

Trabajo Fin de Grado

Estudio de la combustión de amoniaco como alternativa a combustibles basados en carbono.

Autor

Álvaro de Goñi Barbarin

Directora

María Abián Vicén

Ponente

Ma Uxue Alzueta Anía

Escuela de Ingeniería y Arquitectura

DECLARACIÓN DE AUTORÍA Y ORIGINALIDAD

(Este documento debe acompañar al Trabajo Fin de Grado (TFG)/Trabajo Fin de Máster (TFM) cuando sea depositado para su evaluación).

D./Dª. Álvaro de Goñi Barbarin
con nº de DNI 16634998-H en aplicación de lo dispuesto en el art.
14 (Derechos de autor) del Acuerdo de 11 de septiembre de 2014, del Consejo
de Gobierno, por el que se aprueba el Reglamento de los TFG y TFM de la
Universidad de Zaragoza,
Declaro que el presente Trabajo de Fin de (Grado/Máster)
Grado, (Título del Trabajo)
Estudio de la combustión del amoniaco como alternativa a combustibles basados en
carbono
es de mi autoría y es original, no habiéndose utilizado fuente sin ser citada
debidamente.
Zaragoza, 18 de Septiembre de 2018
\sim

Fdo: Álvaro de Goñi Barbarin

A la finalización de este intenso período de siete meses, quiero agradecer a cada una de las personas que han hecho que esta tarea resulte más fácil.

Personalmente quiero agradecer a las Doctras Mª Uxue Alzueta Anía y María Abián Vicén por la ayuda prestada, por sus consejos, por enseñarme como es el trabajo real en un laboratorio, por compartir conmigo sus conocimientos y por el excelente trato recibido. También, agradecer al Doctor Davinson Pezo por la ayuda prestada.

Por último, agradecer a mi familia su apoyo incondicional.

Estudio de la combustión de amoniaco como alternativa a combustibles basados en carbono.

RESUMEN

En el presente trabajo se ha llevado a cabo un estudio de la oxidación del amoniaco (NH₃) a presión atmosférica, en un reactor de flujo, en diferentes condiciones de operación, variando éstas desde muy reductoras a muy oxidante y en el intervalo de temperaturas de 400-1150 °C. Se ha evaluado la conversión del NH₃, así como las concentraciones de los principales productos y contaminantes generados (NO_x) en diferentes relaciones de oxidación para poder determinar las condiciones óptimas de operación para la combustión de este gas. Así mismo, los datos obtenidos pueden contribuir al desarrollo de un modelo cinético-químico que permita simular estos procesos. Adicionalmente se realizó un modelado del proceso, en el cual se analizó tanto las rutas de reacción como los productos de reacción.

Los resultados de este estudio indican que la combustión del NH_3 es bastante limpia. En condiciones muy reductoras (alto déficit de O_2) la conversión del mismo no es completa, pero para condiciones ligeramente reductoras en adelante si se alcanza una conversión de NH_3 del 100 %. También se observó que el H_2 solo se genera en condiciones reductoras y estequiométricas. La cantidad de O_2 introducida influye en la temperatura de máxima conversión, a mayor cantidad de O_2 en la zona de reacción, menor temperatura de máxima conversión.

Índice

1. Introducción y objetivos	
2. Antecedentes	2
3. Metodología experimental	5
3.1 La instalación experimental	
3.2 Descripción de la metodología experimental	8
4. Análisis de los resultados	13
4.1 Condiciones estequiométricas y estudio de la repetibilidad	13
4.2 Pirólisis	17
4.3 Atmósfera reductora	
4.4 Atmósfera oxidante	24
4.5 Resumen de los resultados	29
5. Modelado cinético	35
5.1 Software y modelos utilizados	35
5.2 Comparación de los resultados	35
6. Conclusiones	45
7. Bibliografía	46
ANEXO A: Resultados Experimentales	48
A.1 Condiciones de pirolisis	48
A.2 Condiciones reductoras	49
A.3 Condiciones estequiómetricas	51
A.4 Condiciones oxidantes	54
A.5 Resultados calibraciones	56
ANEXO B: La instalación experimental	60
B.1 Sistema de alimentación de gases	
B.2 Sistema de reacción.	
B.3 Sistema de análisis de gases.	

1. Introducción y objetivos.

Los combustibles fósiles y su extensivo uso en múltiples sectores (industria, transporte, residenciales, etc.) han causado problemas para la salud, así como para el entorno. Esto, unido a su posible agotamiento, ha hecho que se abran nuevas vías de investigación estudiando combustibles sostenibles que permitan reducir la contaminación pero que den unas prestaciones similares a los mismos. A corto y medio plazo se espera que estos combustibles sostenibles se conviertan en la forma de energía más atractiva.

El hidrógeno (H₂) se postulaba como el principal candidato a tomar el relevo de los combustibles fósiles, pero el hecho de que no sea posible un almacenamiento adecuado del mismo a día de hoy, junto con las prohibitivas inversiones que habría que realizar para poder distribuirlo (requieren una gran seguridad por la volatilidad del H₂ y su bajo punto de ignición, lo que lo convierte en altamente peligroso) hacen que hoy en día se antoje imposible poder implementar dicho combustible [1].

En cambio, el amoniaco (NH₃), compuesto en el que se centra este trabajo, es muy fácil de licuar y, por ende, de almacenar. Como el H₂, el NH₃ puede ser utilizado como una energía limpia pudiendo quemarse de manera que solo emita agua y nitrógeno (N₂). La infraestructura para la distribución a gran escala de éste ya existe y puede ser almacenado de la misma manera que el propano (a 8 bares de presión de vapor y temperatura ambiente). Además, su contenido energético por unidad de volumen es comparable al de la gasolina, lo cual haría que fuese apropiado para usos relacionados con el transporte [2]. A todas estas ventajas, se suma su reducida inflamabilidad que hace que no se considere inflamable cuando se transporta. Si se libera a la atmósfera, su baja densidad (menor que la del aire) hace que este se disipe rápidamente. Además, su característico olor permite detectar fugas instantáneamente (podemos percibir concentraciones tan bajas

como 5 ppm) [1].

El objetivo de este trabajo es estudiar el proceso de combustión del NH₃ en condiciones controladas, en un reactor de flujo en fase gas a presión atmosférica. Se evaluará la conversión del mismo, así como las concentraciones de los principales productos y contaminantes generados en diferentes relaciones de oxidación para poder determinar las condiciones óptimas de operación para la combustión de este gas.

Se estudiará la posible formación de NO_x así como de N_2O , principales contaminantes que se pueden generar en este proceso, atendiendo principalmente a los óxidos de nitrógeno cuyos límites de emisión cada vez son más restrictivos [3].

2. Antecedentes.

El NH₃ se propuso por primera vez como combustible en la década de los 40, se utilizó como combustible mezclado con carbón en un autobús, en Bélgica [4]. Se desarrolló por la falta de combustibles derivados del petróleo en esa época.

Tras esto volvió a utilizarse, esta vez como combustible de una aeronave supersónica experimental, el X-15 (1960). Se utilizó una mezcla de NH₃/LOx (oxígeno líquido) y se alcanzó una velocidad de 6.72 mach. También se investigó su aplicación en turbina de gas, pero se descartó debido a su baja eficiencia energética [5].

Ya en el 2000 se identificó el NH₃ como un portador de H₂ y se creó en EEUU la "NH₃ Fuel Assiociation" [6].

La investigación continúa a día de hoy donde ha cobrado una gran relevancia por el potencial del NH₃ como futuro combustible. Ya en 2015 se consiguió desarrollar en Japón una turbina de NH₃ que proporcionó 41.8 kW de

potencia. Desde entonces se han llevado multitud de experimentos hasta la fecha [7].

El NH₃ se postula como combustible a ser utilizado por dos vías:

-Uso directo en motores de combustión y turbinas.

-Uso indirecto transformándolo en H₂ para el posterior aprovechamiento de éste en celdas de combustible [8], obteniendo así una fuente de H₂ libre de CO₂, como ocurriría en el reformado de gas natural.

De esta segunda vía hay multitud de artículos de investigación al respecto. Este trabajo se centrará en la primera de éstas, es decir la combustión directa del NH₃.

En los estudios relativos a la combustión directa de NH₃, apenas hay análisis de cantidades de especies formadas en la combustión. Se deberá determinar que especies se forman y en qué cantidades para poder evaluar si el NH₃ sería un combustible sostenible.

La reacción que se busca favorecer en este proceso y que haría del NH_3 un combustible sostenible es la reducción del NH_3 a N_2 y agua (R.1), emitiendo la menor cantidad de NO_x que sea posible.

$$4NH_3 + 3O_2 \rightarrow 2N_2 + 6H_2O$$
 R. 1

Este estudio se centrará en llevar a cabo la oxidación del NH₃ en diferentes condiciones de operación, estando estas perfectamente controladas, con objeto de conocer, entre otros aspectos, si la conversión es completa y las emisiones generadas en el proceso. Todo esto permitirá contribuir en el desarrollo de un modelo cinético-químico de reacción que permita predecir el comportamiento del NH₃ en su oxidación. Para ello es fundamental estudiar este proceso en diferentes atmósferas (relaciones aire/combustible) y temperaturas de reacción, trabajando ente 600 y 1150 °C.

En cualquier proceso químico las condiciones de operación son la base del resultado del proceso. A continuación, se exponen algunos resultados obtenidos en otros trabajos para diferentes condiciones de operación.

En la bibliografía se encuentran estudios teóricos basados en el modelado del proceso a presión atmosférica [9]. Pero existen pocos estudios al respecto en el plano experimental. En dichos estudios, se desarrolla un modelo numérico (mecanismo) pensado para modelar procesos de combustión de NH₃ a baja presión.

En cambio, sí existen más estudios de combustión a alta presión. Hashemi y cols. [10] llevaron a cabo experimentos a alta presión (30-100 bar) y a temperaturas que iban de los 173-627 °C en condiciones oxidantes y estequiométricas. Se encontró que en condiciones estequiométricas se producía poca oxidación del NH₃ en el rango de temperaturas estudiado. En condiciones oxidantes la temperatura de inicio de la reacción fue de 577 °C para una presión de 30 bar y de 527 °C para una presión de 100 bar. Los productos de la reacción fueron óxido nitroso (N₂O) y N₂. Las concentraciones de óxidos de nitrógeno (NO_x) estaban por debajo de lo detectable. Los datos obtenidos experimentalmente coincidieron con los del modelo utilizado [11].

En cuanto a otros estudios relativos a la utilización de NH₃ con fines energéticos diferentes a la combustión directa, se encuentran multitud de artículos relativos a la deshidrogenización del NH₃ por medio de catalizadores [12], principal proceso para el que se ha estudiado el uso del NH₃.

