aHamal, P.
000070307 700__ $$aRodriguez-Iglesias, M.
000070307 700__ $$aRoilides, E.
000070307 700__ $$aArikan-Akdagli, S.
000070307 700__ $$aChakrabarti, A.
000070307 700__ $$aColombo, A.L.
000070307 700__ $$aFernández, M.S.
000070307 700__ $$aMartin-Gomez, M.T.
000070307 700__ $$aBadali, H.
000070307 700__ $$aPetrikkos, G.
000070307 700__ $$aKlimko, N.
000070307 700__ $$aHeimann, S.M.
000070307 700__ $$aUzun, O.
000070307 700__ $$aRoudbary, M.
000070307 700__ $$ade la Fuente, S.
000070307 700__ $$aHoubraken, J.
000070307 700__ $$aRisslegger, B.
000070307 700__ $$aLass-Flörl, C.
000070307 700__ $$aLackner, M.
000070307 7102_ $$11008$$2630$$aUniversidad de Zaragoza$$bDpto. Microb.Med.Pr.,Sal.Públ.$$cÁrea Microbiología
000070307 773__ $$g9, MAR (2018), 516 [9 pp]$$pFront. microbiol.$$tFRONTIERS IN MICROBIOLOGY$$x1664-302X
000070307 8564_ $$s227618$$uhttps://zaguan.unizar.es/record/70307/files/texto_completo.pdf$$yVersión publicada
000070307 8564_ $$s11445$$uhttps://zaguan.unizar.es/record/70307/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000070307 909CO $$ooai:zaguan.unizar.es:70307$$particulos$$pdriver
000070307 951__ $$a2019-11-27-15:50:09
000070307 980__ $$aARTICLE