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The superintegrability of two-dimensional Hamiltonians with a position dependent mass (pdm) is studied 
(the kinetic term contains a factor m that depends of the radial coordinate). First, the properties of 
Killing vectors are studied and the associated Noether momenta are obtained. Then the existence of 
several families of superintegrable Hamiltonians is proved and the quadratic integrals of motion are 
explicitly obtained. These families include, as particular cases, some systems previously obtained making 
use of different approaches. We also relate the superintegrability of some of these pdm systems with 
the existence of complex functions endowed with interesting Poisson bracket properties. Finally the 
relation of these pdm Hamiltonians with the Euclidean Kepler problem and with the Euclidean harmonic 
oscillator is analyzed.

© 2016 Published by Elsevier B.V.
1. Introduction

It is known that some Liouville integrable systems, as the har-
monic oscillator or the Kepler problem, admit more constants of 
motion than degrees of freedom; they are called superintegrable. 
Therefore, a Hamiltonian H with two degrees of freedom is said to 
be integrable if it admits an integral of motion J2 in addition to 
the Hamiltonian, and superintegrable if it admits two integrals of 
motion, J1 and J2, that Poisson commute and a third independent 
integral J3. The integral J3 has vanishing Poisson bracket with H
but not necessarily with J1 and J2.

The mass m has been traditionally considered as a constant in 
the theory of physical systems admitting a Hamiltonian descrip-
tion. A consequence of this is that the study of superintegrable 
systems has been mainly focused on two and three degrees of 
freedom natural Hamiltonian systems (that is, kinetic term plus 
a potential) with a constant mass; in geometric terms this means 
that the configuration space Q is an Euclidean space or a constant 
curved space (spherical or hyperbolic). Nevertheless, in these last 
years the interest for the study of systems with a position depen-
dent mass has become a matter of great interest and has attracted 
a lot of attention to many authors. It seems therefore natural to 
enlarge the study of superintegrability to include systems with a 
position dependent mass.
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It is known that the Liouville formalism characterize the Hamil-
tonians that are integrable but it does not provide a method for 
obtaining the constants of motion; therefore it has been neces-
sary to carry out several different methods for searching integrals 
of motion (Noether symmetries, Hidden symmetries, Lax pairs for-
malism, bi-Hamiltonian structures, etc.). In a recent paper Szumin-
ski et al. studied [1] families of Hamiltonians of the form

Hnk = 1
2 rn−k

(
p2

r + p2
φ

r2

)
+ rnU (φ) ,

(n and k are integers) and then, making use of some previous re-
sults of Morales-Ruiz and Ramis related with the differential Galois 
group of variational equations [2–4], they derive necessary condi-
tions for the integrability of such systems. Then using some rather 
involved mathematics (related with the hypergeometric differen-
tial equation) they arrive to a certain number of Hamiltonians and 
prove that four of them, given by

H1 = 1
2 r6

(
p2

r + p2
φ

r2

)
− r cosφ , (n = 1,k = −5)

H2 = 1
2

1

r2

(
p2

r + p2
φ

r2

)
− 1

r
cosφ , (n = −1,k = 1)

H3 = 1
2 r4

(
p2

r + p2
φ

r2

)
− 1

r
cosφ , (n = −1,k = −5)

H4 = 1
2

(
p2

r + p2
φ

2

)
− r cosφ , (n = 1,k = 1)
r
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are superintegrable (two independent constants in addition to the 
Hamiltonian). The fourth Hamiltonian is in fact a rather simple 
Euclidean system but the other three are really interesting and de-
serve be studied with detail.

In this paper we will study the existence of superintegrability 
and we will construct the constants of motion using as starting 
point the properties of the Killing vectors.

