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ABSTRACT 9 

A systematic method has been established to perform and analyse in detail the Energy 10 

Performance Certification of 21 faculty buildings located at the University of Zaragoza 11 

(Spain), according to the transposition of Directive 2010/31/EU. First of all, the problem 12 

background and a review of the state-of-the-art of the energy certification in buildings is 13 

outlined, regarding both the actual state of the Government regulations and the studies 14 

undertaken in several countries to assess the energy performance of different types of 15 

buildings, residential and non-residential. A summary of the causes found in other studies for 16 

the discrepancies between the estimated (by simulation) and actual energy consumption is 17 

shown which is afterwards tested and compared with the results found in the present study. 18 

Thereafter, the method followed to undertake the buildings’ energy performance certification 19 

is explained, and the main results found together with the discussion are detailed, comparing 20 
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actual vs. estimated energy consumption in the different case studies and proposing reasons 21 

for these deviations. The energy consumption breakdown by uses for several buildings is also 22 

analysed, and potential improvements for the simulation software are assessed. 23 
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1 INTRODUCTION 27 

1.1 Background 28 

Nowadays, there is a significant and continuing desire to increase the energy efficiency and to 29 

diversify and decarbonise the energy supply, due to the rise in energy demand, together with 30 

the high dependence on fossil fuels and the Climate Change that the Earth is experiencing. In 31 

particular, in Europe 50% of the energy demand is imported from countries outside the EU 32 

[1], with the energy consumption of buildings accounting for 40% of the total final energy use 33 

and 36% of total CO2 emissions of the EU Member States [2]. All these issues led the United 34 

Nations to sign the Kyoto’s protocol in 1997, whose main objectives are to reduce the energy 35 

demand, increase energy efficiency and reduce greenhouse emissions. In this regard, several 36 

directives have already been implemented in Europe, such as the Directive 2010/31/EU on 37 

energy performance of buildings [3] and the more recent Directive 2012/27/EU on energy 38 

efficiency [4]. These directives aim to implement the measures adopted to reduce the energy 39 

consumption in the EU, which will allow, together with an increase in the use of renewable 40 

energies, the EU Member States to comply with the Kyoto’s protocol, and hence the 41 
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consecution of the triple objective: 20% reduction of greenhouse gas emissions, 20% increase 42 

in energy efficiency and 20% of the energy supply provided by renewable energies. 43 

In the Construction sector, where our study is based, the Directive 2010/31/EU [3] (recast of 44 

the Directive 2002/91/EC [5] and reinforced by the Directive 2012/27/EU [4]) has established 45 

a common framework for a general methodology to calculate the buildings’ energy efficiency, 46 

and has also set the minimum cost-optimal requirements for energy performance of buildings 47 

that should be applied to both new and existing buildings, to guarantee that the energy cost 48 

savings throughout the lifecycle of a building outweigh the investments involved [6]. 49 

Additionally, this Directive requires that all new buildings (residential, offices and services) 50 

constructed in the EU from 2020 onwards, should be nearly zero-energy buildings, promoting 51 

the thermal envelope improvement, in situ renewable energy production and installation of 52 

high energy efficient equipment [3].  53 

On the other hand, the Directive 2012/27/EU establishes that, as from 1 January 2014, each 54 

Member State shall ensure that 3% of the total floor area of heated and/or cooled buildings 55 

owned and occupied by its central government is renovated each year, provided the useful 56 

surface is greater than 500 m2, in order to meet at least the minimum energy performance 57 

requirements set in application of Article 4 of Directive 2010/31/EU [4]. 58 

In compliance with these Directives, in April 2013, the Spanish Government approved the 59 

Royal Decree 235/2013 [7], in which the basic procedure for the energy performance 60 

certification of buildings is established. This document requires that the existing buildings 61 

rented or on sale shall obtain the Building Energy Performance Certificate. According to the 62 

Spanish normative, specific tools for the certification of buildings were generated, which use 63 

thermal modelling to simulate the whole building in order to determine its energy 64 
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performance. In Spain, those tools are CALENER VyP for dwellings and small tertiary sector 65 

buildings and CALENER GT (based on DOE-2 calculation engine) for the rest of tertiary 66 

sector buildings. These tools are connected with the software LIDER, which has a graphic 67 

interface through which the 3D model is implemented and all required inputs are introduced, 68 

such as the thermal envelope materials, HVAC installations data and operating hours 69 

according to the building user, occupancy profiles, etc.  With this information, the software 70 

then calculates the energy demand of the building, so as the final energy consumption of the 71 

building is calculated, and based on this result, the building energy performance certificate 72 

can be obtained.  73 

1.2 State of the art 74 

Andaloro A.P.F et al. [8] studied to what extent the 27 European countries had adopted 75 

energy certification in buildings. The results concluded that, in 2010, most countries were still 76 

at a halfway stage towards achieving excellence, which means that they had not completely 77 

implemented and activated the buildings’ certification and that they had not adopted yet 78 

measures to enhance energy efficiency, or the measures adopted were not fully applied so far. 79 

Among the different countries studied, some of them should be highlighted, such as Denmark 80 

which was one of the first EU countries to make certification compulsory before the Energy 81 

Performance of Buildings Directive (EPBD) (2002/91/EC) [5] and had in 2010 more than half 82 

of its buildings already certified. Besides, in this country there are different National 83 

Calculation methodologies for residential and non-residential buildings. The study [8] also 84 

showed that other countries such as Austria also have different methods of calculation, 85 

differentiating residential and non-residential buildings, and dividing the latter into 11 86 

categories: office buildings, nurseries and compulsory schools, secondary schools and 87 
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colleges, hospitals, care homes, guest houses, hotels, bars and restaurants, meeting places, 88 

sports facilities and sales outlets. While other countries such as Germany, United Kingdom, 89 

Spain and Portugal only have different calculation procedures distinguishing between 90 

residential and non-residential buildings [8]. However, even though these energy policies 91 

(Directive 2010/31/EU, Directive 2012/27/EU) are already implemented in most of the 92 

countries, a review undertaken by the Buildings Performance Institute Europe (BPIE) [9] 93 

concluded that there is still a lack of strong commitments with clear targets to enforce these 94 

regulations, as well as a deficit of qualified professionals to undertake the quality control and 95 

verification of the energy performance of buildings in most European countries [6]. A more 96 

recent study of the BPIE [10] stated that, by October 2014, all 28 EU Member States (MS) 97 

had formally transposed the EPBD requirements for the Energy Performance Certification 98 

(EPC) in their national legislation. Nevertheless, not all of them had implemented yet an 99 

Independent Control System, and only 19 of them had approved official software for the EPC 100 

calculation (in the rest of the MS any software that follows the national calculation 101 

methodology can be used, but they are not officially verified). Finally, a series of conclusions 102 

and recommendations were extracted by the BPIE, such as the need to further improve the 103 

enforcement of the EPC schemes in the MS and strengthen the monitoring of the EPC 104 

compliance at national and European levels.    105 

Several studies, such as [11], have corroborated the difference between the energy 106 

performance of buildings calculated with the simulation software (which is based on Standard 107 

Conditions) and their actual energy performance. Specifically, Bordass B. et al. [12] studied 108 

16 non-domestic buildings between 1995 and 1999 and concluded that the actual energy 109 

consumption of most of the buildings considered was higher than the calculated energy use, 110 

which was associated, among others, to the discrepancies between the values assumed in the 111 
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simulation tool and the actual values found in the buildings. This energy performance gap was 112 

also confirmed in other studies in the UK, in secondary schools [13], where Pegg I. et al. 113 

found that 80% of the buildings studied used more energy than expected; as well as in other 114 

type of buildings such as retail, education, offices and mixed use residential buildings [14]. 115 

Those studies found several reasons for this discrepancy, in the former case [13] they 116 

identified that the introduction of IT equipment such as computers, white boards, etc. in 117 

schools, the increase in the indoor environmental quality standards, the extension of the 118 

extracurricular activities and the poor control of the building equipment (i.e. HVAC systems) 119 

were the major causes for the higher than expected energy consumption; while in the latter 120 

study [14] they concluded that the complexity of control strategies, the poor construction 121 

practices, the inadequate commissioning and the lack of involvement of contractors in the 122 

buildings’ adjustment and refinement after completion were also causes of this energy 123 

performance gap. From these findings it can highlighted that one of the major causes of these 124 

discrepancies is that the actual energy uses in buildings are considered in the design for 125 

regulatory compliance.   126 

There are also other case studies in other European countries, in Italy [15] and Denmark [16], 127 

which have shown discrepancies of up to 30% between the actual energy consumption and the 128 

energy consumption estimated in the simulation tool. These results are in accordance with the 129 

results reported by CarbonBuzz within the UK, which show deviations of around 40% for 130 

offices and around 30% for educational buildings [17], which corroborates the existence of an 131 

energy performance gap between estimated and real energy consumption.  132 

In general terms, this discrepancy is attributed to the following causes [6]: 133 