En estos artículos se pretende utilizar el NH₃ como portador de H₂, es decir, utilizar el NH₃ para disociarlo en N₂ y H₂. Esto se hace ya que el NH₃ es un compuesto fácilmente licuable y por lo tanto es fácil transportarlo, cosa que no ocurre con el H₂. El NH₃ es almacenado para luego disociarlo en N₂ y H₂ para la posterior utilización de este último como combustible.

3. Metodología experimental

A continuación, se procede a describir la metodología empleada en el desarrollo del trabajo, incluyendo las condiciones de operación, la descripción de la instalación utilizada y el procedimiento experimental.

3.1Descripción de la instalación.

Para llevar a cabo los experimentos se ha hecho uso de una instalación experimental compuesta de:

- -Sistema de alimentación.
- -Sistema de reacción.
- -Sistema de análisis.

A continuación, en la Figura 1 se muestra un esquema de la instalación:

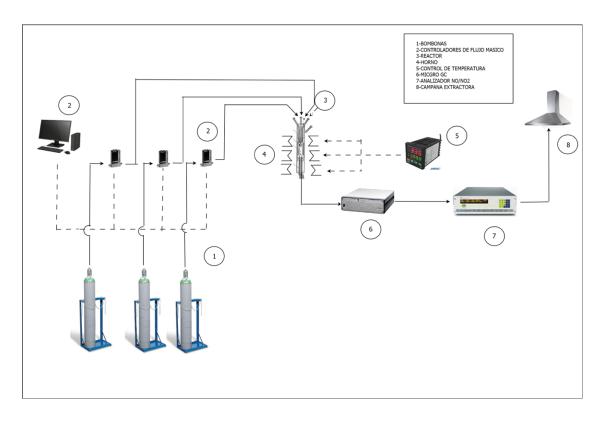


Figura 1: Instalación experimental.

Los controladores de flujo másico junto a las botellas constituyen el <u>sistema</u> de alimentación de gases. Las botellas contienen los gases presurizados y los envían a través de las líneas de la instalación a los controladores de flujo másico. Éstos, a través de un software controlado por el ordenador, determinan el porcentaje de apertura de la válvula de los mismos. El porcentaje de apertura de la válvula estará previamente comprobado con un caudalímetro.

El reactor, junto al horno y los controladores del mismo forman <u>el sistema</u> <u>de reacción</u>. Los gases entran al reactor tubular de cuarzo procedentes del sistema de alimentación a través de los 4 inyectores del mismo. Por las entradas marcadas con el número 3 en la Figura 2 se introducen los reactantes (NH₃ y O₂) junto con una pequeña parte del gas inerte (N₂), y por la entrada lateral (2) se introduce el mayor caudal del gas inerte para el precalentamiento del mismo. De ahí entrarán todos a la zona de mezcla de gases (7) para posteriormente ir a la zona de reacción (1), la cual consta de un tubo de cuarzo de 20 cm de longitud. El horno constituye un encamisado que rodea al reactor. Mediante los controladores de temperatura se puede ajustar la temperatura de cada una de las tres zonas para poder obtener así una temperatura uniforme en la zona de reacción.

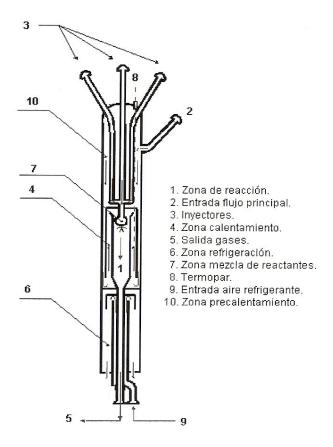


Figura 2: Reactor tubular de cuarzo.

Por último, los gases que salen del reactor se enfrían rápidamente con la refrigeración representada en (6) en la Figura 2 para parar la reacción antes de entrar en el sistema de análisis de gases constituido por el micro cromatógrafo de gases y el analizador de NO/NO₂. El micro cromatógrafo (MGC) de gases permitirá cuantificar N₂O, H₂, NH₃ y O₂. El N₂O, aparece en un tiempo de retención con presencia de ruido, esto hace que no sea posible detectar cantidades muy pequeñas del compuesto. Conectado en serie con el MGC, se encuentra el analizador de NO/NO₂ en continuo con convertidor catalítico y detector de quimiluminiscencia que permitirá cuantificar los óxidos de nitrógeno (NO y NO₂).

Cabe destacar en este punto que, debido a la difícil detección del NH₃, se llevaron a cabo 2 calibraciones del mismo en el micro cromatógrafo obteniendo en ambas resultados ligeramente diferentes. Estos resultados comprenden el rango

de áreas en las que se movía el NH₃ (el Anexo A incluye los resultados de la calibración del NH₃). Por esto, a la hora de realizar los cálculos, se han utilizado ambas calibraciones y el resultado definitivo será la media ponderada del resultado obtenido con ambas calibraciones.

3.2 Descripción de la metodología experimental.

Se han llevado a cabo diferentes experimentos de oxidación de NH₃ con una concentración de 1000 ppm de una botella de 1% de NH₃ en argón (Ar). Se seleccionó esta cantidad por dos motivos: que el NH₃ es corrosivo en grandes cantidades y podría dañar equipos, y que se quiere trabajar en condiciones diluidas para despreciar el calor de reacción y poder considerar condiciones isotermas en la zona de reacción.

Como en cualquier oxidación, la atmosfera reaccionante juega un papel clave en el desarrollo de la reacción. Se define el parámetro lambda (λ) como el cociente entre la cantidad de oxígeno (O_2) introducido y el O_2 estequiométrico que entran al reactor, para la reacción:

$$NH_3 + 1,75O_2 \rightarrow NO_2 + 1,5H_2O$$
 R. 2

Así, el valor de lambda se determina de acuerdo a la Ec. 1:

$$\lambda = \frac{O_2 \, Alimentado}{O_2 \, Estequiom\'etrico} = \frac{O_2 \, Alimentado}{1,75 * NH_3 \, Alimentado} \qquad Ec. \, 1$$

Siendo:

 $\rightarrow \underline{O_2 \ Alimentado}$: el O_2 que entra al reactor (ppm).

 \rightarrow <u>O₂ Estequiométrico</u>: el O₂ en condiciones estequiométricas, que en este caso para 1000 ppm de NH₃ alimentado, a partir de la Ec.1, serían 1750 ppm de O₂.

Dependiendo del valor de lambda, la atmósfera será reductora para lambdas menores a la unidad, oxidante para mayores y estequiométrica en caso de ser igual a la unidad.

Se han realizado experimentos desde condiciones de pirólisis λ = 0 hasta condiciones muy oxidantes λ = 10 para observar la influencia del O_2 en los resultados.

Al reactor entra un caudal de 1000 mL/min en condiciones normales (0 °C, 760 mmHg), por lo que hay que aplicarle una corrección de presión y temperatura a cada caudal para las condiciones de experimentación. Para ello se utilizará la ecuación de los gases ideales:

$$Q_{REAL}\left(\frac{ml}{min}\right) = Q_{CN}\left(\frac{mlN}{\min}\right) * \frac{T_{LAB}(K) * 760(mmHg)}{273(K) * P_{LAB}(mmHg)} \qquad Ec. 2$$

Siendo:

→Q_{REAL:} Caudal que entra al proceso (mL/min).

→Q_{CN:} Caudal en condiciones normales (1000 mL N/min).

 \rightarrow T_{LAB}: Temperatura del laboratorio (K).

→P_{LAB}: Presión del laboratorio (mmHg).

Adicionalmente se estudió el efecto de la presencia de agua, mediante la utilización de un borboteador, para λ =1, pero se obtuvo una misma temperatura de inicio de reacción y similares resultados globales. Sin embargo, el agua causo inestabilidad a la hora de detectar el NH $_3$. Pese a ello, la temperatura de reacción no sufrió cambios significativos, ni tampoco la formación de especies. Por ello, el resto de experimentos se llevaron a cabo sin borbotear agua.

El intervalo de temperaturas en las que se ha llevado a cabo la oxidación del NH₃ ha sido de 400-1150 °C. Se contaba con un perfil de temperaturas en la zona de reacción previamente desarrollado que abarcaba desde los 400 a los 800 °C. Se determinó el perfil de temperaturas de los 800 a los 1150 °C mediante un termopar midiendo en intervalos de 1 a 2 cm en la zona de reacción y se comprobó el perfil ya existente de 400-800 °C en puntos seleccionados del mismo. Se realizaron posteriormente comprobaciones periódicas del perfil para verificar la calidad del mismo.

A continuación, se muestra en la Tabla 1 un cuadro-resumen de las condiciones iniciales de los experimentos realizados:

Tabla 1: Condiciones iniciales experimentos. El balance se cierra con N₂.

		[NH ₃]	
SET	LAMBDA	(ppm)	[O ₂] (ppm)
1	0	1149	0
2	0,33	1033	579
3	0,73	884	1285
4	1,00	1095	1755
5	0,96	1116	1688
3	0,96	1110	1000
6	0,9	990	1576
7	1,43	1067	2505
8	2,01	885	3517
9	4,89	1070	8861
10	9,65	1032	16882

El tiempo de residencia de los gases en la zona de reacción varía con la temperatura pues el caudal depende de ésta; se ha calculado aplicando la siguiente ecuación:

$$tr = \frac{V_{reactor}}{Q_{REAL}} \qquad Ec \ 3$$

Siendo:

→Q_{REAL}: caudal que entra al reactor; éste es función de la temperatura y la presión en la zona de reacción y se calculará mediante la Ec. 2.

→V_{reactor}: volumen del reactor, que es de 11,89 cm³.

 \rightarrow P_{reactor}= 1 atm = 1013 bar.

 \rightarrow Q_{CN}= 1000 mL N/min.

Con estos datos y oscilando la temperatura obtenemos los tiempos de residencia en la zona de reacción para las diferentes temperaturas estudiadas.

Tabla 2: Tiempo de residencia en la zona de reacción para las diferentes temperaturas estudiadas.

Temperatura (°C)	tr (s)
400	0,29
450	0,27
500	0,25
550	0,24
600	0,22
650	0,21
700	0,20
750	0,19
800	0,18
850	0,17
900	0,17
950	0,16
1000	0,15
1050	0,15
1100	0,14
1150	0,14

4. Análisis de los resultados.

A continuación, se exponen y analizan los resultados de los experimentos que se llevaron a cabo y que aparecen resumidos en la Tabla 1.

4.1 Condiciones estequiométricas y estudio de la repetibilidad.

En condiciones estequiométricas se llevaron a cabo dos estudios: por una parte, el propio estudio en condiciones estequiométricas y por otra parte un estudio de la repetibilidad de los resultados para comprobar que el proceso y la metodología seguida está bien definida y caracterizada y, por tanto, los resultados obtenidos son fiables.

