
Repositorio de la Universidad de Zaragoza – Zaguan   http://zaguan.unizar.es 

TRABAJO FIN DE MÁSTER 

 

 

 

MODELIZACIÓN EMPÍRICA DEL ÍNDICE DE ÁREA 

FOLIAR EN ECOSISTEMAS DE DEHESA: INTEGRA-

CIÓN DE DATOS DE CAMPO, AEROPORTADOS Y DE 

SATÉLITE 

EMPIRICAL MODELLING OF LEAF AREA INDEX IN 

TREE-GRASS ECOSYSTEMS: A COMBINATION OF 

FIELD, AIRBORNE AND SATELLITE DATA 

 

Autor: Christian Mestre Runge 

Director: Dra. Raquel Montorio Llovería  

 

Máster Universitario en 

Tecnologías de la información geográfica para la ordenación del te-

rritorio: sistemas de información geográfica y teledetección 

 

Noviembre de 2018 

 

 

Departamento de Geografía 
y Ordenación del Territorio 

 



i 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



ii 

Resumen 

El índice de área foliar es considerado un bioindicador del estado de la salud real de las plantas y 

de la productividad primaria bruta de la vegetación. Numerosos estudios han demostrado que los 

modelos basados ee regresión simple lineal son herramientas óptimas que tienen la capacidad de 

relacionar el LAI medido en campo con información derivada de teledetección óptica, El objetivo 

del presente Trabajo Fin de Máster es desarrollar un modelo predictivo de LAI a partir de informa-

ción multiespectral de media resolución espacial (Landsat) a partir del análisis y modelización pre-

via de las relaciones entre información hiperespectral a alta resolución espacial y LAI verdad-te-

rreno utilizando la técnica upcaling y, desarrollado para ambientes heterogéneos como son las 

dehesas. Para ello, se han utilizado datos hiperespectrales derivados del sensor CASI y datos del 

LAI medida en campo proporcionados por SynerTGE y una gama de índices de Vegetación derivados 

de los productos Landsat TM y OLI. Un primer análisis se basó en establecer relaciones empíricas 

entre pseudo-LAI e índices de vegetación. Para seguir evaluando el rendimiento del modelo, se 

aplicaron análisis de regresión (RLS) para modelizar la relación entre pseudo-LAI e índices de ve-

getación. Los resultados establecieron que el método propuesto varía en función de los modelos 

utilizados. Por otra parte, se desarrolló un modelo para i) aplicar y modelizar las funciones predic-

tivas generadas mediante los análisis RLS y, ii) validar los productos mediante estadístico RMSE. 

Para ello, se utilizaron series multitemporales derivadas de Landast-8 OLI y muestras de LAI total 

y LAI verde repartidas en 5 jornadas de campo, en cada parcela (11), las muestras fueron tomadas 

sobre 3 cuadrantes (25x25cm), además, las muestras tomadas se consideran, a priori, represen-

tativas a distintos momentos de la dinámica fenológica. Los resultados obtenidos establecen que 

los modelos predictivos rinden mejor para periodos primaverales-estivales, cuando el pastizal se 

encuentra en su periodo de máximo crecimiento. Además, el modelo desarrollado sobre pasto y 

encinares rinde mejor que el modelo A. Si individualizamos los casos, se establece que el modelo 

predictivo en fecha del 28 de junio de 2015 obtuvo los mejores valores RMSE = 0.196 y RMSE (%) 

= 6.73 para predecir la variable biofísica LAI verde.    

Palabras Clave: LAI, índices de vegetación, Landsat TM y OLI, CASI, upscaling 

Abstract 

The leaf area index is considered a bioindicator of the state of the real health of the plants and the 

gross primary productivity of the vegetation. Numerous studies have shown that models based on 

linear simple regression are optimal tools that have the ability to relate the LAI measured in the 

field with information derived from optical remote sensing. The objective of the present Master's 

Thesis is to develop a predictive model of LAI from of multispectral information of medium spatial 

resolution (Landsat) from the analysis and previous modeling of the relationships between hyper-

spectral information at high spatial resolution and truth-ground LAI using the upcaling technique 

and, developed for heterogeneous environments such as dehesas. For this purpose, hyperspectral 

data derived from the CASI sensor and LAI data measured in the field provided by SynerTGE and 

a range of Vegetation indices derived from the Landsat TM and OLI products were used. A first 

analysis was based on establishing empirical relationships between pseudo-LAI and vegetation in-

dices. To further evaluate the performance of the model, regression analysis (RLS) was applied to 

model the relationship between pseudo-LAI and vegetation indices. The results established that 

the proposed method varies depending on the models used. On the other hand, a model was 

developed to i) apply and model the predictive functions generated by the RLS analyzes and, ii) 

validate the products using the RMSE statistic. For this, multitemporal series derived from Landast-

8 OLI and LAI total and LAI green samples distributed over 5 field days were used, in each plot 

(11), samples were taken over 3 quadrants (25x25cm), in addition, samples taken are considered, 

a priori, representative of different moments of the phenological dynamics. The obtained results 

establish that the predictive models yield better for spring-summer periods, when the grassland is 

in its period of maximum growth. In addition, the model developed on grass and holm oaks yields 

better than model A. If we individualize the cases, it is established that the predictive model as of 

June 28, 2015 obtained the best values RMSE = 0.196 and RMSE (%) = 6.73 to predict the bio-

physical variable LAI green. 

Key Words: LAI, vegetation index, Landsat TM and OLI, CASI, upscaling 
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1. INTRODUCCIÓN 
 

Los ecosistemas tipo sabana ocupan aproximadamente un tercio del territorio 
de la superficie terrestre (Fan et al. 2003; Lemaire et al. 2005) y, por ello, desem-

peñan un papel importante en las reservas mundiales de carbono y su productivi-
dad (Ahlstrom et al. 2015; Grace et al. 2006). En el ámbito mediterráneo europeo, 

estos paisajes se denominan dehesas y constituyen un ecosistema y un sistema 
productivo único en el mundo. Presentan importantes diferencias con las sabanas 

subtropicales, siendo exclusivos del suroeste de la Península Ibérica. Se trata del 
ecosistema agroforestal más extenso de Europa que ofrece los mayores índices de 

biodiversidad, con una superficie que supera los tres millones de hectáreas (Cáce-
res et al. 2012; Moreno y Pulido, 2009). 

 
Las dehesas son ecosistemas complejos de origen antrópico que proporcionan 

un importante acerbo de valores ambientales, culturales y estéticos, formados 

principalmente por encinares dispersos, matorral, pasto y cultivos, de larga tradi-
ción y gestión sostenible en el ámbito mediterráneo, son un ejemplo de uso múl-

tiple del territorio, que combina el desarrollo socioeconómico de las zonas rurales 
con la conservación de un ecosistema (González-Dugo et al. 2017; Cáceres et al. 

2012). Desde la óptica ambiental, estos territorios son una pieza angular para el 
intercambio de flujos de masa y energía entre el sistema atmósfera-biosfera, así 

como en la productividad de la cubierta y, por tanto, en un entorno de cambio 
global pueden variar su dinámica y funcionamiento. Por estas razones, su estudio 

hace que sea necesario para evaluar hasta qué punto las actividades humanas 
pueden alterar los ciclos bioquímicos naturales e influir en el cambio climático y el 

ciclo del carbono (Pacheco-Labrador et al. 2014; Roig & Rubio, 2009; Lemaire et 
al. 2005). 

 
La estimación de variables biofísicas de la vegetación en zonas heterogéneas, 

como las dehesas, ha cobrado un gran interés por parte de la comunidad científica 

tanto para estudios climáticos como para conocer el papel que esta juega en el 
funcionamiento fisiológico de las plantas, afectando a la productividad de los eco-

sistemas, la evapotranspiración, el crecimiento celular y la fotosíntesis (Melendo-
Vega et al. 2017; González-Dugo et al. 2017; Cáceres et al. 2012; Boyer, 1995).  

 
Una de las variables biofísicas de la vegetación de mayor relevancia por su 

interés en aplicaciones del ámbito agrícola y forestal es el Índice de Área Foliar 
(LAI) (Korhonen et al. 2017; He et al. 2016; Delegido et al. 2011; Haboudane et 

al. 2004). Este parámetro biofísico se define como la mitad del área total de la 
hoja por unidad de superficie de la superficie del terreno (Chen y Black, 1992) y 

es considerado un bioindicador del estado de la salud real de las plantas y de la 
productividad primaria bruta de la vegetación (Lichtenthaler et al. 1996; Sampson 

et al. 2003). 
 

En este sentido, una gran cantidad de estudios han puesto de manifiesto la 

eficacia de la teledetección como herramienta para estimar el Índice de Área Foliar 
debido, precisamente, a su capacidad para ofrecer información a diferentes reso-

luciones espaciales, radiométricas y frecuencia temporal (Pasqualotto et al. 2018; 
Korhonen et al. 2017; Zhen-wang et al. 2017; He et al. 2016; Fernández-Arango 

et al. 2015; Haboudane et al. 2004). Existen varios métodos para estimar LAI 
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utilizando observaciones de LAI in situ y datos de teledetección, que incluyen mé-
todos de regresión, inversión de ecuación de transferencia de radiación de vege-

tación y métodos geoestadísticos (He et al. 2016; Cohen et al. 2003).  
 

Los métodos basados en regresión estadística relacionan parámetros biofísicos, 
como por ejemplo LAI, con datos espectrales (transformados) mediante técnicas 

de regresión lineal basados en índices de vegetación (Delegido et al, 2014; Ha-
boudane et al. 2004). Aunque este sea un método muy utilizado debido a su sim-

plicidad y velocidad de cálculo (Delegido et al. 2014), la complejidad de factores 
que afectan a la generación de productos LAI (He et al. 2016; Martín et al. 2011; 

Roberts y Paterson et al. 2005), exige nuevos enfoques que permitan proporcionar 
de manera óptima y precisa insumos para su monitoreo y modelado en pastizales 

a escalas locales (Korhonen et al. 2017). 
 

1.1. Relación del Índice de Área Foliar con técnicas de teledetección 

 
El Índice de Área Foliar es una variable biofísica clave para estimar la cobertura 

del follaje y para pronosticar el crecimiento y rendimiento de la cubierta vegetal. 
La variable biofísica LAI verde (Green LAI) (utilizada en este trabajo), se corres-

ponde con el LAI sólo de la fracción foliar viva, que puede presentar características 
estructurales similares pero diversos contenidos de pigmentos (Haboudane et al. 

2014). El área expuesta de las hojas vivas es clave en los modelos del carbono 
terrestre, debido a que está estrechamente relacionada con un gran número de 

procesos biológicos y físicos como la fotosíntesis, la transpiración de las plantas y 
el intercambio de CO2 o el ciclo del agua, nutrientes y carbono (Zhen-Wang et al. 

2017; Delegido et al. 2011). 
 

La medición directa del LAI se realiza mediante campañas de muestreo in situ 
que suelen proporcionar resultados precisos, pero costosos en términos tempora-

les y económicos y, habitualmente, poco representativos para grandes superficies 

(Melendo-Vega et al. 2017; Delegido et al. 2015; Chuvieco et al. 2001); en la 
práctica son utilizadas para calibrar y validar otras metodologías (Yebra et al. 

2013). Sin embargo, debido a que el LAI está relacionado funcionalmente con la 
reflectancia del dosel vegetal, se pueden utilizar técnicas no destructivas para ana-

lizar su distribución espacial (Melendo-Vega et al. 2017; He et al. 2016). En este 
contexto, la teledetección óptica facilita su cuantificación en amplias superficies y 

en diferentes momentos, en función de la resolución espacio-temporal de los sen-
sores que se utilicen (Chuvieco, 2011) 

 
Generalmente, los índices espectrales de vegetación (IV), al minimizar las per-

turbaciones debidas al suelo y a la atmósfera (Chuvieco, 2015; Delegido et al. 
2015; Haboudane et al. 2004), permiten la estimación del LAI mediante el análisis 

de las relaciones entre los datos espectrales y datos de LAI medidos in situ. Sin 
embargo, los IV presentan ciertas limitaciones intrínsecas debido a la influencia de 

la geometría de la planta o la arquitectura del dosel (Haboudane et al. 2004) y a 

que el LAI no es la única variable que afecta a los IV. Por ejemplo, el contenido de 
LAI y clorofila poseen efectos similares en la reflectancia del dosel, particularmente 

en la porción visible del espectro comprendida entre la región del verde (550 μm) 
y el borde rojo o red-edge (750 μm), donde la mayoría de los pigmentos fotosin-

téticos absorben, así como también en el infrarrojo cercano (NIR, del inglés Near-
Infrarred) y específicamente en la región red-edge, en la que la pendiente de los 

espectros de reflectancia es máxima (Delegido et al. 2015; Yebra et al. 2008).  



3 

Para maximizar las prestaciones de los IV, durante las últimas décadas, se han 
ido formulando IV para distintos propósitos: i) capturar los procesos fotoquímicos 

asociados a la actividad fotosintética como la eficiencia del uso de luz o para esti-
mar el pigmento de la hoja (Brouge y Leblanc, 2000); ii) cuantificar la fracción 

vegetal (Gitelson et al. 2001); y, por su puesto, iii) estimar LAI (Brown et al. 
2000).  

 
En este último caso, independientemente de si el método de estimación tiene 

una base física o estadística, la gran mayoría de los índices se centran en la esti-
mación del green LAI (Delegido et al. 2015), debido a que el green LAI es sensible 

a la región espectral que se encuentra cubierta por los sensores ópticos (Delegido 
et al. 2015). Tales características han conllevado a desarrollar nuevos IV sensibles 

al LAI utilizándose la combinación de bandas comprendidas entre el verde y el red-
edge (Haboudane et al. 2004).  

 

Al alejarse del VNIR hacia el infrarrojo de onda corta (SWIR, Short Wave In-
frared, 1,2 a 2,2 μm), otros componentes de las hojas absorben y dispersan la luz, 

como el agua, la celulosa, la lignina y otros constituyentes bioquímicos, por lo que 
la convierte en una región óptima para evaluar el estrés hídrico de la vegetación 

(Chuvieco, 2015; Brown et al. 2000). Sin embargo, tal y como señalan Delegido 
et al. (2015) se ha demostrado que la región del SWIR es óptima para distinguir 

la vegetación verde de la vegetación senescente y para estimar LAI de la vegeta-
ción senescente. Aun así, su escasa aplicabilidad se explica por las carencias deri-

vadas de los sensores ópticos tradicionales, los cuales, la gran mayoría de ellos 
cubren un rango espectral continuo entre 350 y 2400 nm utilizando pocas bandas. 