We recall that a Killing vector field X in a Riemannian manifold 
(M, g), is the (infinitesimal) generator of a symmetry of the met-
ric g (that is, X is a generator of isometries); in geometric terms X
must be solution of the equation LX g = 0 where LX denotes the 
Lie derivative. If M is of dimension n then the metric admits at 
most d = 1

2 n(n + 1) linearly independent Killing vector fields (con-
stant curvature spaces admit the maximum number; for example 
if M is the Euclidean plane M = E

2 then d = 3).
If the configuration space of a system is a Riemannian manifold 

(Q , g) then g determines a kinetic Lagrangian Lg = T g = 1
2 gij ẋi ẋ j

such that the associated motion is just the geodesic motion, and 
the Killing vectors of (Q , g) determine the constants of motion for 
the geodesic trajectories (the so-called Noether momenta). In most 
of cases the addition of a potential V (x) to the kinetic Lagrangian 
Lg destroys these first integrals but, in some cases, the new sys-
tem admits first integrals of second order in the momenta whose 
quadratic terms are determined by Killing tensors of valence p = 2
built from Killing vectors. We recall that Killing tensor K of valence 
p defined in a Riemannian manifold (M, g) is a symmetric (p, 0)

tensor satisfying the Killing tensor equation

[K, g]S = 0

where [·, ·]S denotes the Schouten bracket (bilinear operator rep-
resenting the natural generalization of the Lie bracket of vector 
fields) [5,6]. In the case p = 2 the Killing tensor K determines a 
homogeneous quadratic function F K = K ij pi p j and then the Killing 
equation can be rewritten as the vanishing of the Poisson bracket 
of two functions

{K ij pi p j , gij pi p j} = 0 .

This means that the function F K is a first integral of the geodesic 
flow determined by the Hamiltonian H = (1/2)gij pi p j . From a 
practical viewpoint this means that quadratic term of the integrals 
of the Hamiltonian H = T g + V can be expressed as a sum of prod-
ucts of the Noether momenta.

The three Hamiltonians H j , j = 1, 2, 3, studied in [1] can be 
considered as Hamiltonians with position dependent masses (pdm) 
m = 1/r6, m = r2, and m = 1/r4, respectively. In geometric terms 
this means that they are defined in non-Euclidean spaces.

The following three points summarize the contents of this pa-
per.

• We will study the existence of superintegrable systems with 
a position dependent mass (pdm) of the form mn = r2n using 
the geometric formalism as an approach. We first obtain the 
Killing vectors for the corresponding metrics (that are con-
formal metrics) and then we obtain the expressions of the 
Noether momenta. The following step is the obtainment of the 
quadratic integrals.

• In fact, as a result of our approach we obtain that the three 
particular cases above mentioned are not exceptional values 
(with distinguishing properties) but just particular values in 
a more general situation. Moreover the above three Hamilto-
nians H j , j = 1, 2, 3, obtained in [1] are the particular cases 
(k0 = 0, k1 = −1, k2 = 0) of the following more general func-
tions

H1 = 1
2 r6

(
p2

r + p2
φ

2

)
+ k0r2 + r

(
k1 cosφ + k2 sinφ

)
,

r

H2 = 1
2

1

r2

(
p2

r + p2
φ

r2

)
+ k0

r2
+ 1

r

(
k1 cosφ + k2 sinφ

)
,

H3 = 1
2 r4

(
p2

r + p2
φ

r2

)
+ k0

r2
+ 1

r

(
k1 cosφ + k2 sinφ

)
.

• We obtain several families of superintegrable Hamiltonians 
with a position dependent mass (pdm) of the form mn = r2n

but with different potentials U (r, φ). An important property is 
that these new potentials, that have also the form of a linear 
combination with coefficients k0, k1, and k2, can be considered 
as the mn-deformed versions of the Euclidean superintegrable 
potentials Va and Vb (related with the harmonic oscillator), 
V c (related with the Kepler problem), and Vd (also related 
with the Kepler problem), first obtained in [7] and then stud-
ied by many authors (see [8] and references therein).

