Unsticking the Wi-Fi Client: Smarter decisions using a software defined wireless solution
Financiación H2020 / H2020 Funds
Resumen: This paper presents a novel software-defined wireless network architecture that integrates coordination mechanisms to enhance the capabilities of a set of central managed Wi-Fi access points (APs). The global architecture is presented in detail, where the handoff mechanism is integrated with a set of active and passive monitoring tools and other functionalities, resulting in a solution that is able to provide smart functionalities using low-cost commercial APs. The framework includes a central controller that has all the information available, and is therefore able to make smart decisions about the assignment of clients to APs. This avoids the problem of the "sticky client" that remains connected to the original AP it is associated with, rather than moving to a nearby AP, which would be a better choice. Two different test scenarios are used to compare a proactive and a reactive handoff mechanism in realistic conditions, with different walking speeds. The results illustrate the advantage of the proactive handoff, as it is more scalable and allows a better integration with other functionalities such as load balancing. The delay incurred by the handoff between APs in different channels is measured with three wireless devices, using five values for the inter-beacon time, proving that fast and seamless handoffs are possible in the scenario. The paper shows that these advanced functionalities, usually available in proprietary solutions, can also be achieved using off-the-shelf equipment.
Idioma: Inglés
DOI: 10.1109/ACCESS.2018.2844088
Año: 2018
Publicado en: IEEE Access 6 (2018), 30917-30931
ISSN: 2169-3536

Factor impacto JCR: 4.098 (2018)
Categ. JCR: COMPUTER SCIENCE, INFORMATION SYSTEMS rank: 23 / 155 = 0.148 (2018) - Q1 - T1
Categ. JCR: TELECOMMUNICATIONS rank: 19 / 88 = 0.216 (2018) - Q1 - T1
Categ. JCR: ENGINEERING, ELECTRICAL & ELECTRONIC rank: 52 / 265 = 0.196 (2018) - Q1 - T1

Factor impacto SCIMAGO: 0.609 - Computer Science (miscellaneous) (Q1) - Materials Science (miscellaneous) (Q1) - Engineering (miscellaneous) (Q1)

Financiación: info:eu-repo/grantAgreement/ES/DGA/T31-17R
Financiación: info:eu-repo/grantAgreement/EC/H2020/644262/EU/What to do With the Wi-Fi Wild West/Wi-5
Financiación: info:eu-repo/grantAgreement/ES/MINECO/TIN2015-64770-R-TISFIBE
Tipo y forma: Article (Published version)
Área (Departamento): Área Ingeniería Telemática (Dpto. Ingeniería Electrón.Com.)

Creative Commons You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.

Exportado de SIDERAL (2020-01-17-21:45:57)

Este artículo se encuentra en las siguientes colecciones:

 Record created 2018-09-21, last modified 2020-01-17

Versión publicada:
Rate this document:

Rate this document:
(Not yet reviewed)