Se realizaron 3 experimentos en las mismas condiciones $\lambda = 1$ (concretamente: $\lambda = 0.96$, $\lambda = 0.90$ y $\lambda = 1.00$). Los resultados se muestran en las Figuras 3, 4 y 5.

En todos estos experimentos la conversión del NH₃ alcanzada fue del 100%.

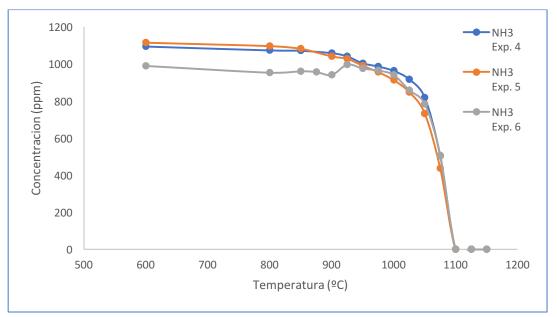


Figura 3: Concentración de NH₃ en función de la temperatura de reacción para $\lambda \cong 1$. Experimentos 4, 5 y 6 (ver Tabla 1).

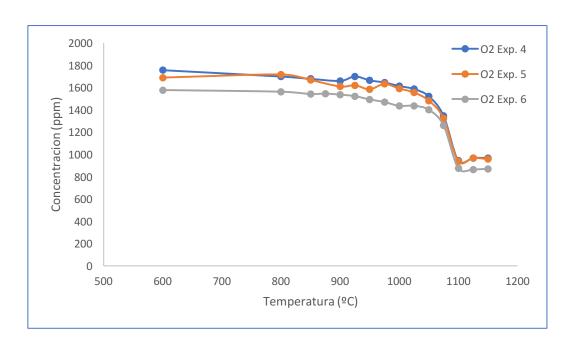
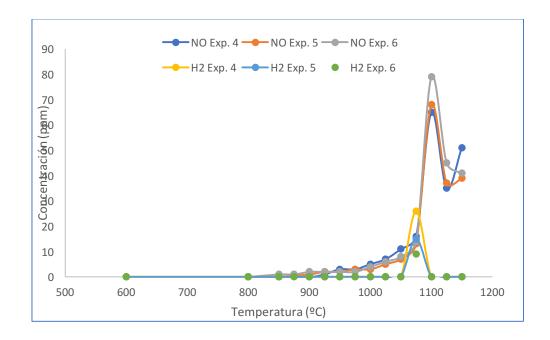



Figura 4: Concentración de O_2 en función de la temperatura de reacción para $\lambda \cong 1$. Experimentos 4, 5 y 6 (ver Tabla 1).

Figura 5: Concentración de H_2 y NO en función de la temperatura de reacción para λ \cong 1. Experimentos 4, 5 y 6 (ver Tabla 1).

Temperatura para 10% de conversión de NH₃ y de máxima conversión de NH₃.

Se ha analizado la temperatura a la que tiene lugar el 10% de la conversión del NH₃; la tabla 3 recoge dichas temperaturas, así como la temperatura a la que se alcanza la máxima conversión del NH₃, que en este caso es del 100%.

Tabla 3: Temperatura para 10% de conversión de NH₃ y de máxima conversión de NH₃. Experimentos 4, 5 y 6 en Tabla 1.

Lambda	1,00	0,96	0,90
T _{10%conv_NH3} (°C)	975	950	1000-1025
T _{máx.} (°C)	1075-1100	1075-1100	1075-1100

Como se puede observar en la Tabla 3 todos los casos la temperatura a la que tiene lugar el 10% de conversión de NH₃ oscila entre 950 y 1025 °C. En cuanto a la de máxima conversión coincide y se encuentra entre 1075 y 1100 °C

Hidrógeno.

Se generó H_2 en todos los experimentos (Figura 5) a la misma temperatura, en todos a 1075 °C, y éste desaparece en la temperatura medida inmediatamente, 1100 °C. El H_2 aparece en cantidades más o menos similares, oscilando entre las 9 y las 26 ppm. Al pasar de los 1075 a los 1100 °C el H_2 se oxidará, previsiblemente, a H_2 O.

Óxidos de Nitrógeno.

Este apartado es el de mayor importancia pues la emisión de estos gases limitaría (o favorecería) la aplicación de este compuesto como combustible.

Termodinámicamente, a altas temperaturas, no está favorecida la formación

de dióxido de nitrógeno (NO_2) frente al NO, no obstante, se comprobó la producción de éste en 3 experimentos: el más reductor (λ = 0,33), el más oxidante (λ = 9,65) y condiciones estequiométricas (λ = 1). Los resultados del experimento λ = 1,00 demostraron, como se cabía esperar, que no se generó NO_2 en todo el proceso.

En cuanto al óxido de nitrógeno (NO) se puede comprobar un comportamiento prácticamente idéntico en los tres experimentos (Figura 5). El NO aparece en los 3 experimentos prácticamente a la misma temperatura, en torno a los 900 – 925 °C, aumenta de manera moderada y da un salto de golpe a los 1100 °C, temperatura a la que aparece la máxima producción NO que oscila entre las 65 y las 79 ppm. Tras esto se produce una brusca disminución (1125 °C) tras la cual la concentración de NO aumenta ligeramente.

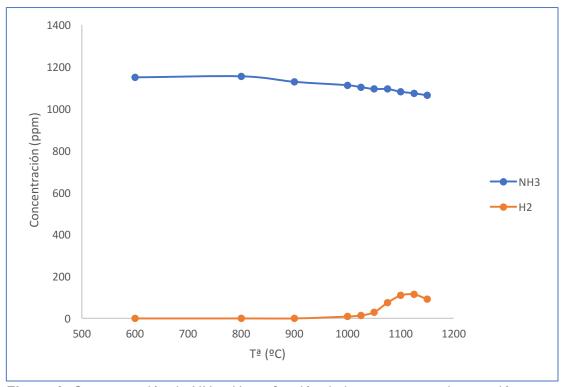
Cabe destacar que no se observó formación de N₂O en ninguno de los tres experimentos. O si se ha producido, lo ha hecho por debajo de los límites de detección/cuantificación del micro-cromatógrafo.

Balance de materia.

Puesto que se utiliza como diluyente el propio N₂, no será posible llevar a cabo el balance de nitrógeno ya que las cantidades que mide el micro cromatógrafo son tan grandes que resulta imposible observar las variaciones que produce la combustión del NH₃ introducido. Al fin y al cabo, tan solo se introducen 1000 ppm de N asociado al NH₃ frente a las casi 1.000.000 de ppm que se introducen de N₂ como diluyente.

Pese a no poder cerrar el balance, se observa que los productos de combustión cuantificados son muy pocos para las cantidades reaccionadas. Las conversiones del NH₃ son del 100% lo que implica que se generan 1000 ppm de nitrógeno atómico (N) y 3000 ppm de hidrógeno atómico (H), pero las cantidades de productos cuantificados no superan las 80 ppm de óxido de nitrógeno (NO), que suponen 80 ppm de esas 1000 ppm de N que han reaccionado en el proceso

y las 26 ppm de hidrógeno molecular (H_2) que suponen 52 de las 3000 ppm de H generadas, por lo que lo más probable es que los principales productos de la reacción son nitrógeno molecular (N_2) y agua (H_2O).


Otro argumento que refuerza esta última idea es que como se puede observar en la Ec. 1, estequiométricamente solo se necesitan 3 moléculas de O_2 por cada 4 de NH_3 para generar N_2 y agua. Esto es, que por cada 1000 ppm de NH_3 reaccionadas se precisan 750 ppm de O_2 para poder generar dichos productos y si se calculan las ppm de O_2 reaccionado (Figura 4), por diferencia, se observa que reaccionan de media 741 ppm de O_2 .

Repetibilidad.

Como se ve reflejado en las Figuras 5, 6 y 7, los 3 experimentos se comportan de manera prácticamente idéntica, por lo que se puede afirmar que el proceso está bien definido y los resultados obtenidos son consistentes.

4.2 Pirólisis.

A continuación, se muestran y analizan los resultados de la pirólisis del NH₃, para ello se introdujo al reactor NH₃ únicamente y se aumentó la temperatura para ver la evolución del mismo. Los resultados obtenidos se muestran a continuación en la Figura 6.

Figura 6: Concentración de NH $_3$ y H $_2$ en función de la temperatura de reacción para λ = 0. Experimento 1 (ver Tabla 1).

En la Figura 6 solo se muestra la evolución con la temperatura de reacción del NH₃ y el H₂ ya que, como es lógico, al no introducir O₂ no se forma ningún producto de oxidación.

Temperatura para 10% de conversión de NH₃ y de máxima conversión de NH₃.

La temperatura a la que tiene lugar el 10% de conversión está a unos 1150 °C. La temperatura de máxima conversión en este caso coincide con la del 10% de conversión pues es la temperatura límite de operación (1150 ° C).

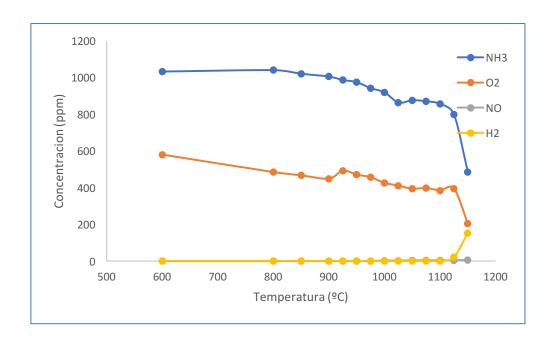
Hidrógeno.

A los 1000 °C comienza a aparecer el H₂, presenta un máximo a los 1125

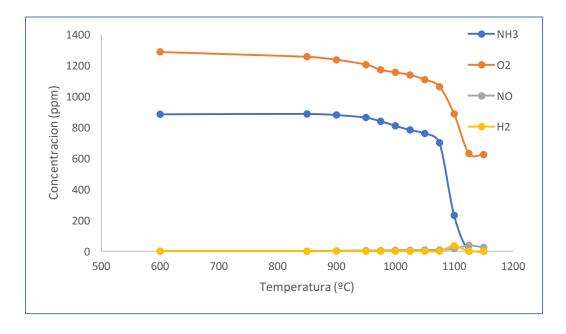
°C y es de 115 ppm de H₂.

Productos de oxidación.

Al tratarse de una pirólisis, no se ha generado, como es lógico, ningún producto de oxidación.


Balance de materia.

Se alcanzó un 7% de conversión de NH₃.


Pese a no poder cerrar este balance, se observa que, de la cantidad total reaccionada, unas 90 ppm de NH_3 aproximadamente, se generan 115 ppm de H_2 . Por ello, se puede afirmar que el NH_3 se disocia mayoritariamente en H_2 y N_2 , pues atendiendo a la estequiometria se podrían generar unas 140 ppm de H_2 por lo que el balance se cerraría al 82%.