We close this Introduction with the following comments.
First, the study of systems with a position dependent mass is 

a matter highly studied in these last years but, in most of cases, 
these studies are related with the problem of the quantization 
(because the problem of order in the quantization of the kinetic 
term); the study presented in this paper is concerned with only 
the classical case and, although different, it has a close relation 
with the study presented in [9].

Second, quadratic superintegrability is a property very related 
with Hamilton–Jacobi (H–J) multiple separability (Schrödinger sep-
arability in the quantum case) and this property is also true for 
systems with a position dependent mass. This question (H–J sep-
arability approach to systems with a pdm) was studied in [9] (in 
this case the pdm depends on a parameter κ ) and more recently 
in [10] (in this last case the pdm Hamiltonians studied were also 
related with those recently obtained through a differential Galois 
group analysis in [1]).

Third, the study of systems admitting generalizations of the 
Laplace–Runge–Lenz vector [11–19] and the study of generaliza-
tions of the Kepler problem (Kepler-related problems with closed 
trajectories) are two (related) questions highly studied (see [20]
and references therein). We will see in the next sections that some 
of the pdm Hamiltonians studied in this paper are endowed with 
integrals of motion rather similar to the Laplace–Runge–Lenz vec-
tor (this is also true for the above mentioned functions H1 and H2) 
and therefore they belong to the family of generalizated the Kepler 
problems.

2. Superintegrability with quadratic constants of motion in the 
Euclidean plane

We recall, in this Section, the existence in the Euclidean plane 
of four two-dimensional potentials V j , j = a, b, c, d, that are super-
integrable with quadratic integrals of motion.

(a) The following potential, related with the harmonic oscillator,

Va = 1
2 ω0

2(x2 + y2) + k1

x2
+ k2

y2
(1)

is separable in Cartesian coordinates and polar coordinates. 
The constants of motion are the two one-dimensional energies 
and a third function related with the square of the angular 
momentum.

(b) The following potential, related with the harmonic oscillator,

Vb = 1
2 ω0

2(x2 + 4y2) + k1

x2
+ k2 y (2)

is separable in Cartesian coordinates and parabolic coordinates. 
The constants of motion are the two one-dimensional energies 
and a third function related with the Runge–Lenz vector.
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(c) The following potential, related with the Kepler problem,

V c = k0√
x2 + y2

+ k1

y2
+ k2 x

y2
√

x2 + y2
(3)

is separable in polar coordinates and parabolic coordinates. 
The first constant of motion is the Hamiltonian itself and the 
other two, Ic2 and Ic3, are related with the square of the an-
gular momentum and the Runge–Lenz vector.

(d) The following potential, related with the Kepler problem,

Vd = k0√
x2 + y2

+ k1

[√
x2 + y2 + x

]1/2

√
x2 + y2

+ k2

[√
x2 + y2 − x

]1/2

√
x2 + y2

(4)

is separable in two different systems of parabolic coordinates 
and the two constants of motion, Id2 and Id3, are related with 
the Runge–Lenz vector.

In the following sections we will study Hamiltonians with a 
pdm. We will prove that the systems obtained in [1] are just par-
ticular cases of a much more general situation and we will present 
all the results making use of a notation that stress the relation of 
the new Hamiltonians (to be denoted as Hnj , j = a, b, c, d) with 
the above mentioned Euclidean systems.

