Anexos

1. Catálogos

1.1.Catálogo nanoposicionador

nanopositioning | motion control

NPXY100Z10A

Specifications

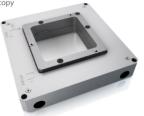
100 x 100 x 10
140 x 140 x 30
68 x 68
Aluminum
1

The NPXY100Z10A is a closed-loop XYZ nanopositioner with 100 μ m x 100 μ m x 100 μ m x 100 μ m range of motion. It has the highest resonant frequency available in the market for products of similar function. Its large aperture allows for easy integration with optical microscopes or any application that requires easy sample access.

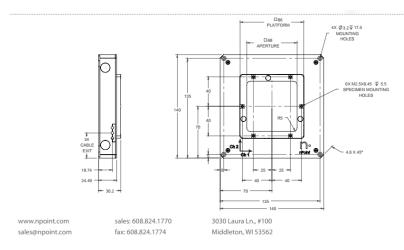
	XY	Z
Position Noise (nm)	0.5	0.1
Small Signal Settling Time	15	7
(ms/1µm step)		
Resonant Frequency	600	1600
(Hz, unloaded, typical)		
Linearity Error (%)	0.05	0.5
Hysteresis (%, typical)	0.05	0.5
Part Number	371512	8

Application Examples

• Near-Field Scanning Optical Microscopy


Scanning Probe Microscopy

• Optical Microscopy


Lithography
 Nanometer-scale Manipulation

• Metrology

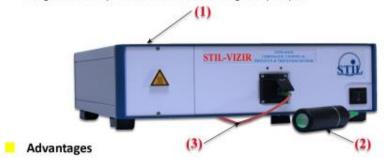
• Optical Fiber Alignment

Installation

Fuente [1]

Non-conctact "point" sensors

Chromatic Confocal "point" sensors


These sensors measure the altitude (z coordinate) of the sample point located on their optical axis.

They can also measure the thickness of transparent samples.

They consist of a controller (1), an "optical pen" (optical probe) (2) and a fiber optic cable (3).

3 controller lines (CCS, STIL-VIZIR and CHR), 3 optical pen lines (CL-MG, OP & ENDO) and different fiber optic cable models are available.

A single controller may be ordered with several interchangeable optical pens.

- Configurable: Select the controller, the optical pen and the fiber optics cable best suited for your application.
- Large choice of measuring ranges (100 µm 20 mm),
- Large choice of optical pens satisfying specific requirements ("endoscopic" / radial pens / large working distance / steep slope / small spot size / through-window measurement...).

Controllers for chromatic confocal "point" sensors

The CCS Controller line

- The leading confocal chromatic sensors worldwide,
- The most sophisticated chromatic confocal sensors on the market,
- Distance and Thickness modes,
- High accuracy, high resolution,
- Compatible with all CL-MG, OP and ENDO optical pens,
- Recommended for OEM users and industrial applications,
- Up to 20 different optical pens interchangeable on the same controller,
- Digital outputs: USB and RS232 / RS422,
- 2 OV-10V Analog outputs,
- Synchronized reading of 3 external digital encoders,
- Improved performances in thickness mode due to a specific thickness calibration,
- Long lifetime light source,
- Advanced features: "Auto-Led", "First peak", "Double frequency", "Hold last value", Temporal Averaging....
- Synchronisation: Master and/or slave

Functions	Application
"Auto-LED": The LED brightness adapts itself automatically	Samples with variations slope e.g lenses Samples with reflectivity variations
"First peak": The sensor locks on the first surface	Topography on transparent objets
"Double Frequency": The sensor selects the optimal measuring rate automatically	Samples with high sharp relectivity variations, e.g. mask for microelectronics
"Hold Last Value": Output data smoothing	Very difficult samples with many non measurable points

The CCS Optima+ Controller

- New 2014 product
- Measuring rate: up to 10 KHz
 Very high sensitivity, allowing an EFFECTIVE high rate on many sample types
- All the advantages of the CCS controller line (see page 7)

The CCS Prima Controller

- The most popular chromatic confocal controller
- Measuring rate: up to 2 KHz
- CCD photodetector with very high Signal to noise ratio
- 2 and 4 multiplexed channels models available (commutation time < 400ms)
- All the advantages of the CCS controller line (see page 7)

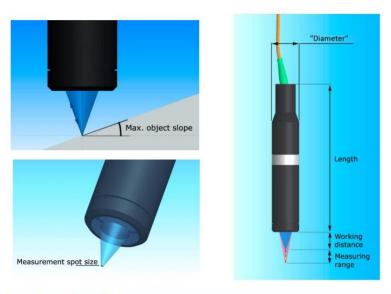
The STIL-VIZIR Controller

- New 2014 product
- The optimal solution for high accuracy, non contact Wafer thickness measurement
- Near IR spectral bande
- Up to 1 KHz
- Distance and Thickness modes
- Digital outputs: USB and RS232/RS422
- 2 OV-10V Analog outputs
- Synchronized reading of 3 external digital encoders
- Improved performances in thickness mode due to a specific Thickness calibration
- Long lifetime light source
- Advanced features: "First peak", "double frequency", "Hold last value", Temporal Averaging... (see page 7)

The CHR-150L Controller line

- Measuring rate: up to 1 KHz
- Compatible with all CL-MG, OP and ENDO optical pens
- Digital outputs: 2 RS232 ports (up to 115200 baud)
- 2 Analog outputs
- Long lifetime light source (light level adjustable manually with the aid of a knob)
- 2 or 4 silmultaneous channels

Non-conctact "point" sensors in the visible range


Optical pens for chromatic confocal "point" sensors

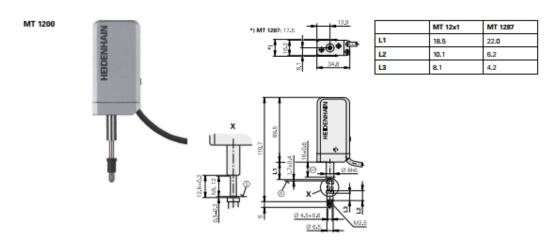
- The CL-MG Line consists of modular optical pens, comprising a chromatic lens (CL) and a magnifier lens (MG)
- Performance specifications supply for optical pens calibrated on STIL certified bench for a particular controller