4.3 Atmósfera reductora.

Se ensayaron 2 estequimetrías reductoras λ = 0,33 y λ = 0,73, con condiciones iniciales las indicadas en los experimentos 2 y 3 de la Tabla 1. Los resultados obtenidos se muestran en las Figuras 7 y 8, respectivamente.

Figura 7: Concentración de NH₃, H₂, O₂ y NO, en función de la temperatura de reacción para λ = 0,33. Experimento 3 (ver Tabla 1).

Figura 8: Concentración de NH₃, H₂, O₂ y NO, en función de la temperatura de reacción para λ = 0,73. Experimento 4 (ver Tabla 1).

Temperatura para 10% de conversión de NH₃ y de máxima conversión de NH₃.

Atendiendo al criterio anteriormente explicado, de los experimentos en condiciones reductoras se obtienen las siguientes temperaturas a las que se alcanza el 10% de conversión de NH₃ y las temperaturas a las que tiene lugar la máxima conversión de NH₃, junto con el valor de conversión del mismo (X_{NH3}). Estos datos se muestran en la Tabla 4.

Tabla 4: Temperatura para 10% de conversión de NH_3 y temperatura de máxima conversión de NH_3 junto con valor de conversión del mismo. Experimentos 2 y 3 en Tabla 1.

LAMBDA	0,33	0,73
T _{10% conv. NH3} (°C)	975-1000	1000-1025
T _{máx.} (°C)	1150	1100-1125
X _{NH3} a T _{máx.}	47%	100%

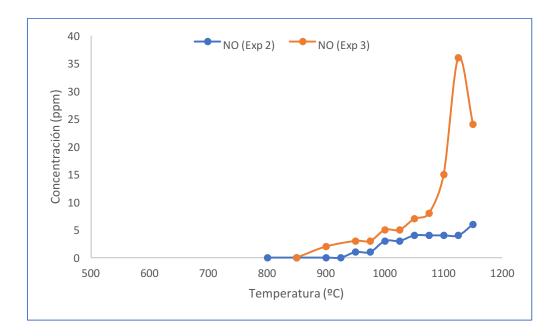
Las temperaturas para 10% de conversión de NH $_3$ son bastante similares y se encuentran entre los 975 y los 1025 °C. En cambio, las temperaturas de máxima conversión de NH $_3$ muestran que el experimento de λ = 0,73 reacciona antes que el de λ = 0,33, lo cual tiene sentido si se considera el O $_2$ introducido en un caso y en el otro. Como se observa en la Figura 7 el NH $_3$ no se llega a consumir por completo a los 1150 °C (máxima temperatura a la que se ha estudiado el proceso) obteniéndose una conversión máxima de NH $_3$ de 47%. En cambio, en el experimento de λ = 0,73, a los 1125 °C se consume por completo el NH $_3$.

Hidrógeno.

El H₂ se genera en ambos experimentos. A continuación, se adjunta una tabla resumen de la producción del mismo, Tabla 5.

Tabla 5: Temperatura de aparición y máxima concentración de H₂. Experimentos 2 y 3 en Tabla 1.

		Concentración máxima
LAMBDA	Temperatura aparición (°C)	(ppm)
0,33	1025	115
0,73	1100	34


El H₂ aparece antes y en mayor cantidad en el experimento de lambda λ = 0,33 que en el de λ = 0,73. En λ = 0,33 aparece a 1025 °C y aumenta progresivamente hasta alcanzar los 1150 °C apareciendo el máximo de este a los 1125 °C. Mientras que en λ = 0,73 aparece un único punto a los 1100 °C y desaparece en la siguiente temperatura (1125 °C).

Óxidos de Nitrógeno.

Se comprobó, de nuevo en el experimento de λ =0,33 si se generaba NO $_2$ a lo largo del proceso, pero los resultados de nuevo fueron negativos como cabía esperar.

En cuanto al óxido de nitrógeno (NO) como se observa en la Figura 9, comienza a generarse a los 950 °C en el caso del experimento 2 (λ =0,33) y a los 900 °C en el caso del experimento 3 (λ =0,73). Esto es de esperar ya que el experimento de λ = 0,73 tiene tanto una temperatura de inicio de reacción menor que la del experimento de λ = 0,33 como cantidad de O₂, lo que implica una mayor oxidación. En cuanto a la producción de este, se genera una mayor cantidad de

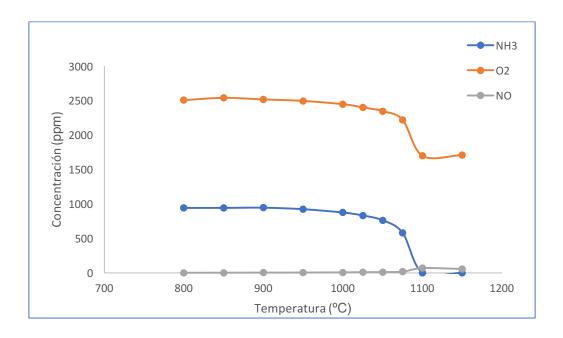
NO en el experimento de λ = 0,73 que en el λ = 0,33, esto tiene lógica pues como ya se ha dicho en λ = 0,73 se introdujo una mayor cantidad de O_2 que en λ = 0,33. El comportamiento de este varía, aumentando más bruscamente (gran salto en torno a los 1100 °C) en λ = 0,73 para luego disminuir levemente a los 1150 °C, mientras que en λ = 0,33 aumenta con pendiente prácticamente constante desde que aparece hasta que se alcanza la temperatura límite de operación.

Figura 9: Concentración de NO, en función de la temperatura de reacción para λ = 0,73 y λ = 0,33. Experimentos 3 y 4 (ver Tabla 1).

Balance de materia.

Realizar el balance de materia resulta imposible, pero observando las cantidades de productos generados para una conversión completa del NH₃ se puede intuir que los principales productos formados son N₂ y H₂O.

Si se observa la cantidad de O_2 reaccionada en cada caso observamos que en el caso de λ = 0,33 es de 375 ppm y en el caso de λ = 0,73 es de 662 ppm y según la Ec. 1 con 750 ppm de O_2 se obtiene N_2 y agua. En el caso de λ = 0,33 reaccionan 375 ppm de O_2 pero la conversión del NH $_3$ tan solo es del 53% por lo que es razonable pensar que la mayoría del NH $_3$ fue a N_2 y H $_2$ O. En λ = 0,73


reaccionó casi el doble de N_2 pero la conversión también fue del doble (X_{NH3} = 1) por lo que también podemos estar ante una reacción "limpia". Cabe destacar que en estas condiciones prácticamente no se generó NO por lo que se refuerza la idea de que la combustión fue limpia.

4.4 Atmósfera oxidante.

Se llevaron a cabo 4 experimentos en diferentes condiciones oxidantes λ > 1, desde muy poco oxidante como el experimento 7 (λ = 1,43) hasta muy oxidantes como el experimento 10 (λ = 9,65).

En todos estos experimentos la conversión de NH₃ alcanzada fue del 100%.

Los resultados de los experimentos se exponen a continuación en las Figuras 10, 11, 12 y 13. Tan sólo se muestran las concentraciones de NH₃, NO y O₂ pues son los únicos compuestos que aparecen al analizar los experimentos en condiciones oxidantes.

Figura 10: Concentración de NH₃, NO y O₂, en función de la temperatura de reacción para λ = 1,43. Experimento 7 (ver Tabla 1).

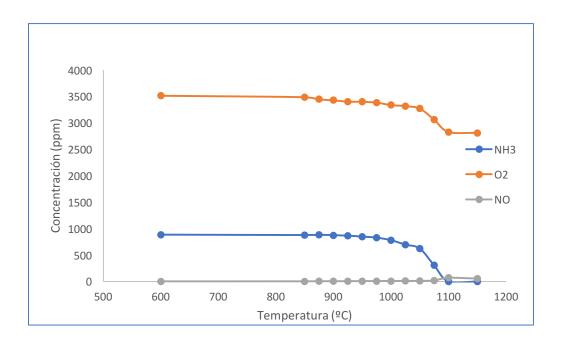
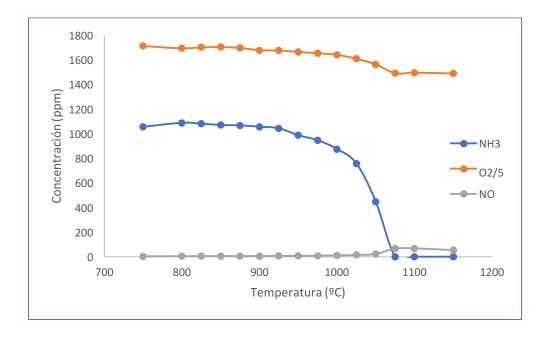



Figura 11: Concentración de NH $_3$, NO y O $_2$ en función de la temperatura de reacción para λ = 2,01. Experimento 8 (ver Tabla 1).

Figura 12: Concentración de NH₃, NO y $O_2/5$ en función de la temperatura de reacción para λ = 4,89. Experimento 9 (ver Tabla 1).

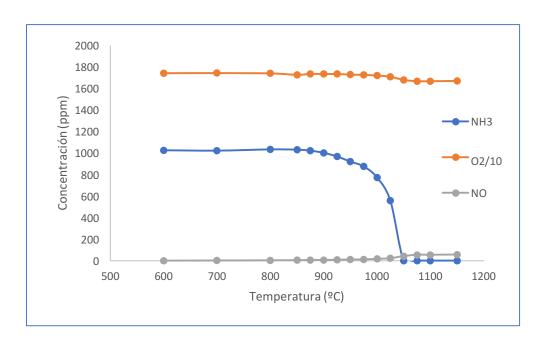


Figura 13: Concentración de NH₃, NO y O₂/10 en función de la temperatura de reacción para λ = 9,65. Experimento 10 (ver Tabla 1).

Temperatura para 10% de conversión de NH₃ y de máxima conversión de NH₃.

Atendiendo al criterio anteriormente explicado de los experimentos en condiciones reductoras, se obtiene las siguientes temperaturas a las que se alcanza el 10% de conversión y las temperaturas a las que tiene lugar la máxima conversión de NH₃ para condiciones oxidantes (Tabla 6).

Tabla 6: Temperatura a la que se alcanza el 10% de conversión y de máxima conversión de NH₃. Experimentos 7, 8, 9, y 10 en Tabla 1.