 
Como indican Haboudane et al. (2004), la estimación de LAI se enfrenta a dos 

dificultades añadidas. Por un lado, los IV se aproximan a un nivel de saturación 
asintónica, es decir cuando LAI excede de 2 a 5 según el IV aplicado y, por otro 

lado, no existe una relación única entre LAI y un índice de elección de la vegeta-

ción, sino una familia de relaciones, cada una en función del contenido de clorofila 
y otras características del dosel. Para solucionar estas carencias, varios autores 

han evaluado y comparado IV en términos de su estabilidad y su poder para esti-
mar el parámetro biofísico LAI (Brouge y Leblanc. 2000; Baret y Guyot, 1991), 

mientras que otros han tratado de modificar algunos IV para aumentar su sensi-
bilidad al LAI (Brown et al. 2000). En consecuencia, algunos IV se han perfilado 

como mejores predictores de LAI debido, precisamente, a que son menos sensibles 
a la variación de los parámetros externos que afectan la reflectancia espectral de 

la cubierta, a las propiedades ópticas del suelo, la geometría de iluminación y las 
condiciones atmosféricas. Sin embargo, así como afirman Haboudane et al. 

(2004), el efecto de las variaciones de la clorofila de la hoja en la relación entre el 
IV y LAI sigue siendo un problema a resolver. 

 
La utilización de sensores hiperespectrales (CASI, AVIRIS, HyMap, APEX) apli-

cados a la estimación de LAI ha originado la proliferación de literatura científica al 

respecto. Su éxito y creciente uso aplicado a pastizales se debe principalmente a 
que estos sensores poseen un mayor número de bandas espectrales y más estre-

chas que las disponibles en sensores multiespectrales, por lo que ha contribuido al 
descubrimiento de nuevas regiones de interés que son clave para analizar de ma-

nera más precisa las propiedades fisiológicas y estructurales de la planta (fotosín-
tesis), factores ambientales y fenológicos que influyen sobre la vegetación (Cogliati 

et al. 2015; Peña, 2007). Por ejemplo, se ha demostrado que el LAI o la clorofila 
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muestran una respuesta espectral más nítida en regiones espectrales muy especí-
ficas (Navarro-Cerrillo, 2013), mientras que otros estudios se han centrado en 

evaluar el rendimiento de varios tipos de IV derivados de sensores hiperespectra-
les (determinar bandas estrechas) en la caracterización de LAI en ecosistemas de 

pastizales (Möckel, 2015; He et al. 2006). 
 

Por otro lado, el seguimiento del estado de vegetación mediante sensores mul-
tiespectrales, como Landsat o el propio Sentinel-2, presenta la ventaja de ofrecer 

información a una alta frecuencia temporal, mientras que la información hiperes-
pectral derivada de radiómetros de campo y de sensores aeroportados, en la gran 

mayoría de la literatura científica, se han limitado a una sola fecha de adquisición 
por el elevado coste que supone su obtención, sobre todo en el caso de sensores 

aeroportados (Melendo-Vega et al. 2017). Por ejemplo, Fernández-Arango et al. 
(2015) pusieron de manifiesto la necesidad de aumentar la dimensión temporal, 

especialmente para los ecosistemas de gran variabilidad fenológica. Sin embargo, 

los datos multiespectrales derivados de plataformas satelitales aún están limitados 
a resoluciones espaciales bajas en comparación a los sensores hiperespectrales. 

Ello supone, que los diferentes elementos de una imagen localizada en ambientes 
heterogéneos como la dehesa, sus distintas coberturas (encinares, pasto, agua y 

suelo) presenten comportamientos espectrales muy diferenciados, agudizando así, 
problemas derivados de la mezcla de la respuesta espectral de esas cubiertas den-

tro del píxel (Melendo-Vega et al. 2017; Fernández-Arango et al. 2015; Hill et al. 
2011). 

 
Varios de los autores citados, han demostrado que los enfoques basados en 

regresión estadística mediante técnicas de regresión lineal, permiten de manera 
óptima relacionar datos de reflectividad o IV derivados con datos extraídos en 

campo para la estimación de LAI, puesto que permite crear una ecuación en fun-
ción de un conjunto de variables de predicción de entrada (Cohen et al. 2003; He 

et al. 2016). Aun así, este método solo sirve cuando se dispone de un rango de 

datos similar a los utilizados para su desarrollo (Li y Wang, 2013). 
 

Sin embargo, debido a la influencia de los algoritmos del modelo, la heteroge-
neidad de la vegetación, la falta de coincidencia de escala y sus errores asociados 

a la geolocalización, las condiciones meteorológicas del año (Roberts y Paterson et 
al. 2005) y por la cantidad de datos de referencia exhaustivas y fiables que se 

requiere para calibrar y validar las fórmulas empíricas en diferentes ecosistemas 
(Martín et al. 2011), los productos LAI inevitablemente tienen incertidumbres in-

herentes asociadas a la comparación directa entre las mediciones de LAI in situ y 
los productos de LAI a resolución media (Por ejemplo, Landsat o Sentinel-2) (He 

et al. 2016), por lo que su empleo queda limitado en aplicaciones a escalas locales 
(Yebra et al, 2006). 

 
1.2. Índices de vegetación y LAI 

 

Durante los últimos decenios, se ha suscitado un creciente interés en desarro-
llar y evaluar índices espectrales para predecir de manera óptima el Índice de Área 

Foliar, así como también los factores que afectan a la reflectancia del dosel (Ha-
boudane et al. 2004; Broge y Leblanc, 2001; Baret y Guyot, 1991). En este con-

texto, Haboudane et al. (2004), realizaron un complejo análisis basado, entre otras 
cosas, en evaluar el rendimiento de una amplia gama de IV para predecir la varia-

ble biofísica LAI. En su estudio, seleccionaron y agruparon los IV en función de sus 
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características espectrales, definidos por a) Índices basados en la diferencia nor-
malizada: mejora de la linealidad; b) Índices de vegetación suelo-línea: mejora la 

influencia del suelo y los efectos atmosféricos y c) Índices de vegetación mejorados 
para estimar LAI verde. 

 
En cuanto a los índices basados en la diferencia normalizada, el NDVI (Rouse 

et al. 1974) es sin duda, el IV más conocido en la bibliografía científica. Pese a su 
amplio uso, este índice se satura ante el incremento del dosel vegetal y muestra 

una relación no lineal con LAI verde (Baret y Guyot, 1991, citado en Haboudane 
et al. 2003). Roujean y Breon (1995) desarrollaron el Renormalized Difference 

Vegetation Index para mejorar la linealidad de las variables biofísicas, mientras 
que Chen (1996) propusieron el Modify Simple Relation (MSR) como una mejora 

del RDVI combinándolo con el índice Simple Relation (Jordan, 1969, citado en Ha-
boudane et al. 2004). El SRWI, es un índice óptimo para estimar el contenido de 

humedad vegetativo; la utilización del SWIR-1 y del NIR, este último más insensi-

ble al cambio de contenido de agua, hace que sea un índice apropiado para pre-
decir el LAI, aunque satura cuando LAI es superior a 4 (Zarco-Tejada y Ustin 

2001). El Normalized Difference 819/1600 NDII, ha sido citado como un índice 
preciso para estimar el contenido de humedad foliar en diversos ecosistemas (Har-

disky et al. 1983), mientras que, el NDBLeaf fue desarrollado por Le Marie et al. 
(2004) para estimar de forma óptima la clorofila. 

 
Por otra parte, los IV que incorporan la línea de suelo se formularon para mi-

nimizar las perturbaciones debidas a la influencia del suelo. Por ejemplo, el Soil 
Adjusted Vegetation Index (SAVI) experimentó mejoras debido a la introducción 

del factor L, conocida como una función que define la densidad vegetal (Huete, 
1988). Para mejorar el rendimiento de SAVI, Qi et al. (1994) propusieron MSAVI, 

con un factor de autoajuste L que no aparecen en la formulación de MSAVI (Ha-
boudane et al. 2004).  

 

En base a MCARI (Daughtry et al. 2000) y a TVI (Broge y Leblanc, 2000), 
Haboudane et al. (2003) aplicaron mejoras para estimar el LAI verde. Para ello, 

introdujeron dos cambios sobre la función MCARI: i) supresión de la relación (R700 

y R670) para disminuir la sensibilidad a los efectos de la clorofila; y ii) la integración 

de una longitud de onda corta del infrarrojo cercano para aumentar la sensibilidad 
a los cambios de LAI. De este modo, la expresión MCARI se simplificó y dio lugar 

a MCARI1. En cambio, la modificación de TVI se basó en el hecho de que el au-
mento de la concentración de clorofila provoca cambios en la reflectancia en la 

región del espectro red-edge (750 nm). Para que TVI fuera más preciso para esti-
mar LAI, la longitud de onda 750 μm fue reemplazada por la de 800 μm, cuya 

reflectancia es afectada por la arquitectura vegetal e insensible a los cambios de 
nivel de pigmentos. De este modo y aplicando un factor de escala, se formuló 

MTVI1 (Haboudane et al. 2003). MCARI2 y MTVI2 se desarrollaron para preservar 
la sensibilidad de LAI y la resistencia a la influencia de la clorofila mediante la 

aplicación del factor de escala desarrollado por Huete (1998), por lo que minimi-

zaron los efectos de la influencia del suelo (Haboudane et al. 2003). 
 

Ajenos a la agrupación de IV establecida por Haboudane et al. (2003), se in-
corpora otro grupo definido por IV atmosféricos. El índice Enhanced Vegetation 

Index (EVI) se desarrolló para optimizar la señal de vegetación con una sensibili-
dad mejorada para regiones de alta biomasa y un mejor monitoreo de la vegeta-

ción mediante el desacoplamiento de la señal de fondo del dosel y una reducción 
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de la influencia de la atmósfera (Huete, 2012). Como novedad introdujo el factor 
L (ajuste de fondo de cubierta); C1, C2 (Coeficientes de resistencia atmosférica) y 

el factor de ganancia (2.5). El índice Global Vegetation Moisture Index (GVMI) fue 
desarrollado por Ceccato et al. (2002) para mejorar la sensibilidad al contenido de 

agua de la vegetación y para minimizar la sensibilidad de las perturbaciones at-
mosféricas y angulares, demostrando que GVMI ofrece mayor rendimiento para 

predecir el contenido de agua de la vegetación cuando LAI es igual a mayor a 2. 
El índice no-lineal GEMI (Global Environment Monitoring Index) se desarrolló para 

monitorear la vegetación a partir de mediciones en la parte alta de la atmósfera, 
por lo que resulta útil para comparar observaciones en distintas situaciones at-

mosféricas y de iluminación (Pinty y Verstraete, 1992). Por último, el índice Visible 
Atmospherically Resistant Index (VARI; Gitelson et al. 2002) se diseñó para intro-

ducir una autocorrección atmosférica en base al índice ARVI. 
 

1.3. Justificación 

 
Este trabajo se ha realizado en el contexto del proyecto Plan Nacional de I+D+i 

del Ministerio de Economía y Competitividad (SynerTGE): “Landsat 8 + Sentinel- 
2: exploring sensor synergies for monitoring and modelling key vegetation biop-

hysical variables in tree-grass ecosystems”. (http://www.lineas.cchs.csic.es/sy-
nertge/project_overview). La disponibilidad de datos ofrecidos por SynerTGE (es-

pectroscopía de laboratorio y campo e imágenes hiperespectrales aerotranspor-
tado CASI) y sensores satelitales multiespectrales, está permitiendo el aumento 

de trabajos relacionados con la aplicación de innovadoras metodologías centradas 
en relacionar adecuadamente la información espectral y variables biofísicas de ve-

getación en el marco del cambio climático, cuya finalidad está siendo validar pro-
ductos de teledetección a diferentes escalas espaciales adaptadas a los ecosiste-

mas de sabana. 
 

En este sentido, destaca especialmente el trabajo realizado por Melendo-Vega 

et al. (2017), que se utilizará como referencia conceptual y metodológica de este 
Trabajo Fin de Máster. El objetivo de este artículo se centró en el análisis de las 

relaciones empíricas entre variables biofísicas, correspondiente al componente 
herbáceo de una dehesa en distintas fases del ciclo fenológico, y diversos índices 

espectrales de vegetación. Dichos IV se derivaron, a escala espacial de resolución 
centimétrica, tanto la información original adquirida mediante espectro-radiome-

tría de campo y del sensor hiperespectral aeroportado CASI, como los datos es-
pectrales remuestreados a la resolución espectral del sensor Multiespectral Instru-

ment (MSI) a bordo del Sentinel-2. 
 

Sus resultados demostraron que los IV más idóneos fueron aquellos que utili-
zan para su cálculo las regiones del SWIR y el red-edge, lo que coincide con otros 

trabajos (Delegido et al. 2011; Hermann et al. 2011; Lee et al. 2004). A partir de 
ello, generaron para cada una de las variables estimadas modelos de regresión 

lineal a partir de la serie de imágenes CASI.  

 
Sin embargo, debido a diferente resolución espacial que existe entre los datos 

de campo y la información espectral proporcionada por las series multitemporales 
de satélite multiespectrales como Landsat o el propio Sentinel, el grado de ajuste 

empírico con estos últimos disminuye notablemente, siendo más complejo su uso 
en el marco de la modelización espacial. En este contexto, en el presente Trabajo 

http://www.lineas.cchs.csic.es/synertge/project_overview
http://www.lineas.cchs.csic.es/synertge/project_overview
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Fin de Máster se propone una metodología para relacionar información multies-
pectral (Landsat) con variables biofísicas a partir del análisis y modelización previa 

de las relaciones entre el sensor hiperespectral aeroportado CASI y variables bio-
físicas. Ello permitirá incorporar la dimensión temporal de los datos multiespectra-

les en los procesos de modelización empírica aplicados a ecosistemas de gran va-
riabilidad fenológica y heterogeneidad de cubiertas como son las dehesas del sec-

tor SW de España.  
 

2. HIPÓTESIS Y OBJETIVOS  
 

El objetivo del presente Trabajo Fin de Máster es desarrollar un modelo pre-
dictivo de LAI a partir de información multiespectral de media resolución espacial 

(Landsat) a partir del análisis y modelización previa de las relaciones entre infor-
mación hiperespectral a alta resolución espacial y LAI verdad-terreno, desarrollado 

para ambientes heterogéneos como son las dehesas. 

 
Este objetivo principal se fundamenta en la hipótesis de que las relaciones 

empíricas entre datos LAI de pasto, obtenidas mediante trabajo de campo y labo-
ratorio en unidades espaciales de 25x25cm e índices de vegetación derivados de 

imágenes multiespectrales de 30m de resolución espacial (Landsat), no son muy 
elevadas debido a múltiples factores. Un factor sumamente importante se rela-

ciona con la difusión entre la resolución espacial Landsat y la representatividad de 
las mediciones en cuadrantes 25x25, por lo que la elección adecuada del método 

propuesto y los datos elegidos permitirá, a priori, obtener un modelo más robusto 
que permita, a priori, determinar de manera precisa cual índice sea el más ade-

cuado para predecir el parámetro biofísico LAI. 
 

En este sentido, las imágenes hiperespectrales pueden proporcionar un nivel 
intermedio al ajustarse mejor, por su resolución espacial y a los datos de LAI me-

didos en campo. De este modo, espacializar primero el LAI (pseudo-LAI) a partir 

de los modelos empíricos (Hiperespectral vs LAI campo) y su remuestreo a píxeles 
Landsat puede maximizar la modelización predictiva con Landsat. Pese a que la 

idea no sea nueva, con ello además se podría testear la robustez de los modelos 
con Landsat al trabajar con muchos más datos de LAI. 

