000075410 001__ 75410
000075410 005__ 20190709135645.0
000075410 0247_ $$2doi$$a10.1109/JLT.2017.2761541
000075410 0248_ $$2sideral$$a104264
000075410 037__ $$aART-2017-104264
000075410 041__ $$aeng
000075410 100__ $$0(orcid)0000-0002-5606-9010$$aAltabas, José Antonio$$uUniversidad de Zaragoza
000075410 245__ $$aNonorthogonal multiple access and carrierless amplitude phase modulation for flexible multiuser provisioning in 5G mobile networks
000075410 260__ $$c2017
000075410 5060_ $$aAccess copy available to the general public$$fUnrestricted
000075410 5203_ $$aIn this paper, a combined nonorthogonal multiple access (NOMA) and multiband carrierless amplitude phase modulation (multiCAP) scheme is proposed for capacity enhancement of and flexible resource provisioning in 5G mobile networks. The proposed scheme is experimentally evaluated over a W-band millimeter wave radio-over fiber system. The evaluated NOMA-CAP system consists of six 1.25-GHz multiCAP bands and two NOMA levels with quadrature phase-shift keying and can provide an aggregated transmission rate of 30 Gbit/s. The proposed system can dynamically adapt to different user densities and data rate requirements. Bit error rate performance is evaluated in two scenarios: a low user density scenario where the system capacity is evenly split between two users and a high user density scenario where NOMA and multiCAP are combined to serve up to 12 users with an assigned data rate of 2.5 Gbit/s each. The proposed system demonstrates how NOMA-CAP allows flexible resource provisioning and can adapt data rates depending on user density and requirements.
000075410 536__ $$9info:eu-repo/grantAgreement/ES/DGA/T25$$9info:eu-repo/grantAgreement/ES/MECD/FPU-13-00620$$9info:eu-repo/grantAgreement/ES/MICINN/TEC2014-59583-C2-1-R$$9info:eu-repo/grantAgreement/ES/MINECO/TEC2013-46917-C2-2-R
000075410 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/
000075410 590__ $$a3.652$$b2017
000075410 591__ $$aENGINEERING, ELECTRICAL & ELECTRONIC$$b44 / 260 = 0.169$$c2017$$dQ1$$eT1
000075410 591__ $$aTELECOMMUNICATIONS$$b17 / 87 = 0.195$$c2017$$dQ1$$eT1
000075410 591__ $$aOPTICS$$b13 / 94 = 0.138$$c2017$$dQ1$$eT1
000075410 592__ $$a1.166$$b2017
000075410 593__ $$aAtomic and Molecular Physics, and Optics$$c2017$$dQ1
000075410 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000075410 700__ $$aRommel, Simon
000075410 700__ $$aPuerta, Rafael
000075410 700__ $$0(orcid)0000-0002-4746-3139$$aIzquierdo, David$$uUniversidad de Zaragoza
000075410 700__ $$0(orcid)0000-0003-3505-0078$$aGarcés, Juan Ignacio$$uUniversidad de Zaragoza
000075410 700__ $$aLázaro, José Antonio
000075410 700__ $$aVegas Olmos,  Juan José
000075410 700__ $$aMonroy, Ildefonso Tafur
000075410 7102_ $$15008$$2800$$aUniversidad de Zaragoza$$bDpto. Ingeniería Electrón.Com.$$cÁrea Teoría Señal y Comunicac.
000075410 773__ $$g35, 24 (2017), 5456-5463$$pJ. lightwave technol.$$tJournal of Lightwave Technology$$x0733-8724
000075410 8564_ $$s2474575$$uhttps://zaguan.unizar.es/record/75410/files/texto_completo.pdf$$yPostprint
000075410 8564_ $$s141686$$uhttps://zaguan.unizar.es/record/75410/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000075410 909CO $$ooai:zaguan.unizar.es:75410$$particulos$$pdriver
000075410 951__ $$a2019-07-09-12:40:43
000075410 980__ $$aARTICLE