 Regarding the modelling software and design assumptions: 134 
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o Inaccuracies [18] and uncertainties in the implementation of the modelling inputs [19].  135 

o Simplifications and inadequacies of the simulation tool [20], which can lead to 136 

unrealistic inputs concerning the building quality and design, as well as user 137 

behaviour, occupancy patterns and building management [21].  138 

Some of these inadequacies could be avoided by using modelling software appropriately 139 

validated with procedures for Software Accreditation and Verification, such as the ones 140 

defined by CIBSE TM33 [22]. 141 

 Built quality: Deficiencies and provisioning issues during the construction process and 142 

commissioning [23], such as gaps in the insulation and thermal bridges, which usually are 143 

not considered in the calculation of the energy consumption [24].  144 

 During the usage stage of the building [25]:  145 

o Unsuitable building management: if building managers implement inappropriate 146 

strategies, a significant portion of the energy can be wasted [18].  147 

o Operational inefficiencies [23]. 148 

This unnecessary energy waste could be avoided with regular energy audits and re-149 

commissioning exercises [26]. 150 

Apart from the previous causes, another important factor which is expected to significantly 151 

influence in the real building energy performance is the user behaviour [27], which cannot be 152 

implemented in the simulation software, so it can increase the aforementioned energy 153 

performance gap. Specifically, Hirst E. et al. [28] confirmed that building occupants tend to 154 

increase the indoor temperature above the modelling assumptions in winter to feel more 155 

comfortable in new buildings, which leads to a shortfall in the expected energy savings. This 156 
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behavioural response, known as the rebound effect [29], was also evidenced by other study 157 

undertaken in 2000 in Austria [30] and more recently in a review carried out by Sorrel S. et 158 

al. [31] in which several studies undertaken in different countries (UK, Austria, Norway, 159 

Canada and the US) are reviewed and the main results regarding the rebound effect are 160 

shown, concluding for example that, in most of the UK cases reported, the mean shortfall is 161 

around 55%. Even though most of these studies were undertaken in residential buildings, it is 162 

expected to obtain similar results in the case of non-residential buildings, as the building user 163 

typically behaves similarly in different environments. For example, Hamilton et al. [32] 164 

compared predicted and actual electricity consumption in three non-residential buildings and 165 

concluded that the measured electricity demand was approximately 60-70% higher than 166 

predicted in schools and general offices, while for university campus was over 85% higher 167 

[18].  168 

Regarding the Building Shape, some studies refer to it as relative building compactness (RC) 169 

and define it as follows [33]: 170 

Rfs
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=           (1) 171 

where V and AS, are the volume and the exterior wall area of the building analysed and of a 172 

reference (Rf) building respectively [34]. 173 

While others call it shape coefficient and define it as the total façade surface area to the space 174 

volume of a building inside the envelope [35], that is: 175 

V
AratioVS s=/            (2) 176 
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The latter definition (eq. 2) is used in the present study, due to the particularities of the 177 

different buildings considered.  178 

Even though these are different ways to calculate the Building Shape, in general similar 179 

conclusions can be extracted: the lower is the relative building compactness, the higher is the 180 

annual energy use of the building [33]; or the higher the S/V ratio, the higher the building’s 181 

energy consumption is.  182 

1.3 Contribution and main objectives 183 

All the aforementioned studies evidence the energy performance gap between the real and the 184 

estimated energy consumption in both non-residential and residential buildings, which must 185 

be addressed to ensure that the actual energy policies are effectively complied. In an attempt 186 

to identify this gap and provide alternatives to overcome it, in the present study a method has 187 

been established to assess the Spanish official software for the Energy Performance 188 

Certification of Buildings (EPCB), which has then been applied to 21 different faculty, both 189 

academic and research, buildings. This method details: i) the different steps to gather all 190 

relevant data and features of the building, ii) how to extract and analyse important 191 

information regarding the building’s energy performance provided by the software and iii) 192 

how to use the results obtained to evaluate the differences between the estimated energy 193 

consumption from the thermal modelling and the actual energy consumption obtained from 194 

utility bills. It should be noted that the method established could be extrapolated and adapted 195 

to assess other energy simulation software. 196 

Specifically, the main objectives of the study are: 197 

 Establish a method to analyse in detail the Spanish official software for the EPCB.  198 

9 

 



 Characterise the Faculty Buildings’ stock of the University of Zaragoza (Spain). 199 

 Establish a method to perform the Energy Performance Certification of those buildings, 200 

adapting the data required by the software to the data available within the Faculty 201 

Buildings. 202 

 Detect the points of the major energy consumption and evaluate the reasons. 203 

 Assess the differences between estimated (by simulation) and actual energy consumption. 204 

 Detect limitations of the simulation tool used and propose improvements to shorten the 205 

energy performance gap. 206 

 Propose a series of energy efficiency measures to decrease the energy consumption of the 207 

buildings. 208 

Therefore, the main contribution of this research paper is the establishment of a method to 209 

assess any simulation tool used to obtain the EPCB, which is applied to the specific case of 210 

Faculty Buildings in Spain, but that can be extrapolated to other case studies. This specific 211 

type of buildings was selected both for their peculiarities and diversity of features, which 212 

allows a better detection of restrictions and limitations of the simulation tool.  213 

2 MATERIALS AND METHODS 214 

The Faculty Buildings’ stock of the University of Zaragoza considered in this study consists 215 

of 21 Buildings, 15 of them mainly Academic (A) buildings and the other 6 mainly Research 216 

(R) buildings. As it can be seen in Figure 1, the buildings studied are significantly different, 217 

with a useful area ranging from 800 to 27600 m2, and a construction year (or refurbishment 218 

year when applicable) between 1990 and 2013 (except A12 Building). As consequence, the 219 

characteristics of the different buildings are rather different, with several singularities in the 220 
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constructive solutions, especially in older buildings which have been refurbished (A6 was 221 

built in 1946 but refurbished in 1994, A7 was built in 1975 but refurbished in 1995).  222 
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  Figure 1. (left) Useful Area and (right) Construction year and refurbishment year for the 224 

different Faculty Buildings studied (A = Academic, R = Research). 225 

The method followed in this research for the energy certification process and assessment of 226 

the simulation software is detailed in Figure 2.  227 
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 228 

Figure 2. Method followed for the energy certification process and assessment of the 229 

simulation software.  230 

The first step consists in gathering all required information to fully characterise the buildings 231 

(similar as in other studies such as Ref. [35]). To this end, the following tasks were 232 

undertaken: 233 

1. Find the information available in the database of projects in execution and 234 

refurbishment in the University of Zaragoza. 235 
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2. Field visit to the different buildings to check possible alterations respect to the Project 236 

Documentation and to gather information regarding internal loads, as well as HVAC 237 

systems and other equipment installed.  238 

3. Take measurements in-situ of the building features: lighting system, glazing, etc. 239 

4. Check the technical features’ document of the HVAC systems. 240 

5. Study the building’s surroundings to determine the building’s shading.  241 

The thermal modelling software used, CALENER GT, utilises DOE-2.2 as calculation engine, 242 

developed by the Energy Department of the USA and the Berkeley Laboratory. It includes in 243 

its database typical performance curves of different equipment, indispensable for the 244 

simulation of the systems, which can be substituted for the curves of specific manufacturers, 245 

if the data is provided in the form required by the DOE-2 algorithm [36]. This tool has a 246 

graphic interface (LIDER) through which all required inputs are introduced (see Figure 2): 247 

 Geometric definition and thermal envelope composition – Introduction of the materials 248 

of each layer, thermal properties and thickness, so as the software can establish the 249 

building’s energy demand.  250 

 Data of all installations – technical features of the installations (i.e. HVAC systems), 251 

such as nominal power, performance curve, flow-rates and energy consumptions.  252 

 Occupancy profiles and operation schedules to establish the building operation 253 

profile. 254 

The software then calculates the energy performance of buildings following the procedure and 255 

under the general operating conditions specified in the normative. The main outputs are the 256 

energy efficiency and environmental indicators required to complete the Energy Performance 257 
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label requested in the EPBD [5], provided through the energy consumption per square meter 258 

of the building (both in terms of primary and final energy), the building’s energy demand of 259 

heating, cooling, lighting and Domestic Hot Water (DHW) and the global and partial CO2 260 

emissions (for the different aforementioned services). Apart from that, CALENER-GT 261 

incorporates a results analysis tool to analyse the different energy uses within the building 262 