3. Position dependent mass, Killing vectors and Noether 
momenta

A position dependent mass mn = 1/r2n determines a kinetic La-
grangian Ln = Tn and an associated metric ds2

n given by

Tn = 1
2

1

r2n

(
v2

r + r2 v2
φ

)
, ds2

n = 1

r2n

(
dr2 + r2 dφ2

)
. (5)

This metric admits three symmetries; the invariance under rota-
tions (generated by X J = ∂/∂φ) and two other symmetries gener-
ated by the Killing vectors X1 and X2 given by

X1 = rn
(

cos(knφ)
∂

∂r
+ 1

r
sin(knφ)

∂

∂φ

)
,

X2 = rn
(

sin(knφ)
∂

∂r
− 1

r
cos(knφ)

∂

∂φ

)
,

where, for ease of the notation, we introduce kn for kn = n − 1. Ev-
ery Killing vector X determines an associated Noether momenta P
(so many Noether momenta as Killing vectors) that represents a 
constant of motion for the geodesic motion; so, in this case, we 
have the angular momentum pφ = vφ/r2(n−1) and the other two 
given by

i(X1) θL = 1

rn

(
cos(knφ) vr + r sin(knφ) vφ

)
,

i(X2) θL = 1

rn

(
sin(knφ) vr − r cos(knφ) vφ

)
,

where θL is the Cartan 1-form

θL = ( ∂L

∂vr

)
dr + ( ∂L

∂vφ

)
dφ .

Making use of the Legendre transformation we obtain the kinetic 
Hamiltonian

Hn = Tn = 1
2 r2n

(
p2

r + 1

r2
p2

φ

)

and the Hamiltonian expressions of the Noether momenta as linear 
functions of the canonical momenta
P1 = rn (
pr cos(knφ) + 1

r
pφ sin(knφ)

)
,

P2 = rn (
pr sin(knφ) − 1

r
pφ cos(knφ)

)
,

such that

{P1 , Tn} = 0 , {P2 , Tn} = 0 , {pφ , Tn} = 0 .

4. Harmonic oscillator related Hamiltonians

In what follows we introduced potentials in the Lagrangian Ln

(Hamiltonian Hn) in two steps. First central potentials (Vna =
1/r2(n−1) and Vnc = rn−1) and then φ-dependent new terms.

4.1. Hamiltonian Hna

The first system to be studied with a position dependent mass 
mn = 1/r2n is represented by a Hamiltonian with central potential 
Vna = 1/r2kn

Hna = Tn + k0

r2kn
, kn = n − 1 , n �= 1 . (6)

It is superintegrable with the following three constants of motion

J1 = pφ , J11 = P 2
1 + 2

k0

r2kn

(
cos(knφ)

)2
,

J22 = P 2
2 + 2

k0

r2kn

(
sin(knφ)

)2
,

that satisfy the following properties

(i) d J1 ∧ d J11 ∧ d J22 �= 0 , (ii) { J11 , J22} = 0 ,

(iii) Hna = 1

2

(
J11 + J22

)
.

A remarkable property is that the following function

J12 = J21 = P1 P2 + 2
k0

r2kn
cos(knφ) sin(knφ)

is also a constant of motion. These three integrals { J11, J22, J12}
can be considered as the three components Fij , i, j = 1, 2, of a 
Fradkin tensor [21]. Because of this the Hamiltonian Hna can be 
interpreted as representing an harmonic oscillator with a pdm 
mn = 1/r2n .

In a similar way to what happens in the Euclidean case [7,8], 
the above Hamiltonian, that it has a central potential Vna , ad-
mits the addition of two non-central new terms preserving the 
quadratic superintegrability. In this case we have

Hna = Tn + Una(r, φ) ,

Una = k0

r2kn
+ r2kn

[( k1

cos2 knφ

)
+

( k2

sin2 knφ

)]
, (7)

where k0, k1, and k2 are arbitrary constants. The three independent 
constants of motion are

Ja1 = P 2
1 + 2

k0

r2kn

(
cos(knφ)

)2 + 2k1r2kn
(
sec(knφ)

)2
,

Ja2 = P 2
2 + 2

k0

r2kn

(
sin(knφ)

)2 + 2k2r2kn
(
csc(knφ)

)2

and

Ja3 = p2
φ + 2

[( k1

cos2 knφ

)
+

( k2

sin2 knφ

)]
.