 
Para la consecución del objetivo principal planteado, se han establecido una 

serie de objetivos parciales que se describen a continuación: 
 

- Determinar si el mayor potencial de estimación del LAI está en índices ba-
sados en las regiones comprendidas entre el V-NIR o el V-SWIR mediante 

el uso de técnicas de regresión lineal simple. 
 

- Valorar la influencia de la muestra desde el punto de vista espectral utilizada 
para generar los modelos y comprobar cómo influye en los resultados me-

diante el uso de técnicas de regresión lineal simple 

 
- Determinar si la mejor variable a estimar corresponde a la variable biofísica 

LAI verde o LAI total a partir de las funciones predictivas previas derivadas 
de los mejores índices espectrales de vegetación, haciendo uso de técnicas 

de regresión lineal simple y validación RMSE. 
 



8 

- Analizar la influencia/variación del proceso de normalización topográfica so-
bre el modelo desarrollado a partir de las ecuaciones predictivas previas 

derivadas de índices espectrales de vegetación, utilizando técnicas de re-
gresión lineal simple y validación RMSE. 

 
 

3. METODOS Y MATERIALES 
3.1. Área de estudio 

 
La zona de estudio se localiza en una dehesa perteneciente a la localidad de 

Las Majadas de Tiétar, al noroeste de la provincia de Cáceres (Extremadura) 
(39º56´26´´N, 5º46´29´´W) (figura 1). Se trata de un área de experimentación 

caracterizada por un uso extensivo de ganado bovino en la que se sitúa en torno 
a una torre de medición de flujo Eddy Covariance, gestionado por el Centro de 

Estudios Ambientales Mediterráneos (CEAM) desde el año 2003 y que está incluida 

en las redes CARBORED (http://www.ceam.es/carboredes/) y FLUXNET 
(http://fluxnet.ornl.gov/). Actualmente, este emplazamiento constituye el labora-

torio experimental del proyecto SynerTGE.  
 

 
 

 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

 
 

 
El clima en la zona de estudio es mediterráneo con una temperatura media 

anual de 16.7ºC y una precipitación media de 572 mm, llegando a alcanzarse en 

Figura 1. Las Majadas de Tejar. Cáceres (Extremadura). Fuente: Cartografía base IGN, cobertura dehesa 

(MAGRAMA), USGS (Landsat) y SynerTGE (CASI). 

http://www.ceam.es/carboredes/
http://fluxnet.ornl.gov/
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los meses de verano temperaturas máximas de hasta 40ºC y precipitaciones me-
dias de tan sólo 67 mm (Fernández-Arango et al. 2015). El relieve es poco acci-

dentado, con una altitud media de 256 m.s.n.m.  
 

El tipo de vegetación natural corresponde a las series meso-mediterráneas de 
Pyro bourgeaneae – Querceto rotundifoliae quercetum (Cáceres et al. 2012), que 

ha sido transformada en una vegetación organizada por dos estratos con caracte-
rísticas biofísicas y fenológicas muy diferenciados. El estrato arbóreo está com-

puesto principalmente por encinas (Quercus ilex ssp. ballota (L)), además de al-
gunos alcornoques (Quercus suber) y quejigos (Quercus faginea). La altura y diá-

metro medios del dosel arbóreo es de 9 y 6 metros respectivamente y la cobertura 
arbórea cubre aproximadamente un 16% respecto la región de interés. El estrato 

herbáceo cubre de manera anual la mayor parte del área seleccionada y está in-
tegrada por una gran variedad de especies entre las que se encuentran Rumex 

acetosella L. Plantago carinata Shard, Trifolium subterraneum (L.), Cynodon 

dactylon (L.) Pers. Taraxacum dens-leonis Desf. y Vulpiamyuros (L.) C. C. Gmel. 
(Melendo- Vega et al. 2017; Fernández-Arango et al. 2015). En menor medida 

superficial, aparecen pequeñas lagunas y caminos rurales con propiedades ópticas 
completamente diferentes a la de la vegetación. 

 
 

3.2. Esquema Metodológico 
 

En este apartado se muestra en forma de modelo conceptual el proceso me-
todológico desarrollado (figura 2). El método propuesto se divide en 1) procesa-

miento de las imágenes, 2) elaboración cartográfica pseudo-LAI, 3) Análisis de 
regresión lineal simple (RLS) y correlación (r y r2), 3) validación de ajustes esta-

dístico, 4) aplicación y validación de los modelos y, 5) resultados RMSE. 
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L5 ETM+ (30m) 
LEDAPS  
VNIR y SWRI) 
 

Aplicación 
C-Correction 

CASI 1500 (1m) 
Procesado por INTA 
144 bandas VNIR (350-1050 nm) 

 

LAI: -1.376+5.088*NDVI 
(Melendo et al., 2017) 

1. Cálculo NDVI  
2. Cálculo PseudoLAIs 

Cálculo y agrega-
ción estad. Pseudo-
LAIs a resolución 
Landsat 

 
 

Cálculo IV 

STACK RASTER (30m) 

1. Bandas Landsat 
2. IV 

3. Estad. PseudoLAIs 

5 muestras aleatorias al 
10% para ETM+ y OLI 

Cor IV – estad. 
PseudoLAIs 

Muestra aleatoria combinada 
ETM+ y OLI al 10% (A y B) 

ARLS: IV (A y B) – 
estad. PseudoLAIs 

Selección IV con 
mayor R y R2 

NDII Modelo A 
MCARI1 Modelo B 

Análisis Cor (imagen) 
1. Bandas Landsat (*) – 
estad. PseudoLAIs 
2. IV – estad. PseudoLAIs 
*ETM+ y OLI 

Productos R y R2 

L8 OLI (30m) 
LaSRC 
VNIR y SWRI  
 

Análisis de regresión lineal simple (RLS) y correlación (R y R2) 
 

Máscara: extracción 
caminos y embalse 

 
 

Reclasificación:  
1. No Data: Embalse, 
caminos y árboles 
2. Valor LAI: Pasto 

 
 

Validación ajustes estadísticos 
 

ecuación x IV 
(L5 y L8) 

A 

B 

ecuación x IV  
(L5 y L8) 

 

Muestra aleatoria com-
binada L5 y L8 al 10% 

B A 

Validación IV 
(RLS) 

Muestra aleatoria com-
binada L5 y L8 al 10% 

A. IV: 1.093 + 4.687; R2 0.86   
B. IV -0.243 + 0.00073; R2 0.82 

6 imágenes 

L8 LaSRC 

 

Datos de campo: 

1. LAI total 

2. LAI Verde 

 

A. Cálculo IV 

B. Cálculo IV 

1. NDII / MCARI1 

2. LAI total  (1) 

3. LAI verde  (2) 

 

Validación IV 
(RLS) 

A. ecuación * IV 

B. ecuación * IV 

Capa puntos 11 par-

celas (30m)  

1. LAI total   
2. LAI Verde  

 

extracción 

Aplicación 

extracción 

RESULTADOS 

 

LAI Total  

1. RMSE IV 

2. RMSE IV 

 

LAI Verde 
3. RMSE IV 

4. RMSE IV 

 

Gráficos RLS 

LAI observado y 

predicho 

 

Aplicación y Validación 
 

A 

B 

Figura 2. Esquema metodológico 
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3.3. Imágenes de satélite y preprocesamientos aplicados 
 

Los datos utilizados para este estudio incluyen imágenes del sensor hiperes-
pectral CASI 1500i e imágenes escaneadas por los satélites multiespectrales 

Landsat. El escaneo de las imágenes CASI que se registraron de forma simultánea 
a los muestreos de vegetación in situ tienen en cuenta el estado fenológico de 

pasto vigoroso, en desarrollo y desarrollado en primavera. Sin embargo, los datos 
de reflectividad Landsat no se pudieron tomar de forma simultánea a los datos 

CASI debido a la presencia de nubes sobre la zona de interés y por el grado de 
desfase temporal orbital entre la pasada Landsat y las campañas CASI. Por ello, 

se seleccionaron las imágenes Landsat más próximas a las fechas de las adquiridas 
por CASI. El programa europeo Copernicus a través de los sensores Sentinel 2A y 

Sentinel 2B fue descartado para realizar este trabajo puesto que solo existen datos 
desde junio de 2015. 

 

3.3.1. Imágenes hiperespectrales 
 

La información espectral se extrajo de imágenes obtenidas por el sensor hiper-
espectral aeroportado CASI 1500i (Compact Airbone Spectrographic Imager) en 

los vuelos realizados por el Instituto de Técnica Aeroespacial (INTA) los días 5 de 
mayo de 2011 y 8 de abril de 2014 sobre la zona de interés. Se trata de un radió-

metro de barrido que genera una imagen mediante una matriz bidimensional de 
CCD que mide la energía incidente a lo largo de 1440 píxeles “across-track” con 

un tamaño de píxel de 0.90 x 1.58 m. Abarca un total de 288 bandas espectrales 
comprendidas entre la región del visible y el infrarrojo cercano (VNIR) del espectro 

electromagnético, 368-1052 μm. 
 

Para este trabajo, las imágenes CASI fueron cedidas a una configuración para 
adquirir información en 144 bandas (350-1050 nm aprox.), con un ancho de banda 

(Full Width at Half Maximum – FWHM) de 7.5 μm y una resolución espacial que 

oscila entre 0.5 y 1.5 m. El FOV (Field of View) es de 400 y el IFOV (Instantaneous 
Field of View) de 0.49 mrad. En cada campaña se realizaron varias pasadas para 

cubrir completamente y con distintas geometrías de observación la zona de inte-
rés. Sin embargo, solo se dispuso de una imagen por fecha, adquiridas en torno a 

las 12:00 horas solares en condiciones de cielo descubierto y a una altura de vuelo 
de 2103 m. Respecto a la campaña de 2011 se dispuso de las pasadas correspon-

dientes al plano solar para minimizar el efecto de sombreado, mientras que para 
la pasada de 2014 se modificó la configuración del vuelo y no se adquirió pasada 

en el plano solar. En su lugar, se utilizó la pasada con un rumbo de vuelo de 253º. 
(Bustamante et al. 2016; de Miguel et al. 2014). 

 
Todas las imágenes CASI fueron proporcionadas con corrección atmosférica y 

geométrica mediante protocolos estandarizados del INTA. Concretamente a través 
del nivel de procesado L2b, tal y como se describe en de Miguel et al. (2014). La 

corrección atmosférica fue realizada con el software ATCOR4 

(http://www.rese.ch/products/atcor/atcor4/) y fue refinada mediante el método 
de Empirical Line Correction empleando superficies de referencia medidas con el 

espectro-radiómetro ASD Fieldspec 3 simultáneamente a la adquisición de las imá-
genes (Melendo-Vega et al. 2017). 

 
 

 

http://www.rese.ch/products/atcor/atcor4/
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3.3.2. Imágenes multiespectrales 
 

Con el propósito de generar productos LAI a resolución media (900 m2), se 
adquirieron gratuitamente imágenes de la misión Landsat a través del portal U.S. 

Geological Survey (USGS) (http://earthexplorer.usgs.gov/). Se usaron escenas 
Landsat libres de nubes correspondientes a los sensores multiespectrales TM (The-

matic Mapper) de Landsat-5 de día 16 de mayo de 2011 y OLI (Operational Land 
Imager) de Landsat-8 de día 22 de abril de 2014. 

 
Estos sensores describen una órbita heliosíncrona solar de 98. 2º a una altitud 

aproximada de registro de 705 km con un período de revista cada 16 días, aunque 
OLI se compensan entre sí cada 8 días. Además, la misión Landsat escanea la 

superficie terrestre en un campo de visión de 15º y cubre aproximadamente 185 
km x 180 km definidos por un sistema de coordenadas de referencia mundial 

(WRS) de coordenadas de columnas por línea (paralelos) y columnas por filas (la-

titud paralela) (USGS, 2018; Roy et al. 2015). 
 

El sensor Thematic Mapper posee un radiómetro de barrido multiespectral de 
tipo whisk-broom, detectan radiación filtrada espectralmente en 7 bandas entre el 

visible e infrarrojo, centradas entre 0.45 y 12.5 μm. Así mismo, TM y OLI se defi-
nen a una resolución de suelo de nadir de 30 metros, pero este último presenta 

características mejoradas de calibración y señal/ruido, una resolución radiométrica 
más alta de 12 bits frente los 8 bits de TM y un sistema de escaneo tipo pusch-

broom situada a la misma orbita que TM (actualmente fuera de servicio) que le 
proporciona en comparación a los demás sensores Landsat registrar en 9 bandas 

más estrechas comprendidas entre el visible e infrarrojo, 0.435 y 2.294 μm (USGS, 
2018) (Véase tabla 1).  

 
Tabla 1. Características técnicas sensores Landsat-5 y 8. Fuente: USGS, 2018 

LANDSAT-5 Thematic Mapper LANDSAT-8 OLI y TIRS 

Número de Bandas 
Longitud de 
ondas (μm) 

Resolu-
ción (m) 

Número de Bandas 
Longitud de 
ondas (μm) 

Resolu-
ción (m) 

      Banda 1 - Ultra azul 0.435 - 0.451 30 
Banda 1 - Azul 0.45 - 0.52 30 Banda 2 - Azul 0.452 - 0.512 30 
Banda 2 - Verde 0.52 - 0.60 30 Banda 3 - Verde 0.533 - 0.590 30 
Banda 3 - Roja 0.63 - 0.69 30 Banda 4 - Roja 0.636 - 0.673 30 

Banda 4 - NIR 0.76 - 0.90 30 Banda 5 - NIR 0.851 - 0.879 30 
Banda 5 - SWIR-1 1.55 - 1.75 30 Banda 6 - SWIR-1 1.566 - 1.651 30 
Banda 6 - Térmico 10.4 - 12.5 120* (30) Banda 7 - SWIR-2 2.107 - 2.294 30 
Banda 7 - SWIR-2 2.08 - 2.35 30 Banda 8 - Pan 0.503 - 0.676 15 
      Banda 9 - Cirrus 1.363 - 1.384 30 
      Banda 10 - TIRS-1 10.6 - 11.19 100* (30) 
      Banda 11 - TIRS-2 11.50 - 12.51 100* (30) 

 

 
Las imágenes proporcionadas por el USGS, nivel de procesamiento Level-2, 

incluyen corrección atmosférica y valores de reflectividad superficial en formato 
GeoTiff (Geographic Tagged Image-File). Para las escenas TM, los valores de re-

flectancia son corregidos con el algoritmo Landsat Ecosystem Disturbance Proces-
sing System (LEDAPS), mientras que para la escena OLI, la corrección atmosférica 

se basó en el algoritmo Landsat Surface Reflectance Code (LaSRC), aprovechando 

http://earthexplorer.usgs.gov/
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el mayor rendimiento radiométrico de las imágenes y la menor exposición de las 
bandas espectrales a la absorción atmosférica (USGS, 2018; Vermote et al. 2016). 

Se generó un multibanda para cada escena en formato de archivo *.img y se de-
limitaron acorde a la zona de estudio. 

