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Resumen

El indice de area foliar es considerado un bioindicador del estado de la salud real de las plantas y
de la productividad primaria bruta de la vegetacion. Numerosos estudios han demostrado que los
modelos basados ee regresion simple lineal son herramientas optimas que tienen la capacidad de
relacionar el LAI medido en campo con informacidon derivada de teledeteccion optica, El objetivo
del presente Trabajo Fin de Master es desarrollar un modelo predictivo de LAI a partir de informa-
cion multiespectral de media resolucion espacial (Landsat) a partir del andalisis y modelizacién pre-
via de las relaciones entre informacion hiperespectral a alta resolucién espacial y LAI verdad-te-
rreno utilizando la técnica upcaling y, desarrollado para ambientes heterogéneos como son las
dehesas. Para ello, se han utilizado datos hiperespectrales derivados del sensor CASI y datos del
LAI medida en campo proporcionados por SynerTGE y una gama de indices de Vegetacion derivados
de los productos Landsat TM y OLI. Un primer andlisis se basé en establecer relaciones empiricas
entre pseudo-LAI e indices de vegetacion. Para seguir evaluando el rendimiento del modelo, se
aplicaron analisis de regresion (RLS) para modelizar la relacién entre pseudo-LAI e indices de ve-
getacion. Los resultados establecieron que el método propuesto varia en funcion de los modelos
utilizados. Por otra parte, se desarrollé un modelo para i) aplicar y modelizar las funciones predic-
tivas generadas mediante los analisis RLS y, ii) validar los productos mediante estadistico RMSE.
Para ello, se utilizaron series multitemporales derivadas de Landast-8 OLI y muestras de LAI total
y LAI verde repartidas en 5 jornadas de campo, en cada parcela (11), las muestras fueron tomadas
sobre 3 cuadrantes (25x25cm), ademas, las muestras tomadas se consideran, a priori, represen-
tativas a distintos momentos de la dinamica fenolégica. Los resultados obtenidos establecen que
los modelos predictivos rinden mejor para periodos primaverales-estivales, cuando el pastizal se
encuentra en su periodo de maximo crecimiento. Ademas, el modelo desarrollado sobre pasto y
encinares rinde mejor que el modelo A. Si individualizamos los casos, se establece que el modelo
predictivo en fecha del 28 de junio de 2015 obtuvo los mejores valores RMSE = 0.196 y RMSE (%)
= 6.73 para predecir la variable biofisica LAI verde.
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Abstract

The leaf area index is considered a bioindicator of the state of the real health of the plants and the
gross primary productivity of the vegetation. Numerous studies have shown that models based on
linear simple regression are optimal tools that have the ability to relate the LAI measured in the
field with information derived from optical remote sensing. The objective of the present Master's
Thesis is to develop a predictive model of LAI from of multispectral information of medium spatial
resolution (Landsat) from the analysis and previous modeling of the relationships between hyper-
spectral information at high spatial resolution and truth-ground LAI using the upcaling technique
and, developed for heterogeneous environments such as dehesas. For this purpose, hyperspectral
data derived from the CASI sensor and LAI data measured in the field provided by SynerTGE and
a range of Vegetation indices derived from the Landsat TM and OLI products were used. A first
analysis was based on establishing empirical relationships between pseudo-LAI and vegetation in-
dices. To further evaluate the performance of the model, regression analysis (RLS) was applied to
model the relationship between pseudo-LAI and vegetation indices. The results established that
the proposed method varies depending on the models used. On the other hand, a model was
developed to i) apply and model the predictive functions generated by the RLS analyzes and, ii)
validate the products using the RMSE statistic. For this, multitemporal series derived from Landast-
8 OLI and LAI total and LAI green samples distributed over 5 field days were used, in each plot
(11), samples were taken over 3 quadrants (25x25cm), in addition, samples taken are considered,
a priori, representative of different moments of the phenological dynamics. The obtained results
establish that the predictive models yield better for spring-summer periods, when the grassland is
in its period of maximum growth. In addition, the model developed on grass and holm oaks yields
better than model A. If we individualize the cases, it is established that the predictive model as of
June 28, 2015 obtained the best values RMSE = 0.196 and RMSE (%) = 6.73 to predict the bio-
physical variable LAI green.
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1. INTRODUCCION

Los ecosistemas tipo sabana ocupan aproximadamente un tercio del territorio
de la superficie terrestre (Fan et al. 2003; Lemaire et al. 2005) y, por ello, desem-
pefian un papel importante en las reservas mundiales de carbono y su productivi-
dad (Ahlstrom et al. 2015; Grace et al. 2006). En el ambito mediterraneo europeo,
estos paisajes se denominan dehesas y constituyen un ecosistema y un sistema
productivo Unico en el mundo. Presentan importantes diferencias con las sabanas
subtropicales, siendo exclusivos del suroeste de la Peninsula Ibérica. Se trata del
ecosistema agroforestal mas extenso de Europa que ofrece los mayores indices de
biodiversidad, con una superficie que supera los tres millones de hectareas (Cace-
res et al. 2012; Moreno y Pulido, 2009).

Las dehesas son ecosistemas complejos de origen antrépico que proporcionan
un importante acerbo de valores ambientales, culturales y estéticos, formados
principalmente por encinares dispersos, matorral, pasto y cultivos, de larga tradi-
cion y gestidn sostenible en el ambito mediterraneo, son un ejemplo de uso mul-
tiple del territorio, que combina el desarrollo socioeconémico de las zonas rurales
con la conservacién de un ecosistema (Gonzalez-Dugo et al. 2017; Caceres et al.
2012). Desde la 6ptica ambiental, estos territorios son una pieza angular para el
intercambio de flujos de masa y energia entre el sistema atmdsfera-biosfera, asi
como en la productividad de la cubierta y, por tanto, en un entorno de cambio
global pueden variar su dinamica y funcionamiento. Por estas razones, su estudio
hace que sea necesario para evaluar hasta qué punto las actividades humanas
pueden alterar los ciclos bioquimicos naturales e influir en el cambio climatico y el
ciclo del carbono (Pacheco-Labrador et al. 2014; Roig & Rubio, 2009; Lemaire et
al. 2005).

La estimacion de variables biofisicas de la vegetacidn en zonas heterogéneas,
como las dehesas, ha cobrado un gran interés por parte de la comunidad cientifica
tanto para estudios climaticos como para conocer el papel que esta juega en el
funcionamiento fisioldgico de las plantas, afectando a la productividad de los eco-
sistemas, la evapotranspiracién, el crecimiento celular y la fotosintesis (Melendo-
Vega et al. 2017; Gonzalez-Dugo et al. 2017; Caceres et al. 2012; Boyer, 1995).

Una de las variables biofisicas de la vegetacion de mayor relevancia por su
interés en aplicaciones del ambito agricola y forestal es el Indice de Area Foliar
(LAI) (Korhonen et al. 2017; He et al. 2016; Delegido et al. 2011; Haboudane et
al. 2004). Este parametro biofisico se define como la mitad del area total de la
hoja por unidad de superficie de la superficie del terreno (Chen y Black, 1992) y
es considerado un bioindicador del estado de la salud real de las plantas y de la
productividad primaria bruta de la vegetaciéon (Lichtenthaler et al. 1996; Sampson
et al. 2003).

En este sentido, una gran cantidad de estudios han puesto de manifiesto la
eficacia de la teledeteccion como herramienta para estimar el Indice de Area Foliar
debido, precisamente, a su capacidad para ofrecer informacién a diferentes reso-
luciones espaciales, radiométricas y frecuencia temporal (Pasqualotto et al. 2018;
Korhonen et al. 2017; Zhen-wang et al. 2017; He et al. 2016; Fernandez-Arango
et al. 2015; Haboudane et al. 2004). Existen varios métodos para estimar LAI




utilizando observaciones de LAI in situ y datos de teledeteccidn, que incluyen mé-
todos de regresion, inversion de ecuacion de transferencia de radiacion de vege-
tacion y métodos geoestadisticos (He et al. 2016; Cohen et al. 2003).

Los métodos basados en regresion estadistica relacionan parametros biofisicos,
como por ejemplo LAI, con datos espectrales (transformados) mediante técnicas
de regresion lineal basados en indices de vegetacion (Delegido et al, 2014; Ha-
boudane et al. 2004). Aunque este sea un método muy utilizado debido a su sim-
plicidad y velocidad de calculo (Delegido et al. 2014), la complejidad de factores
que afectan a la generacién de productos LAI (He et al. 2016; Martin et al. 2011;
Roberts y Paterson et al. 2005), exige nuevos enfoques que permitan proporcionar
de manera éptima y precisa insumos para su monitoreo y modelado en pastizales
a escalas locales (Korhonen et al. 2017).

1.1. Relacion del Indice de Area Foliar con técnicas de teledeteccién

El indice de Area Foliar es una variable biofisica clave para estimar la cobertura
del follaje y para pronosticar el crecimiento y rendimiento de la cubierta vegetal.
La variable biofisica LAI verde (Green LAI) (utilizada en este trabajo), se corres-
ponde con el LAI sélo de la fraccion foliar viva, que puede presentar caracteristicas
estructurales similares pero diversos contenidos de pigmentos (Haboudane et al.
2014). El area expuesta de las hojas vivas es clave en los modelos del carbono
terrestre, debido a que estd estrechamente relacionada con un gran nimero de
procesos bioldgicos y fisicos como la fotosintesis, la transpiracién de las plantas y
el intercambio de CO:2 o el ciclo del agua, nutrientes y carbono (Zhen-Wang et al.
2017; Delegido et al. 2011).

La medicion directa del LAI se realiza mediante campafias de muestreo in situ
que suelen proporcionar resultados precisos, pero costosos en términos tempora-
les y econdmicos y, habitualmente, poco representativos para grandes superficies
(Melendo-Vega et al. 2017; Delegido et al. 2015; Chuvieco et al. 2001); en la
practica son utilizadas para calibrar y validar otras metodologias (Yebra et al.
2013). Sin embargo, debido a que el LAI esta relacionado funcionalmente con la
reflectancia del dosel vegetal, se pueden utilizar técnicas no destructivas para ana-
lizar su distribucién espacial (Melendo-Vega et al. 2017; He et al. 2016). En este
contexto, la teledeteccion dptica facilita su cuantificacidon en amplias superficies y
en diferentes momentos, en funcién de la resolucion espacio-temporal de los sen-
sores que se utilicen (Chuvieco, 2011)

Generalmente, los indices espectrales de vegetacion (IV), al minimizar las per-
turbaciones debidas al suelo y a la atmodsfera (Chuvieco, 2015; Delegido et al.
2015; Haboudane et al. 2004), permiten la estimacion del LAI mediante el analisis
de las relaciones entre los datos espectrales y datos de LAI medidos in situ. Sin
embargo, los IV presentan ciertas limitaciones intrinsecas debido a la influencia de
la geometria de la planta o la arquitectura del dosel (Haboudane et al. 2004) y a
que el LAI no es la Unica variable que afecta a los IV. Por ejemplo, el contenido de
LAI y clorofila poseen efectos similares en la reflectancia del dosel, particularmente
en la porcidn visible del espectro comprendida entre la regidn del verde (550 pm)
y el borde rojo o red-edge (750 um), donde la mayoria de los pigmentos fotosin-
téticos absorben, asi como también en el infrarrojo cercano (NIR, del inglés Near-
Infrarred) y especificamente en la regidén red-edge, en la que la pendiente de los
espectros de reflectancia es maxima (Delegido et al. 2015; Yebra et al. 2008).




Para maximizar las prestaciones de los IV, durante las ultimas décadas, se han
ido formulando IV para distintos propdsitos: i) capturar los procesos fotoguimicos
asociados a la actividad fotosintética como la eficiencia del uso de luz o para esti-
mar el pigmento de la hoja (Brouge y Leblanc, 2000); ii) cuantificar la fraccion
vegetal (Gitelson et al. 2001); y, por su puesto, iii) estimar LAI (Brown et al.
2000).

En este ultimo caso, independientemente de si el método de estimacion tiene
una base fisica o estadistica, la gran mayoria de los indices se centran en la esti-
macion del green LAI (Delegido et al. 2015), debido a que el green LAI es sensible
a la regién espectral que se encuentra cubierta por los sensores 6pticos (Delegido
et al. 2015). Tales caracteristicas han conllevado a desarrollar nuevos IV sensibles
al LAI utilizandose la combinacidon de bandas comprendidas entre el verde y el red-
edge (Haboudane et al. 2004).

Al alejarse del VNIR hacia el infrarrojo de onda corta (SWIR, Short Wave In-
frared, 1,2 a 2,2 pm), otros componentes de las hojas absorben y dispersan la luz,
como el agua, la celulosa, la lignina y otros constituyentes bioquimicos, por lo que
la convierte en una region éptima para evaluar el estrés hidrico de la vegetacién
(Chuvieco, 2015; Brown et al. 2000). Sin embargo, tal y como senalan Delegido
et al. (2015) se ha demostrado que la region del SWIR es dptima para distinguir
la vegetacion verde de la vegetacion senescente y para estimar LAI de la vegeta-
cion senescente. Aun asi, su escasa aplicabilidad se explica por las carencias deri-
vadas de los sensores Opticos tradicionales, los cuales, la gran mayoria de ellos
cubren un rango espectral continuo entre 350 y 2400 nm utilizando pocas bandas.