Starting with the central potential Vna = 1/r2kn we can also 
construct the following Hamiltonian
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H ′
na = Tn + U ′

na(r, φ) ,

U ′
na = k0

r2kn
+ 1

rkn

(
k1 cos(knφ) + k2 sin(knφ)

)
. (8)

It has, in addition to the two quadratic constants J ′
a1 and J ′

a2, sim-
ilar to Ja1 and Ja2, a linear in the momenta constant of motion

J ′
a3 = 2k0 pφ + k2 P1 − k1 P2

determined by an exact Noether symmetry of the Lagrangian L′
na =

Tn − U ′
na(r, φ). Note that the Hamiltonian H3 [1] mentioned in the 

introduction appears as the particular case n = 2 of H ′
na .

4.2. Hamiltonian Hnb

Now we consider the pdm Hamiltonian Hnb = Tn + Unb(r, φ)

where the potential Unb takes the form

Unb = k0

r2kn

(
cos2(knφ) + 4 sin2(knφ)

)
+ r2kn

( k1

cos2 knφ

)

+ k2

rkn
sin(knφ) , kn = n − 1 , (9)

where k0, k1, and k2 are arbitrary constants. It is superintegrable 
with the following three independent integrals of motion

Jb1 = P 2
1 + 2

k0

r2kn

(
cos(knφ)

)2 + 2k1r2kn
(
sec(knφ)

)2
,

Jb2 = P 2
2 + 8

k0

r2kn

(
sin(knφ)

)2 + 2k2

rkn
sin(knφ)

and

Jb3 = P1 pφ − k0

r3kn
cos(knφ) sin(2knφ)

+ k1rkn
(
sec3(knφ) sin(2knφ)

) − k2

2r2kn
cos2(knφ) .

5. Kepler related Hamiltonians

5.1. Hamiltonian Hnc

Now we consider a Hamiltonian with a position dependent 
mass mn = 1/r2n and a central potential Vnc = rn−1

Hnc = Tn + k0rn−1 , n �= 1 . (10)

It is superintegrable with the following three constants of motion

J1 = pφ , J2 = P2 pφ − k0 cos(knφ) ,

J3 = P1 pφ + k0 sin(knφ) .

It is clear that J2 and J3 are quite similar to the two compo-
nents of a two-dimensional Runge–Lenz vector. Because of this the 
Hamiltonian Hnc can be interpreted as representing a Kepler sys-
tem with a pdm mn = 1/r2n .

There are three different ways of modifying the potential Vnc

by introducing additional φ-dependent terms in such a way that 
the superintegrability is preserved. In the two first cases only one 
of the two Runge–Lenz-like constants is preserved; in the third 
case both Runge–Lenz-like constants are preserved (but then the 
integral J1 disappears).

(c1) The following Hamiltonian

Hnc1 = Tn + Unc1(r, φ) ,

Unc1 = k0rn−1 + r2kn
[( k1

2

)
+ k2

( cos knφ

2

)]
, (11)
sin knφ sin knφ
has (in addition to the Hamiltonian itself) two functionally in-
dependent first integrals of the second order in the momenta

d Jc2 ∧ d Jc3 ∧ dHnc1 �= 0 ,

{ Jc2 , Hnc1} = 0 , { Jc3 , Hnc1} = 0 ,

given by

Jc2 = p2
φ + 2

[( k1

sin2 knφ

)
+ k2

( cos knφ

sin2 knφ

)]
,

Jc3 = P2 pφ − k0 cos(knφ) − 2k1rkn
(
csc knφ cot knφ

)

− k2rkn
(
csc2 knφ + cot2 knφ

)
.