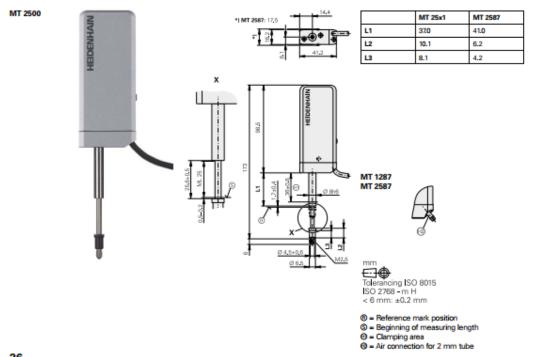
Model		CI	(⁽¹⁵⁾	C	ii.		CL2		C	L3	C	L4	C	L5	C	L6
Measuring range ⁽¹⁾	um	10	00	15	50		400	_	13	00	40	00	12	000	240	000
Working distance ⁽²⁾	mm	2.0	69	3.	35	9 5	10.8		12	0.5	16	5.2	25	.9	21	.5
Max. sample slope(3)	deg	±4	2"	±42	2.5°		±28°	_	±2	5"	±2	1"	±1	4°	±8	.5*
Reference plate ^[4]	-	N	0	N	lo	51	Yes		Y	es	Y	es	Y	es	N	lo
Axial model ⁽⁵⁾ Radial model ⁽⁵⁾									tanda ption							
Magnifier model		MG 210	MG 140	MG 210	MG 140	MG 210	MG 140	MG 70	MG 140	MG 70	MG 35	MG 20	MG 35	MG 20	MG 35	MC 20
NUMERICAL APERTURE																
Beginning of M.R.	-3	0.76	0.76	0.72	0.72	0.47	0.47	0.47	0.43	0.43	0.35	0.35	0.25	0.25	0.19	0.1
Mid-range	-	0.75	0.75	0.71	0.71	0.46	0.46	0.46	0.41	0.41	0.33	0.33	0.21	0.21	0.14	0.1
End of M.R.	-	0.75	0.75	0.71	0.71	0.46	0.46	0.46	0.41	0.41	0.32	0.32	0.20	0.20	0.12	0.1
LATERAL (XY) PROPERTIES																
Spot size ⁽¹²⁾						1					1		1			1
Beginning of MR	μm	1.6	2.0	2.4	3.2	3.5	4.6	8.1	6.0	10.8	10.7	17.6	19.6	32.8	18.6	30
Center of MR	μm	1.8	2.2	2.7	3.5	4.0	5.2	8.8	6.8	11.9	12.3	19.9	24.3	40.0	26.8	43
End of MR	μm	1.9	2.4	3.0	3.8	4.4	5.7	9.3	7.4	12.6	13.4	21.3	27.2	44.2	32.7	51
Lateral resolution ⁽⁶⁾	μm	1.1	1.0	1.1	1.3	1.7	1.8	3.7	2.6	4.5	4.6	7.0	11	14	11	18
PHOTOMETRIC EFFICIENCY ^[7]																
Collected energy (relative)		0.5	1.7	3.3	10	2.8	7.9	41	10	57	25	91	33	100	9.8	4:
MECHANICAL INTERFACE																
Length ⁽⁸⁾	mm	263.6	229	253.1	217.1	243.3	9.805	176.1	205.9	176.1	145.5	131.7	145.5	131.7	167.6	151
Diameter	mm	27	27	27	27	27	27	27	27	27	27	27	27	27	27	27
Weight ⁽⁸⁾	g	227	192	268	195	248	190	189	215	214	155	140	175	160	195	18
Performances																
DISTANCE MEASUREMENT											1 3					
Static Noise ⁽⁹⁾						1					1 8		- 8			
With no averaging	nm	5.5	6.5	7.5	8.5	17	20	28	50	60	120	145	400	475	750	85
With averaging 10	nm	1.8	2.2	2.5	2.8	5.7	6.7	9.3	17	20	40	48	133	158	250	28
Accuracy ⁽¹⁰⁾	nm	16	14	25	20	55	45	40	150	130	300	250	750	550	1600	120
Measuring rough metal surfaces ⁽¹¹⁾	-	R	R	R	R	R	R	R	R	NR	NR	NR	NR	NR	NR	NI
THICKNESS MEASUREMENT ^[13]																-
Min. measurable thick ^[14]	μm	S 5	≤5	7.5	9	14	14	22	38	40	110	120	350	550	590	72
Max. measurable thick ⁽¹⁴⁾	μm	s100	≤100	175	175	510	510	510	2000	2000	5700	5700	16500	16500	34000	340

For notes see page 15

1504295

www.stilsa.com - Phone:+33 4 42 39 66 51 contact@stilsa.com - 595, rue Pierre Berthier - Domaine de Saint Hilaire - 13855 Aix en Provence - Cedex3 - FRANCE


Fuente [2]


1.3.Catálogo sensor Heidenhain

HEIDENHAIN-METRO

Incremental length gauges with ± 0.2 µm accuracy

- High repeatability
 Plunger actuation by cable release, by the workpiece or pneumatically
 Ball-bush guided plunger

Mechanical data	MT 1271 □□ TTL MT 1281 ○ 1 V _{PP}	MT 2571 □ □ TTL MT 2581 ∼ 1 V _{PP}	MT 1287	MT 2587	
Plunger actuation Position of plunger at rest	By cable or measured Extended	l object	Pneumatic Retracted		
Measuring standard	DIADUR phase gratin	g on Zerodur glass cer	amic; grating period 4	μm	
System accuracy	± 0.2 μm				
Position error per signal period	≤ ± 0.02 µm				
Short-range accuracy typically	0.03 μm	0.04 μm	0.03 μm	0.04 μm	
Reference mark	≈ 1.7 mm below upper stop				
Measuring range	12 mm	25 mm	12 mm	25 mm	
Working pressure	-		0.9 bar to 1.4 bars		
Radial force	≤ 0.8 N (mechanically	permissible)			
Fastening	Clamping shank Ø 8h	6			
Operating attitude	Any; for version with	out spring and with low	v gauging force: vertical	lly downward	
Vibration 55 Hz to 2 000 Hz Shock 11 ms	≤ 100 m/s² (EN 60068-2-6) ≤ 1000 m/s² (EN 60068-2-27)				
Operating temperature	10 °C to 40 °C; reference temperature 20 °C				
Protection EN 60 529	IP50		IP64 (with sealing air)		
Weight without cable	100 g	100 g 180 g		190 g	

Electrical data	MT 1271 MT 2571		MT 128x MT 258x
Interface	ГШπι		∼1V _{PP}
Integrated interpolation*	5-fold	10-fold	-
Signal period	0.4 μm	0.2 μm	2 μm
Mech. permissible traversing speed	≤ 30 m/min		
Edge separation a at scanning frequency*/traverse speed*1) 200 kHz ≤ 24 m/min 100 kHz ≤ 12 m/min 50 kHz ≤ 6 m/min 25 kHz ≤ 3 m/min	≥ 0.23 µs ≥ 0.48 µs ≥ 0.98 µs	- 0.23 µs ≥ 0.48 µs ≥ 0.98 µs	-
Electrical connection* (Interface electronics integrated in connector)	Cable 1.5 m with D-sub connector (male), 15-pin		Cable 1.5 m with D-sub connector (male), 15-pin M23 connector (male), 12-pin
Cable length	≤ 30 m with HEIDEN	HAIN cable	
Voltage supply	5 V DC ± 0.5 V/< 160	mA (without load)	5 V DC ± 0.25 V/< 130 mA

Please select when ordering
 At the corresponding cutoff or scanning frequency

Precision Linear Stage

COMPACT DESIGN, FOR LOADS UP TO 10 KG

L-509

- __Travel ranges from 26 to 102 mm (1" to 4")
- Repeatability to 0.05 µm
- __Optional direct metrology linear encoder
- Stepper Motor or DC Gear Motor
- __Direction- sensing reference point switch
- ...Integrated optical limit switches

Reference- class linear stage

High travel accuracy and load capacity due to crossed roller guides. Precision ball screw with 1 mm pitch. Compact design. Stress- relieved aluminum base for highest stability. Optical limit switches. Travel ranges L-509.2 versions: 26 mm (1"), L-509.4: 52 mm (2"), L-509.6: 102 mm (4")

- .xxDG variant: DC servo motor with gearhead for high torques and resolution at low motor power
- .xxSD variant: 2- phase stepper motor for low velocity and high resolution

Noncontact limit switches. Noncontact, direction-sensing reference point switch in the middle of the travel range

- Integrated rotary encoder on motor shaft (variants with DC gear motor).
 Laterally mounted linear encoder. Direct position measurement of moved platform without impact on positioning precision due to mechanical play or hysteresis in the drive

Min. incremental motion and slow motion

In conjunction with the SMC Hydra controller, versions with stepper motor and integrated linear encoder (L-509.xASD00) achieve repeatable minimum incremental motion in the range of the sensor resolution. With this configuration, constant, low velocities of a few sensor steps per second can be attained

Fields of application

Precision positioning for science and industry, high duty cycles.

L-511 and L-509 precision stages can be combined without adapter plates for positioning on several axes.

