Model-based sensitivity analysis of IaaS cloud availability
Financiación H2020 / H2020 Funds
Resumen: The increasing shift of various critical services towards Infrastructure-as-a-Service (IaaS) cloud data centers (CDCs) creates a need for analyzing CDCs’ availability, which is affected by various factors including repair policy and system parameters. This paper aims to apply analytical modeling and sensitivity analysis techniques to investigate the impact of these factors on the availability of a large-scale IaaS CDC, which (1) consists of active and two kinds of standby physical machines (PMs), (2) allows PM moving among active and two kinds of standby PM pools, and (3) allows active and two kinds of standby PMs to have different mean repair times. Two repair policies are considered: (P1) all pools share a repair station and (P2) each pool uses its own repair station. We develop monolithic availability models for each repair policy by using Stochastic Reward Nets and also develop the corresponding scalable two-level models in order to overcome the monolithic model''s limitations, caused by the large-scale feature of a CDC and the complicated interactions among CDC components. We also explore how to apply differential sensitivity analysis technique to conduct parametric sensitivity analysis in the case of interacting sub-models. Numerical results of monolithic models and simulation results are used to verify the approximate accuracy of interacting sub-models, which are further applied to examine the sensitivity of the large-scale CDC availability with respect to repair policy and system parameters.
Idioma: Inglés
DOI: 10.1016/j.future.2017.12.062
Año: 2018
Publicado en: Future Generation Computer Systems-The International Journal of Grid Computing Theory Methods and Applications 83 (2018), 1-13
ISSN: 0167-739X

Factor impacto JCR: 5.768 (2018)
Categ. JCR: COMPUTER SCIENCE, THEORY & METHODS rank: 8 / 104 = 0.077 (2018) - Q1 - T1
Factor impacto SCIMAGO: 0.835 - Computer Networks and Communications (Q1) - Software (Q1) - Hardware and Architecture (Q1)

Financiación: info:eu-repo/grantAgreement/EC/H2020/644869/EU/Developing Data-Intensive Cloud Applications with Iterative Quality Enhancements/DICE
Financiación: info:eu-repo/grantAgreement/ES/MINECO/TIN2014-58457-R
Tipo y forma: Artículo (PostPrint)

Creative Commons Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace. No puede utilizar el material para una finalidad comercial. Si remezcla, transforma o crea a partir del material, no puede difundir el material modificado.


Exportado de SIDERAL (2019-11-26-13:41:09)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Artículos



 Registro creado el 2019-01-10, última modificación el 2019-11-26


Postprint:
 PDF
Valore este documento:

Rate this document:
1
2
3
 
(Sin ninguna reseña)