Como indican Haboudane et al. (2004), la estimacién de LAI se enfrenta a dos
dificultades afadidas. Por un lado, los IV se aproximan a un nivel de saturacién
asintonica, es decir cuando LAI excede de 2 a 5 segun el IV aplicado y, por otro
lado, no existe una relacidn Unica entre LAI y un indice de eleccion de la vegeta-
cion, sino una familia de relaciones, cada una en funcién del contenido de clorofila
y otras caracteristicas del dosel. Para solucionar estas carencias, varios autores
han evaluado y comparado IV en términos de su estabilidad y su poder para esti-
mar el parametro biofisico LAI (Brouge y Leblanc. 2000; Baret y Guyot, 1991),
mientras que otros han tratado de modificar algunos IV para aumentar su sensi-
bilidad al LAI (Brown et al. 2000). En consecuencia, algunos IV se han perfilado
como mejores predictores de LAI debido, precisamente, a que son menos sensibles
a la variacion de los parametros externos que afectan la reflectancia espectral de
la cubierta, a las propiedades Opticas del suelo, la geometria de iluminacién y las
condiciones atmosféricas. Sin embargo, asi como afirman Haboudane et al.
(2004), el efecto de las variaciones de la clorofila de la hoja en la relacién entre el
IV y LAI sigue siendo un problema a resolver.

La utilizacion de sensores hiperespectrales (CASI, AVIRIS, HyMap, APEX) apli-
cados a la estimacion de LAI ha originado la proliferacién de literatura cientifica al
respecto. Su éxito y creciente uso aplicado a pastizales se debe principalmente a
gue estos sensores poseen un mayor numero de bandas espectrales y mas estre-
chas que las disponibles en sensores multiespectrales, por lo que ha contribuido al
descubrimiento de nuevas regiones de interés que son clave para analizar de ma-
nera mas precisa las propiedades fisioldgicas y estructurales de la planta (fotosin-
tesis), factores ambientales y fenoldgicos que influyen sobre la vegetacion (Cogliati
et al. 2015; Pefa, 2007). Por ejemplo, se ha demostrado que el LAI o la clorofila
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muestran una respuesta espectral mas nitida en regiones espectrales muy especi-
ficas (Navarro-Cerrillo, 2013), mientras que otros estudios se han centrado en
evaluar el rendimiento de varios tipos de IV derivados de sensores hiperespectra-
les (determinar bandas estrechas) en la caracterizacion de LAI en ecosistemas de
pastizales (Mdckel, 2015; He et al. 2006).

Por otro lado, el seguimiento del estado de vegetacién mediante sensores mul-
tiespectrales, como Landsat o el propio Sentinel-2, presenta la ventaja de ofrecer
informacion a una alta frecuencia temporal, mientras que la informacién hiperes-
pectral derivada de radidmetros de campo y de sensores aeroportados, en la gran
mayoria de la literatura cientifica, se han limitado a una sola fecha de adquisicién
por el elevado coste que supone su obtencidn, sobre todo en el caso de sensores
aeroportados (Melendo-Vega et al. 2017). Por ejemplo, Fernandez-Arango et al.
(2015) pusieron de manifiesto la necesidad de aumentar la dimensién temporal,
especialmente para los ecosistemas de gran variabilidad fenoldgica. Sin embargo,
los datos multiespectrales derivados de plataformas satelitales aun estan limitados
a resoluciones espaciales bajas en comparacion a los sensores hiperespectrales.
Ello supone, que los diferentes elementos de una imagen localizada en ambientes
heterogéneos como la dehesa, sus distintas coberturas (encinares, pasto, agua y
suelo) presenten comportamientos espectrales muy diferenciados, agudizando asi,
problemas derivados de la mezcla de la respuesta espectral de esas cubiertas den-
tro del pixel (Melendo-Vega et al. 2017; Fernandez-Arango et al. 2015; Hill et al.
2011).

Varios de los autores citados, han demostrado que los enfoques basados en
regresion estadistica mediante técnicas de regresion lineal, permiten de manera
optima relacionar datos de reflectividad o IV derivados con datos extraidos en
campo para la estimacion de LAI, puesto que permite crear una ecuacién en fun-
cion de un conjunto de variables de prediccion de entrada (Cohen et al. 2003; He
et al. 2016). Aun asi, este método solo sirve cuando se dispone de un rango de
datos similar a los utilizados para su desarrollo (Li y Wang, 2013).

Sin embargo, debido a la influencia de los algoritmos del modelo, la heteroge-
neidad de la vegetacion, la falta de coincidencia de escala y sus errores asociados
a la geolocalizacién, las condiciones meteoroldgicas del afio (Roberts y Paterson et
al. 2005) y por la cantidad de datos de referencia exhaustivas y fiables que se
requiere para calibrar y validar las formulas empiricas en diferentes ecosistemas
(Martin et al. 2011), los productos LAI inevitablemente tienen incertidumbres in-
herentes asociadas a la comparacion directa entre las mediciones de LAI in situ y
los productos de LAI a resolucién media (Por ejemplo, Landsat o Sentinel-2) (He
etal. 2016), por lo que su empleo queda limitado en aplicaciones a escalas locales
(Yebra et al, 2006).

1.2. Indices de vegetacion y LAI

Durante los ultimos decenios, se ha suscitado un creciente interés en desarro-
llar y evaluar indices espectrales para predecir de manera éptima el Indice de Area
Foliar, asi como también los factores que afectan a la reflectancia del dosel (Ha-
boudane et al. 2004; Broge y Leblanc, 2001; Baret y Guyot, 1991). En este con-
texto, Haboudane et al. (2004), realizaron un complejo analisis basado, entre otras
cosas, en evaluar el rendimiento de una amplia gama de 1V para predecir la varia-
ble biofisica LAI. En su estudio, seleccionaron y agruparon los IV en funcién de sus
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caracteristicas espectrales, definidos por a) Indices basados en la diferencia nor-
malizada: mejora de la linealidad; b) Indices de vggetacién suelo-linea: mejora la
influencia del suelo y los efectos atmosféricos y c) Indices de vegetacion mejorados
para estimar LAI verde.

En cuanto a los indices basados en la diferencia normalizada, el NDVI (Rouse
et al. 1974) es sin duda, el IV mas conocido en la bibliografia cientifica. Pese a su
amplio uso, este indice se satura ante el incremento del dosel vegetal y muestra
una relacion no lineal con LAI verde (Baret y Guyot, 1991, citado en Haboudane
et al. 2003). Roujean y Breon (1995) desarrollaron el Renormalized Difference
Vegetation Index para mejorar la linealidad de las variables biofisicas, mientras
que Chen (1996) propusieron el Modify Simple Relation (MSR) como una mejora
del RDVI combinandolo con el indice Simple Relation (Jordan, 1969, citado en Ha-
boudane et al. 2004). El SRWI, es un indice 6ptimo para estimar el contenido de
humedad vegetativo; la utilizacion del SWIR-1 y del NIR, este ultimo mas insensi-
ble al cambio de contenido de agua, hace que sea un indice apropiado para pre-
decir el LAI, aunque satura cuando LAI es superior a 4 (Zarco-Tejada y Ustin
2001). El Normalized Difference 819/1600 NDII, ha sido citado como un indice
preciso para estimar el contenido de humedad foliar en diversos ecosistemas (Har-
disky et al. 1983), mientras que, el NDBLeaf fue desarrollado por Le Marie et al.
(2004) para estimar de forma éptima la clorofila.

Por otra parte, los IV que incorporan la linea de suelo se formularon para mi-
nimizar las perturbaciones debidas a la influencia del suelo. Por ejemplo, el Soil
Adjusted Vegetation Index (SAVI) experimentd mejoras debido a la introduccién
del factor L, conocida como una funcién que define la densidad vegetal (Huete,
1988). Para mejorar el rendimiento de SAVI, Qi et al. (1994) propusieron MSAVI,
con un factor de autoajuste L que no aparecen en la formulacion de MSAVI (Ha-
boudane et al. 2004).

En base a MCARI (Daughtry et al. 2000) y a TVI (Broge y Leblanc, 2000),
Haboudane et al. (2003) aplicaron mejoras para estimar el LAI verde. Para ello,
introdujeron dos cambios sobre la funcion MCARI: i) supresidon de la relacion (Roo
y Re70) para disminuir la sensibilidad a los efectos de la clorofila; vy ii) la integracion
de una longitud de onda corta del infrarrojo cercano para aumentar la sensibilidad
a los cambios de LAI. De este modo, la expresién MCARI se simplificé y dio lugar
a MCARI1. En cambio, la modificacién de TVI se basé en el hecho de que el au-
mento de la concentracidon de clorofila provoca cambios en la reflectancia en la
region del espectro red-edge (750 nm). Para que TVI fuera mas preciso para esti-
mar LAI, la longitud de onda 750 pm fue reemplazada por la de 800 um, cuya
reflectancia es afectada por la arquitectura vegetal e insensible a los cambios de
nivel de pigmentos. De este modo y aplicando un factor de escala, se formuld
MTVI1 (Haboudane et al. 2003). MCARI2 y MTVI2 se desarrollaron para preservar
la sensibilidad de LAI y la resistencia a la influencia de la clorofila mediante la
aplicaciéon del factor de escala desarrollado por Huete (1998), por lo que minimi-
zaron los efectos de la influencia del suelo (Haboudane et al. 2003).

Ajenos a la agrupacién de IV establecida por Haboudane et al. (2003), se in-
corpora otro grupo definido por IV atmosféricos. El indice Enhanced Vegetation
Index (EVI) se desarrollé para optimizar la sefial de vegetacion con una sensibili-
dad mejorada para regiones de alta biomasa y un mejor monitoreo de la vegeta-
cion mediante el desacoplamiento de la sefal de fondo del dosel y una reduccion
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de la influencia de la atmdsfera (Huete, 2012). Como novedad introdujo el factor
L (ajuste de fondo de cubierta); Ci, C2 (Coeficientes de resistencia atmosférica) y
el factor de ganancia (2.5). El indice Global Vegetation Moisture Index (GVMI) fue
desarrollado por Ceccato et al. (2002) para mejorar la sensibilidad al contenido de
agua de la vegetacion y para minimizar la sensibilidad de las perturbaciones at-
mosféricas y angulares, demostrando que GVMI ofrece mayor rendimiento para
predecir el contenido de agua de la vegetacién cuando LAI es igual a mayor a 2.
El indice no-lineal GEMI (Global Environment Monitoring Index) se desarrollé para
monitorear la vegetacion a partir de mediciones en la parte alta de la atmdsfera,
por lo que resulta util para comparar observaciones en distintas situaciones at-
mosféricas y de iluminacion (Pinty y Verstraete, 1992). Por ultimo, el indice Visible
Atmospherically Resistant Index (VARI; Gitelson et al. 2002) se disefd para intro-
ducir una autocorreccién atmosférica en base al indice ARVI.

1.3. Justificacion

Este trabajo se ha realizado en el contexto del proyecto Plan Nacional de I+D+i
del Ministerio de Economia y Competitividad (SynerTGE): “Landsat 8 + Sentinel-
2: exploring sensor synergies for monitoring and modelling key vegetation biop-
hysical variables in tree-grass ecosystems”. (http://www.lineas.cchs.csic.es/sy-
nertge/project overview). La disponibilidad de datos ofrecidos por SynerTGE (es-
pectroscopia de laboratorio y campo e imagenes hiperespectrales aerotranspor-
tado CASI) y sensores satelitales multiespectrales, esta permitiendo el aumento
de trabajos relacionados con la aplicacién de innovadoras metodologias centradas
en relacionar adecuadamente la informacion espectral y variables biofisicas de ve-
getacion en el marco del cambio climatico, cuya finalidad esta siendo validar pro-
ductos de teledeteccion a diferentes escalas espaciales adaptadas a los ecosiste-
mas de sabana.

En este sentido, destaca especialmente el trabajo realizado por Melendo-Vega
et al. (2017), que se utilizard como referencia conceptual y metodoldgica de este
Trabajo Fin de Master. El objetivo de este articulo se centrd en el analisis de las
relaciones empiricas entre variables biofisicas, correspondiente al componente
herbaceo de una dehesa en distintas fases del ciclo fenoldgico, y diversos indices
espectrales de vegetacidn. Dichos IV se derivaron, a escala espacial de resolucion
centimétrica, tanto la informacién original adquirida mediante espectro-radiome-
tria de campo y del sensor hiperespectral aeroportado CASI, como los datos es-
pectrales remuestreados a la resolucion espectral del sensor Multiespectral Instru-
ment (MSI) a bordo del Sentinel-2.

Sus resultados demostraron que los IV mas idéneos fueron aquellos que utili-
zan para su calculo las regiones del SWIR vy el red-edge, lo que coincide con otros
trabajos (Delegido et al. 2011; Hermann et al. 2011; Lee et al. 2004). A partir de
ello, generaron para cada una de las variables estimadas modelos de regresidn
lineal a partir de la serie de imagenes CASI.

Sin embargo, debido a diferente resolucidon espacial que existe entre los datos
de campo y la informacién espectral proporcionada por las series multitemporales
de satélite multiespectrales como Landsat o el propio Sentinel, el grado de ajuste
empirico con estos ultimos disminuye notablemente, siendo mas complejo su uso
en el marco de la modelizacion espacial. En este contexto, en el presente Trabajo
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Fin de Master se propone una metodologia para relacionar informacién multies-
pectral (Landsat) con variables biofisicas a partir del analisis y modelizacién previa
de las relaciones entre el sensor hiperespectral aeroportado CASI y variables bio-
fisicas. Ello permitira incorporar la dimensién temporal de los datos multiespectra-
les en los procesos de modelizacién empirica aplicados a ecosistemas de gran va-
riabilidad fenoldgica y heterogeneidad de cubiertas como son las dehesas del sec-
tor SW de Espana.

