000070890 001__ 70890
000070890 005__ 20200221144242.0
000070890 0247_ $$2doi$$a10.1039/c6ra23717g
000070890 0248_ $$2sideral$$a106246
000070890 037__ $$aART-2016-106246
000070890 041__ $$aeng
000070890 100__ $$aQueralto, A.
000070890 245__ $$aOrientation symmetry breaking in self-assembled Ce1-xGdxO2-y nanowires derived from chemical solutions
000070890 260__ $$c2016
000070890 5060_ $$aAccess copy available to the general public$$fUnrestricted
000070890 5203_ $$aUnderstanding the growth mechanisms of nanostructures obtained from chemical solutions, a highthroughput production methodology, is essential to correlate precisely the growth conditions with the nanostructures'' morphology, dimensions and orientation. It is shown that self-organized (011)-oriented Ce0.9Gd0.1O2-y (CGO) nanowires having a single in-plane orientation are achieved when an anisotropic (011)-LaAlO3 (LAO) substrate is chosen. STEM and AFM images of the epitaxial nanowires reveal the (001) CGO[ 0-11]parallel to(011) LAO[100] growth orientation, with the enlargement occurring along the [0-11] CGO direction with (111) lateral facets. The chosen substrate allowed us to study a unique case where the resulting biaxial strain is isotropic, while the dissimilar lateral surface energies are the key factor to obtain an energetically imbalanced and non-degenerated nanowire configuration. Rapid Thermal Annealing (RTA) has allowed sorting of experimental nucleation from coarsening and analysis of the kinetic phenomena of the nanowires. A thermodynamic driving force is shown to exist for a continuous elongation of the nanowires while the coarsening rates are found to be strongly temperature dependent and so kinetic effects are the key factors to control the size and density of the self-organized nanowire system. A remarkably fast nanowire growth rate (14-40 nm min(-1)) is observed, which we associate with a high atomic mobility probably linked to a high concentration of oxygen vacancies, as detected by XPS. These nanowires are envisaged as model systems pushing forward the study of low energetic and highly oxygen deficient {111} lateral facets useful for catalysis, gas sensors and ionic conductivity applications.
000070890 536__ $$9info:eu-repo/grantAgreement/ES/MINECO/SEV-2013-0295$$9info:eu-repo/grantAgreement/ES/MINECO/MAT2015-68994-REDC$$9info:eu-repo/grantAgreement/ES/MINECO/MAT2014-51778-C2-1-R$$9info:eu-repo/grantAgreement/ES/MINECO/MAT2011-28874-C02-01$$9info:eu-repo/grantAgreement/ES/MINECO/ENE2014-56109-C3-3-R$$9info:eu-repo/grantAgreement/ES/FEDER/CSD2007-00041$$9info:eu-repo/grantAgreement/ES/CSIC/ESF/E-08-2013-1028356$$9info:eu-repo/grantAgreement/ES/CSIC/ESF/E-08-2012-1321248
000070890 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc$$uhttp://creativecommons.org/licenses/by-nc/3.0/es/
000070890 590__ $$a3.108$$b2016
000070890 591__ $$aCHEMISTRY, MULTIDISCIPLINARY$$b59 / 166 = 0.355$$c2016$$dQ2$$eT2
000070890 592__ $$a0.889$$b2016
000070890 593__ $$aChemistry (miscellaneous)$$c2016$$dQ1
000070890 593__ $$aChemical Engineering (miscellaneous)$$c2016$$dQ1
000070890 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000070890 700__ $$ade la Mata, M.
000070890 700__ $$aMartinez, L.
000070890 700__ $$0(orcid)0000-0002-6761-6171$$aMagen, C.$$uUniversidad de Zaragoza
000070890 700__ $$aGibert, M.
000070890 700__ $$aArbiol, J.
000070890 700__ $$aHuhne, R.
000070890 700__ $$aObradors, X.
000070890 700__ $$aPuig, T.
000070890 7102_ $$12003$$2395$$aUniversidad de Zaragoza$$bDpto. Física Materia Condensa.$$cÁrea Física Materia Condensada
000070890 773__ $$g6, 99 (2016), 97226-97236$$pRSC ADVANCES$$tRSC Advances$$x2046-2069
000070890 8564_ $$s489659$$uhttps://zaguan.unizar.es/record/70890/files/texto_completo.pdf$$yVersión publicada
000070890 8564_ $$s109736$$uhttps://zaguan.unizar.es/record/70890/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000070890 909CO $$ooai:zaguan.unizar.es:70890$$particulos$$pdriver
000070890 951__ $$a2020-02-21-13:22:01
000070890 980__ $$aARTICLE