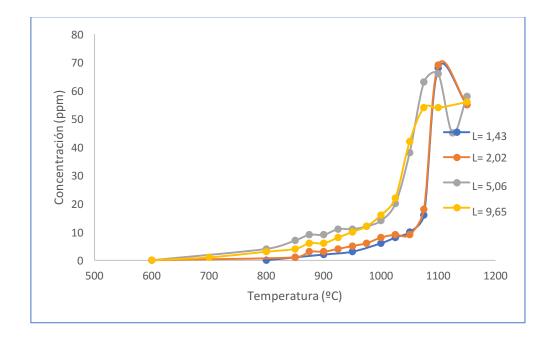
LAMBDA	1,43	2,02	4,89	9,65
T _{10% conv. NH3} (°C)	1000-1025	975-1000	975	925-950
T _{máx} (°C)	1075-1100	1075-1100	1050-1075	1025-1050

Se puede observar que a medida que se incrementa la cantidad de O_2 disminuye la temperatura de inicio de la reacción. La temperatura de los experimentos de λ = 1,43 y λ = 2,01 es muy similar a la obtenida en los tres experimentos de λ \cong 1, esto se debe a la similitud en las cantidades de O_2 introducidas. En los experimentos con λ = 4,89 y λ = 9,65, la cantidad de O_2 es tan excesiva que las temperaturas de inicio de la reacción son muy similares, pero menores que las de los anteriores experimentos.

En cuanto a la temperatura de máxima conversión, esta es exactamente la misma en los experimentos de λ = 1,43 y λ = 2,01, pero es menor en los experimentos de λ = 4,89 y λ = 9,65, lo cual tiene sentido viendo la diferencia en la cantidad de O_2 que hay entre ambos.

Se puede observar que, pese a haber mucha diferencia en cuanto a cantidad de O_2 se refiere, entre los experimentos de λ = 1,43 y λ = 2,01 y los experimentos de λ = 4,89 y λ = 9,65, esta diferencia en la cantidad de O_2 no tiene un impacto proporcional sobre la temperatura de inicio de reacción.

Hidrógeno.


No se generó H_2 a ninguna temperatura en ninguno de los experimentos en condiciones oxidantes, lo cual podía esperarse a la vista de la evolución de la cantidad de H_2 de los experimentos anteriores: conforme se aumentaba el O_2 , se reducían las cantidades de H_2 emitidas.

Óxidos de nitrógeno.

Se estudió, de nuevo, la producción de dióxido de nitrógeno (NO₂) para el valor de lambda más oxidante, pero de nuevo los resultados fueron negativos, por lo que se puede afirmar que no se produjo NO₂ o si se produjo, no lo hizo en cantidades medibles por los equipos (los cuales trabajan con precisiones de 1 ppm), en ninguno de los experimentos realizados.

En cuanto al óxido de nitrógeno (NO), como se observa en la Figura 14, el comportamiento de la curva concentración-temperatura es muy similar en todos los experimentos. Los experimentos en los que más O_2 se introdujo (λ = 4,89 y λ = 9,65) son los que presentan menos cantidad máxima de NO. Pero en cambio estos experimentos son en los que antes aparece el NO (aparece a menor temperatura que en λ = 1,43 y λ = 2,02).

Se observa que en λ = 1,42 y λ = 2,02 tienen un comportamiento prácticamente idéntico en cuanto a producción de NO. Ambos alcanzan un máximo del mismo valor de concentración prácticamente (tan solo difieren en 1 ppm) a la misma temperatura (1100 °C).

Figura 14: Concentración de NO, en función de la temperatura de reacción para λ = 1,43 λ = 2,02 λ = 4,89 y λ = 9,65. Experimentos 7, 8, 9 y 10 (ver Tabla 1).

Balance de materia.

De nuevo realizar el balance de materia resulta imposible, pero observando las cantidades de productos generados para una conversión completa del NH₃ se

puede intuir que los principales productos formados son N2 y H2O.

Observando la cantidad de O_2 consumida, que se muestra en la Tabla 7, se puede observar como de nuevo solo se consumen unas 700-800 ppm de O_2 . Considerando de nuevo la Ec. 1 en la que para obtener únicamente nitrógeno molecular (N_2) y agua (H_2O), los productos deseados, precisa de 750 ppm de O_2 reaccionado por cada 1000 ppm de NH_3 .

Tabla 7: Consumo de O_2 en condiciones oxidantes.

LAMBDA	1,43	2,02	4,89	9,65
O ₂ reaccionado (ppm)	797	705	768	734

4.5 Resumen de los resultados.

A continuación, se adjunta la Tabla 8, que recoge de manera resumida las temperaturas a las que se alcanza el 10% de conversión de NH₃, así como la temperatura de máxima conversión y la máxima conversión alcanzada.

Tabla 8: Temperatura a la que se alcanza el 10% de conversión y de máxima conversión de NH₃ y conversiones máximas en todos los experimentos.

			Máxima	
			conversión	Tª máxima
SET	LAMBDA	$T_{10\%conv_NH3}$ (°C)	(%)	conversión (°C)
1	0	1150	92	1150
2	0,33	975-1000	47	1150
3	0,73	1000-1025	100	1100-1125
4	1	975	100	1075-1100
5	0,96	950	100	1075-1100
6	0,9	1000-1025	100	1075-1100
7	1,43	1000-1025	100	1075-1100
8	2,01	975-1000	100	1075-1100
9	4,89	950-975	100	1050-1075
10	9,65	925-950	100	1025-1050

Como se observa en la Tabla 8 la temperatura para alcanzar el 10% de conversión de NH $_3$ es muy similar en todos los casos, encontrándose entre los 925 y los 1025 °C excluyendo el caso particular de la pirolisis ($T_{10\%conv_NH3}$ = 1150 °C). En los primeros 8 experimentos, es decir desde condiciones reductoras hasta condiciones ligeramente oxidantes, la temperatura para alcanzar el 10% de conversión se encuentra acotada entre los 950 y los 1025 °C. Sin embargo, en condiciones más oxidantes (λ = 4,89 y λ = 9,65) sí se observa una menor temperatura para alcanzar el 10% de conversión de NH $_3$, estando ésta entre los 925 y los 975 °C, lo cual debe ser causado por la mayor cantidad de O_2 implicada en el proceso.

La temperatura de máxima conversión, en los casos en los que no se consume por completo el NH $_3$ (λ = 0 y λ = 0,33) coincide con la temperatura límite de operación (1150 °C). Dicha temperatura, vuelve a coincidir en las lambdas reductoras (λ = 0,7) y moderadamente oxidantes (λ = 1,43 y λ = 2,01), encontrándose entre los 1075 y los 1100 °C. Por último, en los experimentos más oxidantes (λ = 4,89 y λ = 9,65) la máxima conversión sí ocurre a temperaturas más bajas, entre los 1025 y los 1050 °C.

En cuanto a las conversiones alcanzadas, éstas son siempre máximas (XNH₃= 100%), excepto en los experimentos de λ = 0 y λ = 0,33 que son de 8% y 47%, respectivamente.

A continuación, en la Figura 15 se muestra la evolución de la conversión del NH₃ para las diferentes estequiometrías estudiadas.

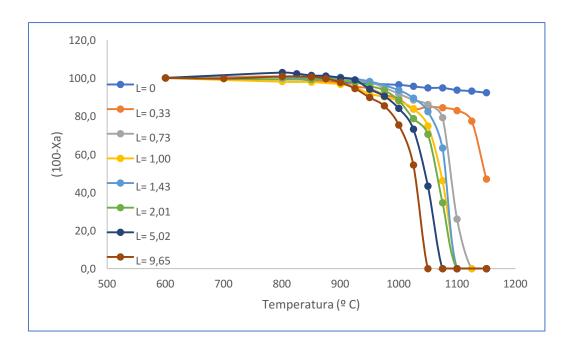


Figura 15: Conversión del NH₃ en función de la temperatura de reacción para todas las Lambdas (ver Tabla 1).

En la Figura 15 se puede observar cómo a medida que se aumenta la cantidad de O_2 introducida, la combustión completa se produce a menor temperatura.

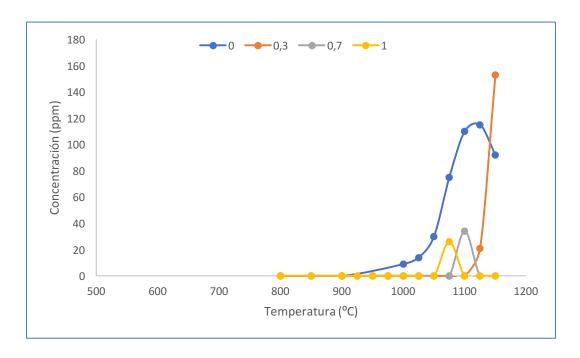

En cuanto a la formación de productos, en la Tabla 9 se recogen las concentraciones máximas de los productos, así como la temperatura de aparición de dicho máximo.

Tabla 9: Temperaturas de máxima concentración y concentraciones máximas de los productos de reacción para las diferentes estequiometrías de redacción.

SET	LAMBDA	Concentración máxima de H2	Tª máx. H2	Concentración máxima de NO	Tª máx. NO
1	0	115	1125	0	N.D.
2	0,33	153	1150	6	1150
3	0,73	34	1100	36	1100
4	1	26	1075	65	1100
5	0,96	15	1075	68	1100
6	0,9	9	1075	79	1100
7	1,43	0	N.D.	68	1100
8	2,01	0	N.D.	69	1100
9	4,89	0	N.D.	66	1100
10	9,65	0	N.D.	56	1150

El H₂ solo aparece en lambdas reductoras y en pirolisis, y como se observa se genera mayor cantidad de H₂ para la menor cantidad de O₂. La Figura 16 muestra el comportamiento del H₂ en función de lambda y de la temperatura de reacción. En la Figura 16 se puede observar como a medida que la atmósfera se va haciendo más oxidante, las cantidades de H₂ generadas tienden a disminuir.

Atendiendo a las temperaturas de aparición, el H_2 aparece de manera más temprana en condiciones de pirólisis, en torno a los 1000 °C, esto se debe a que al no haber presencia de O_2 en la mezcla reaccionante el H_2 no reacciona para dar H_2O , por ello podemos ver la presencia del H_2 en un amplio rango de temperaturas. En el caso λ = 0,33, la aparición de H_2 ocurre de manera más tardía, entre los 1100 y los 1125 °C, pero lo hace en mayor cantidad que en el caso de la pirólisis, esto es debido principalmente a que se alcanza una conversión 5 veces superior en λ = 0,33; al reaccionar más NH_3 , se produce más H_2 . La temperatura de aparición prácticamente se solapa en el caso de λ = 0,73 y λ = 1,00 (1100 y 1075 °C, respectivamente).

Figura 16: Concentraciones del H₂ en función de la temperatura de reacción para las Lambdas en las que se genera. Experimentos 1, 2, 3 y 4.

