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1. Introduction

In the history of physics the exploration of smaller scales has required new theoretical frame-
works. As a Russian doll, reality has revealed time after time shells of smaller scales. This leads
us to the questions: Could we continue exploring closer the structure of Nature finding more and
more shells? Is there a limit we cannot go beyond? If this limit exists, is it based on theoretical
arguments or is it due to experimental reasons?

Any answer has to include not only the structure of matter. It has also to include the structure
of the space-time, so it has to include gravity. One could wonder: if fundamental constituents
of matter exist, does the same happen for space-time? Do space "atoms" exist? One has also to
take into account that measuring smaller distances requires concentrating higher energies in small
volumes, so one can not neglect the space-time curvature. In fact there is a limit in this amount of
energy that we can concentrate due to the possible collapse into a black hole. So the gravitational
interaction is indispensable.

One of the challenges for theoretical physics in our days is the unification of General Rela-
tivity (GR) and quantum theory. These two theories disagree in the role that space-time plays in
them. In Quantum Field Theory (QFT), one assumes a given space-time and studies with detail
the properties and the movement of particles in it. On the other hand, in GR, one assumes that the
properties of matter and radiation are given and describes with detail the resultant space-time, that
is, one studies the curvature. It is possible to have a quantum theory of gravitation considering an
interaction mediated by a spin-2 particle (the graviton) that leads to the same equations that appear
in GR. The main problem is that this theory is not renormalizable for energies comparable with the
Planck energy.

One could wonder: if we have a theory for massive objects (GR) and another one for lighter
particles (QFT), what do we need a Quantum Gravity Theory (QGT) for? In fact in order to describe
the first instants of the universe one needs a theory that describes small particles with enormous
energies. Also we do not know what happens inside a black hole. What happens with information
once it crosses the event horizon? What happens when one comes to the singularity? To answer all
this questions, we need a QGT.

There have been a lot of attempts to avoid the problems of inconsistency between GR and QFT:
string theory, quantum loop gravity, supergravity, causal set theory... In most of these theories a
minimum length appears, normally associated to the Planck length, and therefore there is an energy
scale, the Planck one. The main problem is that there are no experimental observations that may
help us to decide which is the correct approach to a fundamental theory of Quantum Gravity (QG).
Deformed Special Relativity (DSR; for a review, see Ref. [1]) however, was developed as a low
energy limit of a QGT that could have some experimental evidences. We can consider two ways
to go beyond Special Relativity: a scheme in which there is a Lorentz invariance violation (LIV)
and therefore a privileged reference frame, and a scheme in which there is still a relativity principle
(RP). DSR is formulated in the last scheme. So the deformation of Deformed Special Relativity
appears in a modified dispersion relation (MDR), modified Lorentz transformations (LT) and a
modified, that is, non-additive, composition law for the momenta, but in such a way that the RP is
satisfied. Our research is in these DSR theories.

In this theory, the Einstein relativity principle is generalized adding a new relativistic invariant
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to the speed of light c, the Planck length lP. So this is why this theory is also called Doubly Special
Relativity. The Planck length is normally considered as a minimum length.

There are numerous consequences of having a minimal length (see Ref. [2]). We can enumer-
ate some of them:

• Space-time is quantized, discrete and non-continuous.

• Modified commutation rules appear since one can not measure with more precision than the
Planck length and time.

• At these scales one can not determine the metric, so we lose the sense of curvature.

• All fundamental symmetries of SR and GR are only valid approximations for bigger scales
than the Planck one.

• One can determine the number of dimensions of a space by taking all possible equidistant
points minus 1. In 1D one has two points; in 2D, three points, and so on. So at the Planck
scale we loose the naive sense of dimensions.

• The concept of point particle disappears. One can prove that since the size of particles is
always bigger than the Planck length, their mass must be less than the Planck mass.

• Distinctions between real or virtual particles, matter-antimatter, matter-radiation... disappear
at Planck scales.