 
3.3.2.1. Normalización Topográfica C-Correction 

 
En este trabajo se ha realizado la normalización topográfica C-Correction sobre 

las escenas Landsat en base a la metodología propuesta por Teillet et al. (1982), 
utilizando el software ERDAS Imagine® y su extensión de modelado Spatial Mode-

ler Editor. Se trata de un modelo con un comportamiento de superficie anisotrópico 
que mejora el método del Coseno, de tipo lambertiano (Smith et al. 1980), ya que 

añade la constante empírica C para atenuar la sobre-corrección del método del 
coseno, simulando la contribución de la radiación difusa. Aunque este proceso no 

sea siempre necesario para zonas poco accidentadas (Chuvieco, 2015), el propó-

sito del mismo, es comparar los resultados de la modelización de parámetros bio-
físicos de vegetación normalizados topográficamente con aquellos sin corrección, 

únicamente con corrección atmosférica, a través de las relaciones empíricas que 
se especifican más adelante. 

 
Para empezar, el modelo incluye en su formulación el cómputo del coseno del 

ángulo de incidencia local o imagen de iluminación (cos Өi), de cada píxel de la 
escena a corregir. Para su cálculo, la imagen de iluminación precisa de la pendiente 

y orientación de la escena, por lo que se utilizó un MDE (Modelo Digital de Eleva-
ción) con un paso de malla de 25m proporcionado por el Instituto Geográfico Na-

cional, IGN. El MDT25 se descargó en formato *.asc y en ETRS89/UTM zona 31, 
siendo transformado a formato *.tiff y remuestreda a la resolución espacial de 

Landsat (30m). Así mismo, se consultaron los metadatos de las escenas Landsat 

para incluir los valores correspondientes al ángulo cenital solar (Өsol) y el ángulo 

azimutal solar (Øsol), se añadieron los valores de todos los ángulos expresados en 

radianes (0.01745 rad) y, posteriormente se aplicó la fórmula de la imagen de 
iluminación, que se calcula con la siguiente expresión: 

 
      IL = cos Өi = cos Өsol  cos Өp + sen Өsol * sen Өp * cos (Øsol – Øori) 

 
donde IL = cos Өi es el coseno de incidencia local; Өsol el ángulo cenital solar; Өp es el ángulo 

de la pendiente del terreno; Øsol es el ángulo acimutal solar y Øori el ángulo de la orientación del 

terreno. 

 
 

Consecutivamente, se aplicó la corrección del coseno (Teillet et al. 1982). Para 
ello, en el modelo se incluyeron las imágenes multibanda de Landsat y se trans-

formó a radianes el coseno del ángulo cenital solar (cos Өsol). Se calcula como: 
 

                                   pH = pT (cos Өsol / IL) 
 
donde pH es la reflectividad normalizada para una superficie horizontal y pT es la reflectividad 

de una superficie (reflectividad aparente superficial). 

 

Para aminorar la sobre-corrección del método del coseno se añadió la cons-
tante empírica Cλ, donde el término bλ es la constante y mλ es la pendiente de la 

recta de regresión entre la reflectividad aparente (variable dependiente) y la ima-
gen de iluminación (variable independiente). Además, la ecuación definida por la 

Cλ se basó en los píxeles correspondientes a pasto, por lo que se excluyeron del 
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proceso de corrección las demás cubiertas (lagos, encinares y caminos). Para ello, 
se rasterizó la capa vectorial, permitiendo seleccionar los píxeles definidos por 

pasto. Los cocientes de reflectividad calculados para cada banda Landsat se inclu-
yeron en el modelo, cuyos valores comprenden un rango entre -1 y +1. 

                                             
                                          Cλ = bλ / mλ 

 
Finalmente, se aplicó para el modelo el algoritmo de C-Correction, calculado 

como: 
 

                          pH = pT (cos Өsol + Cλ / IL + Cλ) 
 

 
3.3.2.2. Índices de Vegetación para la estimación del LAI 

 

A partir de los valores de reflectividad de las bandas originales de Landsat-5 
TM y Landsat-8 OLI se han calculado una serie de Índices de Vegetación. Se han 

seleccionado los mismos índices espectrales propuestos por Melendo-Vega et al. 
(2017) con el propósito de compararlos con su estudio, basado en índices multi-

espectrales calculados con bandas remuestreadas al sensor MSI (Sentinel-2) e ín-
dices hiper-espectrales calculados con bandas CASI y ASD originales. Sin embargo, 

se han omitido aquellos índices que utilizan en su formulación bandas estrechas 
situadas en la región del red-edge (PRI, MCARI y TVI) y otros especializados para 

sensores hiperespectrales (CAI) que no permiten ser calculados para las bandas 
Landsat. Los IV han sido calculados en el software estadístico Rstudio, utilizándose 

para ello el paquete “raster”. 
 

Los índices computados para TM y OLI se dividen en cuatro categorías en fun-
ción de su formalismo y su adhesión a la misma familia (tabla 2) (Haboudane et 

al. 2004). 
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Tabla 2. Índices espectrales utilizados para la estimación del Índice de Área Foliar. Clasificación según Ha-
boudane et al. 2003. 

  Formulación para Landsat-5 (TM) y Landsat-8 (OLI)   

Índices 
Landsat-5 TM Landsat-8 OLI 

Referencias 

a) Índices basados en la diferencia normalizada: mejora de la linealidad 

NDVI 
𝐵4−𝐵3

𝐵4+𝐵3
   

𝐵5−𝐵4

𝐵5+𝐵4
  

 Rouse et al. 

1974 

RDVI 
𝐵4 − 𝐵3

√B4 + B3
    

𝐵5−𝐵4

√B5+B4
   Roujean y 

Breon, 1995 

MSR 
(

𝐵4

𝐵3
)−1

√(
B4

B3
+1)

   
(

𝐵5

𝐵4
)−1

√(
B5

B4
+1)

   Chen, 1996 

SRWI                         
𝐵4

𝐵5
    

𝐵5

𝐵6
  

Zarco-Tejada 

y Ustin, 2001 

NDII     
𝐵4−𝐵5

𝐵4+𝐵5
     

𝐵5−𝐵6

𝐵5+𝐵6
  

Hardisky et 

al. 1983  

NDBLeaf      
𝐵6−𝐵5

𝐵6+𝐵5
         

𝐵7−𝐵6

𝐵7+𝐵6
   

Le Maire et 

al. 2004  

b)  Índices de vegetación suelo-línea: mejora la influencia del suelo y efectos atmosféricos 

SAVI                 
(1+𝐿)∗(𝐵4−𝐵3) 

(𝐵4+𝐵3+𝐿
    L = 0.5               

(1+𝐿)∗(𝐵5−𝐵4) 

(𝐵5+𝐵4+𝐿
     L = 0.5  Huete, 1988 

MSAVI    0.5 ∗ [2 ∗ 𝐵4 + 1 − √(2 ∗ 𝐵4 + 1)2 − 8 ∗ (𝐵4 − 𝐵3)]      0.5 ∗ [2 ∗ 𝐵5 + 1 − √(2 ∗ 𝐵5 + 1)2 − 8 ∗ (𝐵5 − 𝐵4)] 
Qi et al. 

1994  

SARVI             
𝐵4−𝐵3−𝐿∗(𝐵3−𝐵1)

𝐵4−𝐵3+𝐿∗(𝐵3−𝐵1)
    L = 0.5                

𝐵5−𝐵4−𝐿∗(𝐵4−𝐵2)

𝐵5−𝐵4+𝐿∗(𝐵4−𝐵2)
    L = 0.5  Haboudane 

et al. 2004 

CVI  
𝐵4∗𝐵3

(𝐵2)2   
𝐵5∗𝐵4

(𝐵3)2  Datt et al. 

2003  

CLGreen    
𝐵4

𝐵2
− 1        

𝐵5

𝐵3
− 1  

Gitelson et al. 

2005   
c) Índices de vegetación mejorados para estimar LAI verde 

MCARI1          1.2 ∗ [2.5 ∗ (𝐵4 − 𝐵3) − 1.3 ∗ (𝐵4 − 𝐵1)]   1.2 ∗ [2.5 ∗ (𝐵5 − 𝐵4) − 1.3 ∗ (𝐵5 − 𝐵3)] 
 Haboudane 

et al. 2004 

MCARI2        
1.5∗[(𝐵4−𝐵3)−2.5(𝐵3−𝐵1)]

√(2∗𝐵4+1)2 −(6∗𝐵4−5√𝐵3 )−0.5 
     

1.5∗[(𝐵5−𝐵3)−2.5(𝐵4−𝐵3)]

√(2∗𝐵5+1)2 −(6∗𝐵5−5√𝐵4 )−0.5 
  Haboudane 

et al. 2004 

MTVI1          1.2 ∗ [1.2 ∗ (𝐵4 − 𝐵1) − 2.5 ∗ (𝐵3 − 𝐵1)]        1.2 ∗ [1.2 ∗ (𝐵5 − 𝐵3) − 2.5 ∗ (𝐵4 − 𝐵3)]   
 Haboudane 

et al. 2004  

MTVI2        
1.5∗[2.5∗(𝐵4−𝐵1)−2.5(𝐵3−𝐵1)]

√(2∗𝐵4+1)2 −(6∗𝐵4−5√𝐵3 )−0.5 
      

1.5∗[2.5∗(𝐵5−𝐵3)−2.5(𝐵4−𝐵3)]

√(2∗𝐵5+1)2 −(6∗𝐵5−5√𝐵4 )−0.5 
 Haboudane et 

al. 2004  

d) Índices de vegetación atmosféricos 

EVI       2.5 ∗ (
𝐵4−𝐵3

𝐵4+6∗𝐵3−7.5∗𝐵1
+ 1)       2.5 ∗ (

𝐵5−𝐵4

𝐵5+6∗𝐵4−7.5∗𝐵2
+ 1) 

Huete et al. 

2002  

GVMI         
(𝐵4+0.1)−(𝐵5−0.002)

(𝐵4+0.1)+(𝐵5−0.002)
        

(𝐵5+0.1)−(𝐵6−0.002)

(𝐵5+0.1)+(𝐵6−0.002)
 

Ceccato et al. 

2002  

GEMI  [𝜋 ∗ (1 − 0.25 ∗ 𝜋)] −
𝐵3−0.125

1−𝐵3
  [𝜋 ∗ (1 − 0.25 ∗ 𝜋)] −

𝐵4−0.125

1−𝐵4
  Pinty y Vers-

traete, 1992 

VARI     
𝐵2 − 𝐵3

𝐵2 + 𝐵3 − 𝐵1
  

𝐵3−𝐵4

𝐵3+𝐵4−𝐵2
 

Gitelson et al. 

2002  
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3.4. Método de ampliación de escala basado en pseudo-LAI 
 

Debido a las numerosas incertidumbres asociadas, entre otras, a la compara-
ción entre las mediciones de LAI in situ y la información proporcionada por senso-

res multiespectrales, el grado de ajuste empírico para predecir LAI disminuye con-
siderablemente (Korhonen et al. 2017; Hufkens et al. 2008). Por este motivo, se 

propone un método basado en la ampliación de escala (upscaling) para evaluar la 
información proporcionada por Landsat con la variable biofísica LAI, a partir de 

remuestrear la cartografía del LAI (resolución 1m), obtenida mediante los procesos 
de modelización empírica previa entre el sensor hiper-espectral CASI y la toma de 

dato LAI medida en campo (Melendo-Vega et al. 2017). Se ha convenido en este 
trabajo que, el resultado de la modelización del LAI mediante imágenes hiperes-

pectrales y su posterior ajuste a la resolución Landsat, se denomine pseudo-LAI, 
toda vez que no representa mediciones reales de LAI. 

 

3.4.1. Cartografía de los valores continuos de pseudo-LAI a partir 
de CASI 

 
Para el tratamiento de las imágenes CASI se ha utilizado el software ENVI 

versión 4.7 SP1®. A partir de las imágenes originales cedidas por el INTA, en for-
mato *.hdr, se delimitó el área de estudio a través de un ROI (Region of interest). 

Consecutivamente, se calculó el NDVI utilizando la banda 65 (672.5 μm; roja) y la 
banda 92 (801.6 μm; NIR), para a continuación, aplicar la ecuación de regresión 

descrita en Melendo-Vega et al, (2017), siendo x = 1.376 e y = 5.088; el IV fue 
NDVI con un RMSE = 22.6 y r2 = 0.84. Ello permitió obtener la cartografía de los 

pseudoLAI a resolución de 1m. Se transformaron las escenas pseudoLAI de *.adf 
a formato*.tiff para realizar una reclasificación en ArcGIS® versión 10.5, con la 

finalidad última de enmascarar aquellos píxeles que no fueran pasto (figura 3). 
 

 

 
       

                                            

                                          Región de interés (R0I)      
                                  

 

                                      NDVI =
B65−B92

B65+B92
 

 
                

 
 Imagen NDVI 
       

   
 

              x (1,376) + y (5,088) * NDVI             

 

  

      
                                     Imagen Pseudo-LAI 
                              
      
 

  

  

Reclasificación 
1. valor LAI: pasto 
2. No data: embalse, caminos 
y encinares 

Figura 3. Proceso metodológico para obtener cartografía Pseudo-LAI 
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3.4.2. Fase de ampliación de escala (upscaling) 
 

Se utilizó un método de ampliación de escala (upscaling) a través de Rstudio 
(paquete raster) para remuestrear la cartografía de pseudo-LAI obtenida mediante 

las imágenes hiperespectrales, a la resolución espacial de las imágenes Landsat-5 
TM y Landsat-8 OLI (30m) (Véase figura 4). Para ello, los píxeles de pseudo-LAI 

(1m) se agregaron considerando diferentes estadísticos de centralidad y dispersión 
(media, mediana, valores mínimos y máximos y coeficiente de variación) (Figura 

5). Entre otras cosas, su análisis permite identificar valores anómalos para que 
estos puedan ser omitidos (Chuvieco, 2015) 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

Por otra parte, se evaluó la relación entre la dimensión del valor pseudo-LAI y 
la variabilidad de dicho parámetro biofísico de los píxeles de la imagen a través del 

coeficiente de variación de Pearson (CV). Para ello, primero se calculó la desviación 
estándar de ambas escenas, que se define como la variación de los valores pseudo-

LAI con respecto a la media de dicha variable. El CV se calculó para cada escena 
a través de la siguiente expresión: 

 

𝐶𝑉 =  
𝜎

⌊𝑋 𝑝𝑠𝑒𝑢𝑑𝑜𝐿𝐴𝐼⌋
  

 

 
donde  𝜎 es la desviación estándar, y la  pseudo-LAI es la media de los valores LAI de la 

imagen. 

 

Tal y como se muestra en la figura 5, los mayores valores del coeficiente de 

variación indican mayor heterogeneidad en los valores de pseudo-LAI debido a la 
presencia de coberturas que no representan pasto, tales como caminos y el em-

balse. En cambio, donde abunda el pasto, el coeficiente de variación presenta va-
lores menores, determinando así una mayor homogeneidad en los valores pseudo-

LAI. En este sentido, se establece que la presencia de coberturas que no repre-
sentan pasto altera de forma significativa, sobre todo el embalse, los valores 

pseudo-LAI. 

