000074917 001__ 74917
000074917 005__ 20200117221651.0
000074917 0247_ $$2doi$$a10.1016/j.jmb.2018.05.035
000074917 0248_ $$2sideral$$a107236
000074917 037__ $$aART-2018-107236
000074917 041__ $$aeng
000074917 100__ $$aRuiz-Partida, R.
000074917 245__ $$aAn Alternative Homodimerization Interface of MnmG Reveals a Conformational Dynamics that Is Essential for Its tRNA Modification Function
000074917 260__ $$c2018
000074917 5060_ $$aAccess copy available to the general public$$fUnrestricted
000074917 5203_ $$aThe Escherichia coli homodimeric proteins MnmE and MnmG form a functional complex, MnmEG, that modifies tRNAs using GTP, methylene-tetrahydrofolate, FAD, and glycine or ammonium. MnmE is a tetrahydrofolate- and GTP-binding protein, whereas MnmG is a FAD-binding protein with each protomer composed of the FAD-binding domain, two insertion domains, and the helical C-terminal domain. The detailed mechanism of the MnmEG-mediated reaction remains unclear partially due to incomplete structural information on the free- and substrate-bound forms of the complex. In this study, we show that MnmG can adopt in solution a dimer arrangement (form I) different from that currently considered as the only biologically active (form II). Normal mode analysis indicates that form I can oscillate in a range of open and closed conformations. Using isothermal titration calorimetry and native red electrophoresis, we show that a form-I open conformation, which can be stabilized in vitro by the formation of an interprotomer disulfide bond between the catalytic C277 residues, appears to be involved in the assembly of the MnmEG catalytic center. We also show that residues R196, D253, R436, R554 and E585 are important for the stabilization of form I and the tRNA modification function. We propose that the form I dynamics regulates the alternative access of MnmE and tRNA to the MnmG FAD active site. Finally, we show that the C-terminal region of MnmG contains a sterile alpha motif domain responsible for tRNA–protein and protein–protein interactions.
000074917 536__ $$9info:eu-repo/grantAgreement/ES/MINECO/BFU2010-19737$$9info:eu-repo/grantAgreement/ES/MINECO/BFU2014-58673-P$$9info:eu-repo/grantAgreement/ES/MINECO/BFU2016-78232-P
000074917 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000074917 590__ $$a5.067$$b2018
000074917 591__ $$aBIOCHEMISTRY & MOLECULAR BIOLOGY$$b47 / 294 = 0.16$$c2018$$dQ1$$eT1
000074917 592__ $$a3.578$$b2018
000074917 593__ $$aStructural Biology$$c2018$$dQ1
000074917 593__ $$aMolecular Biology$$c2018$$dQ1
000074917 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000074917 700__ $$aPrado, S.
000074917 700__ $$aVillarroya, M.
000074917 700__ $$0(orcid)0000-0001-5702-4538$$aVelázquez-Campoy, A.$$uUniversidad de Zaragoza
000074917 700__ $$aBravo, J.
000074917 700__ $$aArmengod, M.E.
000074917 7102_ $$11002$$2060$$aUniversidad de Zaragoza$$bDpto. Bioq.Biolog.Mol. Celular$$cÁrea Bioquímica y Biolog.Mole.
000074917 773__ $$g430 (2018), 2822-2842$$pJ. Mol. Biol.$$tJOURNAL OF MOLECULAR BIOLOGY$$x0022-2836
000074917 8564_ $$s2024894$$uhttps://zaguan.unizar.es/record/74917/files/texto_completo.pdf$$yVersión publicada
000074917 8564_ $$s118454$$uhttps://zaguan.unizar.es/record/74917/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000074917 909CO $$ooai:zaguan.unizar.es:74917$$particulos$$pdriver
000074917 951__ $$a2020-01-17-22:09:03
000074917 980__ $$aARTICLE