(pumps, fans, lighting, etc.), adding an additional value to this tool (see Figure 3). Besides, as 263 

it allows a detailed modelling of the thermal and optical properties of windows, it is possible 264 

to study the temperature effects on U-value, as well as the incident angle correlations for the 265 

solar heat gain properties and visual transmittance [37], serving as a useful tool to provide 266 

potential energy efficiency improvements.  267 

Even though the electricity consumption of the office IT equipment (computers, printers, 268 

fax/scanners, etc.) and the laboratory equipment (water/vacuum pumps, smoke extractor, 269 

furnaces, etc.) could be estimated mathematically (considering the equipment’s inventory and 270 

their approximated operation hours), or even measured with a Network Analyser, the present 271 

study did not consider this item for the Energy Performance assessment. The reason is that the 272 

Spanish Regulation for the Energy Performance Certification of Buildings states that only 273 

heating, cooling, ventilation, DHW and lighting (only for tertiary buildings) should be 274 

included, and therefore the Spanish Official Software does not allow the introduction of office 275 

IT and laboratory equipment. However, other commercial software such as Energy Plus 276 

allows the implementation of IT and laboratory equipment, through the introduction of the 277 

nominal power and schedule, but, as that tool is more focused on the building’s thermal 278 

modelling, the results regarding electricity consumption are not itemised, simply 279 

differentiating the lighting energy consumption from the total electricity consumption.  280 
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 This fact is considered as one of main the drawbacks of this tool, especially in the type of 281 

buildings studied in this manuscript, Academic and Research buildings, because those devices 282 

account for a significant share of the energy consumption.  283 

The data that should be introduced in the simulation tool to obtain the Energy Performance 284 

Certificate is summarised in Table 1. These data is required to characterise: i) the thermal 285 

envelope, ii) the building’s equipment and iii) the building’s use in terms of schedules and 286 

internal loads. It should be emphasised that it is significantly complicated to gather all this 287 

information, as each building has its particularities and, as shown in Figure 1, some of them 288 

are rather old. 289 

Table 1. Data input in the thermal modelling software to define the Building Energy 290 

Performance. 291 

Constructive Elements Energy Systems Schedules Internal Load 

Plant Layout Drawings  Equipment description: Heating Occupancy  

Building Sections  Boilers Cooling Equipment 

Internal gains Building envelope Coolers Ventilation 

Glazing data and location Pumps Lighting  

Façade description Lighting   

Roof description Fan coils   

Floor description Heaters/radiant floor   

Internal partitions Domestic Hot Water   

Interior and exterior slab Solar thermal system   

Walls in contact with ground Indoor-air conditions’ 

distribution 

  

Due to the singularities of the buildings and the difficulty of establishing an operation pattern 292 

for each of them, general profiles have been defined depending on the main use of the 293 

building, that is, the building’s stock has been divided in: i) Academic Buildings, in which the 294 
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main activity is teaching and, ii) Research Buildings, in which research and laboratory 295 

activities are predominant. According to this division, Table 2 shows the occupancy profiles 296 

in terms of percentage of occupancy throughout the opening times of the building, for 297 

weekdays (Monday to Friday) and weekends (Saturday). These percentages are determined 298 

based on access control of workers, University Authorities’ estimations and academic 299 

schedules (there are classes throughout the day from 8 h to 20 h). The occupancy profiles 300 

shown in Table 2 are considered constant throughout the year as during summer there are also 301 

summer courses and students studying. 302 

Table 2. Schedules and occupancy percentages of the Faculty Buildings studied. 303 

Building Occupancy profile 

 8-9 h 9-14 h 14-16 h 16-18 h 20-22 h 

Mon. – Fri.      

  Academic (A) 40 100 30 40 20 

  Research (R) 80 100 35 70 30 

Saturday      

  Academic (A) 0 2 0 0 0 

  Research (R) 0 40 5 10 0 

Similarly, the hours of operation of the different building facilities should be defined. Despite 304 

each building operates the systems differently; a common pattern can be established 305 

distinguishing Academic and Research Buildings, as shown in Table 3. 306 

Table 3. Hours of operation of the Faculty Buildings’ facilities. 307 

Building Heating System Cooling System 

 Nov. Dec.-Mar. Apr. Jun. Jul.-Aug. Sep. 

Mon. – Fri.       

  Academic (A) 7-13 h 7-21 h 7-13 h 12-18 h 10-20 h 12-18 h 

  Research (R) 7-17 h 7-21 h 7-17 h 8-21 h 8-21 h 11-19 h 
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Saturday       

  Research (R) 7-17 h 7-21 h 7-17 h 8-21 h 8-21 h 11-19 h 

It is observed that Research Buildings have a wider schedule than Academic Buildings, with 308 

the former extending the systems’ operation through the evening and also during the weekend 309 

(Saturday). Finally, it should be noted that in May and October both cooling and heating 310 

systems are turned off due to an energy saving criterion established by the University 311 

Authority. 312 

Apart from this, other inputs required are lighting profiles, internal gains due to occupancy 313 

and existent equipment and ventilation rates (see Figure 2). In this study, it is particularly 314 

difficult to obtain and/or estimate internal gains due to the Buildings’ dimensions, the 315 

difficulty of measuring them and the lack of relevant data gathered. Consequently, default 316 

values provided in the simulation tool were used, which vary depending on the building’s 317 

occupancies and are the ones established in the Spanish Technical Code [38] and other 318 

Regulations [39], based on ASHRAE Standards commonly accepted. Specifically, two types 319 

of occupancies were considered, one for classrooms and offices (2.5 m2/person) and other for 320 

the rest of rooms and spaces (10 m2/person), together with the associated internal loads per 321 

person provided by CALENER GT: 79.01 W/person for sensible heat and 50.99 W/person for 322 

latent heat. Apart from this, the default value for lighting internal gains was also considered, 323 

15W/m2. 324 

Regarding ventilation rates, the values were obtained depending on the building’s installation 325 

(HVAC systems) and when there is no mechanical ventilation installed, the reference values 326 

according to Spanish Regulations, which are the air exchanges equivalent to 15m2/h per 327 

person in each space, were used [38], considering the aforementioned occupancies. Lighting 328 

profiles were implemented based on the estimations provided by the University Authorities, 329 
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and the lighting system nominal power was gathered in the technical field visits. Finally, the 330 

same temperature set-points were defined for all the buildings: 20ºC in winter and 25ºC in 331 

summer, to meet with the requirements established in the Thermal Installation Regulations of 332 

Buildings (RITE) [40].  333 

One of the problems found in most of the cases was the absence of sufficient data to complete 334 

the inputs required by the simulation tool. The missing data was mainly concentrated in the 335 

buildings definition, in particular, in the thermal envelope composition, the absence of the 336 

technical features information of the HVAC systems (principally due to their age), and the 337 

difficulty to access other facilities to gather the corresponding data. In these cases the default 338 

values established in the Spanish Technical Code [39] and provided in the simulation tool 339 

were used. Another difficulty detected in the building simulation process was the geometric 340 

definition of the buildings. This is implemented graphically through the Spanish tool LIDER 341 

[38] which allows a visual 3D building definition where floors, conditioned spaces and 342 

enclosures’ composition are defined with XYZ coordinates and the corresponding polygons 343 

of those parts are created. The complexity of this definition falls on the limitation of the 344 

vertex number forming each polygon (maximum of 30 vertexes), the scarce graphic resolution 345 

of the software and the geometric complexity of the buildings, which should be simplified to 346 

polygons.  347 

Once all information is gathered and implemented in the software, the next step of the method 348 

is to analyse the results obtained in the energy simulation in order to assess both the 349 

simulation tool and the buildings’ energy performance. To this end, first of all the causes for 350 

the discrepancies found in the implementation of the buildings are analysed (geometrically 351 

and regarding operation schedules) (Section 3.1). Afterwards, the energy breakdown by uses 352 

provided by the tool is studied both to identify potential inconsistencies between simulation 353 
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and reality and correct them as far as possible, and to evaluate the building’s performance 354 

(Section 3.2). In this line, the next step is to analyse the energy performance gap between 355 

estimated (by simulation) and real (through utility bills) energy consumption (Section 3.3) to 356 

identify possible mistakes during the building’s implementation process as well as to propose 357 

potential improvements in the simulation software (Section 3.4). Finally, as part of the Energy 358 

Certification process and based on the information provided by the software, a series of 359 

energy efficiency measures to improve the buildings’ energy performance are outlined 360 