Pseudo-LAI (1m) agregados a Pí-

xel Landsat (30m) 

Imagen Landsat 

Figura 4. Ilustración de la técnica de ampliación de escala (upscaling) 
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           Landsat-5 (5-5-2014)      Landsat-8 (22-04-2014)  

 

 
Figura 5. Cartografía estadística pseudo-LAI referente a los Coeficientes de Variación derivada de la fase de 

agregación. 

 

En base a este análisis estadístico, se decidió realizar una máscara sobre las 
imágenes Landsat para eliminar del análisis todas aquellas cubiertas que no co-

rrespondieran a pasto, exceptuando los encinares. La no exclusión de encinares se 
debe principalmente a su alta densidad de ejemplares, por lo que su aplicación 

hubiera supuesto eliminar gran parte de los píxeles de las imágenes. Por tanto, 
para este trabajo, se ha considerado generar dos modelos para cada escena, uno 

que contempla todas las cubiertas y, por tanto, incluye todos los píxeles de la 
imagen (modelo A) y otro que excluye del análisis aquellos píxeles que representan 

láminas de agua y caminos (modelo B), incluyendo los píxeles cercanos a ellos. 
 

3.5. Análisis de las relaciones empíricas entre pseudo-LAI y los índi-
ces espectrales de vegetación 

 
En este apartado se evaluó el grado de variación conjunta existente entre los 

IV extraídos de la literatura científica (variables independientes) y estadísticos 

pseudo-LAI (variable dependiente) mediante un análisis de correlación simple 
(Pearson). El análisis se realizó para cada escena (TM y OLI). De forma paralela, 

se realizó un mismo análisis entre los valores de reflectividad de cada banda y 
estadísticos pseudo-LAI para ambos sensores (TM y OLI).  

 
Este análisis de correlaciones permitió obtener para cada variable estimada los 

primeros resultados relacionados a los coeficientes de correlación de Pearson (va-
lor r) y, coeficientes de determinación (valor r2). En cada modelo, se evaluaron los 

resultados para poder obtener una primera aproximación de aquellos IV o bandas 
espectrales que más se ajustan linealmente a los estadísticos de pseudo-LAI. Los 

valores de los coeficientes varían des de -1 (correlación total negativa) a 1 (corre-
lación total positiva). Los valores cercanos a cero implican escasa o nula correla-

ción entre ambas variables. Dichos análisis se realizaron en Rstudio, utilizando el 
paquete “corplot”. 

𝑟𝑥𝑦 =  
∑ 𝑥𝑖  𝑦𝑖

𝑛 𝑆𝑋𝑆𝑌
 

 
donde xi e yi refiere a las diferencias de cada variable (IV y estadísticos LAI); n el número de 

la muestra; y Sx y SY corresponde a las desviaciones típicas del IV y estadístico pseudo-LAI respec-

tivamente. 

Coeficiente Variación Pearson Coeficiente Variación Pearson 
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A continuación, todos los IV fueron sometidos a una muestra aleatoria simple 
mediante la función sample, con un tamaño de la muestra establecida al 10% 

sobre el total de la escena (Modelo A 76 píxeles; Modelo B 46 píxeles). Pese a que 
esta técnica sacrifique píxeles de la muestra, cada uno de los píxeles que repre-

sentan los valores de los IV tienen la misma posibilidad de ser elegidos, por lo que 
su ventaja principal radica en su poder de generalización. 

 
Como resultado, se obtuvo para cada variable estimada los coeficientes de 

correlación r y r2 y, en consecuencia, se seleccionaron aquellos IV que alcanzaron 
mayores coeficientes. (Figura 6). 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
3.6. Análisis RLS: funciones predictivas, validación de ajustes esta-

dísticos  
 

Una vez elegidos los IV para cada modelo, tanto los índices seleccionados como 
LAI fueron sometidos a otra muestra aleatoria establecida al 10% de manera com-

binada, es decir, utilizando ambos sensores. Para obtener un solo valor represen-

tativos de la variable dependiente pseudo-LAI y la independiente (IV), se aplicó 
sobre cada variable la media aritmética entre ambos sensores. 

 
Tal y como apunta Cohen et al. (2003), en el caso lineal, el análisis de regresión 

simple (RLS) por mínimos cuadrados es un enfoque empírico que modela la rela-
ción entre dos variables observadas, siendo Y la variable dependiente pseudo-LAI 

mediana y, X, la variable independiente (IV). La expresión de regresión simple se 
describe como: 

  
𝑌 =  𝛽0 +  𝛽1 𝑋 +  𝜀 

 
donde Y es la variable a predecir, X es la variable de la que Y se predice, 𝛽0 es la intersección, 

𝛽1 es la pendiente de la relación entre X e Y, y 𝜀 es el error. 

 
En consecuencia, a través de la modelización estadística realizada sobre ambas 

variables se obtuvieron los coeficientes de determinación r2 y las funciones predic-
tivas para ambos modelos. 

 
Con el análisis de regresión realizado, se aplicaron para cada modelo las ecua-

ciones predictivas realizadas en función de los IV seleccionados y pseudo-LAI. Es-
tas funciones predictivas fueron aplicadas a las imágenes de los satélites TM y OLI 

en fechas del 16 de mayo de 2011 y 22 de abril de 2014, respectivamente. Tras 
la obtención del pseudo-LAI estimado se procedió a su validación realizando una 

Landsat-5 

TM 

Landsat-8 

OLI 

Modelo A 

Modelo B 

Modelo A 

Modelo B 

Sample 

Sample 

Sample 

Sample 

Cor B 

Cor A 

Cor B 

Cor A 

Selección 

IV (A) 

Selección 

IV (B) 

Figura 6. Proceso metodológico para seleccionar IV 
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selección aleatoria del 10% de las escenas. A través de análisis de regresión simple 
y sus coeficientes de determinación se validó la forma y la fuerza de la relación 

entre valores observados y los predichos. 
 

3.7. Fase de aplicación y validación 
 

La validación de productos biofísicos derivados de sensores remotos es un re-
quisito fundamental para garantizar la calidad y precisión de los productos empí-

ricamente determinados. El método más eficaz para validar productos biofísicos 
derivados de sensores remotos es compararlos con mediciones tomadas en campo 

para las cuales existen protocolos de medición establecidos (Privette et al. 1998). 
Ante esta afirmación, en este trabajo se desarrolló un modelo para establecer de 

manera óptima relaciones empíricas entre datos correspondientes a las variables 
biofísicas LAI total y LAI verde (Green LAI) medidas en una dehesa con información 

óptica derivada de Landsat-8 OLI. 

 
3.7.1. Muestreo en campo: LAI total y LAI verde 

 
Según indican Melendo-Vega et al. (2017), los muestreos en campo se reali-

zaron sobre un total de 11 parcelas de 25x25m localizadas en una dehesa extre-
meña. (figura 7). 

 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

Estas parcelas se distribuyeron de forma aleatoria de acuerdo al protocolo pro-

puesto en el proyecto Biospec (http://www.lineas.cchs.csic.es/biospec/). En cada 
una de las once parcelas se realizaron muestras destructivas del pasto entre el 30 

de octubre de 2013 y el 15 de junio de 2016 repartidas en 17 jornadas de mues-
treos en campo. En cada parcela se tomaron muestras de pasto sobre 3 cuadrantes 

de 25x25 cm localizados de forma semi-aleatoria. En los casos de que dentro de 
la parcela hubiera uno o más encinares, al menos uno de los cuadrantes de mues-

treo se localizó bajo el área de dominio de la copa del encinar, espacio donde suele 

Figura 7. Distribución de las parcelas de muestreo en el área de estudio. 

http://www.lineas.cchs.csic.es/biospec/
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tener propiedades distintas debido al efecto del sombreado y el aporte de la ma-
teria seca muerta (Melendo-Vega et al. 2017). 

 
El procesado de las muestras de pasto fue realizado por el equipo científico 

SynerTGE en un laboratorio adaptado para ello. El proceso empezó con la separa-
ción manual de una submuestra representativa de la muestra total. La cantidad de 

submuestra seleccionada varió en función del peso de la muestra total siendo en 
cualquier caso superior al 18% de la misma. Cada una de las submuestras fue 

escaneada (Epson Perfection V30 color scanner) con el objetivo de realizar el 
cálculo del área foliar del vegetal. Para ello, obtuvieron clasificaciones no supervi-

sadas de las imágenes escaneadas utilizando el algoritmo ISOCLUS con 16 itera-
ciones utilizándose los softwares PCI y Matlab®. A continuación, las muestras de 

pasto pasaron por un proceso de secado a través de una estufa a 60ºC durante un 
período de 48 horas, obteniéndose así su peso seco (Melendo-Vega et al. 2017). 

A continuación, calcularon las variables LAI total y LAI verde mediante las siguien-

tes expresiones: 
 

𝐿𝐴𝐼 𝑣𝑒𝑟𝑑𝑒 =  

𝑊 𝑑 ∗ 𝑊 𝑑 𝑠 𝑣
𝑊 𝑑 𝑠 ∗   𝐴 𝑠 𝑣
𝑊 𝑑 𝑠 𝑣 ∗ 𝐴𝑝𝑙𝑜𝑡

 

 
donde W es el peso en cm; d refiere al peso seco; s significa la submuestra; v corresponde a 

la fracción verde; A es el área y Aplot es la superficie del suelo muestrada.  

 
Para calcular el LAI total, anteriormente tuvieron que calcular LAI no verde 

(nv) a través de la siguiente expresión: 
 

 

𝐿𝐴𝐼 𝑛𝑜 𝑣𝑒𝑟𝑑𝑒 (𝑛𝑣)  =  

𝑊 𝑑 ∗ 𝑊 𝑑 𝑠 𝑛𝑣
𝑊 𝑑 𝑠 ∗   𝐴 𝑠 𝑛𝑣
𝑊 𝑑 𝑠 𝑛𝑣 ∗ 𝐴𝑝𝑙𝑜𝑡

 

 
Donde nv corresponde a la fracción no verde. 

 

Por tanto, LAI total se define como: 
 

𝐿𝑎𝑖 𝑡𝑜𝑡𝑎𝑙 = 𝐿𝐴𝐼 𝑣𝑒𝑟𝑑𝑒 + 𝐿𝐴𝐼 𝑛𝑜 𝑣𝑒𝑟𝑑𝑒 

 

En este trabajo, las variables LAI tomadas en campo se les aplicó la media 
aritmética en hoja Excel sobre LAI total y LAI verde en relación a cada una de las 

once parcelas de muestreo y para sus distintos días de toma de datos en campo. 
De esta forma, se obtuvo el valor de LAI total y LAI verde como valores observa-

dos. A continuación, se vectorizaron ambas variables en distintos archivos *.shp 
mediante el software ArcGIS 10.5.  

 

3.7.2. Imágenes Landsat-8 OLI para la validación del modelo de 
estimación de LAI 

 
Se descargaron a través del portal USGS 5 imágenes escaneadas por el sensor 

OLI, a bordo de Landsat-8. La serie multitemporal y, libre de nubes, correspondie-
ron a las fechas del 7 de marzo de 2014, 08 de mayo de 2014, 31 de octubre de 

2014, 28 de junio de 2015 y 17 de junio de 2016. Las escenas se adquirieron con 
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el nivel de procesamiento Level-2, por lo que se adquirieron con corrección atmos-
férica a través del algoritmo LEDAPS. Para todas las escenas, se generó un multi-

banda acorde a la región de interés, mientras que para ajustarse al modelo B se 
realizó una máscara para eliminar los píxeles situados sobre el embalse y caminos, 

así como sus píxeles vecinos. 
 

Se excluyeron del análisis todas aquellas escenas con presencia de nubes sobre 
el área de estudio. Además, se tomó el criterio de no utilizar aquellas escenas con 

un desfase temporal mayor a 7 días entre el escaneo realizado por sensor OLI y 
las muestras realizadas en campo debido a las incertidumbres inherentes asocia-

das a condiciones meteorológicas o fenológicas sobre el pasto (Tabla 3). Así 
mismo, la escena solicitada el 16 de febrero de 2016 fue cancelada por parte del 

USGS. Aun así, las escenas utilizadas tienen en cuenta el estado fenológico del 
pasto, caracterizado por un significativo contraste entre un pasto vigorosos en 

desarrollo y desarrollado en primavera, y seco y carente de actividad fotosintética 

a final de verano (Melendo- Vega et al. 2017) 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

 
 

 
 

3.7.3. Modelización estadística de LAI total y LAI verde a partir 
de Índices de Vegetación 

 
Se testean las funciones predictivas realizadas utilizando las distintas escenas 

Landsat-8 OLI y las medidas de LAI en campo, para a continuación, evaluar las 
predicciones de LAI dadas por los índices con mayores coeficientes de r y r2. 

 
Validación de modelos 

 
Una vez obtenidos los valores predichos y observados para cada uno de los 

escenarios generados, se realizó un análisis de regresión simple para cada variable 

estimada y sujetas a sus distintos modelos, con el propósito de evaluar la relación 
lineal entre los valores predichos y observados. Los resultados se graficaron y se 

trataron mediante Rstudio a través del paquete “ggplot2”.  
 

Para la validación se utilizó el error cuadrático medio (Root-mean-square de-
viation, RMSE). Éste es un estadístico destinado a medir el promedio de los errores 

Tabla 3. Factores que implican la selección de imágenes Landsat-8 OLI 
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al cuadrado entre los valores predichos y observados y, es una expresión equiva-
lente a la desviación típica en ausencia de sesgo, es decir, si el valor del error 

medio fuera cero. RMSE presenta errores en la misma unidad de medida que la 
muestra, donde cuánto más próximo sea su valor a 0 mejor será el producto ob-

tenido. La expresión del error cuadrático medio de define como:  
 

𝑅𝑀𝑆𝐸 =  √
∑ (𝑦𝑖 − ϔ𝑖)

𝑛
𝑖=1

𝑛
 

 
donde y es el valor observado, ϔ es el valor predicho, y n es el número total de observaciones. 
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4. RESULTADOS 
 

4.1. Cartografía de los valores continuos de pseudo-LAI a partir de 
CASI 

 
En base a la función de regresión utilizada por Melendo-Vega et al. (2017) y 

calculada a través del NDVI, se elaboró cartografía de pseudo-LAI a resolución de 
1m para cada escena CASI centrada en la región de interés. Además, tal y como 

se ilustra en la figura 8, la reclasificación realizada permitió representar aquellos 
píxeles exclusivos a pasto y, al mismo tiempo, excluir aquellos píxeles represen-

tativos a láminas de agua, caminos y encinares. A simple vista, la escena CASI (5-
5-2011) presenta valores de pseudo-LAI ligeramente superiores a la imagen CASI 

(8-4-2014). Entre esta diferencia, la cantidad de lluvia recibida por el dosel vegetal 
en las semanas previas al escaneo de las escenas CASI, podría haber marcado el 

vigor vegetal del pasto y, con ello, la dinámica fenológica (Chuvieco, 2015). 