Specifications

Preliminary Data	L-509.x0DG10	L-509.xASD00	L-509.x0SD00	Unit	Tolerano
	Linear stage with DC gear motor and rotary encoder	Linear stage with stepper motor and linear encoder (direct position measurement)	Linear stage with stepper motor		
Motion and Positioning					
ravel range #	26 / 52 / 102	26 / 52 / 102	26 / 52 / 102	mm	
tegrated sensor	Rotary encoder	Linear encoder	-		
Sensor resolution otary encoder	4096	-	-	cts./ rev.	typ.
Sensor resolution inear encoder	-	1##	-	nm	typ.
finimum incremental notion	0.1	0.01	0.315*	μm	typ.
Inidirectional epeatability	0.1	0.1	0.3	μm	typ.
Backlash	0.3	0.1	0.5	μm	typ.
Crosstalk, angular error xry (pitch)	±120	±120	±120	per 100 mm travel	typ.
Crosstalk, angular error xrz (yaw)	±100	±100	±100	µrad per 100 mm travel	typ.
Max. velocity	3	20	20	mm/ s	
Min. velocity	-	0.05	-	mm/ s	
Mechanical Properties					
hread/ spindle pitch	1	1	1	mm	
Gear ratio	2401:81	-	-		
Load capacity	100	100	100	N	max.
Push / pull force	60	60	60	N	max.
ateral force	50	50	50	N	max.
Holding force	40	80	80	N	max.
Orive Properties					
Notor type	DC gear motor	2- phase stepper motor	2- phase stepper motor		
Operating voltage	0 to ±12	24	24	V	
Motor power	8.5	10	10	W	nominal
Reference point and imit switches	Optical	Optical	Optical		
Miscellaneous					
Operating temperature ange	-20 10 65	-20 to 65	-20 to 65	°C	
Material	Aluminum, steel	Aluminum, steel	Aluminum, steel		
Mass	1.4 / 1.6 / 1.9	1.4/1.6/1.9	1.4 / 1.6 / 1.9	kg	±5%
Connector	HD Sub- D 26- pin (motor and rotary encoder) to Sub- D 15- pin, 3 m cable	HD Sub- D 26- ppin (motor), Sub- D 9- pin (linear encoder), 3 m cable set	HD Sub- D 26- pin (motor) to Sub- D 15- pin, 3 m cable		
Recommended controller/ driver	C-863 (single- axis), C-884 (up to 4 axes)	SMC Hydra (double- axis)	C-663 (single- axis)		

Order Information

L-509.10DG10
Precision Linear Stage, 85 mm Wide, DC Gear Motor, 26 mm (1") Travel Range, Optical Limit Switches

L-509.10SD00

Precision Linear Stage, 85 mm Wide, 2- Phase Stepper Motor, 26 mm (1") Travel Range, Optical Limit Switches

Precision Linear Stage, 85 mm Wide, DC Gear Motor, 52 mm (2") Travel Range, Optical Limit Switches

L-509.20D0

Precision Linear Stage, 85 mm Wide, 2- Phase Stepper Motor, 52 mm (2") Travel Range, Optical Limit Switches

L-509.40DG10
Precision Linear Stage, 85 mm Wide, 2- Phase Stepper Motor, 12 mm (4") Travel Range, Optical Limit Switches
L-509.40SD00
Precision Linear Stage, 85 mm Wide, DC Gear Motor, 102 mm (4") Travel Range, Optical Limit Switches
L-509.40SD00
Precision Linear Stage, 85 mm Wide, 2- Phase Stepper Motor, 102 mm (4") Travel Range, Optical Limit Switches

Stages with direct position measurement
L-509.1ASD00
Precision Linear Stage, 85 mm Wide, 2- Phase Stepper Motor, 26 mm (1") Travel Range, Linear Encoder with Sin/ Cos Signal Transmission,
Optical Limit Switches

Copical Limit Swinches
L-509.2ASD00
Precision Linear Stage, 85 mm Wide, 2- Phase Stepper Motor, 52 mm (2") Travel Range, Linear Encoder with Sin/ Cos Signal Transmission,
Optical Limit Switches

Precision Linear Stage, 85 mm Wide, 2- Phase Stepper Motor, 102 mm (4") Travel Range, Linear Encoder with Sin/ Cos Signal Transmission, Optical Limit Switches

Controllers / Drivers / Amplifiers

C-863 Mercury Servo Controller

C-863.20C885 DC Motor Controller Module

C-884 Four Axis Motion Controller
C-663 Mercury Step Controller
SMC hydra SMC- series

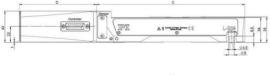
SMC pollux SMC- series

Accessories

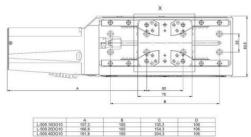
L-500 Adapter Bracket

Related Products

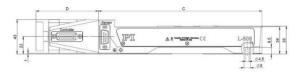
VT-80 Translation Stage

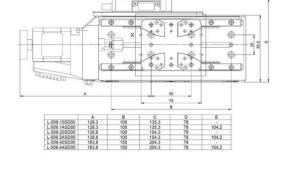

M-404 Precision Translation Stage

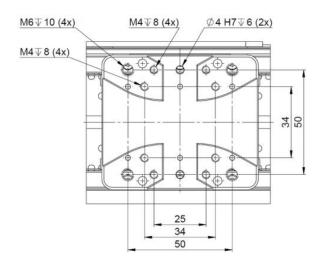
M-403 Precision Translation Stage


M-605 High- Accuracy Translation Stage L-511 High- Precision Linear Positioning Stage

PLS-85 Precision Linear Stage

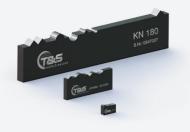

Drawings / Images


L-509 Versions with DC gear motor, dimensions in mm



\mathbf{PI}

L-509 Versions with stepper motor, dimensions in mm



L-509 slide detail drawing

1.5.Catálogo muestra patrón

Contour and roughness standards

Each measuring device is only as good as its reference. To monitor the precision and testing of contour measuring instruments, for instance in accordance with VDI/VDE 2629, we offer a wide range of contour and roughness standards.

KN180 contour standard

Depending on the model, our standards are manufactured from hardened and aged gauge steel or hard metal.

As an additional option, our standards are also available with a nearly adamantine, extremely wear-resistant surface coating. Stable mounting blocks or mounts with precision tilt axes are available for safely supporting our standards.

We can offer you the following test certificates for our standards

- Works certificate (standard)
- DAkkS certificate
- PTB test certificate

* KN15:: Micro contour standard

KN15

2. Elementos Finitos

2.1.Informe sensor confocal

La única carga impuesta fue la de la gravedad:

Tabla 1.Cargas impuestas en el modelo del conjunto sensor confocal. Fuente: SolidEdge

Nombre de carga	Tipo de carga	Valor de carga	Dirección de
			carga
Gravedad 1	Gravedad	981 cm/s^2	(0,0, 0,0, -1,0

A continuación, se observan las características de cada componente del conjunto. Estas fueron impuestas en el momento del diseño de cada componente:

Tabla 2. Características componentes conjunto sensor confocal. Fuente: SolidEdge.