At present it is impossible to see any of these previous implications. As we said before the
main problem is the lack of observations and this can be understood by just comparing energies. If
the Planck energy is 1019 GeV, the maximum particle accelerator energy is around 104 GeV, and
particles from cosmic rays come with an energy of 1011 GeV, how can we talk about phenomenol-
ogy? The answer is that there could be amplifications at low energy, and over the past few years it
has been realized that there are astrophysical observations that could be sensitive to such deviations
Ref. [3].

The "foamy" structure of space-time could produce stochastic variations in the motion of par-
ticles. In many quantum gravity approaches, there are modified dispersion relations that can be
written for energies much smaller than the Planck energy as

m2 =C(p)' E2−~p2−ξnE2
(

E
Λ

)n

, (1.1)

where n is an exponent giving the leading order behavior of the modification. With the Hamiltonian
concept of speed v = dE/d p, this causes a time of flight delay given by

∆t ∼
(

d
c

)
ξn

(
E
Λ

)n

. (1.2)

This delay can be measured for photons with different energies coming from a gamma ray
burst. However, recent observations that consider possible time delays of photons impose strong
restrictions of a first order (n = 1) deviation of SR (Refs. [4, 5, 6, 7, 8, 9, 10]).
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The previous experimental results suggest that there are no leading order planckian corrections
in the dispersion relation of photons, at least if interpreted in the context of a Lorentz-violating
scenario. However, the situation is again more subtle in the case of a deformation of SR. The
discussion of energy-dependent photon time delays in DSR does not only involve the possible
modification of the dispersion relation, but also the implementation of nontrivial translations be-
tween observers that are local to the emission and detection of the photons. Nontrivial translations
are a necessary ingredient in a modification of SR that contains deformed Lorentz transformations
in order to avoid inconsistencies with tests of locality, as the discussion in Ref. [11, 12] showed.
This ingredient is quite natural in a theory which deforms the Poincaré algebra of SR, and in fact
it appears in the so-called relative locality framework [13], which is a proposal for the spacetime
structure of DSR theories. In this proposal, it is the curvature of momentum space (which stems
from the modified composition laws for momenta, unavoidable in DSR theories) that produce non-
local effects in observers translated with respect to those which are local to an interaction.

Previous studies [14, 15, 16] of photon time delays in the context of deformations of SR have
used a model based on worldlines of free particles that propagate in a noncommutative space-
time, which is a simple way to implement nontrivial translations which are compatible with the
deformed Poincaré algebra. They have obtained different conclusions about the existence of pho-
ton time delays, apparently depending on the type of noncommutative spacetime under analysis.
In the present work we will consider the propagation in generic noncommutative spacetimes and
establish the conditions for the absence of a photon time delay. As we will see, this may happen
independently of the spacetime structure of the DSR theory, so that even first-order planckian cor-
rections could be compatible with the above mentioned experimental results in a deformation of
SR. As we will argue below, this fact opens up the possibility of a phenomenologically consistent
deformation of SR with a new mass scale many orders of magnitude below the Planck mass.

The structure of the work is as follows: in Sec. 2 we will define the model and derive the
expression for photon time delays. Then, in Sec. 3 we will see the main results obtained in Ref. [17]
referring to two models very much studied in the literature, κ-Minkowski and Snyder spacetimes,
checking that previous works (Refs. [14, 15, 16]) are particular cases of this model and give specific
conditions for the absence of energy-dependent photon time delays. Finally, we will conclude in
Sec. 4.

2. A general model for photon time delays in noncommutative spacetimes

The study of time delay effects in the propagation of particles in a modification of SR needs
the specification of a spacetime. Effective field theories that violate Lorentz invariance [18, 19,
20, 21] consider the classical, commutative, spacetime of SR. As argued above, this is no longer
possible in the context of theories that modify SR but maintain a relativity principle, since they
must incorporate nontrivial translations in spacetime. This is why noncommutativity is usually
regarded as an appropriate feature of the spacetime formulation of DSR. While this ingredient is
not yet worked out in full generality,1 there are specific examples of noncommutative spacetimes
that have been explored and considered as benchmarks for the spacetime structure of a relativistic

1DSR theories are naturally formulated in momentum space [22, 23, 24].
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theory beyond SR. These include κ-Minkowski spacetime and the associated momentum space of
the κ-Poincaré algebra, and also Snyder spacetime (both examples are reviewed in [25], and they
were considered in relation with the calculation of photon time delays in Refs. [14, 15] and [16],
respectively). In these cases, not only spacetime, but the whole phase space structure is modified
with respect to the canonical phase space of SR.