En cuanto al NO, éste se genera en todos los experimentos salvo en el caso de la pirolisis como es obvio donde no se alimenta O₂. Las cantidades de NO generadas aumentan con la concentración de O₂ en el caso de las lambdas reductoras. Pero en las lambdas estequiométricas y oxidantes se alcanza un máximo que oscila entre las 60 y las 70 ppm para luego descender. Dicho máximo aparece en todos los casos, salvo en la lambda más oxidante, en esta, aumenta paulatinamente sin alcanzar un máximo definido. A continuación, en la Figura 17 se observa mejor cómo se comporta el NO en las diferentes lambdas estudiadas.

Figura 17: Concentraciones del NO en función de la temperatura de reacción para todas las Lambdas.

5. Modelado cinético.

A continuación, se exponen los resultados obtenidos en la simulación con el mecanismo cinético utilizado para modelar la oxidación de NH₃ en diferentes condiciones (reductoras, estequiométricas y oxidantes). Los resultados obtenidos experimentalmente son comparados con los obtenidos mediante la simulación.

5.1 Software y modelos utilizados.

Para realizar las simulaciones se ha utilizado el software ANSYS- Chemkin-PRO, se ha ensayado un modelo de flujo pistón. Se ha utilizado la versión comercial CHEMKIN- Pro, de la compañía Reaction Design [11]. Éste, nos permite seguir la evolución de una mezcla de gases reactantes en un sistema cerrado. Además de esto nos permite observar los diferentes caminos o rutas que toman los componentes al reaccionar.

El mecanismo cinético-químico utilizado se basa en un trabajo previo del grupo de investigación en el que se ha llevado a cabo este trabajo fin de grado sobre la oxidación de CO en distintas atmósferas de reacción [12], junto con un modelo para describir la química del nitrógeno [13], posteriormente actualizado en [14, 15]. Los datos termodinámicos se han tomado de las mismas fuentes que los modelos de reacción utilizados.

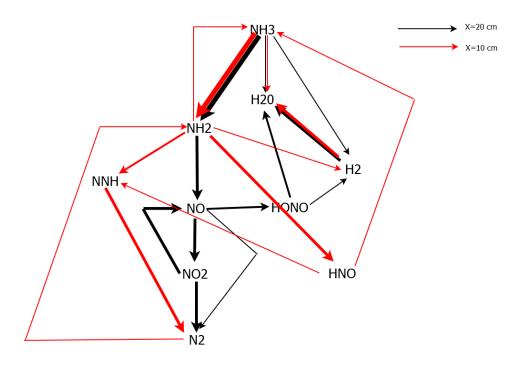
Este software nos permitirá desarrollar modelos que luego podrán ser comparados con los resultados experimentales, si estos coincidiesen, se daría por bueno el modelo, lo cual ahorraría mucho trabajo en el futuro.

5.2 Comparación de los resultados.

Se han realizado simulaciones con el modelo y estas se han comparado con los datos de los experimentos.

El programa utilizado devuelve datos para cada temperatura dentro de un

rango indicado. Se utilizará el modelo isotermo ya que se tiene una temperatura uniforme dentro del reactor.


5.2.1 Rutas de reacción.

Utilizando el modelo, se llevó a cabo un estudio de las rutas de reacción, es decir el "camino" que sigue el amoniaco cuando reacciona a lo largo del reactor. Este estudio se realizó en 3 condiciones de operación diferentes: reductora (λ = 0,73) estéquiométrica (λ = 1,00) y oxidante (λ = 9,65) y para temperaturas superiores a la de inicio de reacción. Los resultados se exponen a continuación:

La Figura 18 muestra los principales caminos de reacción que aparecen para λ = 0,73. En la figura el grosor de las flechas indica la importancia de dicha reacción: mayor grosor, mayor importancia.

En X= 20 cm, es decir, la salida del reactor los principales productos generados son N_2 y H_2O , además del O_2 no consumido en el proceso. Los principales intermedios formados son el NH_2 , el HONO y el NO_2 . Estos compuestos sufren múltiples reacciones dando finalmente N_2 y H_2O y algo de NO.

En X=10 cm (mitad del reactor) la reacción no es completa, esto se observa ya que el modelo nos dice que aún hay una importante presencia de NH_3 en ese punto. De nuevo, los principales productos formados son N_2 y H_2O , pero en esta zona se generan otros intermedios de reacción, aparece el HNO y el NNH.

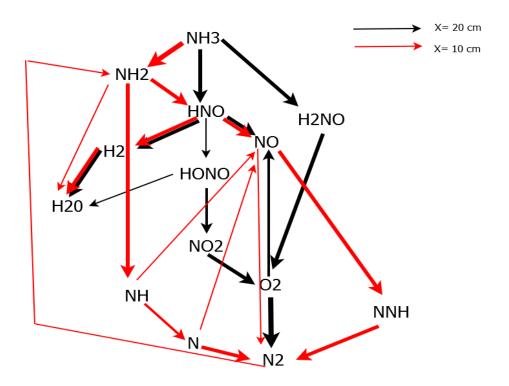


Figura 18: Análisis de los caminos de reacción para λ = 0,73.

La Figura 19 muestra los principales caminos de reacción que aparecen para λ = 1,00.

En X= 20 cm, los principales productos generados son N_2 y H_2O , además del O_2 no consumido en el proceso. Los principales intermedios formados son el HNO, el HONO, el N O_2 y el H_2NO . Estos compuestos reaccionan dando los mismos componentes que en el apartado anterior.

En X= 10 cm, de nuevo, la reacción no es completa. Los principales productos formados son N_2 y H_2O , como en X= 20 cm, pero en esta zona se generan otros intermedios de reacción, aparece el HNO, el NNH, el NH y el N.

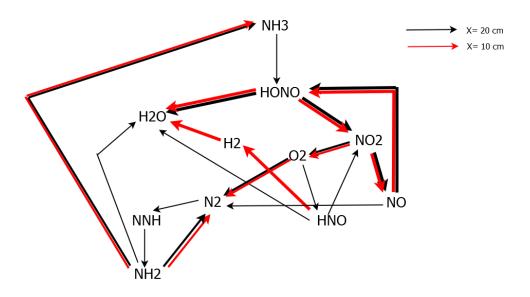


Figura 19: Principales caminos de reacción para λ = 1,00.

La Figura 20 muestra los principales caminos de reacción que aparecen para λ = 9,65.

En X= 20 cm, los principales productos generados son N_2 y H_2O , además del O_2 no consumido en el proceso. Los principales intermedios formados son el HNO, el HONO, el NO₂, el NNH y NH₂. Estos compuestos reaccionan dando los mismos componentes que en λ = 0,73 y λ = 1,00. En esta estequiometria no aparece el H_2 , esto es debido a que al ser tan oxidante el H_2 reacciona directamente a agua y por ello no se presenta en esa forma a la salida del reactor.

En X=10 cm, de nuevo, la reacción no es completa. Los principales productos formados son N_2 y H_2O , como en X= 20 cm, pero en esta zona se generan otros intermedios de reacción, aparece el H_2 además de los anteriormente mencionados.

Figura 20: Análisis de las rutas de reacción de λ = 9,65.

5.2.2 Condiciones reductoras.

Se modelaron los mismos experimentos que se llevaron a cabo en el laboratorio. A continuación, se muestran los más representativos (Figura 21).

Como se puede observar en la Figura 21 el modelo se corresponde bastante bien con los resultados experimentales del experimento de λ = 0,73.

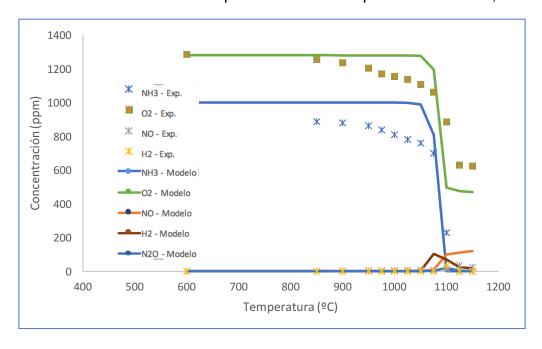


Figura 21: Comparación del modelo con los datos experimentales del experimento 3 (λ = 0,73) frente a la temperatura (ver Tabla 1).

Atendiendo al NH₃, se observa que, en el modelo, el NH₃ reacciona de manera más brusca pasando en un intervalo de 50 °C de 1000 a 0 ppm. Esto, en el experimento, se produce de manera más paulatina. Sin embargo, los intervalos de temperaturas en que se produce el salto a 100% de conversión de NH₃ son bastante similares.

Se genera más H₂ en el modelo que en el experimento (103 ppm frente a 34) y además, este aparece en el modelo en un mayor rango de temperaturas de los 1050 a los 1150 °C. La temperatura de aparición coincide. Otra diferencia es que en el modelo el H₂ no se consume de golpe mientras que en el experimento desaparece en la temperatura siguiente a su aparición.

En cuanto a los productos de oxidación, en el modelo, no se genera NO_2 tal y como ocurría en el experimento. Pero sí que aparece un punto de N_2O en torno a los 1125 °C de 20 ppm de concentración, que a la siguiente temperatura desaparece. El NO presenta un comportamiento similar entre el modelo y el experimento; presentan temperaturas de aparición semejantes (en torno a los 1050 °C). En cuanto a las máximas concentraciones alcanzadas, en el modelo se alcanzan las 121 ppm mientras que en el experimento solo se alcanzan las 36 ppm.

5.2.3 Condiciones estequiométricas.

La Figura 22 muestra la comparación de los resultados del modelo con los datos experimentales obtenidos en condiciones estequiométricas. Como se puede observar en la Figura 22 el modelo se ajusta bastante bien a la a los datos experimentales de λ = 1,00.

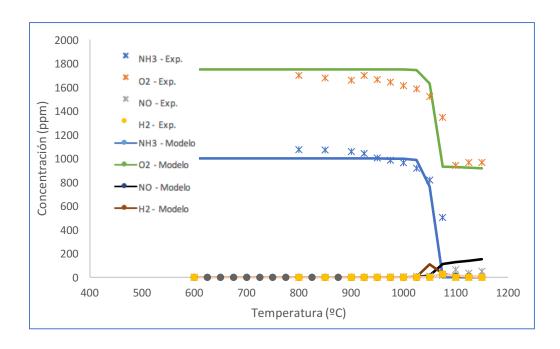


Figura 22: Comparación del modelo con los datos experimentales del experimento 4 (λ = 1,00) frente a la temperatura (ver Tabla 1).

El NH₃ experimental se ajusta bien al modelo. En el modelo la reacción es más rápida que en los experimentos (ocurre a menor temperatura), pero esta vez se suaviza la pendiente con la que el modelo baja a 0 ppm NH₃ asemejándose más a la del experimento.