2. HIPOTESIS Y OBJETIVOS

El objetivo del presente Trabajo Fin de Master es desarrollar un modelo pre-
dictivo de LAI a partir de informacidon multiespectral de media resolucion espacial
(Landsat) a partir del analisis y modelizacion previa de las relaciones entre infor-
macion hiperespectral a alta resolucion espacial y LAI verdad-terreno, desarrollado
para ambientes heterogéneos como son las dehesas.

Este objetivo principal se fundamenta en la hipdtesis de que las relaciones
empiricas entre datos LAI de pasto, obtenidas mediante trabajo de campo y labo-
ratorio en unidades espaciales de 25x25cm e indices de vegetacidon derivados de
imagenes multiespectrales de 30m de resolucidn espacial (Landsat), no son muy
elevadas debido a multiples factores. Un factor sumamente importante se rela-
ciona con la difusidn entre la resolucién espacial Landsat y la representatividad de
las mediciones en cuadrantes 25x25, por lo que la eleccion adecuada del método
propuesto y los datos elegidos permitird, a priori, obtener un modelo mas robusto
que permita, a priori, determinar de manera precisa cual indice sea el mas ade-
cuado para predecir el pardmetro biofisico LAI.

En este sentido, las imagenes hiperespectrales pueden proporcionar un nivel
intermedio al ajustarse mejor, por su resolucidon espacial y a los datos de LAI me-
didos en campo. De este modo, espacializar primero el LAI (pseudo-LAI) a partir
de los modelos empiricos (Hiperespectral vs LAI campo) y su remuestreo a pixeles
Landsat puede maximizar la modelizacion predictiva con Landsat. Pese a que la
idea no sea nueva, con ello ademas se podria testear la robustez de los modelos
con Landsat al trabajar con muchos mas datos de LAI.

Para la consecucion del objetivo principal planteado, se han establecido una
serie de objetivos parciales que se describen a continuacion:

- Determinar si el mayor potencial de estimacion del LAI esta en indices ba-
sados en las regiones comprendidas entre el V-NIR o el V-SWIR mediante
el uso de técnicas de regresion lineal simple.

- Valorar la influencia de la muestra desde el punto de vista espectral utilizada
para generar los modelos y comprobar cdmo influye en los resultados me-
diante el uso de técnicas de regresion lineal simple

- Determinar si la mejor variable a estimar corresponde a la variable biofisica
LAI verde o LAI total a partir de las funciones predictivas previas derivadas
de los mejores indices espectrales de vegetacion, haciendo uso de técnicas
de regresion lineal simple y validacién RMSE.




- Analizar la influencia/variacion del proceso de normalizacién topografica so-
bre el modelo desarrollado a partir de las ecuaciones predictivas previas
derivadas de indices espectrales de vegetacion, utilizando técnicas de re-
gresion lineal simple y validacion RMSE.

3. METOPOS Y MATERIALES
3.1. Area de estudio

La zona de estudio se localiza en una dehesa perteneciente a la localidad de
Las Majadas de Tiétar, al noroeste de la provincia de Caceres (Extremadura)
(39956 26" "N, 5946 29" "W) (figura 1). Se trata de un area de experimentacién
caracterizada por un uso extensivo de ganado bovino en la que se situa en torno
a una torre de medicion de flujo Eddy Covariance, gestionado por el Centro de
Estudios Ambientales Mediterraneos (CEAM) desde el ano 2003 y que esta incluida
en las redes CARBORED (http://www.ceam.es/carboredes/) y FLUXNET
(http://fluxnet.ornl.gov/). Actualmente, este emplazamiento constituye el labora-
torio experimental del proyecto SynerTGE.

Dehesa, 3.5 millones ha

Ecosistemas de dehesa
Peninsula Tbérica

o

Dehesa
extremena

Landsat 30m % G ol CASI 1m

WGS 1984 UTM Zone 30N - Datum: WGS 1984

Figura 1. Las Majadas de Tejar. Caceres (Extremadura). Fuente: Cartografia base IGN, cobertura dehesa
(MAGRAMA), USGS (Landsat) y SynerTGE (CASI).

El clima en la zona de estudio es mediterrdneo con una temperatura media
anual de 16.7°C y una precipitacion media de 572 mm, llegando a alcanzarse en
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los meses de verano temperaturas maximas de hasta 40°C y precipitaciones me-
dias de tan s6lo 67 mm (Fernandez-Arango et al. 2015). El relieve es poco acci-
dentado, con una altitud media de 256 m.s.n.m.

El tipo de vegetacion natural corresponde a las series meso-mediterraneas de
Pyro bourgeaneae - Querceto rotundifoliae quercetum (Céaceres et al. 2012), que
ha sido transformada en una vegetacidon organizada por dos estratos con caracte-
risticas biofisicas y fenoldgicas muy diferenciados. El estrato arboreo esta com-
puesto principalmente por encinas (Quercus ilex ssp. ballota (L)), ademas de al-
gunos alcornoques (Quercus suber) y quejigos (Quercus faginea). La altura y dia-
metro medios del dosel arbdéreo es de 9 y 6 metros respectivamente y la cobertura
arbdérea cubre aproximadamente un 16% respecto la regidén de interés. El estrato
herbaceo cubre de manera anual la mayor parte del area seleccionada y esta in-
tegrada por una gran variedad de especies entre las que se encuentran Rumex
acetosella L. Plantago carinata Shard, Trifolium subterraneum (L.), Cynodon
dactylon (L.) Pers. Taraxacum dens-leonis Desf. y Vulpiamyuros (L.) C. C. Gmel.
(Melendo- Vega et al. 2017; Fernandez-Arango et al. 2015). En menor medida
superficial, aparecen pequefias lagunas y caminos rurales con propiedades opticas
completamente diferentes a la de la vegetacién.

3.2. Esquema Metodolégico

En este apartado se muestra en forma de modelo conceptual el proceso me-
todoldgico desarrollado (figura 2). El método propuesto se divide en 1) procesa-
miento de las imagenes, 2) elaboracion cartografica pseudo-LAI, 3) Analisis de
regresion lineal simple (RLS) y correlacion (ry r?), 3) validacion de ajustes esta-
distico, 4) aplicacion y validacion de los modelos y, 5) resultados RMSE.
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Figura 2. Esquema metodoldgico
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3.3. Imagenes de satélite y preprocesamientos aplicados

Los datos utilizados para este estudio incluyen imagenes del sensor hiperes-
pectral CASI 1500i e imagenes escaneadas por los satélites multiespectrales
Landsat. El escaneo de las imagenes CASI que se registraron de forma simultanea
a los muestreos de vegetacion in situ tienen en cuenta el estado fenoldgico de
pasto vigoroso, en desarrollo y desarrollado en primavera. Sin embargo, los datos
de reflectividad Landsat no se pudieron tomar de forma simultdnea a los datos
CASI debido a la presencia de nubes sobre la zona de interés y por el grado de
desfase temporal orbital entre la pasada Landsat y las campafnas CASI. Por ello,
se seleccionaron las imagenes Landsat mas proximas a las fechas de las adquiridas
por CASI. El programa europeo Copernicus a través de los sensores Sentinel 2A y
Sentinel 2B fue descartado para realizar este trabajo puesto que solo existen datos
desde junio de 2015.

3.3.1. Imagenes hiperespectrales

La informacién espectral se extrajo de imagenes obtenidas por el sensor hiper-
espectral aeroportado CASI 1500i (Compact Airbone Spectrographic Imager) en
los vuelos realizados por el Instituto de Técnica Aeroespacial (INTA) los dias 5 de
mayo de 2011 y 8 de abril de 2014 sobre la zona de interés. Se trata de un radio-
metro de barrido que genera una imagen mediante una matriz bidimensional de
CCD que mide la energia incidente a lo largo de 1440 pixeles “across-track” con
un tamafo de pixel de 0.90 x 1.58 m. Abarca un total de 288 bandas espectrales
comprendidas entre la regidn del visible y el infrarrojo cercano (VNIR) del espectro
electromagnético, 368-1052 um.

Para este trabajo, las imagenes CASI fueron cedidas a una configuracién para
adquirir informacion en 144 bandas (350-1050 nm aprox.), con un ancho de banda
(Full Width at Half Maximum - FWHM) de 7.5 uym y una resolucidon espacial que
oscila entre 0.5y 1.5 m. El FOV (Field of View) es de 400 y el IFOV (Instantaneous
Field of View) de 0.49 mrad. En cada campafa se realizaron varias pasadas para
cubrir completamente y con distintas geometrias de observacion la zona de inte-
rés. Sin embargo, solo se dispuso de una imagen por fecha, adquiridas en torno a
las 12:00 horas solares en condiciones de cielo descubierto y a una altura de vuelo
de 2103 m. Respecto a la campana de 2011 se dispuso de las pasadas correspon-
dientes al plano solar para minimizar el efecto de sombreado, mientras que para
la pasada de 2014 se modificd la configuracidén del vuelo y no se adquirid pasada
en el plano solar. En su lugar, se utilizé la pasada con un rumbo de vuelo de 253°.
(Bustamante et al. 2016; de Miguel et al. 2014).

Todas las imagenes CASI fueron proporcionadas con correccién atmosférica y
geométrica mediante protocolos estandarizados del INTA. Concretamente a través
del nivel de procesado L2b, tal y como se describe en de Miguel et al. (2014). La
correccion  atmosférica  fue realizada con el software  ATCOR4
(http://www.rese.ch/products/atcor/atcor4/) y fue refinada mediante el método
de Empirical Line Correction empleando superficies de referencia medidas con el
espectro-radidmetro ASD Fieldspec 3 simultdaneamente a la adquisicidon de las ima-
genes (Melendo-Vega et al. 2017).
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3.3.2. Imagenes multiespectrales

Con el propésito de generar productos LAI a resolucion media (900 m?2), se
adquirieron gratuitamente imagenes de la mision Landsat a través del portal U.S.
Geological Survey (USGS) (http://earthexplorer.usgs.gov/). Se usaron escenas
Landsat libres de nubes correspondientes a los sensores multiespectrales TM (The-
matic Mapper) de Landsat-5 de dia 16 de mayo de 2011 y OLI (Operational Land
Imager) de Landsat-8 de dia 22 de abril de 2014.

Estos sensores describen una érbita heliosincrona solar de 98. 2° a una altitud
aproximada de registro de 705 km con un periodo de revista cada 16 dias, aunque
OLI se compensan entre si cada 8 dias. Ademas, la misién Landsat escanea la
superficie terrestre en un campo de visién de 15° y cubre aproximadamente 185
km x 180 km definidos por un sistema de coordenadas de referencia mundial
(WRS) de coordenadas de columnas por linea (paralelos) y columnas por filas (la-
titud paralela) (USGS, 2018; Roy et al. 2015).

El sensor Thematic Mapper posee un radiometro de barrido multiespectral de
tipo whisk-broom, detectan radiacidn filtrada espectralmente en 7 bandas entre el
visible e infrarrojo, centradas entre 0.45 y 12.5 pm. Asi mismo, TM y OLI se defi-
nen a una resolucion de suelo de nadir de 30 metros, pero este ultimo presenta
caracteristicas mejoradas de calibracién y sefal/ruido, una resolucién radiométrica
mas alta de 12 bits frente los 8 bits de TM y un sistema de escaneo tipo pusch-
broom situada a la misma orbita que TM (actualmente fuera de servicio) que le
proporciona en comparacion a los demas sensores Landsat registrar en 9 bandas
mas estrechas comprendidas entre el visible e infrarrojo, 0.435y 2.294 um (USGS,
2018) (Véase tabla 1).

Tabla 1. Caracteristicas técnicas sensores Landsat-5 y 8. Fuente: USGS, 2018

LANDSAT-5 Thematic Mapper LANDSAT-8 OLI y TIRS
Numero de Bandas Longitud de R,esolu- Numero de Bandas Longitud de R,esolu-
ondas (Um)  cién (m) ondas (Um)  cién (m)
Banda 1 - Ultraazul 0.435-0.451 30
Banda 1 - Azul 0.45-0.52 30 Banda 2 - Azul 0.452-0.512 30
Banda 2 - Verde 0.52-0.60 30 Banda 3 - Verde 0.533-0.590 30
Banda 3 - Roja 0.63-0.69 30 Banda 4 - Roja 0.636 - 0.673 30
Banda 4 - NIR 0.76 - 0.90 30 Banda 5 - NIR 0.851-0.879 30
Banda 5 - SWIR-1 1.55-1.75 30 Banda 6 - SWIR-1 1.566 - 1.651 30
Banda 6 - Térmico 10.4-12.5 120* (30) Banda 7 - SWIR-2 2.107 - 2.294 30
Banda 7 - SWIR-2 2.08 - 2.35 30 Banda 8 - Pan 0.503-0.676 15
Banda 9 - Cirrus 1.363 - 1.384 30

Banda 10 - TIRS-1 10.6-11.19 100* (30)
Banda 11 - TIRS-2 11.50-12.51 100* (30)

Las imagenes proporcionadas por el USGS, nivel de procesamiento Level-2,
incluyen correccion atmosférica y valores de reflectividad superficial en formato
GeoTiff (Geographic Tagged Image-File). Para las escenas TM, los valores de re-
flectancia son corregidos con el algoritmo Landsat Ecosystem Disturbance Proces-
sing System (LEDAPS), mientras que para la escena OLI, la correccién atmosférica
se basé en el algoritmo Landsat Surface Reflectance Code (LaSRC), aprovechando
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el mayor rendimiento radiométrico de las imagenes y la menor exposicion de las
bandas espectrales a la absorcion atmosférica (USGS, 2018; Vermote et al. 2016).
Se generd un multibanda para cada escena en formato de archivo *.img y se de-
limitaron acorde a la zona de estudio.