If (x, p) are the spacetime and momentum coordinates of a canonical phase space,

{pµ ,xν}= δ
ν
µ , {xµ ,xν}= {pµ , pν}= 0, (2.1)

one can construct a nontrivial spacetime (x̃) by considering a linear combination of the x coordinates
with coefficients depending on the momentum variables p and a new scale M, which must be
necessarily introduced from dimensional arguments [26, 27]:

x̃µ = xν
ϕ

µ

ν (p/M) . (2.2)

One can refer to this new space as “noncommutative” in the sense that the Poisson bracket of two
of these coordinates is not zero for a generic choice of coefficients ϕ

µ

ν . If we calculate the Poisson
bracket of two spacetime coordinates we find

{x̃µ , x̃ν} = −xσ
ϕ

µ

ρ

∂ϕν
σ

∂ pρ

+ xρ
ϕ

ν
σ

∂ϕ
µ

ρ

∂ pσ

. (2.3)

The worldlines of a particle xµ(τ), with τ an arbitrary parameter that flows along the worldline,
can be obtained by applying the variational principle (as it is done in Ref. [17]), obtaining

x̃µ(τ) = ˙̃xµ
τ + x̃µ(0) = ϕ

µ

ν (p)
∂C
∂ pν

τ + x̃µ(0). (2.4)

We could also have obtained the previous result from the Poisson bracket of the function C(p)
defining the dispersion relation, C(p) = m2, with x̃µ

˙̃xµ = {C, x̃µ}= ∂C
∂ pν

{pν ,ϕ
µ

ρ (p)xρ}= ϕ
µ

ν (p)
∂C
∂ pν

. (2.5)

We can then define the velocity vector of the particle2

ṽi =
˙̃xi

˙̃x0 =
ϕ i

ν(∂C(p)/∂ pν)

ϕ0
ν(∂C(p)/∂ pν)

. (2.6)

2.1 Determination of time delays

Our model considers the worldline of a free particle (a photon) that has its origin at a source
(the emission point) and its end at a detector (the detection point). Since there is only one vector
(the momentum ~p of the particle), the problem can be treated in 1+ 1 dimensions without any
loss of generality, so we will speak of its energy E and its momentum p ≡ |~p|.3 We assume that

2Note that the velocity is independent of the choice of the parameter τ .
3Although we use the same notation (p) for the four-momentum in 3+1 and for the momentum in 1+1, one can

easily identify from the context which one is involved in the different equations.
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low-energy photons (in the limit p/M→ 0) behave as in SR: that is, their time of travel equals (in
natural units, c = 1) the distance between source and detector. In fact, we will define this distance
L from the emission at the source and absorption at the detector of low-energy photons, for which
the functions ϕ

µ

ν → δ
µ

ν , so that they observe a commutative spacetime (x̃µ → xµ).
The time delay of a high-energy photon of momentum p at the detector with respect to a low-

energy photon emitted “simultaneously at the same point” has two different sources: the modified
dispersion relation C(p) = 0, which defines the slope of the worldline, and the definition of si-
multaneity and spatial locality, which in a noncommutative spacetime, defined by the functions
ϕ(E, p) of Eq. (2.2), are relative concepts for observers whose spacetime origin do not coincide.
In this case, there are two observers that must be brought into play: observer A, which is at the
source, and observer B, which is at the detector. We define the origin of observer A as the time and
location of both a high and a low energy photon (this is the definition of a simultaneous emission
at the source) and define the spacetime origin of observer B to coincide with the detection of the
low-energy photon.