(Section 3.5).  361 

3 RESULTS AND DISCUSSION 362 

3.1 Discrepancies in the implementation of the buildings 363 

As it was mentioned in the previous section, the graphic implementation of buildings in the 364 

simulation software involves a number of simplifications which consequently generate a 365 

deviation in the final buildings’ dimensions. In this particular case, the discrepancy found 366 

between the real and the simulated buildings’ surface area is on average 8%, being in most 367 

cases the area implemented in the software larger than the real surface area of the building. 368 

This is attributed to several factors: i) the stairwell, which in the simulation software is 369 

considered as a different zone in each of the floors, ii) installations’ spaces, which sometimes 370 

are considered as conditioned zone due to its lack of proper definition, and iii) simplifications 371 

required to establish a realistic building’s envelope. All this is expected to consequently 372 

impact at some extent the specific energy indicators provided by the simulation software. For 373 

example, in R6 building, the surface area deviation found is 7%, being in this case the area 374 

implemented in the software lower than the real surface area of the building. In an attempt to 375 

correct this deviation, the total energy consumption estimated with the simulation tool was 376 
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increased by a factor of 1.07 (see column Simulation Corrected in Table 4). As consequence, 377 

the deviation between estimated and real energy consumption is reduced from 36.4% to 378 

32.3%, when the building is considered as Research. In other cases, the results show 379 

important discrepancies in the area simulated, for example in building R5, due to the 380 

complication in its geometric definition as this is a singular circular building with a dome that 381 

presents significant difficulties in its implementation. As consequence, it can be concluded 382 

that an improvement in the implementation mode of the buildings’ geometry would reduce 383 

the difference between the estimated and real energy consumption. This will be further 384 

explained afterwards. 385 

On the other hand, it should be noted that throughout the present study it was observed that the 386 

operation schedule established in the different buildings significantly affected the simulation 387 

results; therefore it was very important to correctly select the buildings’ main use between 388 

Academic and Research (see Table 3), to obtain a proper estimation of the building’s 389 

performance with the software. For example, R6 was initially simulated as Academic building, 390 

because it has an important academic load, but the results showed that the discrepancy between 391 

the estimated and the real energy consumption was substantial (82%, see Table 4). If on the 392 

contrary the operation schedule was incremented by considering it as a Research building, the 393 

deviation decreased to 36%. Therefore, it can be concluded that the comparison of estimated vs. 394 

real energy consumption is very important as it allows the detection of possible mistakes made in 395 

the building’s definition and implementation in the simulation software. 396 
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Table 4. Total energy consumption (estimated and real) and percentage of deviation for R6 397 

building considering it as Research and Academic. Columns “Simulation Corrected” and 398 

“Deviation Corrected” shows the total energy consumption and percentage of deviation 399 

respectively when the surface area deviation is corrected. 400 

Operation 

Schedule 

Building 

Type 

Total Energy Consumption 
(kWh/m2-year) 

Deviation (%) 

  Simulation 

tool 

Simulation 

Corrected 

Utility 

bill 

Actual Corrected 

Extended  Research  

Academic 

98 104.4 154.2 36.4% 32.3% 

Academic  28.1 29.9 154.2 81.8% 80.6% 

3.2 Energy consumption breakdown by uses 401 

Apart from the Energy Performance Label obtained in the simulation with CALENER GT 402 

tool, this thermal modelling software also provides several outputs which can be further 403 

analysed to study the energy performance of the building and be able to extract conclusions 404 

and suggest possible improvements, both in terms of simulation and building performance. 405 

For example, Figure 3 illustrates the itemisation of the electricity consumption in six 406 

representative faculty (4 Academic and 2 Research) buildings, including lighting, cooling, 407 

heating, fans and pumps and ancillary equipment. A3 and A4 buildings were selected for the 408 

heat pump system installed, and A8 is a similar building but with a conventional boiler, so it 409 

can be compared with the formers. Additionally, A10 building was selected as it is similar to 410 

A8 but it is located in a less warm climate. Regarding Research buildings, R3 is a 411 

characteristic Research building with some particularities, and R5 is a singular building 412 

constructed with bioclimatic criteria. In general terms, it is possible to observe that, even 413 

though there are some similarities within buildings A3, A4 on one side, and A8, A10 and R5 414 

on the other side, there are particularities worthy to comment for each case.  415 
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Figure 3. Itemisation of the electricity consumption per year for six representative Faculty 419 

buildings. 420 

First of all, it should be highlighted that Figure 3 only considers electricity consumption, and 421 

buildings A8, R5 and A10 have a heating system fed with Natural Gas in the two first cases, 422 

and Propane in the latter. Details of the energy consumption per year are shown in Figure 4. 423 

Figures 3 and 4 show that in A3 and A4 Buildings, pumps and other ancillary equipment have 424 

a significant electricity consumption compared to the rest of the buildings, which can be 425 

attributed to the open-loop geothermal heat pump system installed, in which the water 426 

condensation is achieved with water from a well, at constant temperature (around 17ºC), 427 

reducing the heat pump electricity needs. However, a pump system is required to extract 428 

water from the well located at 15 m depth; hence significant amount of energy is consumed in 429 

pumping. In contrast, R3 building has important energy consumption (50%) for heating, as 430 
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this is provided by a series of air heat pumps which consume more energy than the well water 431 

pump. In this line, Figure 4 shows that the heating consumption for the different buildings 432 

analysed differs considerably, which is due to several reasons: i) the disparity of heating 433 

systems integrated, mainly regarding the terminal units (hot-water radiators, fan-coils, heat 434 

pumps or radiant floors); ii) the dissimilar thermal transmittances of the building’s envelope, 435 

attributable to the different project requirements; and iii) the location of the buildings, as the 436 

cities in which they are located have different climatic conditions. 437 
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Figure 4. Breakdown of the energy consumption per year for five representative faculty 439 

buildings (NG = Natural Gas). 440 

On the other hand, another point to highlight is the high electricity share of lighting in 441 

buildings R5 and A10 (81% and 71% respectively), which can be attributed to several 442 

reasons. First of all, as commented above, both buildings have a heating system fed with 443 

Natural Gas and Propane respectively, therefore the heating share in terms of electricity is 444 

very low and negligible respectively. Besides, as shown in Figure 4, the rest of items have 445 

very low electricity consumption, with the cooling, pump and fan systems consuming less 446 

than 5 kWh/m2-year in case of A10 and less than 0.5 kWh/m2-year for R5 building. In fact, 447 

both R5 and A10 buildings have within the lowest lighting consumption and the lowest total 448 
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electricity consumption from the six buildings selected (17.7 kWh/m2-year and 28.6 kWh/m2-449 

year respectively). Particular attention should be paid to R5 building, in which the HVAC 450 

systems have a very low energy consumption (0.53 kWh/m2-year for cooling and ventilation). 451 

The reason is that the design of the building was undertaken following bioclimatic criteria to 452 

achieve a nearly-Zero Energy Building [41]. As consequence, the natural ventilation of the 453 

building allows achieving comfort temperatures with very low contribution of mechanical 454 

systems.  455 

Therefore, it can be concluded that important information can be extracted from the energy 456 

analysis provided by the simulation tool, which allows the identification of the main energy uses, 457 

serving as a starting point for the analysis of potential energy efficiency measures, as it will be 458 

further detailed in Section 3.5. 459 

3.3 Energy performance gap 460 

Regarding the differences between estimated  (by simulation) and actual energy consumption, 461 

Table 5 shows a comparison between both consumptions (Simulation tool vs. Utility bill) in 462 

terms of natural gas, electricity and total energy consumption, as well as the percentage of 463 

deviation for each case. The simulation results show that both Academic and Research 464 

buildings have a similar energy performance with an average of 83 kWh/m2-year (A11 and 465 

A13 are not included in the calculation due to their particularities), which implies that, at least 466 

theoretically, Faculty buildings are constructed similarly concerning HVAC and lighting 467 

needs. However, a different conclusion can be extracted when comparing the actual energy 468 

consumption of the buildings obtained from the utility bills. In this case, a differentiation can 469 

be made between Academic buildings, which have an average total energy consumption of 470 

about 85 kWh/m2-year (A11 and A13 are not included in the calculation due to their 471 
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particularities), and Research buildings, with around 167 kWh/m2-year on average (see Figure 472 

5). This distinction reveals the importance of the IT and laboratory equipment in the latter 473 

type of building, which would have to be considered in the simulation of buildings, especially 474 

when a realistic representation of the building’s energy performance is required.  475 