 
           Pseudo-LAI (5-5-2011)           Pseudo-LAI (8-4-2014) 

  

Figura 8. Cartografía pseudo-LAI 

4.2. Magnitud y distribución espacial de los valores pseudo-LAI 

 
Se aplicó la técnica de ampliación de escala en base a la cartografía pseudo-

LAI y, con ello, se aplicaron estadísticos, para a continuación, ser agregados a 
resolución Landsat 30m. En la figura 9, se muestra la magnitud y distribución es-

pacial de los valores pseudo-LAI representados por estadísticos de centralidad 

(media y mediana) y de dispersión (valores mínimos y máximos) a resolución 
Landsat 30m, en fechas del 5-5-2011 (Landsat-5) y 22-4-2014 (Landsat-8) 

 
En cuanto a la media, en tales escenas se define por la suma de todos los 

valores pseudo-LAI por el número total de píxeles de la imagen. En este sentido, 
la magnitud de pseudo-LAI media establecida para la escena Landsat-5 es de 1.80, 

mientras que para la imagen Landsat-8 es ligeramente inferior, siendo de 1.42. La 
diferencia en relación a la magnitud de los valores pseudo-LAI media entre una y 

otra escena, está relacionada por la dinámica fenológica, es decir, el estado de 
vigor vegetal del pasto. 

 
Por otro lado, se calculó la mediana como otro estadístico de centralidad que 

define el número de píxeles de pseudo-LAI cuando se clasifican en orden, siendo 
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de 2.13 para Landsat-5 y 1.65 para la Landsat-8. pseudo-LAI mediana se formuló 
para ambas escenas como: 

𝐿𝑎𝑛𝑑𝑠𝑎𝑡5 =  𝑀𝑒 = 𝐿𝑖 +

784
2 − 𝐹𝐼−1

𝐹𝑖
∗ 𝑎𝐼 (3.25)      𝐿𝑎𝑛𝑑𝑠𝑎𝑡8 =  𝑀𝑒 = 𝐿𝑖 +

784
2 − 𝐹𝐼−1

𝐹𝑖
∗ 𝑎𝐼 (2.91) 

 

Donde 𝐿𝑖  es el límite inferior del valor pseudo-LAI donde se encuentra la mediana; 
784

2
 es la 

semisuma de las frecuencias absolutas; 𝐹𝐼−1 es la frecuencia acumulada anterior a LAI mediana y 

𝑎𝐼 es la amplitud de los valores pseudo-LAI. 

 

Pese a que pseudo-LAI media y pseudo-LAI mediana desempeñen una función 
similar para analizar la tendencia central del conjunto de píxeles representativos a 

pseudo-LAI, pseudo-LAI media es más sensible a los valores extremos de los pí-
xeles de la escena, es decir, se ve afectada por valores de píxeles separados que 

son mucho más altos o bajos que el resto de píxeles, como por ejemplo las láminas 

de agua, caminos, etc. En cambio, pseudo-LAI mediana representa un tanto mejor 
la realidad de la variable biofísica LAI, debido a que se afecta menos por la pre-

sencia de sesgos de los píxeles con valores extremos.  
 

Los estadísticos de dispersión utilizados describen el grado de dispersión de los 
valores de los píxeles pseudo-LAI respecto a la medida de la tendencia central. En 

relación a la escena Landsat-5, los valores de pseudo-LAI presentan un rango de 
3.25, mientras que, para Landsat-8 el rango es ligeramente inferior. Tal y como 

se ilustra en la figura 8, se aprecia como la heterogeneidad de cubiertas origina 
que existan muy pocos píxeles a resolución Landsat que representen exclusiva-

mente pasto, en cambio, en relación a los valores máximos, se aprecia que el pasto 
está representado en la totalidad de los píxeles, a excepción de la laguna. En am-

bos casos, se da una distribución espacial de pseudo-LAI opuestamente homogé-
neos.  
 

       Estadísticos resolución Landsat 30m (5-5-2011) Estadísticos resolución Landsat 30m (22-04-2014)  

Figura 9. Cartografía pseudo-LAI (estadística) derivada de la ampliación de escala y fase de agregación a 
resolución Landsat (30m) 

Media Mediana Media Mediana 

Mínimos Mínimos Máximos Máximos 
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4.3. Análisis de las relaciones empíricas entre pseudo-LAI e índices 
espectrales de vegetación 

 
El grado de ajuste lineal (r y r2) entre los IV computados y los pseudo-LAI se 

presentan divididas en cuatro categorías en función de su formalismo y su adhe-
sión a la misma familia (Haboudane et al. 2004), sea para sensor TM como para 

OLI y, sus modelos asociados. Además, se presentan los resultados procedentes 
de las muestras (sample) aleatorias para cada escena y modelo de manera sim-

plificada y en formato tablas. Estos procesos permitieron seleccionar aquellos IV 
que obtuvieron un mayor grado de correlación.  

 
Modelo A, Landsat-5 TM y Landsat-8 OLI 

 
En cuanto a la imagen Landsat-5 TM, tal y como se muestra en la figura 10, 

se han obtenido mayores correlaciones (r y r2) con aquellos IV especializados a 

estimar LAI verde. Por el contrario, Los IV atmosféricos muestran bajos grados de 
correlación. Además, los IV computados se relacionan linealmente mejor con el 

estadístico pseudo-LAI mediana en lugar de pseudo-LAI media para todos los ca-
sos, debido a que pseudo-LAI mediana se aproxima más a la realidad de pseudo-

LAI medida en campo.  
 

De manera individual y asociados al grado de ajuste con pseudo-LAI mediana, 
los IV con mayor grado de correlación son MCARI1 y MTVI1 con r = 0.77 y r2 = 

0.59 y, los IV MSAVI y MTVI2 con r = 0.74 y r2 = 0.54. Por otro lado, GEMI y CVI 
obtuvieron bajos grados de correlación, mientras que, el IV NOBLeaf obtuvo un 

coeficiente de correlación negativa y de carácter moderada. 
 

En relación a la escena Landsat-8 OLI, así como se observa en la figura 11, los 
resultados son semejantes a los obtenidos para la escena TM, afirmando que los 

mayores coeficientes responden a los IV especializados a estimar LAI verde. Sin 

embargo, los valores de los coeficientes de r y r2 son un tanto mayor, encabezados 
por MCARI y MTVI1 con r = 0.84 y r2 = 0.71 y CLGreen con r = 0.82 y r2 = 0.68. 

Los índices espectrales que peores ajustes lineales presentaron fueron GEMI con r 
= 0.29 y r2 = 0.08 y, CVI con r = 0.47 y r2 = 0.22. 

 
En cuanto a los ajustes lineales entre las bandas espectrales y los pseudo-LAI, 

como se ilustra en la figura anexada 26 la única banda espectral que muestra un 
grado de variación conjunta moderada con la variable dependiente pseudo-LAI 

corresponde a la banda NIR, con coeficientes (r y r2) similares tanto para la escena 
TM como para OLI. Así mismo, a diferencia de los IV utilizados, las bandas espec-

trales se relacionan mejor con pseudo-LAI media en lugar de pseudo-LAI mediana, 
aunque de manera muy tímida. 

 
Por tanto, la banda NIR derivada del sensor OLI obtuvo coeficientes con res-

pecto a pseudo-LAI media de r = 0.69 y r2 = 0.48, mientras que la imagen TM 

obtuvo valores ligeramente inferiores, con r = 0.53 y r2 = 0.28. En este sentido, 
es destacable remarcar que los coeficientes obtenidos para el NIR a través de OLI 

son equiparables a IV tales como SARVI, MCARI2, EVI y, mejores a NDII. 
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 Coefeficientes Correlación Pearson r   Coeficientes de determinación r2 

   

   

   

   

Figura 10. Análisis de Correlación de Pearson y Coeficientes de determinación para el Modelo A, sensor TM 
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 Coefeficientes Correlación Pearson r    Coeficientes de determinación r2 

   

   

   

   

Figura 11.  Análisis de Correlación de Pearson y Coeficientes de determinación para el Modelo A, sensor OLI 
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Modelo B, Landsat-5 TM y Landsat-8 OLI 
 

En cuanto a la escena Landsat-8 TM, tal y como se muestra en la figura 12 se 
han obtenido mayores correlaciones (r y r2) con aquellos IV basados en la diferen-

cia normalizada y mejora de la linealidad, exceptuando el IV NDBLeaf, cuya corre-
lación con los estadísticos pseudo-LAI sigue siendo al igual que ocurre en el modelo 

A, negativa y moderada. No obstante, el grupo de IV especializados a estimar LAI 
verde siguen teniendo altos grados de ajuste lineal con los estadísticos pseudo-

LAI. En cambio, los IV que mejoran la influencia del suelo y los efectos atmosférico 
y, los IV atmosférico ofrecen las peores relaciones lineales con las variables de-

pendientes pseudo-LAI, a excepción de GVMI, el cual obtuvo un alto grado de 
correlación. 

 
Por tanto, los IV con mayores correlaciones con LAI mediana corresponden a 

NDII y GVMI con r = 0.81 y r2 = 0.69 y, SRWI y MSAVI con r = 0.8 y r2 = 0.65 y 

0.64, respectivamente. Cerca de esos valores, se dispone de una batería de IV con 
altas correlaciones (NDVI; MSR; SAVI; MCARI1; MTVI1 y RDVI). En contrapartida, 

destacar el bajo rendimiento que ofrece el IV CVI, cuya asociación lineal con LAI 
es más bien baja. 

 
Sin duda alguna, tal y como se ilustra en la figura 13, en general, todos los IV 

presentan altos grados de correlación con relación a los estadísticos pseudo-LAI, 
a excepción de EVI, GEMI y CVI. Así mismo, el IV NDBLeaf presenta, al igual que 

ocurre con la escena TM, un valor de asociación con pseudo-LAI de forma mode-
rada y negativa.  

 
Por grupos de IV, tanto los basados en la diferencia normalizada y mejora de 

la linealidad, como los especializados a estimar pseudo-LAI y los IV que mejoran 
la influencia del suelo, en general, ostentan correlaciones de valor r y r2 muy altos, 

entre 0.88 y 0.91 y, 0.77 y 0.81, respectivamente. Sin embargo, destaca sobre 

los demás y al igual que ocurre con la escena TM, los IV NDII y GVMI, ambos con 
r = 0.91 y r2 = 0.83 en relación con LAI mediana. Vuelve a destacar por su nula 

correlación con los estadísticos LAI, la variable independiente CVI. 
 

En relación a la variación conjunta entre las bandas espectrales y los pseudo-
LAI, se aprecia en la figura anexada 27, que la banda NIR es la única que presenta 

grados de correlación óptimos. Pese a ello, existen diferencias en cuanto a los 
valores de los coeficientes entre la escena TM y OLI, siendo para esta mayor a TM. 

Sin embargo, se observa que la banda NIR, como caso único en relación a las 
demás bandas TM Y OLI, se relaciona mejor con pseudo-LAI media en lugar de 

pseudo-LAI mediana.  
 

Por tanto, la banda NIR derivada de TM ostenta un r = 0.68 y r2 = 0.46 en 
relación a pseudo-LAI media y, mucho mayor para OLI, con r = 0.85 y r2 = 0.73 

en relación a pseudo-LAI mediana. Es destacable como la banda NIR derivada del 

sensor OLI, presenta coeficientes en relación a LAI mediana casi equiparables con 
aquellos IV que obtuvieron valores altos de correlación. 
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 Coefeficientes Correlación Pearson r   Coeficientes de determinación r2 

   

   

   

  

 

 

 

 

 

  

 

Figura 12. Análisis de Correlación de Pearson y Coeficientes de determinación para el Modelo B, sensor TM 
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Figura 13. Análisis de Correlación de Pearson y Coeficientes de determinación para el Modelo B, sensor OLI 

Muestras aleatorias y selección del IV, MODELO A 
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Una vez aplicadas las correlaciones para ambos modelos, se realizaron mues-

tras aleatorias sobre cada escena asociada a cada modelo. En base a ello, los 
resultados fueron simplificados y plasmado en tablas con la finalidad de eliminar 

del análisis los índices con valores bajos de correlación y, a la vez, facilitar la in-
terpretación sobre aquellos IV que obtuvieron las mayores correlaciones. 

 
En relación al modelo A, la tabla 4 muestra los resultados derivados de las 

muestras aleatorias establecidas al 10% sobre las escenas TM y OLI. Para ambas 
escenas, los índices espectrales de vegetación con mayor grado de correlación con 

pseudo-LAI mediana corresponden a MCARI1 y MTVI1, ambos con r = 0.81 y r2 = 
0.65 para Landsat-5 y, del mismo modo, con r = 0.88 y r2 = 0.77 para Landsat-8. 

 
Sin embargo, resulta interesante como todos los IV seleccionados mejoran su 

rendimiento para predecir pseudo-LAI cuando utilizan información espectral deri-

vada de Landsat-8 en lugar de Landsat-5. Por ejemplo, sobre esta idea destaca en 
relación a los demás, el IV CLGreen, donde este índice mejora substancialmente 

su rendimiento para predecir LAI cuando utiliza el sensor OLI, es decir, pasa de un 
r = 0.73 (Landsat-5) a un r = 0.86 (Landsat-8).  

 
 

Tabla 4. Análisis de correlación (r y r2) entre Pseudo-LAI vs IV en base a muestras aleatorias al 10% sobre 
las escenas TM y OLI. Modelo A. Representación simplificada de resultados. 

 

  
Modelo A, Sensor TM (Landsat-5)   Modelo A, Sensor OLI (Landsat-8) 

Índices de 

vegetación 

LAI mediana LAI mediana   LAI mediana LAI mediana 

r r2   r r2 

MCARI1 0,81 0,65   0,88 0,77 

MTVI1 0,81 0,65   0,88 0,77 

MTVI2 0,75 0,56   0,8 0,65 

MSAVI 0,75 0,56   0,8 0,66 

NDVI 0,74 0,56   0,81 0,66 

SAVI 0,74 0,56   0,81 0,66 

RDVI 0,73 0,54   0,81 0,66 

MSR 0,73 0,54   0,81 0,66 

CLGreen 0,73 0,53   0,86 0,74 

NDII 0,41 0,22   0,5 0,36 

 

 
En consecuencia, en función a los mayores grados de correlación obtenidos, se 

selecciona el IV MCARI1 para el posterior análisis de regresión lineal simple. Así 
mismo, se afirma que para este modelo en la que participan todos los píxeles de 

la escena y, por tanto, todas las cubiertas (embalse, caminos, encinares y pasto), 
los IV con mayor correlación con pseudo-LAI mediana corresponden a los destina-

dos a estimar LAI verde. 
 

 
 

 

 
Muestras aleatorias y selección del IV, MODELO B 



33 

 
En cuanto al modelo B, las mayores correlaciones derivadas de las muestras 

aleatorias sobre cubiertas exclusivas de pasto y encinares corresponden a los ín-
dices de vegetación NDII y GVMI (tabla 5). En concreto, para la escena TM, ambos 

IV obtuvieron un r = 0.81 y r2 = 0.65, mientras que para Landsat-8, todos los IV 
de vegetación mejoraron substancialmente su grado de variación conjunta con la 

variable dependiente pseudo-LAI. De manera análoga a TM, los índices espectrales 
con mayor grado de asociación con LAI corresponden a las variables independien-

tes NDII y GVMI, ambos con un r = 0.92 y r2 = 0.85. 
 