Nombre del sólido	Material	Masa	Volumen	Peso
		(Kg)	(mm^3)	(N)
Sensor con color.V.par:1	Acero, estructural	0,155	76548,121	1,52
	(Ocurrencia)			
Base soporte.V.par:1	Aluminio, 6061-T6	2,279	840392,385	22,34
	(Ocurrencia)			
Cilindro soporte.V.par:1	Acero (Ocurrencia)	1,401	178831,585	13,73
Chaveta.V.par:1	Acero (Ocurrencia)	0,132	16800,000	1,29
Nanoposicionador.V.par:1	Aluminio, 1060	0,871	321048,212	8,53
	(Ocurrencia)			
PiezaInterna.V.par:1	Aluminio, 1060	0,159	58754,299	1,56
	(Ocurrencia)			
Portamuestras.V.par:1	Aluminio, 6061-T6	0,059	21685,239	0,58
_	(Ocurrencia)			
Enganche4	Aluminio, 6061-T6	0,386	142312,049	3,78
aligerado.V.par:1	(Ocurrencia)			

El programa también facilita las características de cada material del modelo:

Aluminio, 6061-T6

Tabla 3. Características aluminio 6061-T6. Fuente: SolidEdge

Propiedad	Valor
Densidad	2712,000 kg/m^3
Coeficiente de expansión térmica	0,000023 /C
Conductividad térmica	0,180 kW/m-C
Calor específico	920,000 J/kg-C
Módulo de elasticidad	68947,570 MPa
Coeficiente de Poisson	0,330
Límite elástico	275,790 MPa
Tensión de rotura	310,264 MPa

% de elongación	0,000

Acero

Tabla 4. Características acero. Fuente: SolidEdge

Propiedad	Valor
Densidad	7833,000 kg/m^3
Coeficiente de expansión térmica	0,000012 /C
Conductividad térmica	0,032 kW/m-C
Calor específico	481,000 J/kg-C
Módulo de elasticidad	199947,953 MPa
Coeficiente de Poisson	0,290
Límite elástico	262,001 MPa
Tensión de rotura	358,527 MPa
% de elongación	0,000

Aluminio, 1060

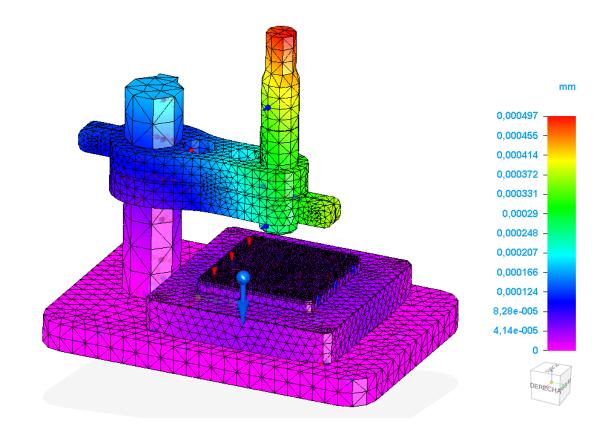
Tabla 5. Características aluminio 1060. Fuente: SolidEdge

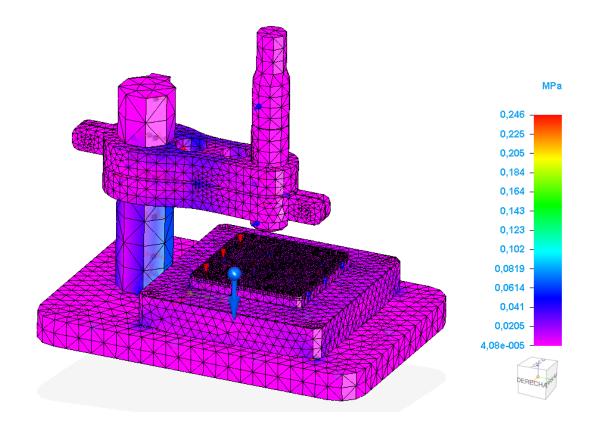
Propiedad	Valor
Densidad	2712,000 kg/m^3
Coeficiente de expansión térmica	0,000023 /C
Conductividad térmica	0,221 kW/m-C
Calor específico	920,000 J/kg-C
Módulo de elasticidad	68947,570 MPa
Coeficiente de Poisson	0,330
Límite elástico	27,579 MPa
Tensión de rotura	68,948 MPa
% de elongación	0,000

Acero, estructural

Tabla 6. Características acero estructural. Fuente: SolidEdge

Propiedad	Valor
Densidad	2025,000 kg/m^3
Coeficiente de expansión térmica	0,000013 /C
Conductividad térmica	0,032 kW/m-C
Calor específico	481,000 J/kg-C
Módulo de elasticidad	199947,953 MPa
Coeficiente de Poisson	0,290
Límite elástico	262,001 MPa
Tensión de rotura	358,527 MPa
% de elongación	0,000


Por último, se observan las características del mallado:


Tabla 7. Características mallado. Fuente: SolidEdge

Tipo de mallado	Tetraédrico

Número total de cuerpos mallados	8
Número total de elementos	172.952
Número total de nodos	275.213
Tamaño subjetivo de malla (1-10)	1

A continuación, se observan los resultados del desplazamiento y tensión del conjunto:

2.2.Informe sensor táctil Heidenhain La única carga impuesta fue la de la gravedad:

Tabla 8. Carga impuesta en el conjunto sensor táctil

Nombre de carga	Tipo de carga	Valor de carga	Distribución de carga	Dirección de carga	Opción de dirección de carga
Gravedad 1	Gravedad	981 cm/s^2		(0,00, 0,00, -1,00)	A lo largo del vector

A continuación, se observan las características de cada componente del conjunto. Estas fueron impuestas en el momento del diseño de cada componente:

Tabla 9. Características componentes sensor táctil. Fuente: SolidEdge

Nombre del sólido	Material	Masa	Volumen	Peso
posicionadora	Aluminio, 2024-T4	1,794	648443,016	17,58
50Ac50Al.par:1	(Ocurrencia)	kg	mm^3	N
Base soporte.V.par:1	Aluminio, 1060	2,279	840392,385	22,34
	(Ocurrencia)	kg	mm^3	N
Cilindro	Acero (Ocurrencia)	1,401	178831,585	13,73
soporte.V.par:1		kg	mm^3	N
Chaveta.V.par:1	Acero (Ocurrencia)	0,132	16800,000	1,29 N
		kg	mm^3	
enganche	Aluminio, 6061-T6	0,135	49679,349	1,32 N
heidenhain.par:1	(Ocurrencia)	kg	mm^3	
Sensor Heidenhain	Acero inoxidable, 420	0,180	39502,102	1,76 N
simple.par:1	(Ocurrencia)	kg	mm^3	

El programa también facilita las características de cada material del modelo:

Aluminio, 1060

Tabla 10. Características aluminio 1060. Fuente: SolidEdge

Propiedad	Valor
Densidad	2712,000 kg/m^3
Coeficiente de expansión térmica	0,000023 /C
Conductividad térmica	0,221 kW/m-C
Calor específico	920,000 J/kg-C
Módulo de elasticidad	68947,570 MPa
Coeficiente de Poisson	0,330
Límite elástico	27,579 MPa
Tensión de rotura	68,948 MPa
% de elongación	0,000

Acero

Tabla 11. Características acero. Fuente: SolidEdge

Propiedad	Valor
Densidad	7833,000 kg/m^3
Coeficiente de expansión térmica	0,000012 /C
Conductividad térmica	0,032 kW/m-C
Calor específico	481,000 J/kg-C
Módulo de elasticidad	199947,953 MPa
Coeficiente de Poisson	0,290
Límite elástico	262,001 MPa
Tensión de rotura	358,527 MPa
% de elongación	0,000

Aluminio, 6061-T6

Tabla 12. Características aluminio 6061-T6. Fuente: SolidEdge.