3.3.2.1. Normalizacion Topografica C-Correction

En este trabajo se ha realizado la normalizacidn topografica C-Correction sobre
las escenas Landsat en base a la metodologia propuesta por Teillet et al. (1982),
utilizando el software ERDAS Imagine® y su extensiéon de modelado Spatial Mode-
ler Editor. Se trata de un modelo con un comportamiento de superficie anisotrépico
gque mejora el método del Coseno, de tipo lambertiano (Smith et al. 1980), ya que
anade la constante empirica C para atenuar la sobre-correccion del método del
coseno, simulando la contribucién de la radiacién difusa. Aunque este proceso no
sea siempre necesario para zonas poco accidentadas (Chuvieco, 2015), el propé-
sito del mismo, es comparar los resultados de la modelizacion de parametros bio-
fisicos de vegetacion normalizados topograficamente con aquellos sin correccion,
Unicamente con correccion atmosférica, a través de las relaciones empiricas que
se especifican mas adelante.

Para empezar, el modelo incluye en su formulacidon el computo del coseno del
angulo de incidencia local o imagen de iluminacién (cos ©i), de cada pixel de la
escena a corregir. Para su calculo, la imagen de iluminacién precisa de la pendiente
y orientacion de la escena, por lo que se utiliz6 un MDE (Modelo Digital de Eleva-
cion) con un paso de malla de 25m proporcionado por el Instituto Geografico Na-
cional, IGN. El MDT25 se descargd en formato *.asc y en ETRS89/UTM zona 31,
siendo transformado a formato *.tiff y remuestreda a la resolucion espacial de
Landsat (30m). Asi mismo, se consultaron los metadatos de las escenas Landsat
para incluir los valores correspondientes al angulo cenital solar (8s0) y el angulo
azimutal solar (@so1), se afiadieron los valores de todos los dangulos expresados en
radianes (0.01745 rad) y, posteriormente se aplicod la formula de la imagen de
iluminacion, que se calcula con la siguiente expresion:

IL = cos Bi = cos Bsol COS Op + sen Bso * sen Bp * cos (Dsol = Dori)

donde IL = cos 6i es el coseno de incidencia local; s el angulo cenital solar; ©p es el angulo
de la pendiente del terreno; @so es el angulo acimutal solar y @ori €l angulo de la orientaciéon del
terreno.

Consecutivamente, se aplicé la correccién del coseno (Teillet et al. 1982). Para
ello, en el modelo se incluyeron las imagenes multibanda de Landsat y se trans-
formo a radianes el coseno del angulo cenital solar (cos Bs01). Se calcula como:

pH = pT (cos Bsol/ IL)

donde pH es la reflectividad normalizada para una superficie horizontal y pT es la reflectividad
de una superficie (reflectividad aparente superficial).

Para aminorar la sobre-correccion del método del coseno se afiadié la cons-
tante empirica Cy), donde el término by es la constante y my es la pendiente de la
recta de regresion entre la reflectividad aparente (variable dependiente) y la ima-
gen de iluminacién (variable independiente). Ademas, la ecuacién definida por la
C) se basé en los pixeles correspondientes a pasto, por lo que se excluyeron del
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proceso de correccidon las demas cubiertas (lagos, encinares y caminos). Para ello,
se rasterizd la capa vectorial, permitiendo seleccionar los pixeles definidos por
pasto. Los cocientes de reflectividad calculados para cada banda Landsat se inclu-
yeron en el modelo, cuyos valores comprenden un rango entre -1y +1.

Ci = bxy ma

Finalmente, se aplicé para el modelo el algoritmo de C-Correction, calculado
como:

pH = pT (cos Bsoi + Cr / IL + C))

3.3.2.2. Indices de Vegetacion para la estimacioén del LAI

A partir de los valores de reflectividad de las bandas originales de Landsat-5
TM y Landsat-8 OLI se han calculado una serie de Indices de Vegetacién. Se han
seleccionado los mismos indices espectrales propuestos por Melendo-Vega et al.
(2017) con el propdsito de compararlos con su estudio, basado en indices multi-
espectrales calculados con bandas remuestreadas al sensor MSI (Sentinel-2) e in-
dices hiper-espectrales calculados con bandas CASI y ASD originales. Sin embargo,
se han omitido aquellos indices que utilizan en su formulacion bandas estrechas
situadas en la regién del red-edge (PRI, MCARI y TVI) y otros especializados para
sensores hiperespectrales (CAI) que no permiten ser calculados para las bandas
Landsat. Los IV han sido calculados en el software estadistico Rstudio, utilizandose
para ello el paquete “raster”.

Los indices computados para TM y OLI se dividen en cuatro categorias en fun-
cion de su formalismo y su adhesion a la misma familia (tabla 2) (Haboudane et
al. 2004).
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Tabla 2. Indices espectrales utilizados para la estimacién del Indice de Area Foliar. Clasificacién segin Ha-
boudane et al. 2003.

Formulacién para Landsat-5 (TM) y Landsat-8 (OLI)

Landsat-5 TM Landsat-8 OLI

Referencias

Indices
a) Indices basados en la diferencia normalizada: mejora de la linealidad
B4—B3 B5—B4 Rouse et al.
NDVI B4+B3 B5+B4 1974
RDVI B4 - B3 B5-B4 Roujean y
VB4 + B3 VB5+B4 Breon, 1995
() ()
MSR = = Chen, 1996
(5+1) (5+1)
B4 B5 Zarco-Tejada
SRWI B5 B6 y Ustin, 2001
B4—B5 B5-B6 Hardisky et
NDII B4+B5 B5+B6 al. 1983
B6-B5 B7-B6 Le Maire et
NDBLeaf B6+B5 B7+B6 al. 2004

b) Indices de vegetacién suelo-linea: mejora la influencia del suelo y efectos atmosféricos

SAVI

MSAVI

SARVI

Cvl

CLGreen

MCARI1

MCARI2

MTVI1

MTVI2

EVI

GVMI

GEMI

VARI

0.5%[2*B4+1—,/(2%B4+1)2 —8x (B4 — B3)]

(1+L)*(B5—B4)

=0. L=0.
05 (B5+B4+L 05

(1+L)*(B4—B3)
(B4+B3+L

B4—B3—-L*(B3—B1) B5—B4—L*(B4—B2)

0.5
B4—B3+L*(B3—B1) B5—B4+L*x(B4—B2)
B4xB3 B5%B4
(B2)? (B3)?
B4 B5
21 21
B3

B2
c) Indices de vegetacién mejorados para estimar LAI verde

1.2+ [2.5+ (B4 —B3) — 1.3+ (B4 - B1)] 1.2 [2.5 * (B5 — B4) — 1.3  (B5 — B3)]
1.5+[(B5—B3)—2.5(B4—B3)]

J(2+B5+1)% —(6+B5—5,/B4)—05

1.5%[(B4—B3)—2.5(B3—B1)]

J(2*B4+1)2 —(6+B4—5,/B3)—0.5

1.2 % [1.2 (B4 — B1) — 2.5 * (B3 — B1)] 1.2 % [1.2 * (B5 — B3) — 2.5 x (B4 — B3)]

1.5%[2.5%(B4—B1)—2.5(B3—B1)] 1.5%[2.5%(B5—B3)—2.5(B4—B3)]
J(2xB4+1)2% —(6xB4—5,/B3 )—0.5 J(2%B5+1)2 —(6¥B5—5,/B4)—0.5

d) Indices de vegetacion atmosféricos

255 (—28 1) 25« (—28 1)

B4+6*B3—7.5%B1 B5+6*B4—7.5%B2

(B5+0.1)—(B6—0.002)
(B5+0.1)+(B6—0.002)

(B4+0.1)—(B5—0.002)
(B4+0.1)+(B5—0.002)

[m*(1—-025*m)] — B3-0125 [+ (1—0.25%m)] — B41—_ol.;25

1-B3

B2 — B3 B3—B4
B2+ B3 —-B1 B3+B4—B2

0.5%[2B5+1—,/(2%B5+1)2 — 8% (B5 — B4)]

Huete, 1988

Qi et al.
1994

Haboudane
et al. 2004

Datt et al.
2003
Gitelson et al.
2005

Haboudane
et al. 2004

Haboudane
et al. 2004

Haboudane
et al. 2004

Haboudane et
al. 2004

Huete et al.
2002

Ceccato et al.
2002

Pinty y Vers-
traete, 1992

Gitelson et al.
2002
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3.4. Método de ampliacion de escala basado en pseudo-LAI

Debido a las numerosas incertidumbres asociadas, entre otras, a la compara-
cion entre las mediciones de LAI in situ y la informacidén proporcionada por senso-
res multiespectrales, el grado de ajuste empirico para predecir LAI disminuye con-
siderablemente (Korhonen et al. 2017; Hufkens et al. 2008). Por este motivo, se
propone un método basado en la ampliacidon de escala (upscaling) para evaluar la
informacion proporcionada por Landsat con la variable biofisica LAI, a partir de
remuestrear la cartografia del LAI (resolucién 1m), obtenida mediante los procesos
de modelizacidon empirica previa entre el sensor hiper-espectral CASI y la toma de
dato LAI medida en campo (Melendo-Vega et al. 2017). Se ha convenido en este
trabajo que, el resultado de la modelizacién del LAI mediante imagenes hiperes-
pectrales y su posterior ajuste a la resolucidon Landsat, se denomine pseudo-LAlI,
toda vez que no representa mediciones reales de LAL

3.4.1. Cartografia de los valores continuos de pseudo-LAI a partir
de CASI

Para el tratamiento de las imagenes CASI se ha utilizado el software ENVI
version 4.7 SP1®, A partir de las imagenes originales cedidas por el INTA, en for-
mato *.hdr, se delimito el area de estudio a través de un ROI (Region of interest).
Consecutivamente, se calculé el NDVI utilizando la banda 65 (672.5 um; roja) y la
banda 92 (801.6 um; NIR), para a continuacidén, aplicar la ecuacién de regresion
descrita en Melendo-Vega et al, (2017), siendo x = 1.376 e y = 5.088; el IV fue
NDVI con un RMSE = 22.6 y 2 = 0.84. Ello permitidé obtener la cartografia de los
pseudoLAl a resolucién de 1m. Se transformaron las escenas pseudolLAlI de *.adf
a formato*.tiff para realizar una reclasificaciéon en ArcGIS® version 10.5, con la
finalidad ultima de enmascarar aquellos pixeles que no fueran pasto (figura 3).

Region de interés (ROI)

NDV] = B65—B92
B65+B92
Reclasificacién
1. valor LAI: pasto
2. No data: embalse, caminos
Imagen NDVI y encinares

x (1,376) + y (5,088) * NDVI

Imagen Pseudo-LAI

s
B
W

-

W High: 29214

u o
Low: -6.46°

—

Figura 3. Proceso metodoldgico para obtener cartografia Pseudo-LAI




3.4.2. Fase de ampliacion de escala (upscaling)

Se utilizd un método de ampliacién de escala (upscaling) a través de Rstudio
(paquete raster) para remuestrear la cartografia de pseudo-LAI obtenida mediante
las imagenes hiperespectrales, a la resolucién espacial de las imagenes Landsat-5
TM y Landsat-8 OLI (30m) (Véase figura 4). Para ello, los pixeles de pseudo-LAI
(1m) se agregaron considerando diferentes estadisticos de centralidad y dispersién
(media, mediana, valores minimos y maximos y coeficiente de variacion) (Figura
5). Entre otras cosas, su analisis permite identificar valores anémalos para que
estos puedan ser omitidos (Chuvieco, 2015)

Imagen Landsat

Pseudo-LAI (1m) agregados a Pi-
xel Landsat (30m)

Figura 4. Ilustracién de la técnica de ampliacion de escala (upscaling)

Por otra parte, se evalud la relacion entre la dimensién del valor pseudo-LAI y
la variabilidad de dicho pardmetro biofisico de los pixeles de la imagen a través del
coeficiente de variacion de Pearson (CV). Para ello, primero se calculd la desviacion
estandar de ambas escenas, que se define como la variacion de los valores pseudo-
LAI con respecto a la media de dicha variable. El CV se calculé para cada escena
a través de la siguiente expresion:

o
| X pseudoLAl|

CV =

donde o es la desviacion estandar, y la X pseudo-LAI es la media de los valores LAI de la
imagen.

Tal y como se muestra en la figura 5, los mayores valores del coeficiente de
variacion indican mayor heterogeneidad en los valores de pseudo-LAI debido a la
presencia de coberturas que no representan pasto, tales como caminos y el em-
balse. En cambio, donde abunda el pasto, el coeficiente de variacién presenta va-
lores menores, determinando asi una mayor homogeneidad en los valores pseudo-
LAI. En este sentido, se establece que la presencia de coberturas que no repre-
sentan pasto altera de forma significativa, sobre todo el embalse, los valores
pseudo-LAI
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Figura 5. Cartografia estadistica pseudo-LAI referente a los Coeficientes de Variacion derivada de la fase de
agregacion.

En base a este analisis estadistico, se decidid realizar una mascara sobre las
imagenes Landsat para eliminar del analisis todas aquellas cubiertas que no co-
rrespondieran a pasto, exceptuando los encinares. La no exclusidon de encinares se
debe principalmente a su alta densidad de ejemplares, por lo que su aplicacion
hubiera supuesto eliminar gran parte de los pixeles de las imagenes. Por tanto,
para este trabajo, se ha considerado generar dos modelos para cada escena, uno
que contempla todas las cubiertas y, por tanto, incluye todos los pixeles de la
imagen (modelo A) y otro que excluye del analisis aquellos pixeles que representan
laminas de agua y caminos (modelo B), incluyendo los pixeles cercanos a ellos.

