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Abstract. With age bones lose quality being in some cases necessary their replacement. 

Research is underway on the development of biomaterials to meet the mechanical and 

biological requirements. One of the most used alloys is Ti6Al4V. The disadvantage of this 

biomaterial is the formation of a layer of connective tissue between the implant and the 

surrounding tissue, which makes it difficult to attach to living bone. Ceramic coatings are 

made on the surface of these metal biomaterials, which improve the communication 

between the implant and the living tissue. 

Ti6Al4V substrates have been coated with a bioactive ceramic with composition 

7CaO.P2O5.2SiO2 by Pulsed laser deposition (PLD). Layers have been deposited under 

different substrate conditions and their microstructure and composition have been 

characterized by XRD and SEM.  

Introduction 

The increase in the age of the population carries a greater incidence of bone diseases, so 

that more and more materials are needed to meet the requirements, both mechanical and 

biological, to which the bone is subjected. Titanium and its alloys exhibit properties such 

as, biocompatibility, low elastic modulus, high strength-to-weight ratio, excellent 

corrosion resistance. Ti6Al4V is the titanium alloy which offers the best potential for 

medical applications due to its excellent balance between their mechanical properties, 

corrosion resistance, low density, relatively low elastic modulus and excellent 

biocompatibility [1]. 

As we well know the effectiveness of orthopedic implants is governed by complete 

osseointegration between the surface of the material and the bone tissue, without the 

formation of a fibrous tissue interface. When using titanium as an implant, because it is a 

bioinert material, this interface can be generated, hindering the correct communication 

between the prosthesis and the surrounding tissue.  

Therefore, numerous techniques are used to cover the titanium implants, reducing the 

corrosion of the metal and promoting the healing process of the damaged tissue [2,3,4].  
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In addition, if we coat titanium implants with bioactive materials we can increase the 

bioactivity of the metal surface, thus achieving an osteogenic activity in the bone and 

producing a firm anchorage of the prosthesis to the surrounding bone. For this reason our 

purpose is generate a coating on a Ti6Al4V substrate of a bioactive ceramic with 

composition 7CaO.P2O5.2SiO2, a new single phase Si–Ca–P-based ceramic, different from 

the classical Si-substituted CaP’s, like silicocarnotite or 45S5 bioglass [5]. The result is a 

combination of the good mechanical properties of the metal and the bioactive properties of 

the ceramic, thus obtaining an optimum chemical bond between the implant and the bone.  

For this purpose, the objectives pursued in this work are the manufacture, characterization 

and study of the bioactivity of new bioceramics of the Ca3(PO4)2 –Ca2SiO4 binary system. It 

is considered necessary to prepare it as a crystal and as a coating on substrates of Ti6Al4V 

as received. For this, several processing techniques based on the use of laser, Laser 

Floating Zone and Pulsed Laser Deposition, will be used.  

 

Experimental Section 

Study of bioactivity of ceramic material 

Ceramics have been widely used in biomedical applications due to their structural 

similarity to bone [6]. The main disadvantage they present is its fragility, for this reason in 

this work is intended the use of a bioceramic as a coating of a metallic material that would 

be used as structural component of a joint prosthesis. The material used in the present 

work has the composition 7CaO.P2O5.2SiO2 and corresponds to the phase A of Nurse of 

the phase diagram TCP-C2S [7], being obtained from commercial reactives (A) or from 

ceramics synthesized in the laboratory (B). 

 

Our material presents another essential feature to be used as part of a joint prosthesis, 

which is the presence of Silicon. It is believed that Si plays an important role in the 

processes of bone mineralization around the implant, specifically as an accelerator of these 

processes [8,9,10,11]. 

 

To study its bioactivity starting from the powdered material we have generated crystalline 

rods by the Laser Floating Zone technique (LFZ). This technique is based on the focusing 

of a laser beam on a precursor, so a small melt zone is established and it is moving along 

the sample giving rise to a rod directionally solidified [12]. These solidified rods were cut 

into slices and placed in Simulated Body Fluid (SBF) during 1,2 and 4 weeks in order to 

study its bioactivity.  

 

 

Pulsed Laser Deposition 

After reporting ceramic bioactivity, we must carry out the coat of the metallic material 

using PLD technique. This technique revolves around focusing a pulsed laser beam on a 

target, to achieve its ablation. Target material is ejected perpendicular to its surface, 

forming a plasma. An exploration of conditions has been conducted in order to study the 

influence of some parameters, such as pressure and temperature, in the coating properties, 

obtaining a total of seventeen coated samples. 
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Results 

Bioactivity of the crystal rods. 