El H₂ se genera sobre la misma temperatura (1075 °C en el experimento y 1050 °C en el modelo), y se comporta de una manera muy similar: en el modelo aparece a 1050 °C y desaparece prácticamente a los 1100 °C mientras que en el experimento aparece a los 1075 °C y desaparece a los 1100 °C. En el modelo se genera en mayor cantidad que en el experimento.

En cuanto a los óxidos de nitrógeno, no hay presencia de NO_2 en el modelo y poca presencia del N_2O del que se generan tan solo 25 ppm. En el experimento no se genera NO o si se genera lo hace en cantidades por debajo del límite de detección de nuestro equipo. Por último, el NO aparece en el mismo rango de temperaturas (1025 – 1150 °C), pero en mayor cantidad (prácticamente el doble).

5.2.4 Condiciones moderadamente oxidantes.

La Figura 23 muestra la comparación de los resultados del modelo con los datos experimentales obtenidos en condiciones moderadamente oxidantes. Como se puede observar en la Figura 23, hay una mayor discrepancia entre los datos experimentales y el modelo. Pese a ello, las tendencias se ajustan bien a los datos de λ = 2,01.

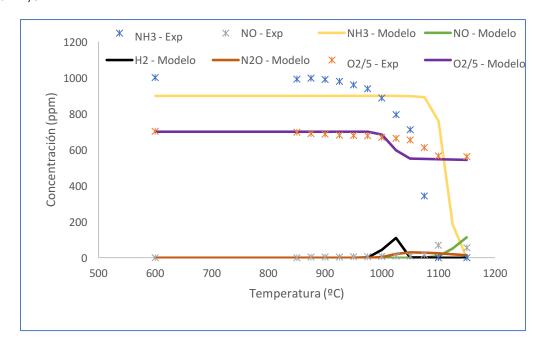
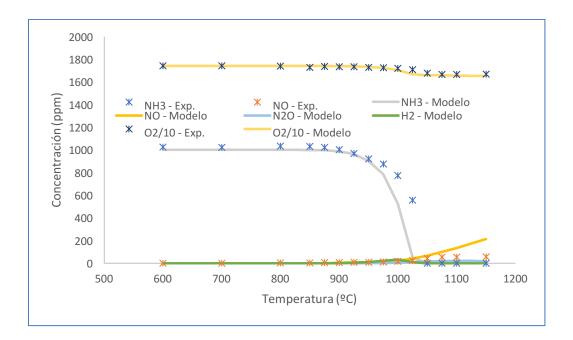


Figura 23: Comparación del modelo con los datos experimentales del experimento 8 (λ = 2,01) frente a la temperatura (ver Tabla 1).

El NH₃ se comporta de manera similar al modelo, pero como ocurría en los anteriores reacciona más bruscamente (a menor temperatura) en el modelo que en la realidad.


El modelo muestra una aparición de H_2 a unos 1000 °C y alcanza un máximo de unas 110 ppm a los 1125 °C. Este H_2 desaparece rápidamente en la siguiente temperatura. En el experimento, en cambio, no se genera nada o al menos no en cantidades que nuestro equipo pueda detectar. No se detectó H_2 en ningún experimento con lambda mayor a la unidad.

En cuanto a los óxidos de nitrógeno, el modelo no muestra presencia de NO₂, cosa que se corresponde con el experimento. El NO aparece en mayor

cantidad en el modelo llegando a ser casi el doble que en el experimento (concentraciones de 192 ppm frente a las 69 ppm generadas en el experimento). En cuanto a las temperaturas de aparición del NO, sí que se corresponden con las obtenidas experimentales. Nuevamente el modelo muestra una aparición de N_2O en torno a los 1075 $^{\circ}C$ que alcanza las 27 ppm.

5.2.5 Condiciones muy oxidantes.

La Figura 24 muestra la comparación de los resultados del modelo con los datos experimentales obtenidos en condiciones moderadamente oxidantes. Como se puede observar en la Figura 24, el modelo se ajusta bastante bien a la a los datos experimentales de λ = 9,65.

Figura 24: Comparación del modelo con los datos experimentales del experimento 10 (λ = 9.65) frente a la temperatura (ver Tabla 1).

Como se puede observar en la Figura 24, los datos experimentales obtenidos se ajustan muy bien al modelo.

El modelo muestra una aparición de H₂ a unos 950 °C y alcanza un máximo de unas 33 ppm a los 1000 °C. Este H₂ desaparece rápidamente en las siguientes temperaturas. En el experimento, en cambio, no se genera nada o al menos no en

cantidades que nuestro equipo pueda detectar.

En cuanto a los óxidos de nitrógeno, el modelo muestra una pequeña presencia de NO_2 , tan solo 2 ppm mientras que en el experimento este no aparece, o si lo hace, no en cantidades que podamos detectar. El NO aparece en mayor cantidad en el modelo (concentraciones de 200 ppm frente a las 56 ppm generadas en el experimento), pero su comportamiento coincide, en ambos a medida que aumenta la temperatura aumenta la concentración de NO. Nuevamente el modelo muestra una aparición de N_2O en torno a los 1025 °C que alcanza las 20 ppm.

6 Conclusiones.

En este trabajo se ha llevado a cabo un estudio experimental de la combustión del NH₃, así como su simulación, utilizando un modelo cinético de bibliografía, en un reactor de flujo a presión atmosférica y en un intervalo de temperaturas que abarcaba de los 600 a los 1150 °C. Se ensayaron diferentes estequiometrias y los resultados de estos ensayos nos permiten concluir:

- A medida que el O₂ aumenta en la mezcla reactiva, menor es la temperatura necesaria para la combustión completa del NH₃.
- En condiciones muy reductoras no se produce la combustión completa del NH₃ en el rango de temperaturas estudiado.
- El H₂ solo se forma en condiciones reductoras. En oxidantes nunca se observó la presencia de éste. La producción de H₂ es inversamente proporcional a la cantidad de O₂ introducido.
- El modelo cinético se ajusta bastante bien a los datos obtenidos.
- Se genera menos NO en condiciones muy oxidantes, que, en condiciones moderadamente oxidantes, lo que implica una combustión bastante elevada a nitrógeno molecular (N₂) y agua (H₂O).
- No se formó dióxido de nitrógeno (NO₂) en ninguno de los experimentos.
- La cantidad de O₂ que reaccionó fue muy similar para todas las estequiometrias que conseguían la combustión completa del NH₃.
- En general, se observó que la combustión del NH₃ es bastante limpia siendo el único contaminante significativo el óxido de nitrógeno (NO). Además, éste se generó en cantidades no superiores a 100 ppm en ninguno de los casos.

7. Bibliografía.

- [1]. Zamfirescu C, Dincer I. Using ammonia as a sustainable fuel. Journal of Power Sources 2008; 185: 459-465.
- [2]. Metkemeijer R, Achard P. Ammonia as a feedstock for a hydrogen fuel cell; reformer and fuel cell behaviour. Journal of Power Sources 1994; 49: 271–282.
- [3]. DIRECTIVA 1999/30/CE DEL CONSEJO de 22 de abril de 1999 relativa a los valores límite de dióxido de azufre, dióxido de nitrógeno y óxidos de nitrógeno, partículas y plomo en el aire ambiente.
- [4]. Kroch E. Ammonia a fuel for motor bus. Journal of the Institute of Petroleum 1945; 31: 213-223.
- [5]. Wendell H. X-15 RESEARCH RESULTS with a Selected Bibliography. 2013 pag. 29
- [6] NH₃ Fuel Association. https://nh3fuelassociation.org/. (Accedido agosto 2018).
- [7]. Kobayashi H. Ammonia combustion for energy system. Japan-Norway Hydrogen Seminar Norwegian Embassy, February 28, 2017.
- [8]. Miyaoka H, Miyaoka H, Ichikawa T. Highly purified hydrogen production from ammonia for PEM fuel cell. International Journal of Hydrogen Energy 2018; 43: 14486-14492.

- [9]. Duynslaegher C, Contino F, Vandooren J, Jeanmart H. Modeling of ammonia combustion at low pressure. Combustion and Flame 2012; 159; 2799-2805.
- [10]. Hashemi H, Song Y, Christensen JM, Zou C, Marshall P, Glarborg P. Ammonia oxidation at high pressure and intermediate temperatures. Fuel 2016; 181: 358–365.
- [11] Tian Z, Li Y, Zhang L, Glarborg P, Qi F. An experimental and kinetic modeling study of premixed NH3/CH4/O2/Ar flames at low pressure. Combust Flame 2009;156:1413–26.
- [12]. Mukherjee S, Devaguptapu S, Sviripa A, Lund C, Wu G. Low-temperature ammonia decomposition catalysts for hydrogen generation. Applied Catalysis B: Environmental 2018; 226: 162-181.
- [13] Abián M, Giménez-López J, Bilbao R, Alzueta MU. Effect of different concentration levels of CO₂ and H₂O on the oxidation of CO: Experiments and modelling. Proceedings of the Combustion Institute 2011; 33: 317-323.
- [14] Glarborg P, Alzueta MU, Dam-Johansen K, Miller JA. Kinetic modeling of hydrocarbon/nitric oxide interactions in a flow reactor. Combustion and Flame 1998; 115:1-27.
- [15] Abián M, Millera T, Bilbao R, Alzueta MU. An experimental and modeling study of the influence of flue gases recirculated on ethylene conversion. Combustion and Flame 2014; 161: 2288-2296.
- [16] Abián M, Alzueta MU, Glarborg P. Formation of NO from N₂/O₂ mixtures in a flow reactor: Toward an accurate prediction of thermal NO. International Journal of Chemical Kinetics 2015; 47: 518-532.

ANEXO A: Resultados experimentales.

En este anexo se recogen los resultados de los experimentos en formas de tablas, estos han sido los que se han aplicado para la elaboración de las gráficas que se muestran en el trabajo.

A.1 Condiciones de pirolisis.

Experimento nº: 1

Ta ambiente: 24 °C

P Ambiente: 745 mm Hg

Intervalo de Ta estudiado: 600-1150 °C

Tabla A1: Caudales de cada componente y concentraciones de botella.

Compuesto	Q (mlN/min)	Q(mIR/min)	Botella
NH ₃	100	112	1%
N ₂ (H ₂ O)	0	0	99.99%
O ₂ - E.1	0	0	no determinado
N ₂ - E.1	900	1006	99.99%

Tabla A2: Resultados experimento 1, Tabla 1.

TEMPERATURA (°C)	H ₂ (ppm)	NH₃ (ppm)
800	0	1153
900	0	1128
1000	9	1112
1025	14	1103
1050	30	1094
1075	75	1093
1100	110	1080
1125	115	1074
1150	92	1064

A.2 Condiciones reductoras.

