000070581 001__ 70581
000070581 005__ 20200221144248.0
000070581 0247_ $$2doi$$a10.2174/1573413712666151124195846
000070581 0248_ $$2sideral$$a94926
000070581 037__ $$aART-2016-94926
000070581 041__ $$aeng
000070581 100__ $$0(orcid)0000-0001-9359-0019$$aCalatayud, M. P.
000070581 245__ $$aCell bystander effect induced by radiofrequency electromagnetic fields and magnetic nanoparticles
000070581 260__ $$c2016
000070581 5060_ $$aAccess copy available to the general public$$fUnrestricted
000070581 5203_ $$aInduced effects by direct exposure to ionizing radiation (IR) are a central issue in many fields like radiation protection, clinic diagnosis and oncological therapies. Direct irradiation at certain doses induce cell death, but similar effects can also occur in cells no directly exposed to IR, a mechanism known as bystander effect. Non-IR radiofrequency waves can induce the death of cells loaded with MNPs in a focused oncological therapy known as magnetic hyperthermia. Indirect mechanisms are also able to induce the death of unloaded MNPs cells. Using in vitro cell models, we found that co-localization of the MNPs at the lysosomes and the non-increase of the temperature induces bystander effect under non-IR. Our results provide a landscape in which bystander effects are a more general mechanism, up to now only observed and clinically used in the field of radiotherapy.
000070581 536__ $$9info:eu-repo/grantAgreement/ES/MINECO/MAT2010-19326$$9info:eu-repo/grantAgreement/ES/MINECO/MAT2013-42551
000070581 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000070581 590__ $$a1.062$$b2016
000070581 591__ $$aMATERIALS SCIENCE, MULTIDISCIPLINARY$$b205 / 275 = 0.745$$c2016$$dQ3$$eT3
000070581 591__ $$aNANOSCIENCE & NANOTECHNOLOGY$$b75 / 87 = 0.862$$c2016$$dQ4$$eT3
000070581 591__ $$aBIOTECHNOLOGY & APPLIED MICROBIOLOGY$$b131 / 160 = 0.819$$c2016$$dQ4$$eT3
000070581 592__ $$a0.272$$b2016
000070581 593__ $$aPharmaceutical Science$$c2016$$dQ2
000070581 593__ $$aBiomedical Engineering$$c2016$$dQ3
000070581 593__ $$aMedicine (miscellaneous)$$c2016$$dQ3
000070581 593__ $$aNanoscience and Nanotechnology$$c2016$$dQ3
000070581 593__ $$aBioengineering$$c2016$$dQ3
000070581 593__ $$aBiotechnology$$c2016$$dQ3
000070581 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000070581 700__ $$0(orcid)0000-0003-0641-3407$$aAsin, L.$$uUniversidad de Zaragoza
000070581 700__ $$0(orcid)0000-0001-8787-1754$$aTres, A.$$uUniversidad de Zaragoza
000070581 700__ $$0(orcid)0000-0003-1558-9279$$aGoya, G. F.$$uUniversidad de Zaragoza
000070581 700__ $$0(orcid)0000-0003-0681-8260$$aIbarra, M. R.$$uUniversidad de Zaragoza
000070581 7102_ $$12009$$2750$$aUniversidad de Zaragoza$$bDpto. Química Analítica$$cÁrea Química Analítica
000070581 7102_ $$11007$$2610$$aUniversidad de Zaragoza$$bDpto. Medicina, Psiqu. y Derm.$$cArea Medicina
000070581 7102_ $$12003$$2395$$aUniversidad de Zaragoza$$bDpto. Física Materia Condensa.$$cÁrea Física Materia Condensada
000070581 773__ $$g12, 3 (2016), 372-377$$pCurr. Nanosci.$$tCurrent Nanoscience$$x1573-4137
000070581 8564_ $$s1693805$$uhttps://zaguan.unizar.es/record/70581/files/texto_completo.pdf$$yVersión publicada
000070581 8564_ $$s9033$$uhttps://zaguan.unizar.es/record/70581/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000070581 909CO $$ooai:zaguan.unizar.es:70581$$particulos$$pdriver
000070581 951__ $$a2020-02-21-13:26:46
000070581 980__ $$aARTICLE