3.5. Analisis de las relaciones empiricas entre pseudo-LAI y los indi-
ces espectrales de vegetacion

En este apartado se evalud el grado de variacidon conjunta existente entre los
IV extraidos de la literatura cientifica (variables independientes) y estadisticos
pseudo-LAI (variable dependiente) mediante un analisis de correlacion simple
(Pearson). El analisis se realizd para cada escena (TM y OLI). De forma paralela,
se realizd un mismo analisis entre los valores de reflectividad de cada banda vy
estadisticos pseudo-LAI para ambos sensores (TM y OLI).

Este analisis de correlaciones permitid obtener para cada variable estimada los
primeros resultados relacionados a los coeficientes de correlacidon de Pearson (va-
lor r) y, coeficientes de determinacién (valor r?). En cada modelo, se evaluaron los
resultados para poder obtener una primera aproximacién de aquellos IV o bandas
espectrales que mas se ajustan linealmente a los estadisticos de pseudo-LAI. Los
valores de los coeficientes varian des de -1 (correlacidon total negativa) a 1 (corre-
lacion total positiva). Los valores cercanos a cero implican escasa o nula correla-
cion entre ambas variables. Dichos analisis se realizaron en Rstudio, utilizando el
paquete “corplot”.

_ XX Vi

1. =
Yo nSySy

donde x; e yirefiere a las diferencias de cada variable (IV y estadisticos LAI); n el nUmero de
la muestra; y Sxy Sy corresponde a las desviaciones tipicas del IV y estadistico pseudo-LAI respec-
tivamente.
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A continuacién, todos los IV fueron sometidos a una muestra aleatoria simple
mediante la funcion sample, con un tamafo de la muestra establecida al 10%
sobre el total de la escena (Modelo A 76 pixeles; Modelo B 46 pixeles). Pese a que
esta técnica sacrifique pixeles de la muestra, cada uno de los pixeles que repre-
sentan los valores de los IV tienen la misma posibilidad de ser elegidos, por lo que
su ventaja principal radica en su poder de generalizacion.

Como resultado, se obtuvo para cada variable estimada los coeficientes de
correlacién ry r? y, en consecuencia, se seleccionaron aquellos IV que alcanzaron
mayores coeficientes. (Figura 6).

—[ Modelo A ]—[ Sample H Cor A ]
Landsat-5 |
™
—— Modelo B Sample CorB ) EEE—
Seleccion
IV (A)
—[ Modelo A ]—[ Sample ]—M—— S—
Landsat-8 Seleccion
OLI IV (B)
—— Modelo B Sample Cor B —

Figura 6. Proceso metodoldgico para seleccionar IV

3.6. Analisis RLS: funciones predictivas, validacion de ajustes esta-
disticos

Una vez elegidos los IV para cada modelo, tanto los indices seleccionados como
LAI fueron sometidos a otra muestra aleatoria establecida al 10% de manera com-
binada, es decir, utilizando ambos sensores. Para obtener un solo valor represen-
tativos de la variable dependiente pseudo-LAI y la independiente (IV), se aplicé
sobre cada variable la media aritmética entre ambos sensores.

Tal y como apunta Cohen et al. (2003), en el caso lineal, el analisis de regresion
simple (RLS) por minimos cuadrados es un enfoque empirico que modela la rela-
cion entre dos variables observadas, siendo Y la variable dependiente pseudo-LAI
mediana y, X, la variable independiente (IV). La expresion de regresién simple se
describe como:

Y:ﬁo‘l‘ 31X+€

donde Y es la variable a predecir, X es la variable de la que Y se predice, B, es la interseccién,
B; es la pendiente de la relacién entre X e Y, y ¢ es el error.

En consecuencia, a través de la modelizacién estadistica realizada sobre ambas
variables se obtuvieron los coeficientes de determinacién r? y las funciones predic-
tivas para ambos modelos.

Con el anélisis de regresion realizado, se aplicaron para cada modelo las ecua-
ciones predictivas realizadas en funcién de los IV seleccionados y pseudo-LAI. Es-
tas funciones predictivas fueron aplicadas a las imagenes de los satélites TM y OLI
en fechas del 16 de mayo de 2011 y 22 de abril de 2014, respectivamente. Tras
la obtencién del pseudo-LAI estimado se procedid a su validacién realizando una
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seleccion aleatoria del 10% de las escenas. A través de andlisis de regresién simple
y sus coeficientes de determinacién se validé la forma y la fuerza de la relacién
entre valores observados y los predichos.

3.7. Fase de aplicacion y validacion

La validacion de productos biofisicos derivados de sensores remotos es un re-
quisito fundamental para garantizar la calidad y precisién de los productos empi-
ricamente determinados. El método mas eficaz para validar productos biofisicos
derivados de sensores remotos es compararlos con mediciones tomadas en campo
para las cuales existen protocolos de medicion establecidos (Privette et al. 1998).
Ante esta afirmacidn, en este trabajo se desarrollé un modelo para establecer de
manera Optima relaciones empiricas entre datos correspondientes a las variables
biofisicas LAI total y LAI verde (Green LAI) medidas en una dehesa con informacién
optica derivada de Landsat-8 OLI.

3.7.1. Muestreo en campo: LAI total y LAI verde
Segun indican Melendo-Vega et al. (2017), los muestreos en campo se reali-

zaron sobre un total de 11 parcelas de 25x25m localizadas en una dehesa extre-
menfa. (figura 7).
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O W *'__:y.»
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J

Figura 7. Distribucién de las parcelas de muestreo en el area de estudio.

Estas parcelas se distribuyeron de forma aleatoria de acuerdo al protocolo pro-
puesto en el proyecto Biospec (http://www.lineas.cchs.csic.es/biospec/). En cada
una de las once parcelas se realizaron muestras destructivas del pasto entre el 30
de octubre de 2013 y el 15 de junio de 2016 repartidas en 17 jornadas de mues-
treos en campo. En cada parcela se tomaron muestras de pasto sobre 3 cuadrantes
de 25x25 cm localizados de forma semi-aleatoria. En los casos de que dentro de
la parcela hubiera uno o mas encinares, al menos uno de los cuadrantes de mues-
treo se localizé bajo el area de dominio de la copa del encinar, espacio donde suele
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tener propiedades distintas debido al efecto del sombreado y el aporte de la ma-
teria seca muerta (Melendo-Vega et al. 2017).

El procesado de las muestras de pasto fue realizado por el equipo cientifico
SynerTGE en un laboratorio adaptado para ello. El proceso empez6 con la separa-
cion manual de una submuestra representativa de la muestra total. La cantidad de
submuestra seleccionada varidé en funcién del peso de la muestra total siendo en
cualquier caso superior al 18% de la misma. Cada una de las submuestras fue
escaneada (Epson Perfection V30 color scanner) con el objetivo de realizar el
calculo del area foliar del vegetal. Para ello, obtuvieron clasificaciones no supervi-
sadas de las imagenes escaneadas utilizando el algoritmo ISOCLUS con 16 itera-
ciones utilizandose los softwares PCI y Matlab®. A continuacion, las muestras de
pasto pasaron por un proceso de secado a través de una estufa a 60°C durante un
periodo de 48 horas, obteniéndose asi su peso seco (Melendo-Vega et al. 2017).
A continuacion, calcularon las variables LAI total y LAI verde mediante las siguien-
tes expresiones:

Wd+«Wdsv
Wds* Asv
WdsvxApt

LAI verde =

donde W es el peso en cm; d refiere al peso seco; s significa la submuestra; v corresponde a
la fraccion verde; A es el area y Apiot €s la superficie del suelo muestrada.

Para calcular el LAI total, anteriormente tuvieron que calcular LAI no verde
(nv) a través de la siguiente expresion:

Wd+«Wdsnv
Wds* Asnv
W dsnvx* Ay

LAI no verde (nv) =

Donde nv corresponde a la fraccion no verde.
Por tanto, LAI total se define como:
Lai total = LAI verde + LAI no verde

En este trabajo, las variables LAI tomadas en campo se les aplicdé la media
aritmética en hoja Excel sobre LAI total y LAI verde en relacién a cada una de las
once parcelas de muestreo y para sus distintos dias de toma de datos en campo.
De esta forma, se obtuvo el valor de LAI total y LAI verde como valores observa-
dos. A continuacion, se vectorizaron ambas variables en distintos archivos *.shp
mediante el software ArcGIS 10.5.

3.7.2. Imagenes Landsat-8 OLI para la validacion del modelo de
estimacion de LAI

Se descargaron a través del portal USGS 5 imagenes escaneadas por el sensor
OLI, a bordo de Landsat-8. La serie multitemporal y, libre de nubes, correspondie-
ron a las fechas del 7 de marzo de 2014, 08 de mayo de 2014, 31 de octubre de
2014, 28 de junio de 2015 y 17 de junio de 2016. Las escenas se adquirieron con
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el nivel de procesamiento Level-2, por lo que se adquirieron con correccién atmos-
férica a través del algoritmo LEDAPS. Para todas las escenas, se generd un multi-
banda acorde a la region de interés, mientras que para ajustarse al modelo B se
realizd una mascara para eliminar los pixeles situados sobre el embalse y caminos,
asi como sus pixeles vecinos.

Se excluyeron del analisis todas aquellas escenas con presencia de nubes sobre
el area de estudio. Ademas, se tomo el criterio de no utilizar aquellas escenas con
un desfase temporal mayor a 7 dias entre el escaneo realizado por sensor OLI y
las muestras realizadas en campo debido a las incertidumbres inherentes asocia-
das a condiciones meteoroldgicas o fenoldgicas sobre el pasto (Tabla 3). Asi
mismo, la escena solicitada el 16 de febrero de 2016 fue cancelada por parte del
USGS. Aun asi, las escenas utilizadas tienen en cuenta el estado fenoldgico del
pasto, caracterizado por un significativo contraste entre un pasto vigorosos en
desarrollo y desarrollado en primavera, y seco y carente de actividad fotosintética
a final de verano (Melendo- Vega et al. 2017)

Aduisicién escena v, o Y 4

4
<
4

Solicitud cancelada

Presencia de nubes vV vV vV vV
Desfase dias escaneo
2 5 =7 >7 >7 >7 >7 >7 >7
sensor-campo
o ¥ ¥ v 3 v w0 v L 45 90 0 v L
Fechas muestras en & &% & & > & &L & & &L = T 4 4 a5
o] © [
campo 8 £ £ § £ 2 3 & = T £ (\?T g & 3§ g 3
8 8 838 83 5 2L & 50 &5 g 2
Estacion climatica Oto Inv Pri Pri Pri Pri OtolInv Inv Pri Pri Ver Oto Inv Pri Pri Pri

Tabla 3. Factores que implican la seleccidon de imagenes Landsat-8 OLI

3.7.3. Modelizacién estadistica de LAI total y LAI verde a partir
de Indices de Vegetacion

Se testean las funciones predictivas realizadas utilizando las distintas escenas
Landsat-8 OLI y las medidas de LAI en campo, para a continuacién, evaluar las
predicciones de LAI dadas por los indices con mayores coeficientes de ry r2.

Validacion de modelos

Una vez obtenidos los valores predichos y observados para cada uno de los
escenarios generados, se realizé un analisis de regresién simple para cada variable
estimada y sujetas a sus distintos modelos, con el propdsito de evaluar la relaciéon
lineal entre los valores predichos y observados. Los resultados se graficaron y se
trataron mediante Rstudio a través del paquete “ggplot2”.

Para la validacion se utilizo el error cuadratico medio (Root-mean-square de-
viation, RMSE). Este es un estadistico destinado a medir el promedio de los errores

22



al cuadrado entre los valores predichos y observados y, es una expresidon equiva-
lente a la desviacion tipica en ausencia de sesgo, es decir, si el valor del error
medio fuera cero. RMSE presenta errores en la misma unidad de medida que la
muestra, donde cuanto mas préximo sea su valor a 0 mejor sera el producto ob-
tenido. La expresidn del error cuadratico medio de define como:

?:1(3’1’ _Yi)
n

RMSE =

donde y es el valor observado, Y es el valor predicho, y n es el nimero total de observaciones.
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4. RESULTADOS

4.1. Cartografia de los valores continuos de pseudo-LAI a partir de
CASI

En base a la funcidon de regresion utilizada por Melendo-Vega et al. (2017) y
calculada a través del NDVI, se elaboré cartografia de pseudo-LAI a resolucion de
1m para cada escena CASI centrada en la region de interés. Ademas, tal y como
se ilustra en la figura 8, la reclasificacidn realizada permitié representar aquellos
pixeles exclusivos a pasto y, al mismo tiempo, excluir aquellos pixeles represen-
tativos a laminas de agua, caminos y encinares. A simple vista, la escena CASI (5-
5-2011) presenta valores de pseudo-LAI ligeramente superiores a la imagen CASI
(8-4-2014). Entre esta diferencia, la cantidad de lluvia recibida por el dosel vegetal
en las semanas previas al escaneo de las escenas CASI, podria haber marcado el
vigor vegetal del pasto y, con ello, la dinamica fenoldgica (Chuvieco, 2015).