(c2) The Hamiltonian

Hnc2 = Tn + Unc2(r, φ) ,

Unc2 = k0rn−1 + r2kn
[( k1

cos2 knφ

)
+ k2

( sin knφ

cos2 knφ

)]
, (12)

is similar to the previous one Hnc1 but in this case is the ex-
istence of the second Runge–Lenz integral what is preserved

Jc2 = p2
φ + 2

[( k1

cos2 knφ

)
+ k2

( sin knφ

cos2 knφ

)]
,

Jc3 = P1 pφ + k0 sin(knφ) + 2k1rkn
(
sec knφ tan knφ

)

+ k2rkn
(
sec2 knφ + tan2 knφ

)
.

5.2. Hamiltonian Hnd

The Hamiltonian

Hnd = Tn + Und(r, φ) ,

Und = k0rn−1 + rkn/2(k1 cos kn(φ/2) + k2 sin kn(φ/2)
)
, (13)

that generalizes the Hamiltonians H1 and H2 obtained in [1]
and mentioned in the Introduction (they correspond to n = 3 and 
n = −1). It possesses the following two independent constants of 
motion Jd2 and Jd3

Jd2 = P1 pφ − k0 cos(knφ) + k1

rkn/2

(
sin knφ sin kn(φ/2)

)

− k2

rkn/2

(
sin knφ cos kn(φ/2)

)
,

Jd3 = P2 pφ + k0 sin(knφ) + k1

rkn/2

(
cos knφ sin kn(φ/2)

)

− k2

rkn/2

(
cos knφ cos kn(φ/2)

)
.

Both are of Runge–Lenz type.

6. Complex functions and superintegrability

We mention in the Introduction the existence of different ap-
proaches (Noether symmetries, Hidden symmetries, Lax pairs for-
malism, bi-Hamiltonian structures, H–J separability) for the study 
of Liouville integrability (or superintegrability). Now in this sec-
tion we study the superintegrability of two of the Hamiltonians
(H ′

na related to the harmonic oscillator and Hnd related to the 
Kepler problem) already studied in the previous section but now 
making use of a rather different approach. The main idea is that 
the superintegrability can be related with the existence of cer-
tain complex functions with interesting Poisson brackets proper-
ties. This complex functions formalism has been recently studied 
in [22] for the Kepler problem in the Euclidean plane.
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6.1. Hamiltonian H ′
na

Let us first introduce the following real functions

Mn1 = r2kn
(
r2 p2

r − p2
φ

) + 2k0

r2k
+ 2

rkn

(
k1 cos(knφ) + k2 sin(knφ)

)
,

Mn2 = 2r2n−1 pr pφ + 2

rkn

(
k1 sin(knφ) − k2 cos(knφ)

)
,

and

Nφ1 = cos(2knφ) , Nφ2 = sin(2knφ) .

Then if we denote by Mn and Nφ the complex functions

Mn = Mn1 + i Mn2 , Nφ = Nφ1 + i Nφ2 ,

we have

d

dt
Mn = {Mn , H ′

na} = i 2λn Mn ,

d

dt
Nφ = {Nφ , H ′

na} = i 2λn Nφ ,

where the common factor λn is given by

λn = (n − 1)r2kn pφ .

This means that the function constructed by coupling Mn with Nφ

is a constant of motion. This result is presented in the following 
proposition.

Proposition 1. Let us consider the following Hamiltonian with a position 
dependent mass m = r2n

H ′
na = Tn + U ′

na(r, φ) ,

U ′
na = k0

r2kn
+ 1

rkn

(
k1 cos(knφ) + k2 sin(knφ)

)
.

Then, the complex function J23 defined as

J23 = Mn N∗
φ

is a quadratic (complex) constant of motion.

Of course J23 determines two real first-integrals

J23 = J2 + i J3 ,
{

J2 , H ′
na

} = 0 ,
{

J3 , H ′
na

} = 0 ,

whose coordinate expressions turn out to be

J2 = r2(n−1)
(
(r2 p2

r − p2
φ) cos(2knφ) + (2rpr pφ) sin(2knφ)

)

+ 2

r2kn
k0 cos(2knφ) + 2

rkn

(
k1 cos(knφ) − k2 sin(knφ)

)
,

J3 = r2(n−1)
(
(r2 p2

r − p2
φ) sin(2knφ) − (2rpr pφ) cos(2knφ)

)

+ 2

r2kn
k0 sin(2knφ) + 2

rkn

(
k1 sin(knφ) + k2 cos(knφ)

)
.