One can obtain the translation relating the noncommutative spacetime coordinates of both
observers from the trivial translations relating the commutative coordinates, xB = xA−L, tB = tA−L
and Eq. (2.2):

t̃B = ϕ
0
0 tB +ϕ

0
1 xB = t̃A−L(ϕ0

0 +ϕ
0
1 ) , (2.7)

x̃B = ϕ
1
0 tB +ϕ

1
1 xB = x̃A−L(ϕ1

0 +ϕ
1
1 ) . (2.8)

The worldline of the high energy particle for observer A is

x̃A = ṽ t̃A , (2.9)

since x̃A = 0, t̃A = 0 corresponds to the initial point of the worldline, and ṽ is obtained particularizing
Eq. (2.6) to 1+1 dimensions:

ṽ =
ϕ1

0 (∂C/∂E)−ϕ1
1 (∂C/∂ p)

ϕ0
0 (∂C/∂E)−ϕ0

1 (∂C/∂ p)
, (2.10)

where the minus signs appear due to the fact that p1 = −p1 = −p, and so ∂C/∂ p1 = −∂C/∂ p.
We can now obtain the worldline for observer B by applying Eqs. (2.7) and (2.8) to Eq. (2.9):

x̃B = x̃A−L(ϕ1
0 +ϕ

1
1 ) = ṽ [t̃B +L(ϕ0

0 +ϕ
0
1 )]−L(ϕ1

0 +ϕ
1
1 ) . (2.11)

The end of the worldline for observer B happens at x̃B = 0.4 We can then obtain the value of t̃B

at that point from Eq. (2.11); this will give us the time-delay T̃ ≡ t̃B(x̃B = 0) with respect to the
arrival of the low-energy photon (that took place at t̃B = 0):

T̃ = ṽ−1 L(ϕ1
0 +ϕ

1
1 )−L(ϕ0

0 +ϕ
0
1 ) = L

[
(ϕ1

0 +ϕ
1
1 )

ϕ0
0 (∂C/∂E)−ϕ0

1 (∂C/∂ p)
ϕ1

0 (∂C/∂E)−ϕ1
1 (∂C/∂ p)

− (ϕ0
0 +ϕ

0
1 )

]
.

(2.12)
Note that this equation is in fact valid for the time delay of any high-energy particle, independently
of whether it is a photon or not. In the case of a particle of nonzero mass, Eq. (2.12) includes both
the usual special relativistic time-delay of a massive particle and the time-delay induced by new
physics with respect the arrival of a low-energy photon emitted simultaneously at the source.

4We are assuming that the detector is at rest. Then the spatial location for the detection of the high energy particle
and the low energy photon coincide.
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2.2 Momenta as generators of translations in spacetime

The functions ϕ
µ

ν that were introduced in Eq. (2.2) are in correspondence with the Poisson
brackets of energy and momentum with the noncommutative spacetime coordinates:

{E, t̃}= {E,ϕ0
ν xν}= ϕ

0
0 , {E, x̃}= ϕ

1
0 , {p, t̃}=−ϕ

0
1 , {p, x̃}=−ϕ

1
1 , (2.13)

where again the minus signs appear due to p1 =−p1 =−p.
The transformations Eqs. (2.7) and (2.8) between observers A and B can then be written in the

form

t̃B = t̃A−L{E, t̃}+L{p, t̃} , (2.14)

x̃B = x̃A−L{E, x̃}+L{p, x̃} . (2.15)

These transformations correspond, then, to translations in the noncommutative spacetime which
are generated by the energy and the momentum, even if the (x̃µ , pν) phase space is noncanonical.
This was in fact the approach taken in the analyses of Refs. [14, 15] and [16].