Concerning the Building shape, the results obtained in the present study show that the trend 476 

mentioned in Section 1.2, found in previous studies [33,34], is not that clear in this type of 477 

buildings, in which the energy consumption is more influenced by other factors such as user 478 

behaviour or IT equipment. Table 5 shows that all buildings are within the range 0.17-0.33, 479 

with an average of 0.28, being the lowest S/V ratio A11 Building, which has a significant part 480 

dedicated to sports (high heights), and the highest S/V ratio is a typical value (most of the 481 

buildings have an S/V ratio between 0.27-0.33). 482 

Table 5. Building Shape (S/V ratio); natural gas, electricity and total energy consumption, 483 

both estimated by the simulation tool and real consumption detailed in the utility bills, as well 484 

as the percentage of deviation for each case, for the 21 faculty buildings studied. The 485 

exceptions explained further in the text are highlighted in bold. 486 

ID 
S/V 

ratio 
Natural Gas (kWh/m2-year) 

Electricity (kWh/m2-

year) 

TOTAL 

(kWh/m2-year) 

 

 
Simul.  

tool 

Utility 

bill 

% 

Deviation 

Simu

l.  

tool 

Utilit

y bill 

% 

Deviation 

Simul.  

tool 

Utilit

y bill 

% 

Deviation 

A1 0.29 39.7 0.0+ - 79.9 0.0+ - 119.6 0.0+ - 

A2 0.27 0.0 0.0 - 50.6 75.3 -33% 50.6 75.3 -33% 

A3 0.32 0.0 0.0 - 62.9 71.6 -12% 62.9 71.6 -12% 

A4 0.32 0.0 0.0 - 69.1 52.9 31% 69.1 52.9 31% 

A5 0.31 0.0 0.0 - 36.4 40.3 -10% 36.4 40.3 -10% 

A6 0.26 69.4 42.8 62% 29.6 95.4 -69% 99.0 138.2 -28% 

A7 0.27 62.7 42.8 47% 67.9 95.4 -29% 130.6 138.2 -5% 
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A8 0.33 42.6 75.4 -43% 53.0 45.1 17% 95.6 120.6 -21% 

A9 0.29 32.1 69.3 -54% 37.6 33.1 14% 69.7 102.3 -32% 

A10** 0.27 62.8 64.0 -2% 28.5 37.3 -23% 91.3 101.3 -10% 

A11† 0.17 107.6 98.7 9% 82.7 54.0 53% 190.3 152.7 25% 

A12 0.31 44.8 21.2 111% 44.0 37.1 19% 88.8 58.3 52% 

A13* 0.32 169.3 233.7 -28% 76.8 162.3 -53% 246.1 396.0 -38% 

A14 0.30 47.5 86.5 -45% 44.1 40.9 8% 91.6 127.4 -28% 

A15 0.31 26.5 30.3 -12% 61.8 54.2 14% 88.3 84.5 5% 

R1 0.28 89.2 77.3 15% 42.2 302.8 -86% 131.4 380.1 -65% 

R2 0.32 40.8 66.0 -38% 34.9 89.7 -61% 75.7 155.6 -51% 

R3 0.28 0.0 21.2 -100% 46.9 37.1 26% 46.9 58.3 -20% 

R4 0.22 73.3 96.8 -24% 15.3 24.0 -36% 88.6 120.9 -27% 

R5 0.26 17.9 29.6 -39% 17.7 102.5 -83% 35.6 132.2 -73% 

R6 0.27 39.5 61.2 -35% 58.5 93.0 -37% 98.0 154.2 -36% 
*A significant part is a Residential building hosting students. 487 
**Heating system fed by Propane.  488 
†Building with a significant part dedicated to sports. 489 
+New building in which there are not available yet utility bills for a whole year. 490 
As regards the discrepancies found between the estimated and real energy consumption, the 491 

results show an average deviation of 30%, which is in accordance with previous studies [15–492 

17]. It should be noted that these deviations are significantly higher for Research buildings 493 

than for Academic buildings (45% vs. 23% on average), which is consistent with the previous 494 

statement about the importance of considering IT and laboratory equipment in the former 495 

case. Table 5 shows that most Academic buildings have negative deviations as the simulation 496 

results are lower than the actual energy consumption. In particular, the discrepancies found in 497 

buildings A2, A6, A9 and A14 should be noted, which are mainly due to the significant 498 

number of offices with usually high occupancy levels. As consequence, the IT equipment 499 

increases notably and the user behaviour becomes more important, due to the manual 500 

management of the installations in these offices (in the field visits it was observed that in 501 

many cases the equipment is not disconnected when not in used nor at night). 502 
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Additionally, some exceptions which are considered worthwhile to explain further are 503 

highlighted in bold in Table 5. In A12 building the estimated natural gas consumption is more 504 

than double the real consumption, being the estimated electricity consumption also higher, 505 

which infers that the building is being significantly underused. This was corroborated in the 506 

field visit, when it was observed that several zones and rooms of the building were empty and 507 

hence the terminal heating units in these spaces were closed. However, from the Energy 508 

Performance Certification point of view, these zones are habitable and therefore the Official 509 

simulation software considers them with the general building’s profile. On the other hand, 510 

Figure 5 shows that A13 building has significantly higher energy consumption than the rest of 511 

Academic buildings, because part of the building is dedicated to host students (some rooms 512 

are dorms). Consequently, the heating needs are higher than for a pure academic building, and 513 

also the Domestic Hot Water needs are considerably higher. Another consequence of being a 514 

partially residential building is the greater influence of the user behaviour, especially in the 515 

electricity consumption, which is confirmed with the large deviation found between estimated 516 

and real electricity consumption (more than 50%).  517 

One limitation of the software was found when simulating A8 building, which has a 518 

swimming pool heated at constant temperature that cannot be properly implemented in the 519 

tool. Consequently, even though several simplifications and approximations were made, the 520 

natural gas consumption estimated is still rather lower than the actual consumption (see Table 521 

5). 522 
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 523 

Figure 5. Total Energy consumption, both estimated by the simulation tool and real 524 

consumption detailed in the utility bills for the 21 faculty buildings studied. Solid line 525 

represents the average real energy consumption and the dotted line the average estimated 526 

energy consumption. 527 

As previously commented, the larger discrepancies are found in Research buildings. The 528 

greatest deviation occurs in R5, which shows an overall deviancy of 73% (39% in natural gas 529 

consumption and 83% in electricity consumption (see Table 5 and Figure 5)), due to several 530 

reasons. First of all, it should be considered that this building was designed under the nearly-531 

Zero Energy Building criterion [32] and hence the passive elements of the buildings 532 

theoretically yield to a very low energy demand. However, due to the real building 533 

characteristics and the underestimation of the building occupancy in the design phase, the 534 

actual energy consumption of the building is significantly higher than expected. For example, 535 

the important increase in building users has consequently augmented the IT equipment 536 

(computers, printers, etc.) and hence their correspondent thermal loads, requiring more 537 

ventilation and cooling to achieve thermal comfort. The lighting requirements are also 538 

considerably higher than expected for the same reason. Furthermore, it should be kept in mind 539 
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that this Research building has several laboratories whose equipment cannot be implemented 540 

in the simulation software. Similarly, R1 is a pure Research building with numerous auxiliary 541 

equipment, clean rooms (with strictly controlled parameters such as temperature, humidity, air 542 

renovations, etc.), IT equipment, internet servers, etc., which cannot be implemented in the 543 

simulation tool. As consequence of all the above, the real electricity consumption of R1 is 544 

around 7 times higher than estimated (see Table 5 and Figure 5).  545 

Another software limitation found for the simulation of research buildings is the impossibility 546 

of implementing specific equipment, typical in this type of buildings. For example, in R2 547 

there is an important deviation both in natural gas and in electricity consumptions due to the 548 

furnaces, forge, sculpture equipment and other installations available in the different workshops 549 

of the building. In this line, R3 building does not have natural gas consumption according to the 550 

simulation results, but the actual building has a natural gas bill. The reason is that natural gas is 551 

required for the stoves located in the laboratories, but this consumption cannot be implemented 552 

in the software (see Table 5 and Figure 5).  553 

It can be concluded that the study of the differences between estimated (by simulation) and 554 

actual energy consumption allows the identification of not only potential mistakes made 555 

during the building’s energy modelling, but also software limitations which increase the 556 

energy performance gap.  557 

3.4 Potential improvements in the simulation software 558 

Bearing in mind all previous results and the software limitations found throughout the present 559 

study, some possible improvements in the simulation tool are proposed to shorten the energy 560 

performance gap existent between the real and the estimated (simulated) energy consumption 561 

in Faculty buildings: 562 

29 

 