Concerning the linear constant of motion J ′
a3 (obtained from an 

exact Noether symmetry), it determines the following Poisson 
brackets wit J2 and J3

{ J ′
a3 , J2} = 4(n − 1)

(
k0 J3 + k1k2

)
,

{ J ′
a3 , J3} = −2 (n − 1)

(
2k0 J2 + k2

1 − k2
2

)
.

6.2. Hamiltonian Hnd

Let us denote by Anj and Nφ j , j = 1, 2, the following real func-
tions

An1 = rn−1 p2
φ + k0 ,

An2 = 1

rkn/2

(
rmn pr pφ + k1 sin(kn/2)φ − k2 cos(kn/2)φ

)
,

mn = 1
2 (3n − 1) ,

and

Nφ1 = cos knφ , Nφ2 = sin knφ .

Then we have the following properties

(i)
d

dt
An1 = {An1 , Hnd} = (n − 1)λn An2 ,

d

dt
An2 = {An2 , Hnd} = − (n − 1)λn An1 ,

(ii)
d

dt
Nφ1 = {Nφ1 , Hnd} = − (n − 1)λn Nφ2 ,

d

dt
Nφ2 = {Nφ2 , Hnd} = (n − 1)λn Nφ1 ,

where λn denotes the following function

λn = r2(n−1) pφ . (14)

Therefore, the two complex functions An and Nφ defined as

An = An1 + i An2 , Nφ = Nφ1 + i Nφ2 ,

satisfy the following Poisson bracket properties

{An , Hnd} = − i (n − 1)λn An , {Nφ , Hnd} = i (n − 1)λn Nφ ,

and consequently the Poisson bracket of the complex function 
An Nφ with the Kepler-related Hamiltonian Hnd vanishes

{An Nφ , Hnd} = {An , Hnd} Nφ + An {Nφ , Hnd}
= (n − 1)

(− i λn An
)

Nφ + (n − 1)An
(
i λn Nφ

) = 0 .

We can summarize this result in the following proposition.

Proposition 2. Let us consider the Kepler-related Hamiltonian Hnd with 
pdm mn = 1/r2n

Hnd = Tn + Und(r, φ) ,

Und = k0rkn + rkn/2(k1 cos(kn/2)φ + k2 sin(kn/2)φ
)
.

Then, the complex function J23 defined as

J23 = An Nφ

is a quadratic (complex) constant of motion.

Of course J23 determines two real first-integrals

J23 = Re( J23) + i Im( J23) ,
{

Re( J23) , Hnd
} = 0 ,{

Im( J23) , Hnd
} = 0 ,

whose coordinate expressions turn out to be

Re( J23) = Jd2 , Im( J23) = Jd3 .

That is, the two real functions Re( J23) and Im( J23) are just 
the two components of the pdm-version of the two-dimensional 
Laplace–Runge–Lenz vector.
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Summarizing, we have got two interesting properties. First, the 
superintegrability of the pdm-deformed version Hnd of the Kepler 
problem is directly related with the existence of two complex func-
tions (An and Nφ ) whose Poisson brackets with the Hamiltonian 
Hnd are proportional, with a common complex factor, to them-
selves; and second, the two components of the pdm-deformed 
version of the Laplace–Runge–Lenz vector appear as the real and 
imaginary parts of the complex first-integral of motion. Remark 
that Nφ is a complex function of constant modulus one, while the 
modulus of An is a polynomial of degree four in the momenta that 
is just the sum of the squares of Jd2 and Jd3

An A∗
n = J 2

d2 + J 2
d3 .