Pseudo-LAI (5-5-2011) Pseudo-LAI (8-4-2014)
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Figura 8. Cartografia pseudo-LAI

4.2. Magnitud y distribucion espacial de los valores pseudo-LAI

Se aplicé la técnica de ampliacién de escala en base a la cartografia pseudo-
LAI y, con ello, se aplicaron estadisticos, para a continuacién, ser agregados a
resolucion Landsat 30m. En la figura 9, se muestra la magnitud y distribucion es-
pacial de los valores pseudo-LAI representados por estadisticos de centralidad
(media y mediana) y de dispersién (valores minimos y maximos) a resolucién
Landsat 30m, en fechas del 5-5-2011 (Landsat-5) y 22-4-2014 (Landsat-8)

En cuanto a la media, en tales escenas se define por la suma de todos los
valores pseudo-LAI por el nUmero total de pixeles de la imagen. En este sentido,
la magnitud de pseudo-LAI media establecida para la escena Landsat-5 es de 1.80,
mientras que para la imagen Landsat-8 es ligeramente inferior, siendo de 1.42. La
diferencia en relacién a la magnitud de los valores pseudo-LAI media entre una y
otra escena, esta relacionada por la dinamica fenoldgica, es decir, el estado de
vigor vegetal del pasto.

Por otro lado, se calculd la mediana como otro estadistico de centralidad que
define el nimero de pixeles de pseudo-LAI cuando se clasifican en orden, siendo
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de 2.13 para Landsat-5 y 1.65 para la Landsat-8. pseudo-LAI mediana se formulé
para ambas escenas como:
784 784 o

2 -1 7 -1
*a; (3.25) Landsat8 = Me = L; + =———xa; (2.91)

Landsat5 = Me = L; + =———
andsa e i F, F,

T . 784
Donde L; es el limite inferior del valor pseudo-LAI donde se encuentra la mediana; — €s la

semisuma de las frecuencias absolutas; F;_; es la frecuencia acumulada anterior a LAI mediana y
a; es la amplitud de los valores pseudo-LAI.

Pese a que pseudo-LAI media y pseudo-LAI mediana desempefien una funcién
similar para analizar la tendencia central del conjunto de pixeles representativos a
pseudo-LAI, pseudo-LAI media es mas sensible a los valores extremos de los pi-
xeles de la escena, es decir, se ve afectada por valores de pixeles separados que
son mucho mas altos o bajos que el resto de pixeles, como por ejemplo las [dminas
de agua, caminos, etc. En cambio, pseudo-LAI mediana representa un tanto mejor
la realidad de la variable biofisica LAI, debido a que se afecta menos por la pre-
sencia de sesgos de los pixeles con valores extremos.

Los estadisticos de dispersion utilizados describen el grado de dispersion de los
valores de los pixeles pseudo-LAI respecto a la medida de la tendencia central. En
relacién a la escena Landsat-5, los valores de pseudo-LAI presentan un rango de
3.25, mientras que, para Landsat-8 el rango es ligeramente inferior. Tal y como
se ilustra en la figura 8, se aprecia como la heterogeneidad de cubiertas origina
que existan muy pocos pixeles a resolucion Landsat que representen exclusiva-
mente pasto, en cambio, en relacién a los valores maximos, se aprecia que el pasto
esta representado en la totalidad de los pixeles, a excepcién de la laguna. En am-
bos casos, se da una distribucién espacial de pseudo-LAI opuestamente homogé-
neos.

Estadisticos resolucion Landsat 30m (5-5-2011) Estadisticos resolucién Landsat 30m (22-04-2014)
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Figura 9. Cartografia pseudo-LAI (estadistica) derivada de la ampliacion de escala y fase de agregacion a
resolucién Landsat (30m)

25
20
15
1.0
04
0.0

25



4.3. Analisis de las relaciones empiricas entre pseudo-LAI e indices
espectrales de vegetacion

El grado de ajuste lineal (r y r?) entre los IV computados y los pseudo-LAI se
presentan divididas en cuatro categorias en funcién de su formalismo y su adhe-
sion a la misma familia (Haboudane et al. 2004), sea para sensor TM como para
OLI y, sus modelos asociados. Ademas, se presentan los resultados procedentes
de las muestras (sample) aleatorias para cada escena y modelo de manera sim-
plificada y en formato tablas. Estos procesos permitieron seleccionar aquellos IV
gue obtuvieron un mayor grado de correlacion.

Modelo A, Landsat-5 TM y Landsat-8 OLI

En cuanto a la imagen Landsat-5 TM, tal y como se muestra en la figura 10,
se han obtenido mayores correlaciones (r y r?) con aquellos IV especializados a
estimar LAI verde. Por el contrario, Los IV atmosféricos muestran bajos grados de
correlacién. Ademas, los IV computados se relacionan linealmente mejor con el
estadistico pseudo-LAI mediana en lugar de pseudo-LAI media para todos los ca-
sos, debido a que pseudo-LAI mediana se aproxima mas a la realidad de pseudo-
LAI medida en campo.

De manera individual y asociados al grado de ajuste con pseudo-LAI mediana,
los IV con mayor grado de correlacién son MCARI1 y MTVI1 con r = 0.77 y r? =
0.59y, los IV MSAVI y MTVI2 con r = 0.74 y 2 = 0.54. Por otro lado, GEMI y CVI
obtuvieron bajos grados de correlacion, mientras que, el IV NOBLeaf obtuvo un
coeficiente de correlacidon negativa y de caracter moderada.

En relacidn a la escena Landsat-8 OLI, asi como se observa en la figura 11, los
resultados son semejantes a los obtenidos para la escena TM, afirmando que los
mayores coeficientes responden a los IV especializados a estimar LAI verde. Sin
embargo, los valores de los coeficientes de ry r? son un tanto mayor, encabezados
por MCARI y MTVI1 conr =0.84y rP = 0.71 y CLGreen con r = 0.82 y r° = 0.68.
Los indices espectrales que peores ajustes lineales presentaron fueron GEMI con r
=0.29yr?=0.08y,CVIiconr=0.47yr’=0.22.

En cuanto a los ajustes lineales entre las bandas espectrales y los pseudo-LAI,
como se ilustra en la figura anexada 26 la Unica banda espectral que muestra un
grado de variacién conjunta moderada con la variable dependiente pseudo-LAI
corresponde a la banda NIR, con coeficientes (ry r?) similares tanto para la escena
TM como para OLI. Asi mismo, a diferencia de los IV utilizados, las bandas espec-
trales se relacionan mejor con pseudo-LAI media en lugar de pseudo-LAI mediana,
aunque de manera muy timida.

Por tanto, la banda NIR derivada del sensor OLI obtuvo coeficientes con res-
pecto a pseudo-LAI media de r = 0.69 y r2 = 0.48, mientras que la imagen TM
obtuvo valores ligeramente inferiores, con r = 0.53 y r2 = 0.28. En este sentido,
es destacable remarcar que los coeficientes obtenidos para el NIR a través de OLI
son equiparables a IV tales como SARVI, MCARI2, EVI y, mejores a NDII.
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Figura 10. Anélisis de Correlacion de Pearson y Coeficientes de determinacion para el Modelo A, sensor TM
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Figura 11. Analisis de Correlacion de Pearson y Coeficientes de determinacion para el Modelo A, sensor OLI
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Modelo B, Landsat-5 TM y Landsat-8 OLI

En cuanto a la escena Landsat-8 TM, tal y como se muestra en la figura 12 se
han obtenido mayores correlaciones (ry r?) con aquellos IV basados en la diferen-
cia normalizada y mejora de la linealidad, exceptuando el IV NDBLeaf, cuya corre-
lacién con los estadisticos pseudo-LAI sigue siendo al igual que ocurre en el modelo
A, negativa y moderada. No obstante, el grupo de 1V especializados a estimar LAI
verde siguen teniendo altos grados de ajuste lineal con los estadisticos pseudo-
LAI. En cambio, los IV que mejoran la influencia del suelo y los efectos atmosférico
y, los IV atmosférico ofrecen las peores relaciones lineales con las variables de-
pendientes pseudo-LAI, a excepcion de GVMI, el cual obtuvo un alto grado de
correlacion.

Por tanto, los IV con mayores correlaciones con LAI mediana corresponden a
NDII y GVMI conr =0.81yr?=0.69y, SRWIy MSAVIconr=0.8y rP =0.65y
0.64, respectivamente. Cerca de esos valores, se dispone de una bateria de IV con
altas correlaciones (NDVI; MSR; SAVI; MCARI1; MTVI1 y RDVI). En contrapartida,
destacar el bajo rendimiento que ofrece el IV CVI, cuya asociacion lineal con LAI
es mas bien baja.

Sin duda alguna, tal y como se ilustra en la figura 13, en general, todos los IV
presentan altos grados de correlacién con relacion a los estadisticos pseudo-LAlI,
a excepcion de EVI, GEMI y CVI. Asi mismo, el IV NDBLeaf presenta, al igual que
ocurre con la escena TM, un valor de asociacidon con pseudo-LAI de forma mode-
rada y negativa.

Por grupos de 1V, tanto los basados en la diferencia nhormalizada y mejora de
la linealidad, como los especializados a estimar pseudo-LAI y los IV que mejoran
la influencia del suelo, en general, ostentan correlaciones de valor r y 2 muy altos,
entre 0.88 y 0.91 y, 0.77 y 0.81, respectivamente. Sin embargo, destaca sobre
los demas y al igual que ocurre con la escena TM, los IV NDII y GVMI, ambos con
r =0.91 y r?2 = 0.83 en relacion con LAI mediana. Vuelve a destacar por su nula
correlacién con los estadisticos LAI, la variable independiente CVI.

En relacién a la variacion conjunta entre las bandas espectrales y los pseudo-
LAI, se aprecia en la figura anexada 27, que la banda NIR es la Unica que presenta
grados de correlacion optimos. Pese a ello, existen diferencias en cuanto a los
valores de los coeficientes entre la escena TM y OLI, siendo para esta mayor a TM.
Sin embargo, se observa que la banda NIR, como caso Unico en relacién a las
demas bandas TM Y OLI, se relaciona mejor con pseudo-LAI media en lugar de
pseudo-LAI mediana.

Por tanto, la banda NIR derivada de TM ostenta un r = 0.68 y r? = 0.46 en
relacién a pseudo-LAI media y, mucho mayor para OLI, conr = 0.85y rZ = 0.73
en relacion a pseudo-LAI mediana. Es destacable como la banda NIR derivada del
sensor OLI, presenta coeficientes en relacién a LAI mediana casi equiparables con
aqguellos IV que obtuvieron valores altos de correlacién.
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Figura 13. Anélisis de Correlacion de Pearson y Coeficientes de determinacion para el Modelo B, sensor OLI

Muestras aleatorias y seleccion del IV, MODELO A
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Una vez aplicadas las correlaciones para ambos modelos, se realizaron mues-
tras aleatorias sobre cada escena asociada a cada modelo. En base a ello, los
resultados fueron simplificados y plasmado en tablas con la finalidad de eliminar
del analisis los indices con valores bajos de correlacion y, a la vez, facilitar la in-
terpretacién sobre aquellos IV que obtuvieron las mayores correlaciones.

En relacién al modelo A, la tabla 4 muestra los resultados derivados de las
muestras aleatorias establecidas al 10% sobre las escenas TM y OLI. Para ambas
escenas, los indices espectrales de vegetacion con mayor grado de correlacion con
pseudo-LAI mediana corresponden a MCARI1 y MTVI1, ambosconr=0.81y r? =
0.65 para Landsat-5 y, del mismo modo, con r = 0.88 y r2 = 0.77 para Landsat-8.

Sin embargo, resulta interesante como todos los IV seleccionados mejoran su
rendimiento para predecir pseudo-LAI cuando utilizan informacion espectral deri-
vada de Landsat-8 en lugar de Landsat-5. Por ejemplo, sobre esta idea destaca en
relacion a los demas, el IV CLGreen, donde este indice mejora substancialmente
su rendimiento para predecir LAI cuando utiliza el sensor OLI, es decir, pasa de un
r = 0.73 (Landsat-5) a un r = 0.86 (Landsat-8).

Tabla 4. Anélisis de correlacion (r y r?) entre Pseudo-LAI vs IV en base a muestras aleatorias al 10% sobre
las escenas TM y OLI. Modelo A. Representacion simplificada de resultados.

Modelo A, Sensor TM (Landsat-5) Modelo A, Sensor OLI (Landsat-8)

Indices de  LAI mediana LAI mediana LAI mediana LAI mediana
vegetacion r ) r -
MCARI1 0,81 0,65 0,88 0,77
MTVI1 0,81 0,65 0,88 0,77
MTVI2 0,75 0,56 0,8 0,65
MSAVI 0,75 0,56 0,8 0,66
NDVI 0,74 0,56 0,81 0,66
SAVI 0,74 0,56 0,81 0,66
RDVI 0,73 0,54 0,81 0,66
MSR 0,73 0,54 0,81 0,66
CLGreen 0,73 0,53 0,86 0,74
NDII 0,41 0,22 0,5 0,36

En consecuencia, en funcidn a los mayores grados de correlacidon obtenidos, se
selecciona el IV MCARI1 para el posterior analisis de regresién lineal simple. Asi
mismo, se afirma que para este modelo en la que participan todos los pixeles de
la escena y, por tanto, todas las cubiertas (embalse, caminos, encinares y pasto),
los IV con mayor correlacion con pseudo-LAI mediana corresponden a los destina-
dos a estimar LAI verde.

Muestras aleatorias y seleccion del IV, MODELO B
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En cuanto al modelo B, las mayores correlaciones derivadas de las muestras
aleatorias sobre cubiertas exclusivas de pasto y encinares corresponden a los in-
dices de vegetacion NDII y GVMI (tabla 5). En concreto, para la escena TM, ambos
IV obtuvieron un r = 0.81 y 2 = 0.65, mientras que para Landsat-8, todos los IV
de vegetacion mejoraron substancialmente su grado de variacién conjunta con la
variable dependiente pseudo-LAI. De manera analoga a TM, los indices espectrales
con mayor grado de asociacidén con LAI corresponden a las variables independien-
tes NDII y GVMI, ambos con un r = 0.92 y 2 = 0.85.