As we can see in figure 1, SEM morphological observation of the material submerged in 

SBF showed a dense structure on which a layer has been formed upon being in contact 

with SBF. The composition of the layer generated on samples immersed in SFA 1 (A1), 2 

(A2, B2) and 4 weeks (A4, B4) was determined by EDX analysis and results are shown in 

Table 1.  

 

Figure 1. SEM images of samples submerged in SFA for 1 (left) and 4 weeks (right). 

 

  A1 A2 A4 B2 B4 

Ca/P 1.47 ± 0.15 1.58±0.24 1.59±0.18 1.68±0.27 1.66±0.31 

 

Table 1. Ca/P ratio in the layer generated on samples immersed in SBF. 

 

It can be seen that the results obtained for the Ca/P ratio are very similar to those expected 

for hydroxyapatite (1,66). This fact proves that our material A and B is able to generate a 

layer rich in Ca and P when it was in contact with SBF, so it can be said that it is a 

bioactive ceramic. 

 

Bioceramic coating 

In order to carry out the characterization of samples generated by PLD (thickness, 

roughness, composition, crystallinity and surface microstructure), techniques such as 

profilometry, scanning electronic and confocal microscopy and X-ray diffractometry 

(XRD) have been used. 

 

In figure 2 we can see SEM images of the coating generated after the PLD process. In both 

images we can observe the formation of a coating, when working at higher temperature 

than 900ºC we can appreciate crystalline structures. 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

Figure 2. SEM images of the coatings generated by PLD at 700 (left) and 900˚C (right). 

The SEM-EDX microanalysis can determine the composition of the coatings. Knowing that 

the expected composition is 7CaO.P2O5.2SiO2 and observing Table 2 it can be observed the 

processing conditions during the layer deposition, in different samples, and it can be 

conclude that the composition of the coatings generated is close to the expected results, 

mainly working at high Tª.  

Samples were named following this methodology PLD.ProcessingTª.ProcessingP.Target 

used. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2. Processing conditions and elemental composition of the coatings generated by PLD. 

 

The thickness of the formed coating was measured with contact profilometry from the step 

generated by a mask at different points, obtaining values between 1.5 and 2 μm. The 

surface roughness of the titanium alloy was measured with confocal microscopy. The 

results presented in Table 3 indicate that the roughness has not been substantially 

modified by depositing a ceramic film on the metal. This is important because roughness 

has an effect on osteoblastic adhesion, proliferation and differentiation [13,14]. 

 

 

 



  PLD.800.100.A PLD.950.100.A Ti6Al4V (Substrate) 

Ra (nm) 521 640 569 

 

Table 3. Roughness (Ra) for the uncoated substrate and two coated samples. 

 

When we analyze the samples by DRX, some differences can be observed (Figure 3). 

Firstly at lower temperature than 800ºC we can only notice peaks belonging to the metallic 

substrate. Secondly when we work at greater temperature than 800ºC we can observe 

peaks that correspond with the formation of a layer of titanium oxides (TiO2 and Ti2O3), 

witch can favours the adhesion between the metallic substrate and ceramic layer. Lastly 

when we work at greater temperature than 900˚C we can notice that the coating is formed 

of the Nurse phase while working at lower temperature we can not observe the formation 

of a crystalline phase in the coating. 

 

 
 

Figure 3. Diffractograms of three samples obtained at different temperatures. 

 

 

Conclusions 

At the end of this work we can establish the following conclusions: 

 

‐ Both the bioceramic used to carry out the coating and the material obtained by 

directional solidified with composition 7CaO.P2O5.2SiO2 has a bioactive character. This 

fact would favour the attachment of the surface of the implant to the bone. 

- Bioceramic coatings on substrates of the Ti6Al4V alloy have been deposited by PLD. By 

means of the precise control of the process parameters, the composition of the target 

(7CaO.P2O5.2SiO2) has been transferred stoichiometrically, as well as choosing between 

the amorphous (at temperatures lower than 900ºC) or crystalline structure of these 

coatings (at temperatures of 900 and 950ºC). 

- When we work at 800°C or higher temperatures we detected the formation of 

crystalline phases (rutile and anatase TiO2, and even Ti2O3). This is due because of the 

metallic substrate was in an oxygen atmosphere, during the PLD process, so a layer of 

titanium oxide is generated on the surface of the substrate (Ti6Al4V), this fact may 



decrease the Ti and Al release from the Ti64 and improve the osteoblastic adhesion 

[15].  

It was concluded that the metal-bioceramic assembly would be useful in its use as an 

implant material in arthroplasties, due to the substrate (Ti6Al4V) would serve as a 

mechanical support and the coating would improve the adhesion of bone cells, as well as 

the osseointegration of the same in the guest. 
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