No obstante, es destacable como los IV MCARI1, MTVI1, MTVI2 y MSAVI ofre-
cen muy buenas prestaciones para predecir pseudo-LAI en ambo modelos. En 

cambio, NDII y GVMI ostentan los mayores valores de reflectividad, aunque redu-
cen su fiabilidad cuando se trata de estimar pseudo-LAI a través de Landsat-5.  

 

 
Tabla 5. Análisis de correlación (r y r2) entre pseudo-LAI vs IV en base a muestras aleatorias al 10% sobre 
las escenas TM y OLI. Modelo B. Representación simplificada de resultados. 

 

  
Modelo B, Sensor TM (Landsat-5)   Modelo B, Sensor OLI (Landsat-8) 

Índices de 

vegetación 

LAI mediana LAI mediana   LAI mediana LAI mediana 

r r2   r r2 

NDII 0,81 0,65   0,92 0,85 

GVMI 0,81 0,65   0,92 0,85 

SRWI 0,8 0,64   0,91 0,83 

MCARI1 0,78 0,61   0,89 0,79 

MTVI1 0,78 0,61   0,89 0,79 

MTVI2 0,78 0,61   0,88 0,78 

NDVI 0,77 0,59   0,89 0,79 

SAVI 0,77 0,59   0,89 0,79 

MSAVI 0,77 0,59   0,88 0,78 

MSR 0,76 0,58   0,88 0,78 

RDVI 0,76 0,58   0,88 0,78 

 

 
En base a los resultados obtenidos, se selecciona el NDII como aquel IV que 

ha obtenido el mayor grado de correlación en relación a los demás con pseudo-LAI 
mediana, por lo que será el IV utilizado para realizar el posterior análisis RLS. Estos 

análisis demuestran que los IV formulados sobre píxeles situados sobre pasto y 
relacionados empíricamente con pseudo-LAI mediana, ha originado que estos IV 

ostenten mayores grados de variación conjunta con la variable dependiente 
pseudo-LAI en relación a los demás modelos. 

 
 

 
 

 

 
 

4.4. Análisis RLS: funciones predictivas 
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En base a los análisis de correlación realizados anteriormente se han seleccio-

nado aquellos IV con mayor grado de variación conjunta con pseudo-LAI mediana, 
siendo MCARI1 (modelo A) y NDII (modelo B). Para cada modelo, la relación em-

pírica entre pseudo-LAI mediana y los IV seleccionados se determinaron a partir 
de datos obtenidos en base a un muestreo aleatorio simple de forma combinada 

establecida al 10% sobre ambos sensores (TM y OLI). 
 

A partir de los análisis de regresión lineal simple se obtuvieron las ecuaciones 
predictivas para cada modelo, responden a las siguientes expresiones y, con ellas 

se mide la bondad del ajuste de la recta a los datos a partir del coeficiente de 
determinación: 

 
Modelo A 

 

MCARI1: pseudo-LAI mediana = -0.2432 + 0.0007304, con un r2 0.842 
 

Modelo B 
 

NDII: pseudo-LAI mediana = 1.093 + 4.687, con un r2 0.8501 
 

Por tanto, tal y como se muestra en la figura 16, ambos modelos son estadís-
ticamente significativos debido a que se observa una distribución, en general, bas-

tante uniforme entre la variable dependiente (pseudo-LAI mediana) y las indepen-
dientes (MCARI1 y NDII). Es interesante observar, que el modelo A contiene valo-

res que representan píxeles con rangos de valores de MCARI1 infraestimados, por 
lo que la predicción individual de ese píxel queda fuera del rango de valores ob-

servados. Ello se debe, básicamente, a que la muestra aleatoria seleccionó píxeles 
que representan cubiertas ajenas al pasto, como el embalse o los caminos. Dada 

esa incertidumbre añadida, se hace patente que este modelo ofrece un menor 

rendimiento en cuanto al grado de variación conjunta entre ambas variables. 
 

  

Figura 14. Relaciones empíricas entre pseudo-LAI mediana y los índices predictores seleccionados a partir 
TM y OLI 

 

4.5. Validación de los ajustes estadísticos 

L
A
I 

m
e
d
ia

n
a
 

MODELO A 

L
A
I 

m
e
d
ia

n
a
 

 MCARI1  NDII 

MODELO B 



35 

 
Se aplicaron las funciones predictivas para ambos modelos con el propósito de 

modelizar las variables predictoras en base a los IV seleccionados y los valores 
pseudo-LAI. Las funciones predictivas se describen de la siguiente forma: 

 
Modelo A 

 
MCARI1: pseudo-LAI mediana = -0.2432 + 0.0007304 *MCARI1 (TM) 

 
MCARI1: pseudo-LAI mediana = -0.2432 + 0.0007304 *MCARI1 (OLI) 

 
Modelo B 

 
NDII: pseudo-LAI mediana = 1.093 + 4.687 * NDII (TM) 

 

NDII: pseudo-LAI mediana = 1.093 + 4.687 * NDII (OLI) 
 

El análisis de regresión lineal simple demostró que ambos modelos generados 
son estadísticamente satisfactorios, debido a sus altos grados de asociación entre 

los valores predichos y los observados (figura 17). Pese a eso, el coeficiente de 
determinación varía entre ambos modelos desarrollados sobre una dehesa, siendo 

menor para MCARI1 (r2 = 0.77). Por tanto, es de destacar que la dispersión entre 
los valores observados y los predichos a través de NDII, presentan un ajuste lineal 

casi perfecto, con un r2 = 0.93. 
 

 
  

Figura 15. Relaciones empíricas entre LAI observado y pseudo-LAI predicho a partir de MCARI1 (Modelo A) 
y NDII (Modelo B). 

 
 

 
4.6. Aplicación y validación de modelos: datos Landsat-8 y verdad-

terreno. 
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En este apartado se aplican análisis de regresión simple (RLS) en relación a los 

valores observados y los valores predichos y, se validan los modelos predictivos 
para estimar LAI mediante el estadístico RMSE. 

 
Tal y como se muestra en la figura 18, las predicciones que estiman LAI se 

sitúan en la mayoría de los casos en grupos conglomerados, por lo que se diferen-
cian claramente las predicciones tomadas en distintas fechas.  

 
Por otro lado, los modelos predictivos de NDII (modelo A) para estimar LAI 

acaparan los menores errores de error cuadrático medio (RMSE), siendo de 0.596 
para LAI total y 0.473 para LAI verde. En cuanto a MCARI1 (modelo B), los errores 

RMSE son un tanto mayor que NDII, siendo de 0.614 para LAI total y 0.703 para 
LAI verde. Esta observación confirma que el modelo generado en base a píxeles 

que representan pasto y encinares ofrecen un mayor rendimiento para la predic-

ción de LAI. 
 

Si individualizamos los casos, la predicción de NDII referente al 28 de junio de 
2015 obtuvo un grado de asociación excelente entre los valores de LAI verde me-

didos en campo y los estimados por NDII, con un RMSE de 0.196. Con resultados 
consistentes de RMSE se identifican también los modelos de predicción NDII para 

estimar LAI total con fecha del 28 de junio de 2015 (RMSE = 0.347) y el modelo 
predictivo de MCARI1 para estimar LAI verde con fecha del 8 de mayo de 2014 

(RMSE = 0.335). Dados estos resultados, existe una marcada relación entre los 
mejores predictores de LAI derivada de las funciones predictivas (abril – mayo) 

con la toma de datos medidas en campo realizadas en fechas fenológicas similares, 
donde el pastizal de la dehesa se encuentra en su período de máximo desarrollo.   

 
En contrapartida, los modelos predictivos realizadas para periodos invernales 

presentan modelos menos consistentes, cuyos RMSE varían entre 0.562 y 1.152. 

Del mismo modo ocurre para las predicciones otoñales en relación al sensor TM, 
con un RMSE = 0.723 MCARI1 y RMSE = 1.011 NDII. Se confirma, por tanto, que 

los modelos generados ofrecen un mayor rendimiento para los períodos fenológi-
cos primaverales-estivales.  

 
Tal y como indica Cohen et al. (2003), los modelos de predicción, comúnmente, 

siempre pueden tener predicciones individuales fuera del rango de valores obser-
vados. Esta confirmación, se traduce en este trabajo con los predictores MCARI1 

y NDII para estimar LAI en fecha del 6 de marzo de 2014, donde se disponen 
sistemáticamente cuadrantes (304 y 211) con valores fuera de rango sobre la cual 

se construyó el modelo. En los casos de MCARI1 se observa sobreestimación, en-
torno a >1.2 sobre la línea de ajuste, mientras que para NDII ocurre infraestima-

ción, aunque con un rango menor que MCARI1, entorno a <0.6. Otro ejemplo 
ocurre para los predictores de ambos índices para estimar LAI en fecha del 31 de 

octubre de 2014. 

 
 Dadas estas particularidades, la exclusión u omisión de valores atípicos -en 

este caso representados por cuadrantes- que añaden incertidumbres a los modelos 
se ofrecen como una alternativa a mejorar la bondad y el ajuste de las relaciones 

empíricas entre los valores predichos y los observados para estimar LAI. 
  MODELO A MODELO B 
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Figura 16. LAI observados vs LAI predichos. Validaciones RMSE 

A continuación, se testean las funciones predictivas en base a la imagen corre-

gida topográficamente mediante el método c-correction (Teillet et al. 1982) deri-
vada de la escena Landsat-8, adquirida el 22 de abril de 2014. De este modo, se 

escogieron como valores observados el LAI medido en campo el 8 de mayo de 
2014. El desfase temporal entre la toma de datos en campo y el escaneo a través 

del sensor OLI fue de -13 días, con una precipitación acumulada de aprox. 34 l/m2 
(REDAREX, 2018) desde un mes vista a la toma de dato de LAI en campo. 

 
Tal y como se ilustra en la figura 17, los modelos predictivos para estimar LAI 

total acaparan, de manera substancial, mejores resultados RMSE, donde la nube 

de puntos se ajusta razonablemente a una recta con una pendiente negativa. Como 
ocurriera anteriormente, la parcela 304 aparece, en todos los casos, como valor 

atípico. 
 

Pese a que el área de interés sea poco accidentada, los modelos predictivos 
para estimar LAI total basados en imágenes normalizadas han obtenido un RMSE 

LAI TOTAL MCARI1 LAI TOTAL NDII 

LAI VERDE MCARI1 LAI VERDE NDII 
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ligeramente mejores que los testeados anteriormente para una misma fecha. 
Siendo mejor para el NDII (escena c-correction) con un RMSE = 0.577 vs RMSE = 

0.598 (escena sin corrección) y menor para MCARI1 (escena c-correction) con un 
RMSE = 0.67 vs RMSE = 0.716 (escena sin corrección).  

 
La predicción de LAI verde (MCARI1 y NDII) en relación a la imagen c-correc-

tion decayó de manera significativa en relación a las escenas no corregidas. 
MCARI1(escena c-correction) con RMSE = 1.24 y mucho mejor para la escena sin 

corrección normalizada, con RMSE = 0.335, mientras que NDII (escena c-correc-
tion) obtuvo un RMSE = 0.959 vs RMSE = 0.456 (escena corregida) 

 
  

  

  

Figura 17. LAI observado vs LAI predicho. Validaciones RMSE. Utilización de imágenes normalizadas c-co-

rrection (Teillet, et al. 1983) 

 

 

 

 

5. DISCUSIÓN 

 

LAI TOTAL MCARI1 LAI TOTAL NDII 

LAI VERDE MCARI1 LAI VERDE NDII 

MODELO A MODELO B 
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El objetivo del presente Trabajo Fin de Máster fue desarrollar un modelo pre-
dictivo del LAI a partir de información multiespectral de media resolución espacial 

(Landsat) a partir del análisis y modelización previa de las relaciones entre infor-
mación hiperespectral a alta resolución espacial y LAI verdad-terreno, desarrollado 

para ambientes heterogéneos como son las dehesas. 
 

La utilización de sensores hiperespectrales (CASI) y multiespectrales, como 
Landsat o el propio Sentinel-2 y, otros muchos más como por ejemplo MODIS, han 

permitido establecer relaciones empíricas para estimar el LAI a partir de datos LAI 
medidos en pastizales e índices espectrales propuestos en la bibliografía científica 

(Melendo-Vega et al. 2017; He et al. 2016; Fernández-Arango et al. 2015; Möckel, 
2015; Martín et al. 2011; Lee et al. 2004). Los resultados obtenidos por estos 

autores no han sido del todo satisfactorias debido a múltiples factores, como, por 
ejemplo, las asociadas a la inexactitud de coincidencia de escala o por las debidas 

a la limitación de muestreos del LAI medidas en campo, que suelen ser costosos 

en términos temporales y económicos. 
 

Para hacer frente a esos factores, en este trabajo se aplicó la técnica upscaling, 
lo que permitió agregar una gran magnitud de pseudo-LAI (900 pixeles; resolución 

1m) a resolución Landsat (30m). Su remuestreo permitió obtener una modeliza-
ción predictiva de Landsat de manera continua en el espacio y más ajustada a la 

realidad. Sin embargo, se encontró escasa bibliografía al respecto, debido a que 
estos modelos requieren de un gran capital humano, técnico y económico para 

llevarlo a cabo. Aun así, Korhonen et al. (2017) y Hufkens et al. (2008) incorpo-
raron en sus modelos predictivos la técnica upscaling, permitiéndoles obtener me-

jores predicciones del LAI que otros estudios. 
 

En base a los resultados obtenidos, entre los distintos grupos de índices pro-
puestos por Haboudane et al. (2004), los índices desarrollados para estimar LAI 

verde y basados en la región comprendida entre el V-NIR (MCARI1, MTVI1 y 

MTVI2) obtuvieron altos grados de ajustes con pseudo-LAI en ambos modelos (A 
y B), aunque mayor en B. Estos resultados coinciden con el trabajo de Fernández-

Arango et al. (2015). Ello se debe a que la expresión MCARI1 minimiza la sensibi-
lidad a los efectos producidos por la clorofila y, a la vez, a su capacidad de aumen-

tar la sensibilidad a los cambios del LAI (Haboudane et al. 2004). Sin embargo, 
NDII, basado en la normalización y, el GVMI como índice atmosférico (ambos V-

SWIR) obtuvieron el mayor grado de variación conjunta con pseudo-LAI en el mo-
delo A, y mermó substancialmente en el B. Sus óptimos resultados, concuerdan 

con otros estudios previos (Melendo-Vega et al. 2017; Delegido et al. 2015). La 
utilización de la banda NIR en la formulación de GVMI y NDII, hace que ambos 

sean más sensibles a los cambios de contenido de agua del vegetal, de ahí, que 
sean IV óptimos para predecir el LAI en pastizales. En base al análisis visual sobre 

la cartografía pseudo-LAI, se observó que GVMI se correlaciona mejor con pseudo-
LAI cuando este es igual o menor a 2, en cambio, Ceccato et al. 2002 demostró 

que GVMI rinde más cuando LAI es igual o mayor a 2. Otros índices con altos 

ajustes con pseudo-LAI refieren a SAVI y MSAVI. Su buen rendimiento también lo 
obtuvieron Haboudane et al. (2004) y de manera tímida Melendo-Vega et al. 