7. Final comments

We have studied the superintegrability of Hamiltonian systems 
with a pdm mn = r2n , n �= 1, and we have proved that the par-
ticular Hamiltonians previously obtained in [1] are just very par-
ticular cases of the systems here obtained. We have made use of 
the properties of Killing vectors as the starting point of our ap-
proach, and we have proved that the Hamiltonians so obtained 
can be considered as pdm-deformations of the classical Euclidean 
superintegrable systems with potentials Va and Vb (related with 
the harmonic oscillator), and V c and Vd (both related with the 
Kepler problem). This result clearly reinforce the importance of 
these four potentials since, although defined in an Euclidean ge-
ometry, they are directly related with superintegrable systems 
with a nonEuclidean metric (this close relation between superinte-
grable Hamiltonians with and without pdm was already considered 
in [9]).

Integrability and superintegrability on spaces of constant and 
nonconstant curvature is a matter recently studied by several 
authors (see, e.g. [23–26] and references therein). Nevertheless, 
in differential geometric terms a pdm global factor means that 
the configuration space Q is endowed with a conformal met-
ric (a nonEuclidean space but with conformal equivalence to the 
Euclidean one) and in this case we have the additional prop-
erty that the pdm is a function dependent only of the radial 
variable. This is probably the main reason for the existence of 
a so close relation between the pdm Hamiltonians we have ob-
tained and the four Euclidean superintegrable systems mentioned 
in Section 2. Moreover, and concerning that existence of cur-
vature, we recall that in two dimensions the Riemann tensor 
Rabcd only has one independent component which can be taken 
R1212

R1212 = 1

2

(
∂2∂1 g21 − ∂2

2 g11 + ∂1∂2 g12 − ∂2
1 g22

)

− gef
(
�e

11�
f

22 − �e
12�

f
21

)
.

In this case (with g11 = 1/r2n and g22 = 1/r2n−2) the result is 
R1212 = 0. So the configuration space for the Hamiltonian Hn (that 
is, Q = R

2 with the line element ds2
n) is in fact a flat mani-

fold.
We finalize with the following questions for future work.

• It is natural to suppose the existence of superintegrable sys-
tems with a position dependent mass but with higher order 
constants of motion. We recall that the Euclidean potentials 
Va and V c admit two generalizations

Vtt w(r, φ) = 1
2 ω0

2r2 + 1

2 r2

( α

cos2(m φ)
+ β

sin2(m φ)

)
,

V pw(r, φ) = − g

r
+ 1

2 r2

( α

cos2(mφ)
+ β

2

)
,

sin (mφ)
that are superintegrable but with higher order constants of 
motion [27–29]. So, the existence of superintegrable systems 
similar to these two Euclidean systems but with a pdm of the 
form m j is a matter to be studied. The higher surerintegrabil-
ity of the potentials Vtt w and V pw has been studied making 
use of different techniques (at both the classical and the quan-
tum levels); here we point out the existence of a method 
that make use of products of complex functions [30,31]; prob-
ably this method can also be applied to the study of the 
m j-dependent case.

• Concerning the complex functions formalism presented in Sec-
tion 6, we mention that it was proved in [22] that it is re-
lated with the existence of quasi-bi-Hamiltonian structures. So 
the existence of these structures (bi-Hamiltonian or quasi-bi-
Hamiltonian) for systems with a pdm is also a matter to be 
studied making use of the properties of these complex func-
tions.

• Finally, the study of quantum systems with a pdm is a mat-
ter highly studied in these last years. First the quantization 
of these systems is not an easy matter (because the problem 
of order in the quantization of the kinetic term) and second, 
it seems that some of these pdm systems belong to the family 
of Hamiltonians with an exactly solvable Schrödinger equation. 
Therefore, the quantum study of all these pdm Hamiltonians is 
also an interesting matter to be studied.
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