The formula for the time-delay Eq. (2.12) can then be written in terms of Poisson brackets in
the following form:

T̃ = (L{E, x̃}−L{p, x̃}) ·
(
(∂C/∂E){E, t̃}+(∂C/∂ p){p, t̃}
(∂C/∂E){E, x̃}+(∂C/∂ p){p, x̃}

)
−L{E, t̃}+L{p, t̃} . (2.16)

In a commutative spacetime, we have {E, t}= 1, {E,x}= 0, {p, t}= 0, {p,x}=−1, and then
Eq. (2.16) gives

T =−L
(

1+
∂C/∂E
∂C/∂ p

)
. (2.17)

This expression contains of course the particular case of SR, T =−L(1−E/p), which is zero for
photons.

3. Results

In Ref. [17] two models of noncommutativity are studied, one where the modification starts
at first order in the high energy scale whilst the second one starts at second order. The first one
is κ-Minkowski spacetime, which has been very much studied in relation with DSR theories. The
nontrivial Poisson bracket of spacetime coordinates is{

x̃0, x̃i} = − x̃i

Λ
. (3.1)

The other model we have studied is Snyder spacetime, which is a covariant model. The Poisson
bracket of two spacetime coordinates is the Lorentz generator

{x̃µ , x̃ν} = Jµν

Λ2 . (3.2)

It was proposed by Snyder in 1947 (Ref. [28]) as a way to avoid the divergences in QFT. However,
since renormalization solved this problem, this algebra was forgotten until noncommutative space-
times were studied as an attempt of a QGT. Due to covariance, in all choices of ϕ the dispersion
relation (DR) and LT are those of SR.
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In Ref. [17] three different basis of κ-Minkowski (bicrossproduct, Magueijo-Smolin and clas-
sical basis) and the representation of Snyder and Maggiore of the Snyder spacetime were studied.
In all of those cases it was seen that the time delay is proportional to

L [(1+(∂C/∂E)/(∂C/∂ p)] , (3.3)

i.e., to (L/v−L), where v is the velocity of propagation of the high energy particle in the commu-
tative spacetime,

v =− ∂C/∂ p
∂C/∂E

. (3.4)

This result can in fact be obtained from the general expression (2.12):

T̃ = L
[
(ϕ1

0 +ϕ
1
1 )

ϕ0
0 +ϕ0

1 v
ϕ1

0 +ϕ1
1 v
− (ϕ0

0 +ϕ
0
1 )

]
=

L(ϕ0
0 ϕ1

1 −ϕ1
0 ϕ0

1 )

ϕ1
0 +ϕ1

1 v
(1− v) =

ϕ0
0 ϕ1

1 −ϕ1
0 ϕ0

1

ϕ1
1 +ϕ1

0/v
L
(

1
v
−1

)
.

(3.5)
Then we see that the time delay is just the naive result taking into account the (possible) energy
dependence of the velocity of propagation, multiplied by a factor which involves the dependence
on the details of the noncommutative spacetime.

In the case of photons (for which there is no time delay in SR), and in an expansion in powers
of (1/M), the time delay will be proportional to (1/M) [or (1/M2) if corrections start at second
order]. But the factor given by expression (3.3) is already of order (1/M) [or (1/M2) for a second
order correction]. Then the dominant contribution to the time delay will be independent of the
details of the noncommutative spacetime and will be determined just by the modification of the
dispersion relation C(p). This is the reason why the dominant contribution to photon time delays
are the terms in the modified dispersion relation, which is compatible with the results obtained in
Refs. [14, 15, 16].

The condition for the absence of time delays is, therefore, v = 1. But, taking differentials in
the photon dispersion relation, C(E, p) = 0, one gets

− ∂C/∂ p
∂C/∂E

∣∣∣∣
C(E,p)=0

=
dE(p)

d p
, (3.6)

where E(p) is the solution of C(E, p) = 0. Then the absence of time delay requires that for photons,
E(p) = p. The possibility to have modified dispersion relations that reduce to E(p) = p for photons
was already noted in Ref. [29]. Quite generally, if one considers an expansion in powers of (1/M)

C(E, p) = E2− p2 +∑
n

1
MnC(n)(E, p) , (3.7)

then the conditions that the dispersion relation has to satisfy so that photons do not show a time
delay are

C(n)(E, p)
∣∣∣

p=E
= 0 . (3.8)

This is consistent with the result obtained by a general calculation of time delays for a first (or a
second) order correction to SR showed in Ref. [17].