 Improvement in the surface area graphic implementation: the impossibility of defining 563 

curve shapes in building surfaces (only polygons can be introduced) entail an error in the 564 

surface area to simulate. Other issues to be improved are the definition of stairwell zones, 565 

communication centres and installation cabinets to avoid the consideration of these spaces 566 

are conditioned zones. 567 

 Default usage profiles, to properly define in the simulation tool the operation schedules of 568 

buildings, as this is crucial to achieve reliable results. As sometimes it is difficult to 569 

precisely know the building operation schedules, it is believed that a broaden database that 570 

includes different operation schedules in diverse spaces, buildings, installations, etc., 571 

should be integrated in the software.  572 

 Data implementation: as commented in previous sections, one of the difficulties in the 573 

Energy Performance Certification of Buildings is the data collection due to the significant 574 

amount of data to be gathered. To facilitate this process, it is proposed to establish a 575 

database with typical constructive solutions of façades (according to regulations, 576 

construction type, climatic zone, etc.), interior partitions, roof or any other envelope part. 577 

Besides, for installations’ implementation, the establishment of a link to the manufacturers’ 578 

catalogue will ease the data introduction process. 579 

 Possibility of implementing the energy consumption of specific equipment: as observed in 580 

the results shown previously, usually Faculty buildings have a significant energy 581 

consumption in specific equipment such as IT equipment, engines, serves, fridges, etc., 582 

which cannot be implemented in an Energy Performance Certification software. However, 583 

if the simulation tool allowed an easy estimation of the energy consumption of these 584 
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equipment, it would provide more realistic results, reducing the energy performance gap 585 

and adding another interesting indicator in the Building Energy Performance Certificate.  586 

3.5 Potential energy efficiency measures to improve the building’s performance 587 

Finally, as part of the Energy Performance Certification of Buildings, the Spanish regulations 588 

[7] indicate that the Certificate should incorporate a proposal of technical and economically 589 

viable energy efficiency measures to decrease the energy consumption of the buildings. As an 590 

example, this paper presents the application of two different energy efficiency measures to 591 

reduce the thermal energy consumption and another two to reduce the electricity consumption 592 

of the building. The potential implementation of the energy efficiency measures proposed 593 

depends on two main factors, the technical easiness of implementation, subject to each 594 

specific building due to its different features, and the energy performance results obtained in 595 

the simulation, which provide interesting energy efficiency indicators.  596 

3.5.1 Reduction of the thermal energy consumption of the building 597 

The two main alternatives to reduce the thermal energy consumption of a building are, first of 598 

all, to improve the building’s envelope to reduce the thermal energy demand and secondly to 599 

improve the energy efficiency of the heating system to reduce the energy consumption.  600 

The building’s envelope plays a major role in regulating the indoor environment, as it controls 601 

the flow of energy between the interior and exterior of the building. A well-designed envelope 602 

allows the building to provide comfort for the occupants and respond efficiently to heating, 603 

cooling, ventilating, and natural lighting needs.  604 

One option to improve the building’s envelope is to increase the insulation in walls through 605 

the implementation of a thermal insulation material in the interior of the façade, reducing the 606 

31 

 



useful surface of the habitable areas. This measure is especially interesting in some of the 607 

buildings considered in this work as in some of them it is not allowed to act on their exterior 608 

appearance due to their historical value. The other possibility is to incorporate the insulation 609 

in the exterior, without occupying useful surface and removing the potential thermal bridges 610 

of the building.  611 

In this case, it is proposed to improve the building’s envelope insulation of R1 building. Due 612 

to the façade composition, ventilated with detachable metal panels, it is possible to increase 613 

the thermal insulation without losing useful surface, without disrupting users’ work and in an 614 

economical way. The solution proposed consists in the implementation of an extra XPS layer 615 

of 5 cm (0.029 W/K-m) between the metal structure and the precast concrete panels. The 616 

results show that it is possible to achieve around 1.5% energy savings after the application of 617 

this measure, which is expected to cost around 7.3 €/m2. Consequently, the discounted 618 

payback period associated is notably high, around 40 years (considering an electricity price of 619 

0.13 €/kWh, a natural gas price of 0.05 €/kWh and an interest rate of 5%). It should be noted 620 

that this low percentage of energy savings is due to the already good thermal transmittance of 621 

R1 building (U-value around 0.4 W/m2K). As all buildings considered in this research have a 622 

similar U-value, this building was selected because it allows an easier implementation of an 623 

extra insulation layer due to the ventilated façade, and therefore the investment required is 624 

lower.  625 

On the other hand, when it is not possible or feasible (both economically and/or technically) 626 

to reduce the building’s thermal demand, the improvement of the heating system installed 627 

should be considered. In particular, in several of the Faculty Buildings considered, which 628 

have installed low efficiency heating systems (usually conventional boilers with an efficiency 629 

of 75-85%), it is especially interesting to replace them for high efficient systems available in 630 
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the market, such as the condensing boiler, with an efficiency up to 98% [42] (or beyond 631 

100%, as Ref. [43] states, when it is measured on the lower heating value). With this upgrade, 632 

both the final energy consumption and the associated CO2 emissions are reduced.  633 

For example, it has been identified that in A8 building the energy consumption due to heating 634 

accounts for 45% of the total energy consumption and this is provided by a conventional 635 

boiler. Therefore, potential energy savings are expected if the heating system is improved. 636 

Table 6 shows that it is possible to achieve nearly 25% of energy savings if the actual 637 

conventional boiler is replaced by a condensing boiler. Considering an estimated investment 638 

of around 5 €/m2, the discounted payback period of this energy efficiency measure is less than 639 

8 years (considering a natural gas price of 0.05 €/kWh and an interest rate of 5%), value much 640 

lower than the one obtained with the previous energy efficiency measure. 641 

Table 6. Energy consumption before and after the replacement of the conventional boiler by a 642 

condensing boiler in A8 Building, energy savings achieved and investments necessary. 643 

Building 
Energy Indicator 

(kWh/m2-year) 

Final Energy 

Consumption (kWh/m2-

year) 

Energy 

Savings 
Investment 

 
Final  Primary  Electricity Natural Gas % €/m2 

Actual 95.6 181 52.96 42.66 
 

- 

Improved 85.1 170.4 52.96 32.16 24.6% 4.74 €/m2 

3.5.2 Reduction of the net electricity consumption of the building 644 

Similarly as before, the two main options to reduce net electricity needs of a building are: 645 

firstly to decrease its electricity consumption, and secondly to generate electricity within the 646 

building to reduce the amount of energy to be imported from the grid. 647 
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As Figure 3 shows, the type of buildings analysed have a significant share of electricity 648 

consumption for lighting, due to the specific requirements of Faculty Buildings in this regard 649 

(Academic and Research environments need high illuminance values). For instance, in the 650 

case of R5 building, the electricity consumption of lighting accounts for 81% of the total 651 

electricity consumption and 40% of the total energy consumption, so it is believed that energy 652 

efficiency measures applied to this item may lead to important energy savings. Hence, the 653 

first energy efficiency measure proposed is the replacement of the actual lighting system, 654 

composed by tubular fluorescent lamps of 36 W, by LED lamps of 18 W, reducing the total 655 

installed capacity by 50%.  656 

As shown in Table 7, the replacement of the actual lighting system allows energy savings of 657 

around 40% per year which, together with the reduction in maintenance costs and in lights 658 

replacement (as the lifespan of LED technology is significantly higher than for fluorescent 659 

lamps), leads to a discounted payback period of around 6 years (considering an electricity 660 

price of 0.13 €/kWh, and an interest rate of 5% for electricity and 2% for O&M costs).  661 

 Table 7. Energy consumption before and after the replacement of the actual lighting system 662 

in R5 Building, energy savings achieved and investments necessary. 663 

Building 
Energy Indicator 

(kWh/m2-year) 

Final Energy Consumption 

(kWh/m2-year) 

Energy 

Savings 
Investment 

  Final  Primary  Final  Primary  % €/m2 

Actual 35.6 64.1 17.66 45.97 - - 

Lighting 

upgrade 
30.7 47.9 10.60 27.59 40% 20 €/m2 

Integration 

PV system 
35.6 61.6 17.66 43.54 5.3%* 2 €/m2 

*Primary energy savings 664 
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On the other hand, to reduce the amount of electricity bought from the grid, it is proposed to 665 

integrate a Photovoltaic (PV) system in the building’s roof with a peak capacity of 5.2 kW. As 666 

shown in Table 7, the investment required per square meter is significantly lower than before 667 