Propiedad	Valor
Densidad	2712,000 kg/m^3
Coeficiente de expansión térmica	0,000023 /C
Conductividad térmica	0,180 kW/m-C
Calor específico	920,000 J/kg-C
Módulo de elasticidad	68947,570 MPa
Coeficiente de Poisson	0,330
Límite elástico	275,790 MPa
Tensión de rotura	310,264 MPa
% de elongación	0,000

Acero inoxidable, 420

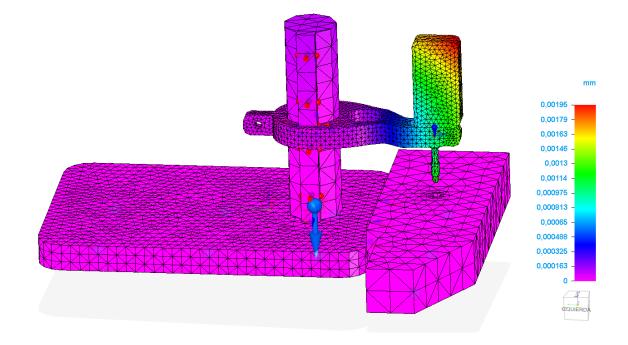
Tabla 13. Características acero inoxidable 420. Fuente: SolidEdge.

Propiedad	Valor
Densidad	4556,700 kg/m^3
Coeficiente de expansión térmica	0,000010 /C
Conductividad térmica	0,025 kW/m-C
Calor específico	502,000 J/kg-C
Módulo de elasticidad	199947,953 MPa
Coeficiente de Poisson	0,290
Límite elástico	344,738 MPa
Tensión de rotura	655,002 MPa
% de elongación	0,000

Aluminio, 2024-T4

Tabla 14. Características aluminio 2024-T4. Fuente: SolidEdge

Propiedad	Valor
Densidad	2767,000 kg/m^3
Coeficiente de expansión térmica	0,001225 /C
Conductividad térmica	0,189 kW/m-C
Calor específico	920,000 J/kg-C
Módulo de elasticidad	73084,424 MPa
Coeficiente de Poisson	0,330
Límite elástico	289,580 MPa
Tensión de rotura	427,475 MPa
% de elongación	0,000


Por último, se observan las características del mallado:

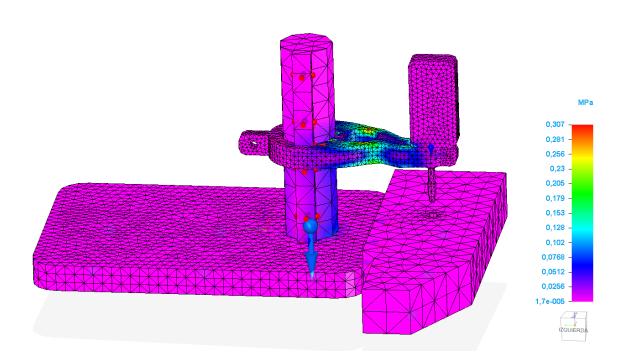

Información de mallado

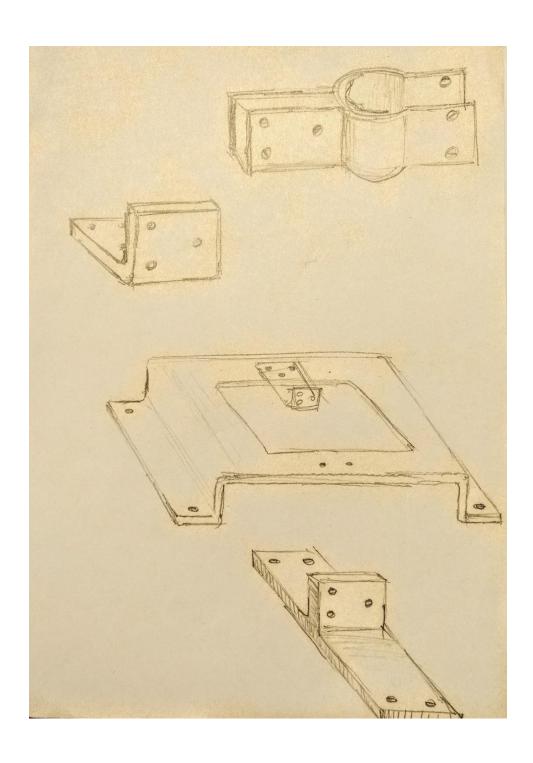
Tabla 15. Características mallado. Fuente: SolidEdge

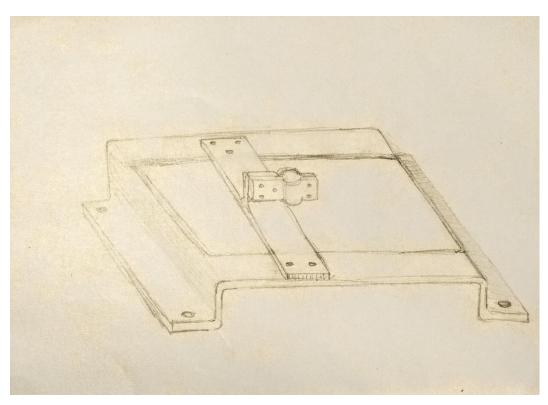
Tipo de mallado	Tetraédrico
Número total de cuerpos mallados	6
Número total de elementos	47.174
Número total de nodos	75.494
Tamaño subjetivo de malla (1-10)	2

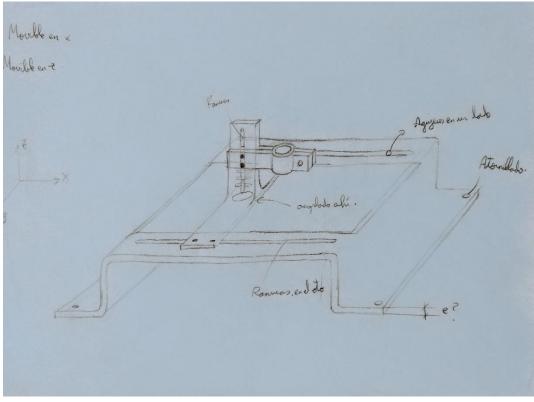
A continuación, se observan los resultados del desplazamiento y tensión del conjunto:

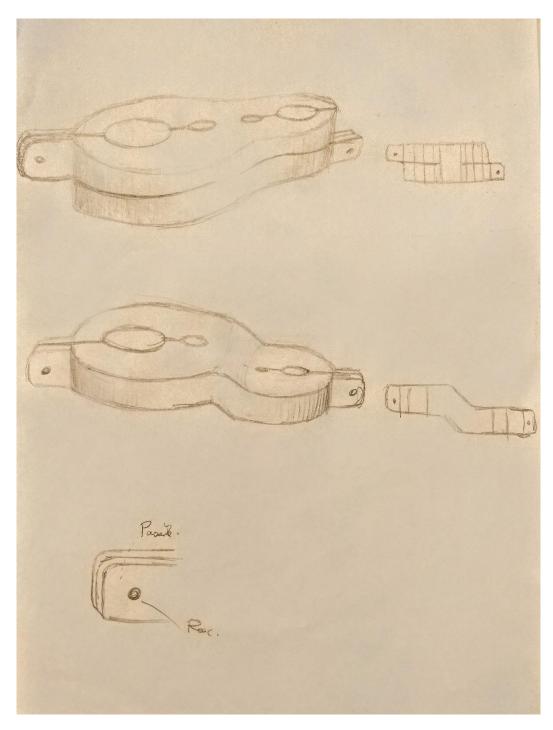
3. Estudios de expansión térmica

3.1.Estudio conjunto sensor confocal

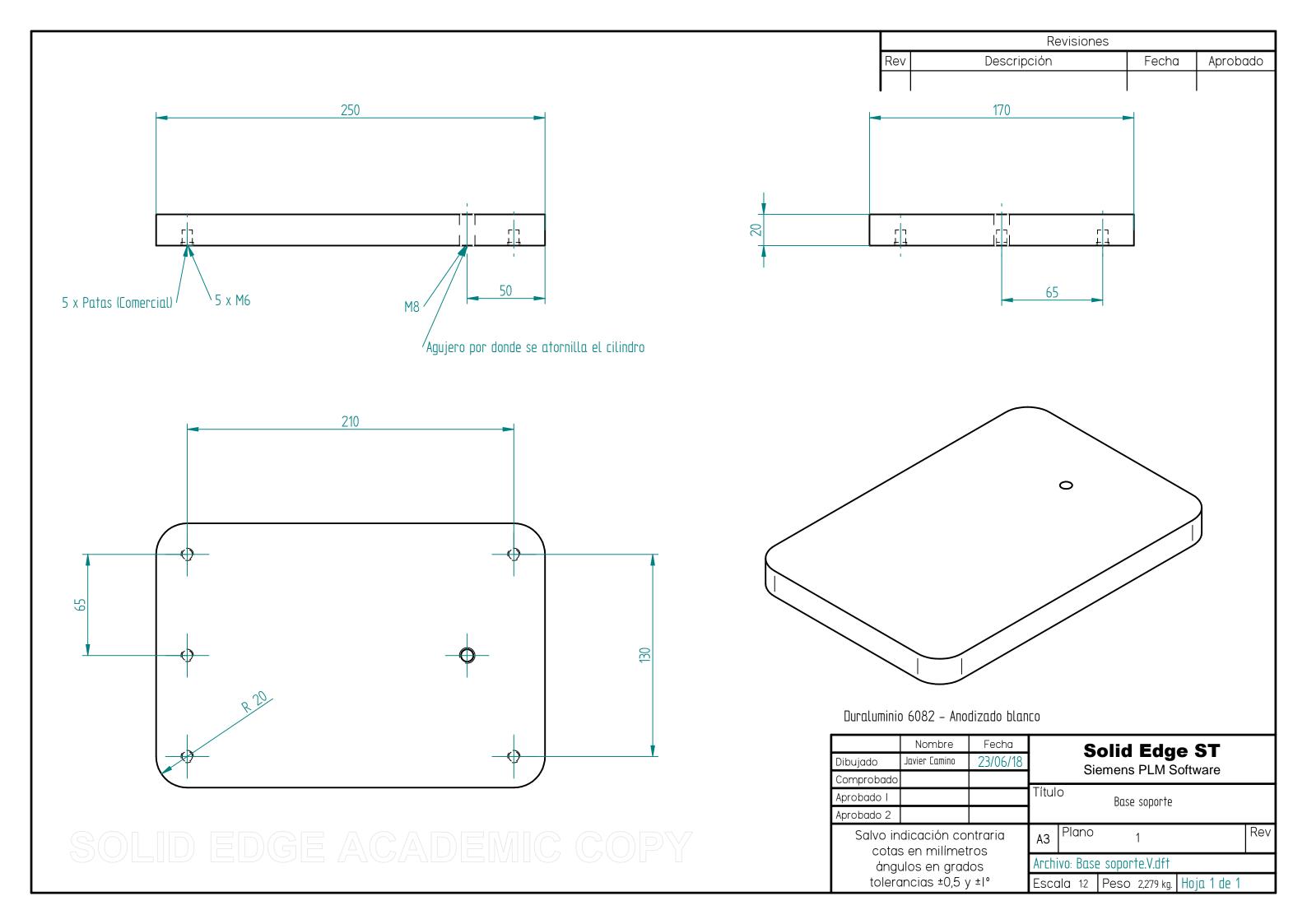

5.1.Estadio conjunto schsor comocar							
Muestra [mm]	ΔLx [mm]	X					
0	-0,000239998	20					
1	-0,000215998	21					
2	-0,000191998	22					
3	-0,000167998	23					
4	-0,000143998	24					
5	-0,000119998	25					
6	-0,000095998	26					
7	-7,1998E-05	27					
8	-4,7998E-05	28					
9	-0,000023998	29					
10	2E-09	30					
11	2,4002E-05	31					
12	0,000048002	32					
13	7,2002E-05	33					
14	9,6002E-05	34					
15	0,000120002	35					
16	0,000144002	36					
17	0,000168002	37					
18	0,000192002	38					
19	0,000216002	39					
20	0,000240002	40					
21	0,000264002	41					
22	0,000288002	42					
23	0,000312002	43					
24	0,000336002	44					
25	0,000360002	45					
26	0,000384002	46					
27	0,000408002	47					
28	0,000432002	48					
29	0,000456002	49					
30	0,000480002	50					

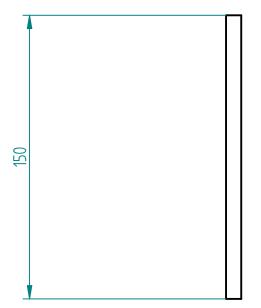

Fuente: elaboración propia mediante Excel

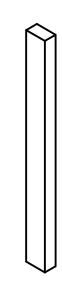

Muestra [mm]	ΔLx [mm]
0	-0,000239998
1	-0,000215998
2	-0,000191998
3	-0,000167998
4	-0,000143998
5	-0,000119998
6	-9,5998E-05
7	-7,1998E-05
8	-4,7998E-05
9	-2,3998E-05
10	2E-09
11	0,000024002
12	4,8002E-05
13	7,2002E-05
14	0,000096002
15	0,000120002
16	0,000144002
17	0,000168002
18	0,000192002
19	0,000216002
20	0,000240002
21	0,000264002
22	0,000288002
23	0,000312002
24	0,000336002
25	0,000360002
26	0,000384002
27	0,000408002
28	0,000432002
29	0,000456002
30	0,000480002