In the case of a massive high energy particle one would have a time delay in SR due to the
energy dependence of the velocity of propagation of a massive particle that could be modified due

7
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to corrections to SR. Even if the dispersion relation were not modified (and, therefore, v were the
same as in SR), one would have a time delay for massive particles which would be the mass de-
pendent time delay of SR, multiplied by a factor depending on the details of the noncommutativity
proportional to the ratio E/M [or (E2/M2)]. In order to have an observation sensitive to the non-
commutativity one would require a measurement of the mass dependent time delay with a precision
of order (E/M) [or (E2/M2)].

4. Conclusions

The main result obtained in this work is that it is possible to go beyond SR without observable
time delays, even for a deformation of SR (that is, in the presence of a relativity principle). We have
identified that this is the case whenever the velocity of propagation of photons in the commutative
spacetime is independent of the energy, which would be the naive conclusion forgetting about
the effects of a nontrivial spacetime. Considering a model based on worldlines of particles in a
noncommutative spacetime we have found several examples with no time delay for photons.

Although the standard studies of Lorentz violation assume a commutative spacetime, one
could consider a noncommutative spacetime also in this case. The difference between a scenario
with LIV and a relativistic theory is that in the latter case one has to keep a (deformed) Poincaré
symmetry, which requires a consistency of the modified dispersion relation and the nontrivial im-
plementation of translational symmetry which fixes the noncommutativity of spacetime. On the
contrary, in the case of LIV one can choose independently the dispersion relation and the noncom-
mutativity of spacetime. The absence of time delays is a property which depends exclusively on
the dispersion relation and then applies indistinctly to both cases.

All the results of this work are based on a noncommutative spacetime as the appropriate model
to calculate time delays induced by departures from SR. This is the most common framework that
has been considered in previous analyses [14, 15, 16] in order to implement nontrivial translations
in the context of deformations of SR, and it is the simplest way to introduce a relativity of locality
for the emission and detection processes, which are local only for the observers at the source
and at the detector, respectively. However, the framework introduced in Ref. [13] considers a
relativity of the locality associated to the interaction of particles as an alternative to a formulation
based on spacetime noncommutativity. In this case one should consider the nonlocality of the
interactions responsible for the emission and detection of particles as the appropriate model to
study the possibility to have observable time delays.

One could take the main outcome of this work as bad news from a phenomenological point
of view since it means that if the possible departures from SR induced by quantum gravity are
such that there is no time delay for photons the only phenomenological window to deformations
of SR (if they do not include the possibility of photon birefringence) gets closed. Alternatively
one can take the result as good news since it means that the strong constraints on the mass scale
parametrizing the departures from SR obtained from the absence of observations of time delays
for photons are not applicable with full generality. Such constraints would not necessarily imply
that quantum gravity corrections start at least at second order of the Planck mass (which is still a
possibility), but would be compatible with first-order modifications of SR which do not produce
photon time delays.
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Moreover, since all the constraints based on the use of effective field theory to go beyond
SR [18, 19, 20, 21] apply only to an scenario without the presence of a relativity principle, the
result obtained in this paper opens up the interesting possibility of a scale of deformation of special
relativity much smaller than its simplest estimate (the Planck mass) without any phenomenolog-
ical inconsistency. The simplest estimate is based on naturalness but we already know that this
argument fails in the case of the vacuum energy, and we have also hints that it also fails in the
estimate for the mass of elementary scalars (the standard model (SM) Higgs particle seems to be
much lighter than the scale limiting the domain of validity of the SM). Then it seems reasonable
to explore the possibility of some mechanism generating a scale for the departures from SR much
smaller than this simplest estimate. If this were the case then one would have to reconsider searches
of possible signals of quantum gravity that may have been discarded based on the assumption that
the scale for such signals is of the order of the Planck mass.
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