(around 10 times lower) but the energy savings achieved are also lower, around 5% (of 668 

primary energy per year). As consequence, the discounted payback period of this option is 669 

about 7 years, slightly higher than for the former case. It should be considered that this 670 

measure does not reduce the energy consumption of the building; the primary energy needs 671 

decrease thanks to the generation in-situ of renewable energy.  672 

This Section 3.5 demonstrates that an adequate assessment of the information provided by the 673 

simulation software allows detecting the main energy consumption points and inefficiencies 674 

of a building in which there is more potential to achieve energy savings through the 675 

application of feasible energy efficiency measures.  676 

4 CONCLUSIONS 677 

Within the present study, a method has been established to obtain the Energy Performance 678 

Certification of Faculty Buildings. To this end, and according to the Spanish Regulations, the 679 

Spanish official software, CALENER GT, was used. The results provided by this tool have 680 

been analysed in detail to extract as much information as possible about the building’s energy 681 

performance as well as to identify limitations of the software and propose potential 682 

improvements to shorten the difference between real and estimated energy consumption.  683 

With this method, the Faculty Buildings’ stock of the University of Zaragoza has been 684 

characterised, and the Energy Performance Certificate of each building has been obtained. 685 

The characterisation undertaken shows that, even though the stock has been divided between 686 

Academic and Research buildings, the useful area and the construction year significantly vary 687 
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for each of them, with most of them in the range of 800 to 27600 m2 useful area and a 688 

construction year (or refurbishment year when applicable) between 1990 and 2013 (except 689 

A12 Building).  690 

The Certification results show that 62% of the buildings have an energy efficiency label C 691 

and 24% have a D label (in an A to G scale); therefore it can be concluded that most of the 692 

Faculty buildings studied are within the average of CO2 emissions. Regarding the final energy 693 

consumption, the simulation results show that both Academic and Research buildings have a 694 

similar energy performance with an average of 83 kWh/m2-year. These results suggest that all 695 

these buildings were designed and constructed with similar patterns regarding HVAC and 696 

lighting needs. 697 

The singularities of these buildings represented a significant effort in their implementation in 698 

the software, due to both the particularities of each building, difficult to simulate in the tool, 699 

and the limitations inherent to the existent Certification software. The following restrictions 700 

were found in the official Energy Performance Certification software (CALENER GT): the 701 

graphic implementation of buildings is complex, buildings’ operation schedules available in 702 

the simulation tool are considerably generic and the inputs required regarding the building’s 703 

envelope, materials and installations are substantially exhaustive.  704 

Similarly as in other studies, the actual energy consumption of the majority of the buildings 705 

studied is higher than what it is estimated in the Certification software. An average deviation 706 

of 30% is found, value in accordance with previous studies, being, as expected, the 707 

discrepancies for Research buildings significantly higher than for Academic buildings (45% 708 

vs. 23% on average). One of the main reasons attributed to these discrepancies is that standard 709 

operating conditions are considered in the simulation tool instead of the real ones. This issue 710 
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makes it very difficult to identify to what extent the discrepancies found are due to this 711 

deviation or to other specific issues associated with the building construction. In this line, 712 

other subsequent consequence is that the energy efficiency measures which should be 713 

proposed in the Energy Performance Certificate are estimated considering standard conditions 714 

instead of real operating conditions and therefore they may not actually produce the expected 715 

results to comply with the Building Regulation requirements. 716 

Another factor that notably increases this energy performance gap is the energy consumption 717 

of IT and laboratory equipment, especially in the case of Research buildings, as these 718 

equipment cannot be implemented in the software, even though in these type of buildings an 719 

important share of the total energy consumption is due to their energy consumption. In this 720 

regard, the simulation results for Research buildings (such as R2 and R3) show how the 721 

impossibility of implementing specific equipment, such as furnaces, forge, sculpture equipment 722 

and other workshops’ installations, typical in this type of buildings, notably intensifies this gap. 723 

Therefore it can be concluded that, if a realistic representation of the building’s energy 724 

performance is required, IT and laboratory equipment should be considered.  725 

One important factor that cannot be implemented in the simulation tool but has proved to 726 

significantly affect the real energy consumption of the building is the user behaviour. The 727 

influence of the user in the actual energy consumption was especially discerned in buildings 728 

A2, A6, A9 and A14, which have a significant number of offices with usually high occupancy 729 

levels. As consequence, although the IT equipment increases notably and hence the energy 730 

performance gap is expected to increase; the user behaviour becomes more important. The 731 

reason for this is the manual management of the installations in these offices, which in most 732 

cases do not coincide with the operation schedules set in the simulation tool. In fact, during 733 

the field visits it was observed that, in many cases, the office equipment (computers, printers, 734 
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etc.) is not turned off when not in used and the users confirmed that they do not usually 735 

disconnect computers at night. Consequently, the real energy consumption of the building is 736 

significantly higher than expected. Even though the user behaviour is very difficult to 737 

implement in a simulation tool, mainly due to their unpredictable nature, it is believed that the 738 

discrepancies between the estimated and the real energy consumption could be reduced by 739 

implementing more realistic operation schedules. 740 

Bearing in mind all the previous software limitations and restrictions, a series of potential 741 

improvements in the simulation tool are proposed in this research, such as the improvement in 742 

the surface area graphic implementation, for example through the importation of an AutoCAD 743 

3D model; the definition of default usage profiles and a more detailed database within the 744 

software or the possibility of implementing the energy consumption of IT equipment.   745 

To complement the present study, and in accordance with the Spanish regulations, a proposal 746 

of various technical and economically viable energy efficiency measures to decrease the 747 

energy consumption of the buildings has been undertaken. Four different measures to reduce 748 

the thermal (two of them) or the electrical (the other two) energy consumption are proposed, 749 

applied to three Faculty buildings. These measures cover from simple actions such as lighting 750 

replacement to refurbishment actions like envelope insulation improvement. The results show 751 

that the investment required for energy efficiency improvements as well as the payback period 752 

significantly vary depending on the specific building and the measure, therefore general rules 753 

cannot be established. However, some guidelines can be defined: 754 

 The energy consumption breakdown by uses should be carefully studied before making 755 

any decision: the items with higher energy consumption share should be first considered 756 

as a small change in them can lead to significant energy savings. 757 
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 The reduction of the energy demand should be prioritised: for example, the reduction of 758 

the lighting energy consumption by lamps replacement should be considered before 759 

installing a PV system to satisfy this energy demand. However, in some cases, the high 760 

investment required to reduce the energy demand may not outweigh the energy savings, 761 

especially when a more affordable measure to reduce the final energy consumption can 762 

be implemented. For instance, the improvement of the building’s envelope insulation 763 

proposed for R1 building has a high investment cost (over 7 €/m2) and payback period (40 764 

years), while the replacement cost of a conventional boiler by a condensing boiler, 765 

proposed for A8 building, is significantly lower (less than 5 €/m2) as well as its associated 766 

payback period (less than 8 years). 767 

Finally, an energy efficiency measure that should be always considered in the first place is to 768 

raise the user behaviour awareness. It is believed that by teaching building users good 769 

practices as well as by increasing the public awareness in this matter, potential energy savings 770 

can be achieved.  771 

NOMENCLATURE 772 

(A) Building – Academic Building 773 

BPIE – Buildings Performance Institute Europe 774 

DHW – Domestic Hot Water  775 

EPBD – Energy Performance of Buildings Directive 776 

EPC – Energy Performance Certification 777 

EPCB – Energy Performance Certification of Buildings  778 

EU – European Union 779 

HVAC – Heating Ventilation and Air Conditioning  780 
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IT – Information and Technology 781 

NG – Natural Gas 782 

O&M – Operation and Maintenance 783 

MS – Member States 784 

(R) Building – Research Building 785 

RITE –Thermal Installation Regulations of Buildings 786 

ACKNOWLEDGEMENT 787 

The authors acknowledge the collaboration of the University of Zaragoza (Spain) in the study 788 

undertaken for facilitating the data access of the buildings analysed.  789 

REFERENCES 790 

[1] European Commission. Towards a European strategy for the security of energy supply. 791 

Brussels: 2000. 792 

[2] European Commission. Energy efficiency: delivering the 20% target. Brussels: 2008. 793 

[3] The European Parliament and the Council of the EU. Directive 2010/31/EU of the 794 

European parliament and of the council of 19 May 2010 on the energy performance of 795 

buildings (recast). 2010. 796 

[4] The European Parliament and the Council of the EU. Directive 2012/27/EU of the 797 

European Parliament and of the Council of 25 October 2012 on energy efficiency, 798 

amending Directives 2009/125/EC and 2010/30/EU and repealing Directives 799 

2004/8/EC and 2006/32/EC. 2012. 800 

[5] The European Parliament and the Council of the EU. Directive 2002/91/EC of the 801 

European parliament of the council of 16 December 2002 on the energy performance of 802 