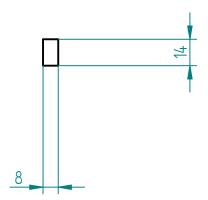

Fuente: elaboración propia mediante Excel

4. Bocetos



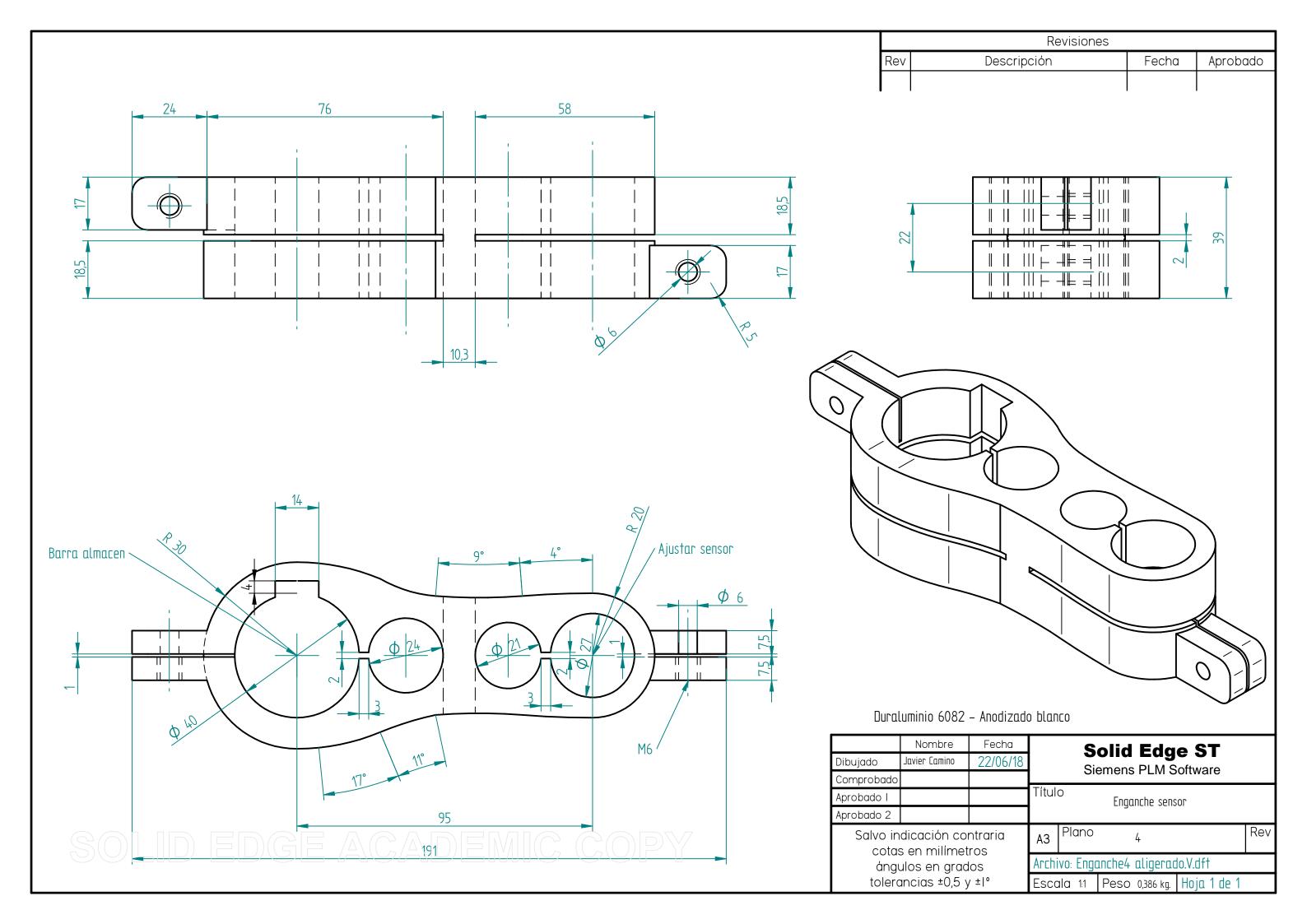

Fuente: elaboración propia

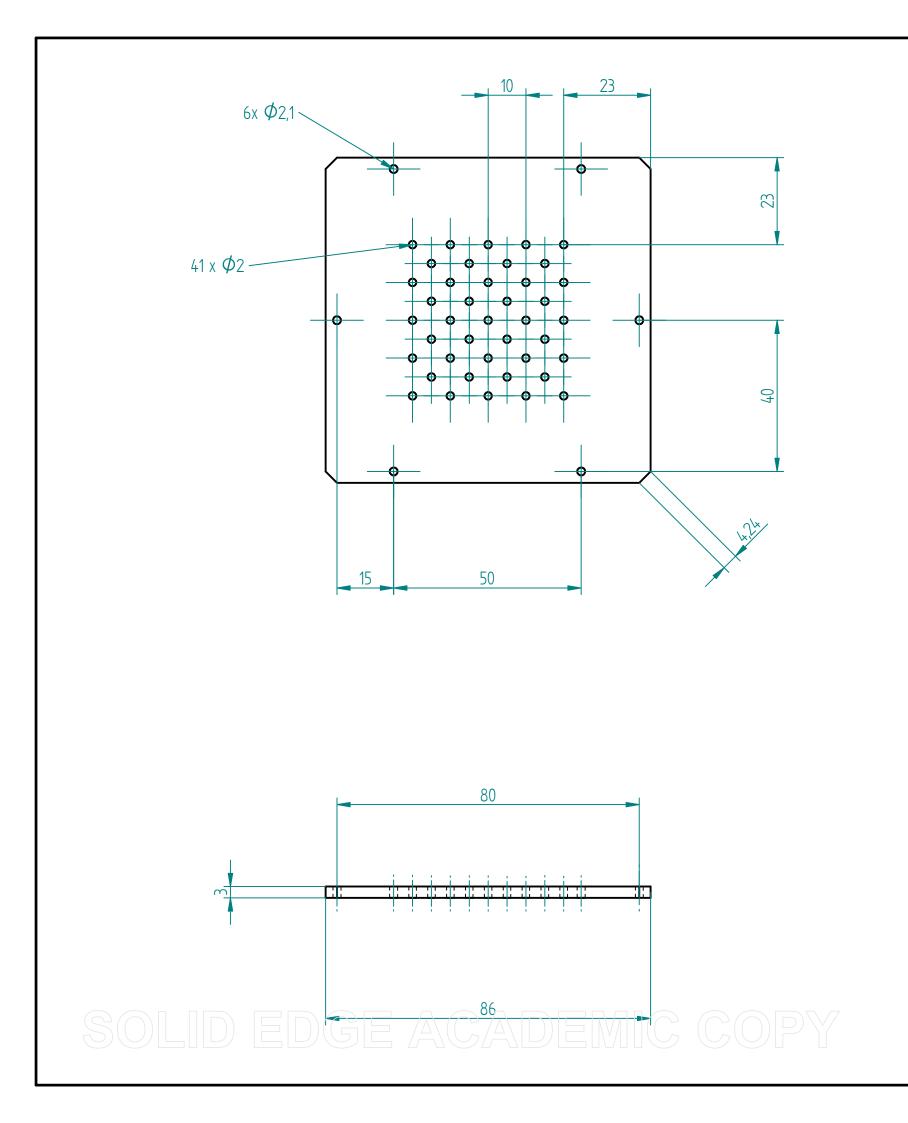

5. Planos

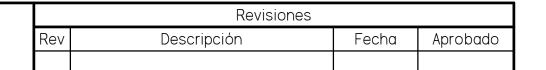


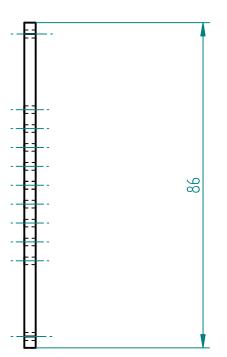
		Revisiones		
	Rev	Descripción	Fecha	Aprobado
Agujero para atornillar barra a la base	150			
Dibujo	robado	Fecha 22/06/18 Sieme	d Edge	ST ware
Aprob		ontraria etros ados Archivo: Cilindro		Rev oja 1 de 1

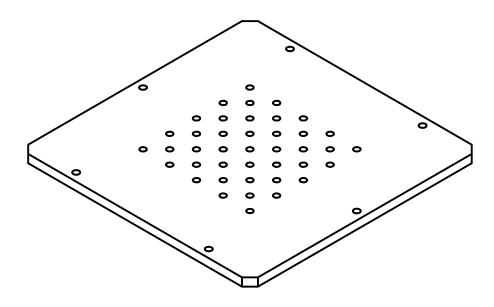
	Revisiones					
Rev	Descripción	Fecha	Aprobado			
• .		'	'			