No obstante, es destacable como los IV MCARI1, MTVI1, MTVI2 y MSAVI ofre-
cen muy buenas prestaciones para predecir pseudo-LAI en ambo modelos. En
cambio, NDII y GVMI ostentan los mayores valores de reflectividad, aunque redu-
cen su fiabilidad cuando se trata de estimar pseudo-LAI a través de Landsat-5.

Tabla 5. Andlisis de correlacion (r y r?) entre pseudo-LAI vs IV en base a muestras aleatorias al 10% sobre
las escenas TM y OLI. Modelo B. Representacion simplificada de resultados.

Modelo B, Sensor TM (Landsat-5) Modelo B, Sensor OLI (Landsat-8)

Indices de  LAI mediana LAI mediana LAI mediana LAI mediana
vegetacion r 2 r r2
NDII 0,81 0,65 0,92 0,85
GVMI 0,81 0,65 0,92 0,85
SRWI 0,8 0,64 0,91 0,83
MCARI1 0,78 0,61 0,89 0,79
MTVI1 0,78 0,61 0,89 0,79
MTVI2 0,78 0,61 0,88 0,78
NDVI 0,77 0,59 0,89 0,79
SAVI 0,77 0,59 0,89 0,79
MSAVI 0,77 0,59 0,88 0,78
MSR 0,76 0,58 0,88 0,78
RDVI 0,76 0,58 0,88 0,78

En base a los resultados obtenidos, se selecciona el NDII como aquel IV que
ha obtenido el mayor grado de correlacidn en relacion a los demas con pseudo-LAI
mediana, por lo que sera el IV utilizado para realizar el posterior analisis RLS. Estos
analisis demuestran que los IV formulados sobre pixeles situados sobre pasto y
relacionados empiricamente con pseudo-LAI mediana, ha originado que estos IV
ostenten mayores grados de variacién conjunta con la variable dependiente
pseudo-LAI en relacidén a los demas modelos.

4.4. Analisis RLS: funciones predictivas
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LAI mediana

En base a los analisis de correlacion realizados anteriormente se han seleccio-
nado aquellos IV con mayor grado de variacién conjunta con pseudo-LAI mediana,
siendo MCARI1 (modelo A) y NDII (modelo B). Para cada modelo, la relacién em-
pirica entre pseudo-LAI mediana y los IV seleccionados se determinaron a partir
de datos obtenidos en base a un muestreo aleatorio simple de forma combinada
establecida al 10% sobre ambos sensores (TM y OLI).

A partir de los analisis de regresion lineal simple se obtuvieron las ecuaciones
predictivas para cada modelo, responden a las siguientes expresiones y, con ellas
se mide la bondad del ajuste de la recta a los datos a partir del coeficiente de
determinacion:

Modelo A

MCARI1: pseudo-LAI mediana = -0.2432 + 0.0007304, con un r? 0.842

Modelo B
NDII: pseudo-LAI mediana = 1.093 + 4.687, con un r? 0.8501

Por tanto, tal y como se muestra en la figura 16, ambos modelos son estadis-
ticamente significativos debido a que se observa una distribucion, en general, bas-
tante uniforme entre la variable dependiente (pseudo-LAI mediana) y las indepen-
dientes (MCARI1 y NDII). Es interesante observar, que el modelo A contiene valo-
res que representan pixeles con rangos de valores de MCARI1 infraestimados, por
lo que la prediccién individual de ese pixel queda fuera del rango de valores ob-
servados. Ello se debe, basicamente, a que la muestra aleatoria seleccioné pixeles
gue representan cubiertas ajenas al pasto, como el embalse o los caminos. Dada
esa incertidumbre afiadida, se hace patente que este modelo ofrece un menor
rendimiento en cuanto al grado de variacién conjunta entre ambas variables.

MODELO A MODELO B
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Figura 14. Relaciones empiricas entre pseudo-LAI mediana y los indices predictores seleccionados a partir
T™ y OLI

4.5. Validacion de los ajustes estadisticos
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LAI predicho a partir de MCARI1

Se aplicaron las funciones predictivas para ambos modelos con el propdsito de
modelizar las variables predictoras en base a los IV seleccionados y los valores
pseudo-LAI. Las funciones predictivas se describen de la siguiente forma:

Modelo A

MCARI1: pseudo-LAI mediana = -0.2432 + 0.0007304 *MCARI1 (TM)

MCARI1: pseudo-LAI mediana

-0.2432 + 0.0007304 *MCARI1 (OLI)

Modelo B

NDII: pseudo-LAI mediana = 1.093 + 4.687 * NDII (TM)

NDII: pseudo-LAI mediana = 1.093 + 4.687 * NDII (OLI)

El analisis de regresion lineal simple demostré que ambos modelos generados
son estadisticamente satisfactorios, debido a sus altos grados de asociacion entre
los valores predichos y los observados (figura 17). Pese a eso, el coeficiente de
determinacion varia entre ambos modelos desarrollados sobre una dehesa, siendo
menor para MCARI1 (r2 = 0.77). Por tanto, es de destacar que la dispersién entre
los valores observados y los predichos a través de NDII, presentan un ajuste lineal
casi perfecto, con un 2 = 0.93.
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Figura 15. Relaciones empiricas entre LAI observado y pseudo-LAI predicho a partir de MCARI1 (Modelo A)
y NDII (Modelo B).

4.6. Aplicacion y validacion de modelos: datos Landsat-8 y verdad-
terreno.
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En este apartado se aplican anélisis de regresiéon simple (RLS) en relacién a los
valores observados y los valores predichos y, se validan los modelos predictivos
para estimar LAI mediante el estadistico RMSE.

Tal y como se muestra en la figura 18, las predicciones que estiman LAI se
sitlan en la mayoria de los casos en grupos conglomerados, por lo que se diferen-
cian claramente las predicciones tomadas en distintas fechas.

Por otro lado, los modelos predictivos de NDII (modelo A) para estimar LAI
acaparan los menores errores de error cuadratico medio (RMSE), siendo de 0.596
para LAI total y 0.473 para LAI verde. En cuanto a MCARI1 (modelo B), los errores
RMSE son un tanto mayor que NDII, siendo de 0.614 para LAI total y 0.703 para
LAI verde. Esta observacion confirma que el modelo generado en base a pixeles
gue representan pasto y encinares ofrecen un mayor rendimiento para la predic-
cion de LAIL.

Si individualizamos los casos, la prediccién de NDII referente al 28 de junio de
2015 obtuvo un grado de asociacion excelente entre los valores de LAI verde me-
didos en campo y los estimados por NDII, con un RMSE de 0.196. Con resultados
consistentes de RMSE se identifican también los modelos de prediccién NDII para
estimar LAI total con fecha del 28 de junio de 2015 (RMSE = 0.347) y el modelo
predictivo de MCARI1 para estimar LAI verde con fecha del 8 de mayo de 2014
(RMSE = 0.335). Dados estos resultados, existe una marcada relacion entre los
mejores predictores de LAI derivada de las funciones predictivas (abril — mayo)
con la toma de datos medidas en campo realizadas en fechas fenoldgicas similares,
donde el pastizal de la dehesa se encuentra en su periodo de maximo desarrollo.

En contrapartida, los modelos predictivos realizadas para periodos invernales
presentan modelos menos consistentes, cuyos RMSE varian entre 0.562 y 1.152.
Del mismo modo ocurre para las predicciones otofiales en relacidon al sensor TM,
con un RMSE = 0.723 MCARI1 y RMSE = 1.011 NDII. Se confirma, por tanto, que
los modelos generados ofrecen un mayor rendimiento para los periodos fenoldgi-
cos primaverales-estivales.

Tal y como indica Cohen et al. (2003), los modelos de prediccién, cominmente,
siempre pueden tener predicciones individuales fuera del rango de valores obser-
vados. Esta confirmacidn, se traduce en este trabajo con los predictores MCARI1
y NDII para estimar LAI en fecha del 6 de marzo de 2014, donde se disponen
sistematicamente cuadrantes (304 y 211) con valores fuera de rango sobre la cual
se construyo el modelo. En los casos de MCARI1 se observa sobreestimacién, en-
torno a >1.2 sobre la linea de ajuste, mientras que para NDII ocurre infraestima-
cion, aunque con un rango menor que MCARI1, entorno a <0.6. Otro ejemplo
ocurre para los predictores de ambos indices para estimar LAI en fecha del 31 de
octubre de 2014.

Dadas estas particularidades, la exclusién u omisién de valores atipicos -en
este caso representados por cuadrantes- que afiaden incertidumbres a los modelos
se ofrecen como una alternativa a mejorar la bondad y el ajuste de las relaciones
empiricas entre los valores predichos y los observados para estimar LAI.

MODELO A MODELO B
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Figura 16. LAI observados vs LAI predichos. Validaciones RMSE

A continuacidn, se testean las funciones predictivas en base a la imagen corre-
gida topograficamente mediante el método c-correction (Teillet et al. 1982) deri-
vada de la escena Landsat-8, adquirida el 22 de abril de 2014. De este modo, se
escogieron como valores observados el LAI medido en campo el 8 de mayo de
2014. El desfase temporal entre la toma de datos en campo y el escaneo a través
del sensor OLI fue de -13 dias, con una precipitacién acumulada de aprox. 34 I/m?
(REDAREX, 2018) desde un mes vista a la toma de dato de LAI en campo.

Tal y como se ilustra en la figura 17, los modelos predictivos para estimar LAI
total acaparan, de manera substancial, mejores resultados RMSE, donde la nube
de puntos se ajusta razonablemente a una recta con una pendiente negativa. Como
ocurriera anteriormente, la parcela 304 aparece, en todos los casos, como valor
atipico.

Pese a que el area de interés sea poco accidentada, los modelos predictivos
para estimar LAI total basados en imagenes normalizadas han obtenido un RMSE
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ligeramente mejores que los testeados anteriormente para una misma fecha.
Siendo mejor para el NDII (escena c-correction) con un RMSE = 0.577 vs RMSE =
0.598 (escena sin correccién) y menor para MCARI1 (escena c-correction) con un

RMSE = 0.67 vs RMSE = 0.716 (escena sin correccion).

La prediccidon de LAI verde (MCARI1 y NDII) en relacién a la imagen c-correc-
tion decayé de manera significativa en relacion a las escenas no corregidas.
MCARI1(escena c-correction) con RMSE = 1.24 y mucho mejor para la escena sin
correccién normalizada, con RMSE = 0.335, mientras que NDII (escena c-correc-
tion) obtuvo un RMSE = 0.959 vs RMSE = 0.456 (escena corregida)
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El objetivo del presente Trabajo Fin de Master fue desarrollar un modelo pre-
dictivo del LAI a partir de informacién multiespectral de media resolucidon espacial
(Landsat) a partir del analisis y modelizacion previa de las relaciones entre infor-
macidén hiperespectral a alta resolucidon espacial y LAI verdad-terreno, desarrollado
para ambientes heterogéneos como son las dehesas.

La utilizacion de sensores hiperespectrales (CASI) y multiespectrales, como
Landsat o el propio Sentinel-2 y, otros muchos mas como por ejemplo MODIS, han
permitido establecer relaciones empiricas para estimar el LAI a partir de datos LAI
medidos en pastizales e indices espectrales propuestos en la bibliografia cientifica
(Melendo-Vega et al. 2017; He et al. 2016; Fernandez-Arango et al. 2015; Mockel,
2015; Martin et al. 2011; Lee et al. 2004). Los resultados obtenidos por estos
autores no han sido del todo satisfactorias debido a multiples factores, como, por
ejemplo, las asociadas a la inexactitud de coincidencia de escala o por las debidas
a la limitacién de muestreos del LAI medidas en campo, que suelen ser costosos
en términos temporales y econémicos.

Para hacer frente a esos factores, en este trabajo se aplicé la técnica upscaling,
lo que permitid agregar una gran magnitud de pseudo-LAI (900 pixeles; resolucién
1m) a resolucién Landsat (30m). Su remuestreo permitido obtener una modeliza-
cion predictiva de Landsat de manera continua en el espacio y mas ajustada a la
realidad. Sin embargo, se encontré escasa bibliografia al respecto, debido a que
estos modelos requieren de un gran capital humano, técnico y econdmico para
llevarlo a cabo. Aun asi, Korhonen et al. (2017) y Hufkens et al. (2008) incorpo-
raron en sus modelos predictivos la técnica upscaling, permitiéndoles obtener me-
jores predicciones del LAI que otros estudios.