40 

 



buildings. 2003. 803 

[6] Burman E, Mumovic D, Kimpian J. Towards measurement and verification of energy 804 

performance under the framework of the European directive for energy performance of 805 

buildings. Energy 2014;77:153–63. doi:10.1016/j.energy.2014.05.102. 806 

[7] The Ministry of Presidency of the Spanish Government. Royal Decree 235/2013, of 5th 807 

of April 2013, by which it is approved the basic procedure for the Energy Performance 808 

Certification of Buildings. 2013. 809 

[8] Andaloro APF, Salomone R, Ioppolo G, Andaloro L. Energy certification of buildings: 810 

A comparative analysis of progress towards implementation in European countries. 811 

Energy Policy 2010;38:5840–66. doi:10.1016/j.enpol.2010.05.039. 812 

[9] Building Performance Institute Europe (BPIE). Europe’s buildings under the 813 

microscope, A country-by-country review of the energy performance of buildings. 814 

Build Perform Inst Eur 2011. 815 

http://www.bpie.eu/uploads/lib/document/attachment/20/HR_EU_B_under_microscop816 

e_study.pdf (accessed March 27, 2015). 817 

[10] Arcipowska A, Anagnostopoulos F, Mariottini F, Kunkel S. Energy Performance 818 

Certificates across Europe: A Mapping of National Approaches. Build Perform Inst Eur 819 

2014:60. 820 

[11] Cohen R, Standeven M, Bordass B, Leaman A. Assessing building performance in use 821 

1: the probe process. Build Res Inf 2001;29:85–102. 822 

[12] Bordass B, Cohen R, Standeven M, Leaman A. Assessing building performance in use 823 

3: energy performance of the probe buildings. Build Res Inf 2001;29:114–28. 824 

41 

 



[13] Pegg IM, Cripps A, Kolokotroni M. Post-Occupancy Performance of Five Low-Energy 825 

Schools in the UK. ASHRAE Trans 2007;113. 826 

[14] Carbon Trust. Closing the gap - Lessons learned on realising the potential of low 827 

carbon building design. Carbon Trust 2011. 828 

[15] Tronchin L, Fabbri K. A Round Robin Test for buildings energy performance in Italy. 829 

Energy Build 2010;42:1862–77. doi:10.1016/j.enbuild.2010.05.022. 830 

[16] Petersen S, Hviid C. The European energy performance of buildings directive: 831 

comparison of calculated and actual energy use in a Danish office building. Ibpsa-engl. 832 

first Build. Simul. Optim. Conf. (BSO 2012), Loughborough: 2012. 833 

[17] UCL Energy Institute. Summary of audits performed on CarbonBuzz. 2013. 834 

[18] Menezes AC, Cripps A, Bouchlaghem D, Buswell R. Predicted vs. actual energy 835 

performance of non-domestic buildings: Using post-occupancy evaluation data to 836 

reduce the performance gap. Appl Energy 2012;97:355–64. 837 

doi:10.1016/j.apenergy.2011.11.075. 838 

[19] Ahmad M, Culp CH. Uncalibrated Building Energy Simulation Modeling Results. 839 

HVAC&R Res 2006;12:1141–55. 840 

[20] Lomas KJ. The U.K. applicability study: an evaluation of thermal simulation programs 841 

for passive solar house design. Build Environ 1996;31:197–206. doi:10.1016/0360-842 

1323(95)00050-X. 843 

[21] Raslan R, Davies M. Results variability in accredited building energy performance 844 

compliance demonstration software in the UK: an inter-model comparative study. J 845 

Build Perform Simul 2010;3:63–85. 846 

42 

 



[22] Chartered Institution of Building Services Engineers. CIBSE TM33: standard tests for 847 

the assessment of building services design software. London, UK: 2006. 848 

[23] Dasgupta A, Prodromou A, Mumovic D. Operational versus designed performance of 849 

low carbon schools in England: bridging a credibility gap. HVAC&R Res 2012;18:37–850 

50. 851 

[24] Bordass B, Cohen R, Field J. Energy performance of non-domestic buildings – closing 852 

the credibility gap. Int. Conf. Improv. energy Effic. Commer. Build., Frankfurt, 853 

Germany: 2004, p. 1–10. 854 

[25] Bordass B, Cohen R, Standeven M, Leaman A. Assessing building performance in use 855 

2: technical performance of the Probe buildings. Build Res Inf 2001;29:103–13. 856 

[26] Way M, Bordass B. Making feedback and post-occupancy evaluation routine 2: Soft 857 

landings – involving design and building teams in improving performance. Build Res 858 

Inf 2005;33:353–60. 859 

[27] Barker T, Ekins P, Foxon T. The macro-economic rebound effect and the UK 860 

economy. Energy Policy 2007;35:4935–46. doi:10.1016/j.enpol.2007.04.009. 861 

[28] Hirst E, White D, Goeltz R. Indoor temperature changes in retrofit homes. Energy 862 

1985;10:861–70. doi:10.1016/0360-5442(85)90119-7. 863 

[29] Herring H. Energy efficiency—a critical view. Energy 2006;31:10–20. 864 

doi:10.1016/j.energy.2004.04.055. 865 

[30] Haas R, Biermayr P. The rebound effect for space heating Empirical evidence from 866 

Austria. Energy Policy 2000;28:403–10. doi:10.1016/S0301-4215(00)00023-9. 867 

[31] Sorrell S, Dimitropoulos J, Sommerville M. Empirical estimates of the direct rebound 868 

43 

 



effect: A review. Energy Policy 2009;37:1356–71. doi:10.1016/j.enpol.2008.11.026. 869 

[32] Hamilton I, Steadman P, Bruhns H. CarbonBuzz – energy data audit. 2011. 870 

[33] Ourghi R, Al-Anzi A, Krarti M. A simplified analysis method to predict the impact of 871 

shape on annual energy use for office buildings. Energy Convers Manag 2007;48:300–872 

5. doi:10.1016/j.enconman.2006.04.011. 873 

[34] AlAnzi A, Seo D, Krarti M. Impact of building shape on thermal performance of office 874 

buildings in Kuwait. Energy Convers Manag 2009;50:822–8. 875 

doi:10.1016/j.enconman.2008.09.033. 876 

[35] Lam JC, Chan RYC, Tsang CL, Li DHW. Electricity use characteristics of purpose-877 

built office buildings in subtropical climates. Energy Convers Manag 2004;45:829–44. 878 

doi:10.1016/S0196-8904(03)00197-3. 879 

[36] IDAE - Instituto para la Diversificación y Ahorro de la Energía. CALENER-GT: 880 

Grandes Edificios Terciarios. Manual Técnico. Madrid: 2009. 881 

[37] Chua KJ, Chou SK. A performance-based method for energy efficiency improvement 882 

of buildings. Energy Convers Manag 2011;52:1829–39. 883 

doi:10.1016/j.enconman.2010.12.007. 884 

[38] The Ministry of Housing of the Spanish Government. Royal Decree 314/2006, of 17th 885 

of March 2006, by which the Building Technical Code is approved. 2006. 886 

[39] The Ministry of Presidency of the Spanish Government. Royal Decree 47/2007, of 19th 887 

of January 2007, by which the basic procedure for the energy performance certification 888 

of new buildings is approved. 2007. 889 

[40] The Ministry of Presidency of the Spanish Government. Royal Decree 1027/2007, of 890 

44 

 



20th of July, by which the Thermal Installation Regulations of Buildingsis approved. 891 

2007. 892 

[41] Zabalza I, Valero A, Aranda A, Llera E. Methodological aspects and design 893 

implications to achieve life cycle low emission buildings. A case study: LCA of a new 894 

university building. Strojarstvo 2013;55:87–102. 895 

[42] Viessmann Werke Gmbh. Heating with Gas 2014. 896 

[43] Fabrizio E, Seguro F, Filippi M. Integrated HVAC and DHW production systems for 897 

Zero Energy Buildings. Renew Sustain Energy Rev 2014;40:515–41. 898 

doi:10.1016/j.rser.2014.07.193. 899 

 900 

45 

 


	Energy Performance Certification of Faculty Buildings in Spain: the gap between estimated and real energy consumption
	1 INTRODUCTION
	1.1 Background
	1.2 State of the art
	1.3 Contribution and main objectives

	2 MATERIALS AND METHODS
	3 RESULTS AND DISCUSSION
	3.1 Discrepancies in the implementation of the buildings
	3.2 Energy consumption breakdown by uses
	3.3 Energy performance gap
	3.4 Potential improvements in the simulation software
	3.5 Potential energy efficiency measures to improve the building’s performance
	3.5.1 Reduction of the thermal energy consumption of the building
	3.5.2 Reduction of the net electricity consumption of the building


	4 CONCLUSIONS