(2017). Otro caso particular se dio con CLGreen, que de manera opuesta a NDII y 
GVMI, obtuvo de los mayores ajustes con pseudo-LAI en el modelo A, similares a 

MCARI1 y MTVI1. 
En general, los resultados obtenidos han presentado correlaciones de r y r2 

óptimas. Sin embargo, tal y como se ha descrito anteriormente existen diferencias 
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en cuanto a resultados entre los distintos grupos de IV. Si bien, tal y como indican 
Huete (2002), si los IV se relacionan bien con LAI es porque ellas mismas están 

relacionadas entre sí, cada una en función del contenido de clorofila y otras carac-
terísticas del dosel. Además, algunos índices aplicados, tal y como indica Habou-

dane et al. (2004), cuando se aproximan a niveles de saturación asintónica, LAI 
se satura cuando excede de 2 a 5. 

 
El análisis RLS permitió de manera óptima evaluar el grado de bondad entre 

MCARI1 y NDII con pseudo-LAI. Pese a que ambos modelos son estadísticamente 
robustos, ambos presentan marcadas diferencias. Así, el modelo B (NDII) alcanzó 

el mayor grado de ajuste con pseudo-LAI (r2= 0.93) y, un tanto menor con A 
(MCARI1; r2 = 0.77). El factor que explica esa diferencia en cuanto a resultados, 

sea porque el modelo B utiliza una muestra de píxeles exclusivos a pasto y enci-
nares, por lo que no se ve tan afectada por las perturbaciones debidas a las re-

flectancias derivadas de las láminas de agua y caminos (Haboudane et al. 2004). 

Sin embargo, es interesante observar como en periodos secos, los encinares tienen 
mayor capacidad de contaminar los píxeles Landsat debido a que estos encinares 

tienen más capacidad de retener el contenido de humedad del dosel que el pasto. 
 

Otra fuente de error a destacar y, que quizás haya contribuido a esas diferen-
cias entre los resultados presentados, se relaciona con el desfase temporal deri-

vado del escaneo de los sensores en relación a la toma de dato de LAI en campo. 
Por ejemplo, el desfase temporal entre el escaneo del sensor OLI y la jornada de 

campo fue de +14 días, con una precipitación acumulada de aproximadamente 94 
l/m2 (REDAREX, 2018), por lo que esa precipitación podría haber afectado a la 

dinámica vegetativa del pasto y, más aún cuando se trata de períodos de máximo 
desarrollo vegetal, como es la estación primaveral. Esto se traduce que entre ese 

lapsus de tiempo se obtenga para una misma localización distintos valores de LAI. 
 

Como es sabido, los datos de campo son costosos en términos de tiempo y de 

trabajo humano. Cuando se dispone de una muestra de campo no lo suficiente 
amplia, como se da en este trabajo, es usualmente común utilizar las muestras 

verdad-terreno como valores observados, en lugar de excluir una serie de parcelas 
de muestreo como observaciones para verificar el modelo generado (Chuvieco, 

2015; Cohen et al. 2003). En este sentido, la verificación de los modelos generados 
ha permitido valorar el grado de asociación con la realidad (LAI). Sin embargo, la 

verificación de los modelos siempre exige comparar los resultados obtenidos con 
una fuente externa, que para tal caso se dispuso de 11 parcelas representativas a 

LAI total y LAI verde. Además, la posibilidad de obtener escenas Landsat-8 OLI 
ajustadas en fechas coincidentes a la toma de datos de LAI medidas en campo en 

distintos momentos del ciclo fenológico del pasto, aportó información lo suficien-
temente robusta como para evaluar de manera óptima el grado de ajuste lineal 

entre esos datos de campo con las series multitemporales ofrecidas por el sensor 
OLI. 

 

Los modelos predictivos basados a estimar LAI total y LAI verde obtuvieron 
resultados ligeramente diferentes. La predicción de NDII para estimar LAI verde 

en relación al 28 de junio de 2016 obtuvo el mejor resultado de este trabajo, en 
valores RMSE = 0.196 y en valores relativos RMSE (%) = 6.73 (véase tabla 7). En 

comparación con otro estudio relacionado a estimar LAI y realizado sobre el mismo 
emplazamiento geográfico, su modelo predictivo NDII -fechas similares- ofreció un 

menor rendimiento que el presentado en este trabajo (NDII LAI; RMSE = 18.8) 
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(Melendo-Vega et al. 2017). Además, el predictor NDII Global para estimar LAI 
verde obtuvo mejores resultados RMSE que el de Korhonen et al. (2017) (RMSE = 

16.25 vs RMSE = 22.9, Korhonen et al. 2017), ambos utilizamos Landsat-8 OLI. 
Sin embargo, estos modelos no son equiparables en el sentido de que estos auto-

res aplicaron su modelo para ambientes (clima, latitud próxima a 60º, ecosistema, 
etc.) totalmente distintos al utilizado en este trabajo. 

 
Pese a que MCARI1 fue desarrollado específicamente para predecir LAI verde 

(Haboudane et al. 2004), en este trabajo, MCARI1 obtuvo resultados RMSE lige-
ramente mejores para predecir LAI total en lugar de LAI verde (tabla 6). Así 

mismo, destaca como todos los modelos predictivos relacionados con fechas fina-
les a primavera y estivales, obtuvieron, en general, los mejores RMSE, Un factor 

que explique tal causa se deba a que la función predictiva utilizadas para predecir 
LAI fue tomada en fechas similares a la toma de datos LAI en campo, cuando el 

pasto suele encontrarse en su período de máximo desarrollo vegetativo. 

 
 

Tabla 6. Valores RMSE y RMSE (% calculado sobre el valor máximo de pseudo-LAI, 3.25). Modelo A 

  MODELO A, MCARI1 

  LAI Total    LAI verde  

  RMSE RMSE (%)   RMSE RMSE (%) 

6-mar.-2014 0.786 24.18  1.152 35.44 

8-may.-2014 0.716 22.03  0.335 10.3 

31-oct.-2014 0.723 22.24  0.567 17.44 

28-jun.-2015 0.43 13.23  0.722 22.21 

15-jun.-2016 0.415 12.76  0.739 22.73 

Global 0.614 18.89  0.703 21.63 

 

 
Tabla 7. Valores RMSE y RMSE (% calculado sobre el valor máximo de pseudo-LAI, 2.91). Modelo B 

 MODELO B, NDII 

 LAI Total   LAI verde  

 RMSE RMSE (%)  RMSE RMSE (%) 

6-mar.-2014 0.562 19.31  0.873 30 

8-may.-2014 0.598 20.54  0.456 15.67 

31-oct.-2014 1.011 34.74  0.409 14.05 

28-jun.-2015 0.347 11.92  0.196 6.73 

15-jun.-2016 0.46 15.8  0.431 14.81 

Global 0.596 20.48  0.473 16.25 

 

 
 

Por otra parte, en este trabajo se desarrolló un modelo para corregir topográ-

ficamente la escena mediante c-correction (Teillet et al. 1982). Aunque no sea 
prescindible su aplicación para ambientes poco accidentados, en este estudio se 

quiso incorpora la escena c-correction a los modelos predictivos de LAI total y LAI 
verde, con la finalidad de valorar su rendimiento. Pese a ello, el modelo predictivo 

MCARI1 y NDII para estimar LAI total obtuvo mejores RMSE en relación al modelo 
que no utiliza la escena corregida y, de manera deficiente el LAI verde. 
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Los análisis planteados en este Trabajo Fin de Máster han respondido de ma-
nera óptima la hipótesis planteada, por lo que se puede confirmar que la técnica 

de ampliación de escala, realizada a partir de los modelos empíricos (Hiperespec-
tral vs LAI campo) y su remuestreo a pixeles Landsat, ha permitido obtener de 

manera satisfactoria predicciones de LAI más elevadas que en algunos estudios 
previos. Sin embargo, este modelo sigue teniendo aun incertidumbres asociadas a 

los procesos metodológicos (exclusión u omisión de valores atípicos), procesos de 
validación (verdad-terreno), a la componente meteorológica (precipitación, tem-

peratura, humedad) contaminación de píxeles Landsat (modelo de elección A o B), 
desfase temporal entre la toma de dato del LAI en campo y el escaneo del sensor 

y características técnicas de los sensores. 
 

A partir de ello, se plantean nuevas líneas de trabajo con el objetivo de per-
feccionar las ya utilizadas en este trabajo. Se definen por i) la utilización de datos 

procedentes de sensores a bordo de plataformas aéreas no tripuladas (UAV) esca-

neados en la misma fecha a la toma de dato LAI en campo, por lo que ofrecerá 
testear más IV especializados a estimar LAI y reducirá la incertidumbre asociada 

a la componente meteorológica, ii) procesos de validación más complejos utili-
zando una mayor gama de muestreos de campo que permitan excluir u omitir los 

valores atípicos, iii) aplicar distintos modelos y establecer comparaciones entre 
ellos, tales como la inversión de ecuación de transferencia de radiación de vege-

tación y métodos geoestadísticos y, v) realizar una clasificación supervisada para 
obtener cartografía exclusiva de pasto, y a partir de esta cartografía aplicar los 

métodos y técnicas planteadas. 
 

6. CONCLUSIONES 
 

Durante los últimos años, la estimación de la variable biofísica LAI en ambien-
tes de sabana, como las dehesas, ha suscitado un gran interés por parte de la 

comunidad científica tanto para estudios de cambio climático como para conocer 

el papel que ésta juega en el funcionamiento fisiológico de las plantas.  
 

La propuesta de upscaling de este trabajo ha permitido de manera satisfactoria 
obtener una gran cantidad de pseudo-LAI a resolución Landsat. Pese a no repre-

sentar valores reales de LAI, esta técnica ha conseguido reducir la incertidumbre 
asociada a la inexactitud de escala entre la resolución Landsat y la representativi-

dad de las mediciones del LAI realizadas en campo y ha permitido de manera 
satisfactoria generar modelos empíricos predictivos a partir de índices de vegeta-

ción.  
 

En cuanto a determinar cuál índice es el más adecuado para estimar LAI, su 
elección ha variado en función del modelo desarrollado. Se establece, pues, que 

los índices MCARI1 y MTVI1, basados en las regiones comprendidas entre el V-
NIR, han obtenido los mayores coeficientes r y r2 para la muestra realizada sobre 

todas las cubiertas (Modelo A). En cambio, los índices NDII y GVMI, basados en 

las regiones comprendidas entre el V-SWIR, son los que han alcanzado los mayo-
res valores de r y r2 para la muestra realizada sobre pasto y encinares (Modelo B), 

y de manera similar MCARI1 y MTVI1. 
Los modelos presentan diferencias en función de la inclusión o no de otro tipo 

de cubiertas que no sean las estrictamente relacionadas con la vegetación, siendo 
los índices NDII y MCARI1 los que permitieron los ajustes más elevados (r2 = 0.93 

y 0.77, respectivamente).  
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Una nueva validación de los modelos empíricos utilizando imágenes de dife-

rentes fechas del sensor OLI demuestra que los modelos se ajustan mejor a los 
periodos primaverales-estivales y que MCARI1 es el índice con mayor carga pre-

dictiva tanto de LAI total como del LAI verde. 
 

Además, los resultados señalan que los modelos predictivos NDII para estimar 
LAI verde son, en general, mejores que los predictivos MCARI1, es decir, para 

estimar LAI total. Si concretamos los casos, se determina que el modelo predictivo 
NDII para estimar LAI verde en fecha del 28 de junio de 2015 fue el que obtuvo el 

mejor RMSE = 0.196 y RMSE (%) = 6.73. Pese a ello, a la vista de los resultados, 
MCARI1 se perfila como el índice más confiable, debido a que tanto rinde para LAI 

total, LAI verde, en ambientes heterogéneos y en otros exclusivos a pasto y enci-
nares. 

 

Por otra parte, la aplicación de tratamientos de normalización topográfica en 
los modelos predictivos solo ha contribuido a mejorar ligeramente la modelización 

del LAI total y, de manera deficiente el LAI verde. Se constata pues, que su utili-
zación para ambientes poco accidentados sea prescindible. 

 
En conclusión, se establece que el enfoque de upscaling aplicado ha permitido 

modelizar satisfactoriamente la distribución espacial del LAI para ecosistemas de 
dehesa. No obstante, debido a los múltiples factores que afectan el rendimiento 

de los modelos, es necesario continuar investigando en la materia y aplicar nuevos 
métodos que permitan obtener mejores predicciones del LAI. 
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Figura 18. Análisis de Correlación de Pearson 

entre IV vs Pseudo-LAI realizado en base a 5 
muestras aleatorias. Modelo A, sensor TM 

Figura 19. Análisis de determinación entre 
IV vs Pseudo-LAI realizado en base a 5 
muestras aleatorias. Modelo A, sensor TM 
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Figura 20. Análisis de Correlación de Pearson 
entre IV vs Pseudo-LAI realizado en base a 5 
muestras aleatorias. Modelo A, sensor OLI 

Figura 21 Análisis de determinación entre 

IV vs Pseudo-LAI realizado en base a 5 
muestras aleatorias. Modelo A, sensor OLI 
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Figura 22. Análisis de Correlación de Pearson 
entre IV vs Pseudo-LAI realizado en base a 5 

muestras aleatorias. Modelo B, sensor TM 

Figura 23. Análisis de determinación entre IV vs 
Pseudo-LAI realizado en base a 5 muestras alea-

torias. Modelo B, sensor TM 
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Figura 24. Análisis de Correlación de Pearson 
entre IV vs Pseudo-LAI realizado en base a 5 

muestras aleatorias. Modelo B, sensor OLI 

Figura 25. Análisis de determinación entre IV 
vs Pseudo-LAI realizado en base a 5 muestras 
aleatorias. Modelo B, sensor OLI 
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Coef. Correlación Pearson (r) bandas Landsat-5 (TM) Coef. de determinación (r2) bandas Landsat-5 TM 

 

 
 

 
 

 
 

 

 
 

 
 

 

 

Coef. Correlación Pearson (r) bandas Landsat-8 (OLI) Coef. de determinación (r2) bandas Landsat-8 OLI 

  

Figura 26. Análisis de Correlación de Pearson y Coeficientes de determinación realizadas entre las bandas 
del sensor TM (Landsat-5) y OLI (Landsat-8) y estadísticos LAI. Modelo A. 
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Coef. Correlación Pearson (r) bandas Landsat-5 (TM) Coef. de determinación (r2) bandas Landsat-5 TM 

 
 

 

 
 

 
 

 
 

 
 

 
 

 

Coef. Correlación Pearson (r) bandas Landsat-8 (OLI) Coef. de determinación (r2) bandas Landsat-8 OLI 

  

Figura 27. Análisis de Correlación de Pearson y Coeficientes de determinación realizadas entre las bandas 

del sensor TM (Landsat-5) y OLI (Landsat-8) y estadísticos LAI. Modelo A. 

 

 

 