En base a los resultados obtenidos, entre los distintos grupos de indices pro-
puestos por Haboudane et al. (2004), los indices desarrollados para estimar LAI
verde y basados en la region comprendida entre el V-NIR (MCARI1, MTVI1 y
MTVI2) obtuvieron altos grados de ajustes con pseudo-LAI en ambos modelos (A
y B), aunque mayor en B. Estos resultados coinciden con el trabajo de Fernandez-
Arango et al. (2015). Ello se debe a que la expresion MCARI1 minimiza la sensibi-
lidad a los efectos producidos por la clorofila y, a la vez, a su capacidad de aumen-
tar la sensibilidad a los cambios del LAI (Haboudane et al. 2004). Sin embargo,
NDII, basado en la normalizacién y, el GVMI como indice atmosférico (ambos V-
SWIR) obtuvieron el mayor grado de variacién conjunta con pseudo-LAI en el mo-
delo A, y mermé substancialmente en el B. Sus éptimos resultados, concuerdan
con otros estudios previos (Melendo-Vega et al. 2017; Delegido et al. 2015). La
utilizacidon de la banda NIR en la formulacién de GVMI y NDII, hace que ambos
sean mas sensibles a los cambios de contenido de agua del vegetal, de ahi, que
sean IV éptimos para predecir el LAI en pastizales. En base al analisis visual sobre
la cartografia pseudo-LAI, se observo que GVMI se correlaciona mejor con pseudo-
LAI cuando este es igual o menor a 2, en cambio, Ceccato et al. 2002 demostro
que GVMI rinde mas cuando LAI es igual o mayor a 2. Otros indices con altos
ajustes con pseudo-LAI refieren a SAVI y MSAVI. Su buen rendimiento también lo
obtuvieron Haboudane et al. (2004) y de manera timida Melendo-Vega et al.
(2017). Otro caso particular se dio con CLGreen, que de manera opuesta a NDII y
GVMI, obtuvo de los mayores ajustes con pseudo-LAI en el modelo A, similares a
MCARI1 y MTVI1.

En general, los resultados obtenidos han presentado correlaciones de r y r?
optimas. Sin embargo, tal y como se ha descrito anteriormente existen diferencias
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en cuanto a resultados entre los distintos grupos de IV. Si bien, tal y como indican
Huete (2002), si los IV se relacionan bien con LAI es porque ellas mismas estan
relacionadas entre si, cada una en funcion del contenido de clorofila y otras carac-
teristicas del dosel. Ademas, algunos indices aplicados, tal y como indica Habou-
dane et al. (2004), cuando se aproximan a niveles de saturacion asinténica, LAI
se satura cuando excede de 2 a 5.

El analisis RLS permitid de manera éptima evaluar el grado de bondad entre
MCARI1 y NDII con pseudo-LAI. Pese a que ambos modelos son estadisticamente
robustos, ambos presentan marcadas diferencias. Asi, el modelo B (NDII) alcanzé
el mayor grado de ajuste con pseudo-LAI (r?= 0.93) y, un tanto menor con A
(MCARI1; r2 = 0.77). El factor que explica esa diferencia en cuanto a resultados,
sea porque el modelo B utiliza una muestra de pixeles exclusivos a pasto y enci-
nares, por lo que no se ve tan afectada por las perturbaciones debidas a las re-
flectancias derivadas de las laminas de agua y caminos (Haboudane et al. 2004).
Sin embargo, es interesante observar como en periodos secos, los encinares tienen
mayor capacidad de contaminar los pixeles Landsat debido a que estos encinares
tienen mas capacidad de retener el contenido de humedad del dosel que el pasto.

Otra fuente de error a destacar y, que quizas haya contribuido a esas diferen-
cias entre los resultados presentados, se relaciona con el desfase temporal deri-
vado del escaneo de los sensores en relacién a la toma de dato de LAI en campo.
Por ejemplo, el desfase temporal entre el escaneo del sensor OLI y la jornada de
campo fue de +14 dias, con una precipitacion acumulada de aproximadamente 94
I/m2 (REDAREX, 2018), por lo que esa precipitaciéon podria haber afectado a la
dindmica vegetativa del pasto y, mas aln cuando se trata de periodos de maximo
desarrollo vegetal, como es la estacion primaveral. Esto se traduce que entre ese
lapsus de tiempo se obtenga para una misma localizacién distintos valores de LAI.

Como es sabido, los datos de campo son costosos en términos de tiempo y de
trabajo humano. Cuando se dispone de una muestra de campo no lo suficiente
amplia, como se da en este trabajo, es usualmente comun utilizar las muestras
verdad-terreno como valores observados, en lugar de excluir una serie de parcelas
de muestreo como observaciones para verificar el modelo generado (Chuvieco,
2015; Cohen et al. 2003). En este sentido, la verificacion de los modelos generados
ha permitido valorar el grado de asociacién con la realidad (LAI). Sin embargo, la
verificacion de los modelos siempre exige comparar los resultados obtenidos con
una fuente externa, que para tal caso se dispuso de 11 parcelas representativas a
LAI total y LAI verde. Ademas, la posibilidad de obtener escenas Landsat-8 OLI
ajustadas en fechas coincidentes a la toma de datos de LAI medidas en campo en
distintos momentos del ciclo fenoldgico del pasto, aportd informacién lo suficien-
temente robusta como para evaluar de manera Optima el grado de ajuste lineal
entre esos datos de campo con las series multitemporales ofrecidas por el sensor
OLI.

Los modelos predictivos basados a estimar LAI total y LAI verde obtuvieron
resultados ligeramente diferentes. La prediccion de NDII para estimar LAI verde
en relacion al 28 de junio de 2016 obtuvo el mejor resultado de este trabajo, en
valores RMSE = 0.196 y en valores relativos RMSE (%) = 6.73 (véase tabla 7). En
comparacion con otro estudio relacionado a estimar LAI y realizado sobre el mismo
emplazamiento geografico, su modelo predictivo NDII -fechas similares- ofrecié un
menor rendimiento que el presentado en este trabajo (NDII LAI; RMSE = 18.8)
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(Melendo-Vega et al. 2017). Ademas, el predictor NDII Global para estimar LAI
verde obtuvo mejores resultados RMSE que el de Korhonen et al. (2017) (RMSE =
16.25 vs RMSE = 22.9, Korhonen et al. 2017), ambos utilizamos Landsat-8 OLI.
Sin embargo, estos modelos no son equiparables en el sentido de que estos auto-
res aplicaron su modelo para ambientes (clima, latitud préxima a 609, ecosistema,
etc.) totalmente distintos al utilizado en este trabajo.

Pese a que MCARI1 fue desarrollado especificamente para predecir LAI verde
(Haboudane et al. 2004), en este trabajo, MCARI1 obtuvo resultados RMSE lige-
ramente mejores para predecir LAI total en lugar de LAI verde (tabla 6). Asi
mismo, destaca como todos los modelos predictivos relacionados con fechas fina-
les a primavera y estivales, obtuvieron, en general, los mejores RMSE, Un factor
que explique tal causa se deba a que la funcion predictiva utilizadas para predecir
LAI fue tomada en fechas similares a la toma de datos LAI en campo, cuando el
pasto suele encontrarse en su periodo de maximo desarrollo vegetativo.

Tabla 6. Valores RMSE y RMSE (% calculado sobre el valor maximo de pseudo-LAI, 3.25). Modelo A

MODELO A, MCARI1

LAI Total LAI verde
RMSE RMSE (%) RMSE RMSE (%)
6-mar.-2014 0.786 24.18 1.152 35.44
8-may.-2014 0.716 22.03 0.335 10.3
31-oct.-2014 0.723 22.24 0.567 17.44
28-jun.-2015 0.43 13.23 0.722 22.21
15-jun.-2016 0.415 12.76 0.739 22.73
Global 0.614 18.89 0.703 21.63

Tabla 7. Valores RMSE y RMSE (% calculado sobre el valor maximo de pseudo-LAI, 2.91). Modelo B

MODELO B, NDII

LAI Total LAI verde
RMSE RMSE (%) RMSE RMSE (%)

6-mar.-2014 0.562 19.31 0.873 30
8-may.-2014 0.598 20.54 0.456 15.67
31-oct.-2014 1.011 34.74 0.409 14.05
28-jun.-2015 0.347 11.92 0.196 6.73
15-jun.-2016 0.46 15.8 0.431 14.81
Global 0.596 20.48 0.473 16.25

Por otra parte, en este trabajo se desarroll6 un modelo para corregir topogra-
ficamente la escena mediante c-correction (Teillet et al. 1982). Aunque no sea
prescindible su aplicacién para ambientes poco accidentados, en este estudio se
quiso incorpora la escena c-correction a los modelos predictivos de LAI total y LAI
verde, con la finalidad de valorar su rendimiento. Pese a ello, el modelo predictivo
MCARI1 y NDII para estimar LAI total obtuvo mejores RMSE en relacién al modelo
que no utiliza la escena corregida y, de manera deficiente el LAI verde.
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Los analisis planteados en este Trabajo Fin de Master han respondido de ma-
nera 6ptima la hipétesis planteada, por lo que se puede confirmar que la técnica
de ampliacion de escala, realizada a partir de los modelos empiricos (Hiperespec-
tral vs LAI campo) y su remuestreo a pixeles Landsat, ha permitido obtener de
manera satisfactoria predicciones de LAI mas elevadas que en algunos estudios
previos. Sin embargo, este modelo sigue teniendo aun incertidumbres asociadas a
los procesos metodoldgicos (exclusidon u omision de valores atipicos), procesos de
validaciéon (verdad-terreno), a la componente meteoroldgica (precipitaciéon, tem-
peratura, humedad) contaminacidon de pixeles Landsat (modelo de eleccion A o B),
desfase temporal entre la toma de dato del LAI en campo y el escaneo del sensor
y caracteristicas técnicas de los sensores.

A partir de ello, se plantean nuevas lineas de trabajo con el objetivo de per-
feccionar las ya utilizadas en este trabajo. Se definen por i) la utilizacién de datos
procedentes de sensores a bordo de plataformas aéreas no tripuladas (UAV) esca-
neados en la misma fecha a la toma de dato LAI en campo, por lo que ofrecerd
testear mas IV especializados a estimar LAI y reducira la incertidumbre asociada
a la componente meteoroldgica, ii) procesos de validacion mas complejos utili-
zando una mayor gama de muestreos de campo que permitan excluir u omitir los
valores atipicos, iii) aplicar distintos modelos y establecer comparaciones entre
ellos, tales como la inversion de ecuacion de transferencia de radiacion de vege-
tacion y métodos geoestadisticos y, v) realizar una clasificaciéon supervisada para
obtener cartografia exclusiva de pasto, y a partir de esta cartografia aplicar los
métodos y técnicas planteadas.

6. CONCLUSIONES

Durante los ultimos anos, la estimacion de la variable biofisica LAI en ambien-
tes de sabana, como las dehesas, ha suscitado un gran interés por parte de la
comunidad cientifica tanto para estudios de cambio climatico como para conocer
el papel que ésta juega en el funcionamiento fisiolégico de las plantas.

La propuesta de upscaling de este trabajo ha permitido de manera satisfactoria
obtener una gran cantidad de pseudo-LAI a resolucion Landsat. Pese a no repre-
sentar valores reales de LAI, esta técnica ha conseguido reducir la incertidumbre
asociada a la inexactitud de escala entre la resolucion Landsat y la representativi-
dad de las mediciones del LAI realizadas en campo y ha permitido de manera
satisfactoria generar modelos empiricos predictivos a partir de indices de vegeta-
cion.

En cuanto a determinar cual indice es el mas adecuado para estimar LAI, su
eleccidon ha variado en funcién del modelo desarrollado. Se establece, pues, que
los indices MCARI1 y MTVI1, basados en las regiones comprendidas entre el V-
NIR, han obtenido los mayores coeficientes r y r?2 para la muestra realizada sobre
todas las cubiertas (Modelo A). En cambio, los indices NDII y GVMI, basados en
las regiones comprendidas entre el V-SWIR, son los que han alcanzado los mayo-
res valores de r y r? para la muestra realizada sobre pasto y encinares (Modelo B),
y de manera similar MCARI1 y MTVI1.

Los modelos presentan diferencias en funcidén de la inclusién o no de otro tipo
de cubiertas que no sean las estrictamente relacionadas con la vegetacion, siendo
los indices NDII y MCARI1 los que permitieron los ajustes mas elevados (r2 = 0.93
y 0.77, respectivamente).
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Una nueva validacion de los modelos empiricos utilizando imagenes de dife-
rentes fechas del sensor OLI demuestra que los modelos se ajustan mejor a los
periodos primaverales-estivales y que MCARI1 es el indice con mayor carga pre-
dictiva tanto de LAI total como del LAI verde.

Ademas, los resultados sefialan que los modelos predictivos NDII para estimar
LAI verde son, en general, mejores que los predictivos MCARI1, es decir, para
estimar LAI total. Si concretamos los casos, se determina que el modelo predictivo
NDII para estimar LAI verde en fecha del 28 de junio de 2015 fue el que obtuvo el
mejor RMSE = 0.196 y RMSE (%) = 6.73. Pese a ello, a la vista de los resultados,
MCARI1 se perfila como el indice mas confiable, debido a que tanto rinde para LAI
total, LAI verde, en ambientes heterogéneos y en otros exclusivos a pasto y enci-
nares.

Por otra parte, la aplicaciéon de tratamientos de normalizacién topografica en
los modelos predictivos solo ha contribuido a mejorar ligeramente la modelizacidon
del LAI total y, de manera deficiente el LAI verde. Se constata pues, que su utili-
zacion para ambientes poco accidentados sea prescindible.

En conclusién, se establece que el enfoque de upscaling aplicado ha permitido
modelizar satisfactoriamente la distribucién espacial del LAI para ecosistemas de
dehesa. No obstante, debido a los multiples factores que afectan el rendimiento
de los modelos, es necesario continuar investigando en la materia y aplicar nuevos
métodos que permitan obtener mejores predicciones del LAI.
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Figura 26. Anélisis de Correlacion de Pearson y Coeficientes de determinacion realizadas entre las bandas
del sensor TM (Landsat-5) y OLI (Landsat-8) y estadisticos LAI. Modelo A.
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Figura 27. Anélisis de Correlaciéon de Pearson y Coeficientes de determinacion realizadas entre las bandas
del sensor TM (Landsat-5) y OLI (Landsat-8) y estadisticos LAI. Modelo A.