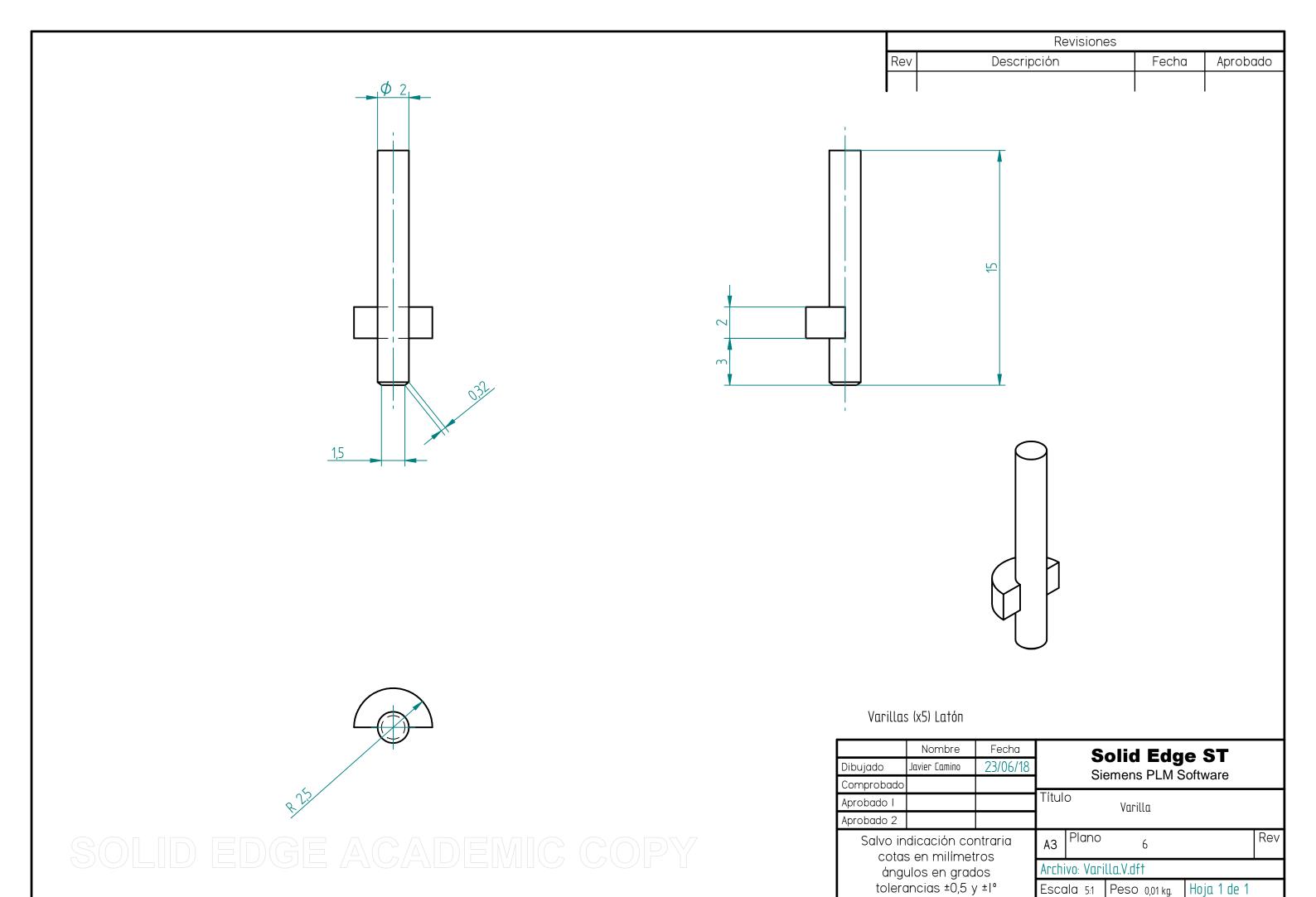


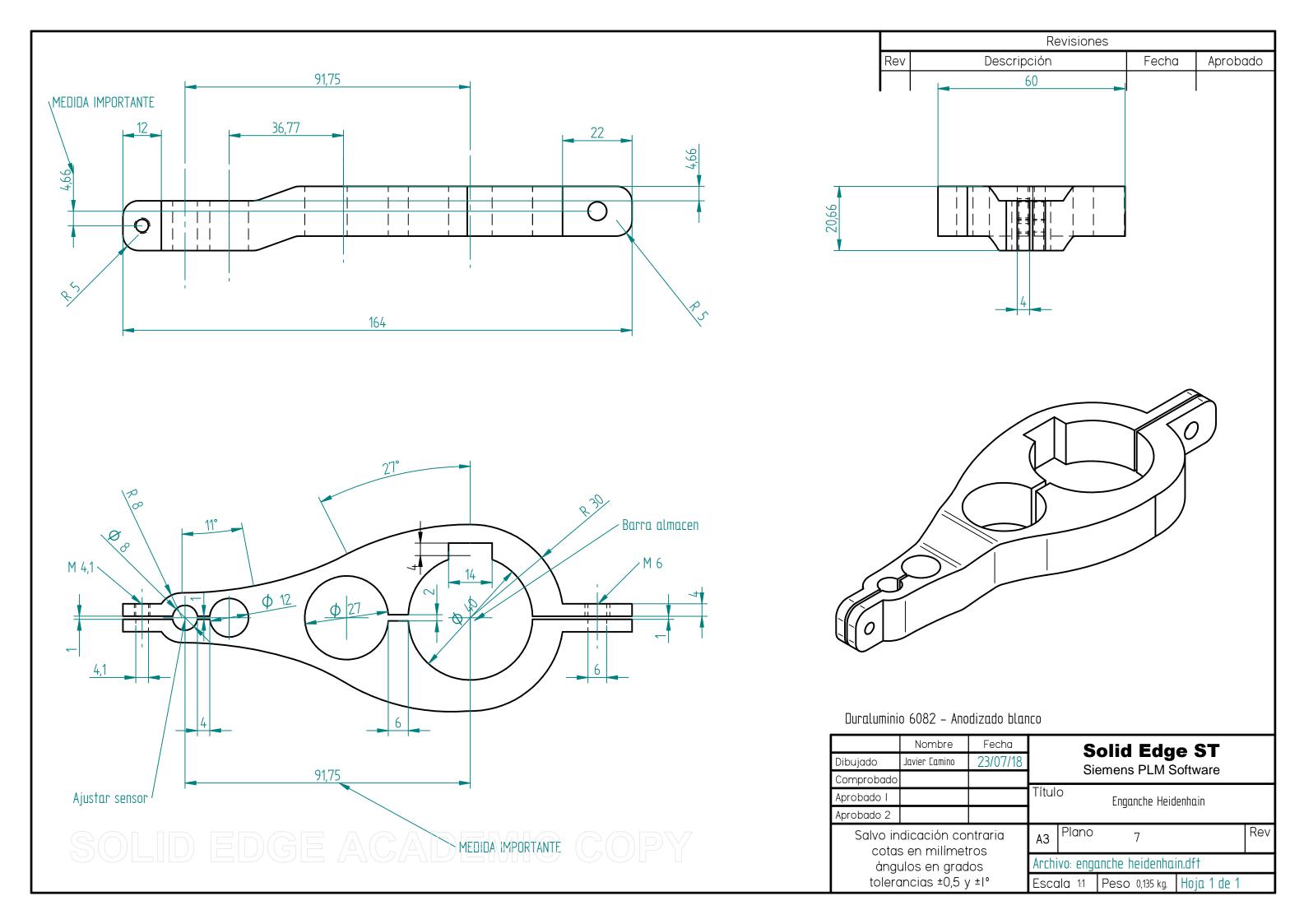



SOLID EDGE ACADEMIC COPY


Acero niquelado – F–114


	-							
	Nombre	Fecha	Solid Edge ST					
Dibujado	Javier Camino	19/05/18	Siemens PLM Software					
Comprobado								
Aprobado I			Título Chave†a					
Aprobado 2]					
Salvo indicación contraria cotas en milímetros ángulos en grados tolerancias ±0,5 y ±1°		АЗ	Plano	3		Rev		
		Archivo: Chaveta.V.dft						
		Escala 12 Peso 0,132 kg. Hoja 1 de 1						





Duraluminio 6082 - Anodizado blanco

Dibujado	Nombre Javier Camino	Fecha 23/06/18	Solid Edge ST Siemens PLM Software					
Comprobado Aprobado I			Título					
Aprobado 2			Portamuestras					
Salvo indicación contraria cotas en milímetros ángulos en grados tolerancias ±0,5 y ±1°		АЗ	Plano	-	5		Rev	
		Archivo: Portamuestras.V.dft						
		Escala 1:1 Peso 0,059 kg. Hoja 1 de 1						