Experimento nº: 2

T^a ambiente: 25 ° C

P Ambiente: 745 mm Hg

Intervalo de Ta estudiado: 600-1150 ° C

 Tabla A3: Caudales de cada componente y concentraciones de botella.

Compuesto	Q (mlN/min)	Q(mlR/min)	Botella
NH ₃	100	111	1%
$N_2(H_2O)$	0	0	99.99%
O ₂ - E.1	116	129	0.45%
N ₂ - E.1	783	872	99.99%

Tabla A4: Resultados experimento 2, Tabla 1.

TEMPERATURA (°C)	O ₂ (ppm)	NO (ppm)	H ₂ (ppm)	NO ₂	NH ₃ (ppm)
600	580	0	0	0	1033
800	485	0	0	0	1041
850	467	0	0	0	1021
900	449	0	0	0	1006
925	493	0	0	0	987
950	471	1	0	0	975
975	457	1	0	0	943
1000	426	3	0	0	920
1025	411	3	0	0	864
1050	394	4	0	0	876
1075	398	4	0	0	871
1100	385	4	0	0	857
1125	395	4	21	0	800
1150	205	6	153	0	486

T^a ambiente: 24 °C NH₃ P Ambiente: 750 mm Hg

Intervalo de Ta estudiado: 600-1150 °C

Tabla A5: Caudales de cada componente y concentraciones de botella.

Compuesto	Q (mlN/min)	Q(mIR/min)	Botella
NH ₃	100	110	1%
N ₂ (H ₂ O)	0	0	99.99%
O ₂ - E.1	272	300	0.45%
N ₂ - E.1	628	692	99.99%

Tabla A6: Resultados experimento 3, Tabla 1.

TEMPERATURA (°C)	O ₂ (ppm)	NO (ppm)	H ₂ (ppm)	NH ₃ (ppm)
600	1285	0	0	884
850	1254	0	0	886
900	1235	2	0	879
950	1204	3	0	862
975	1170	3	0	838
1000	1154	5	0	810
1025	1137	5	0	782
1050	1107	7	0	760
1075	1061	8	0	700
1100	885	15	34	230
1125	629	36	0	0
1150	623	24	0	0

A.2 Condiciones estequiométricas.

Experimento nº: 4

T^a ambiente: 26 ° C

P Ambiente: 745 mm Hg

Tabla A7: Caudales de cada componente y concentraciones de botella.

Compuesto	Q (mlN/min)	Q(mIR/min)	Botella
NH ₃	100	112	1%
$N_2(H_2O)$	0	0	99.99%
O ₂ - E.1	97	109	1.8%
N ₂ - E.1	802	897	99.99%

Tabla A8: Resultados experimento 4, Tabla 1.

TEMPERATURA (°C)	O ₂ (ppm)	NO (ppm)	H ₂ (ppm)	NH₃ (ppm)
600	1755	0	0	1095
800	1698	0	0	1074
850	1677	0	0	1072
900	1659	0	0	1059
925	1699	1	0	1042
950	1664	3	0	1005
975	1644	3	0	987
1000	1613	5	0	964
1025	1586	7	0	918
1050	1521	11	0	820
1075	1346	16	26	505
1100	943	65	0	0
1125	967	35	0	0
1150	967	51	0	0

T^a ambiente: 25 ° C

P Ambiente: 745 mm Hg

Tabla A9: Caudales de cada componente y concentraciones de botella.

Compuesto	Q (mlN/min)	Q(mIR/min)	Botella
NH_3	100	111	1%
$N_2(H_2O)$	0	0	99.99%
O ₂ - E.1	97	108	1.8%
N ₂ - E.1	803	894	99.99%

Tabla A10: Resultados experimento 5, Tabla 1.

TEMPERATURA (°C)	O ₂ (ppm)	NO (ppm)	H ₂ (ppm)	NH₃ (ppm)
600	1688	0	0	1115
800	1716	0	0	1097
850	1666	0	0	1082
900	1608	1	0	1041
925	1619	2	0	1028
950	1583	2	0	991
975	1631	3	0	956
1000	1590	3	0	913
1025	1554	5	0	849
1050	1481	7	0	733
1075	1323	13	15	437
1100	937	68	0	0
1125	967	37	0	0
1150	958	39	0	0

T^a ambiente: 28 ° C

P Ambiente: 745 mm Hg

 Tabla A11: Caudales de cada componente y concentraciones de botella.

Compuesto	Q (mlN/min)	Q(mIR/min)	Botella
NH ₃	100	112	1%
N ₂ (H ₂ O)	0	0	99.99%
O ₂ - E.1	97	109	1.8%
N ₂ - E.1	803	902	99.99%

Tabla A12: Resultados experimento 6, Tabla 1.

TEMPERATURA (°C)	O ₂ (ppm)	NO (ppm)	H ₂ (ppm)	NH ₃ (ppm)
600	1576	0	0	990
800	1561	0	0	953
850	1540	1	0	961
875	1544	1	0	957
900	1535	2	0	941
925	1521	2	0	997
950	1492	2	0	976
975	1468	2	0	965
1000	1434	4	0	941
1025	1435	6	0	858
1050	1399	8	0	785
1075	1259	14	9	507
1100	873	79	0	0
1125	864	45	0	0
1150	869	41	0	0

A.3 Condiciones oxidantes.

Experimento nº: 7

T^a ambiente: 22 ° C

P Ambiente: 745 mm Hg

Intervalo de Ta estudiado: 800-1150 ° C

Tabla A13: Caudales de cada componente y concentraciones de botella.

Compuesto	Q (mIN/min)	Q(mIR/min)	Botella
NH_3	100	110	1%
$N_2(H_2O)$	0	0	99.99%
O ₂ - E.1	146	161	1.8%
N ₂ - E.1	754	831	99.99%

Tabla A14: Resultados experimento 7, Tabla 1.

TEMPERATURA (°C)	O ₂ (ppm)	NO (ppm)	H ₂ (ppm)	NH₃ (ppm)
800	2505	0	0	1067
850	2538	1	0	1067
900	2515	2	0	1070
950	2493	3	0	1047,5
1000	2446	6	0	998,5
1025	2399	8	0	953,5
1050	2345	10	0	878,5
1075	2218	16	0	674,5
1100	1698	68	0	0
1150	1708	55	0	0

T^a ambiente: 22 ° C

P Ambiente: 745 mm Hg

 Tabla A15: Caudales de cada componente y concentraciones de botella.

Compuesto	Q (mlN/min)	Q(mIR/min)	Botella
NH ₃	100	110	1%
$N_2(H_2O)$	0	0	99.99%
O ₂ - E.1	194	214	1.8%
N ₂ - E.1	706	778	99.99%

Tabla A16: Resultados experimento 8, Tabla 1.

TEMPERATURA (°C)	O ₂ (ppm)	NO (ppm)	H ₂ (ppm)	NH₃ (ppm)
600	3517	0	0	884,5
850	3489	1	0	877
875	3448	3	0	881,5
900	3430	3	0	874
925	3405	4	0	865
950	3402	5	0	847,5
975	3386	6	0	828
1000	3340	8	0	780
1025	3320	9	0	696,5
1050	3273	9	0	623
1075	3063	18	0	306
1100	2830	69	0	0
1150	2812	55	0	0

T^a ambiente: 25 ° C

P Ambiente: 745 mm Hg

Intervalo de Ta estudiado: 600-1150 °C

Tabla A17: Caudales de cada componente y concentraciones de botella.

Compuesto	Q (mIN/min)	Q(mlR/min)	Botella
NH ₃	100	111	1%
$N_2(H_2O)$	0	0	99.99%
O ₂ - E.1	42	46	21%
N ₂ - E.1	958	955	99.99%

Tabla A18: Resultados experimento 9, Tabla 1.

TEMPERATURA (°C)	O ₂ (ppm)	NO (ppm)	H ₂ (ppm)	NH ₃ (ppm)
750	8561	4	0	1055,5
800	8469	5	0	1088
825	8508	5	0	1081
850	8521	6	0	1070
875	8483	6	0	1067
900	8391	6	0	1056
925	8381	7	0	1043,5
950	8322	8	0	987
975	8269	9	0	946,5
1000	8205	12	0	875
1025	8045	15	0	758
1050	7818	23	0	448
1075	7461	67	0	0
1100	7481	69	0	0
1150	7448	55	0	0

T^a ambiente: 23 ° C

P Ambiente: 745 mm Hg

Intervalo de Ta estudiado: 600-1150 º C

 Tabla A19: Caudales de cada componente y concentraciones de botella.

Compuesto	Q (mlN/min)	Q(mlR/min)	Botella
NH_3	100	111	1%
$N_2(H_2O)$	0	0	99.99%
O ₂ - E.1	83	92	21%
N ₂ - E.1	817	903	99.99%

Tabla A20: Resultados experimento 10, Tabla 1.

TEMPERATURA (°C)	O ₂ (ppm)	NO (ppm)	H ₂ (ppm)	NO ₂ (ppm)	NH ₃ (ppm)
600	17425	0	0	0	1025
700	17433	1	0	0	1022
800	17406	3	0	0	1033
850	17271	4	0	0	1031
875	17355	6	0	0	1022
900	17343	6	0	0	1001
925	17344	8	0	0	968
950	17286	10	0	0	920
975	17261	12	0	0	875
1000	17193	16	0	0	773
1025	17088	22	0	0	557
1050	16782	42	0	0	0
1075	16663	54	0	0	0
1100	16659	54	0	4	0
1150	16691	56	0	2	0

A.4 Resultados calibraciones.

Debido a la inestabilidad a la hora de detectar el amoniaco en el micro cromatógrafo se han llevado a cabo 2 calibraciones externas de este. Los resultados de estas se adjuntan a continuación:

A.4.1 Calibración 1.

Tabla A21: Resultados de la calibración 1 del NH₃ en el microcromatógrafo.

Área	Concentración (ppm)
0	0
927	1000
605	750
1934	1500

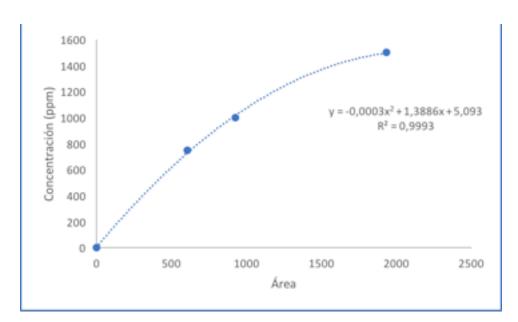


Figura A.1: Representación de la calibración 1, con ecuación.

A.4.1 Calibración 2.

Tabla A22: Resultados de la calibración 2 del NH3 en el micro cromatógrafo.

AREA	Concentración (ppm)
0	0
457,5	500
1217	1000
2109	1500
3181	2000

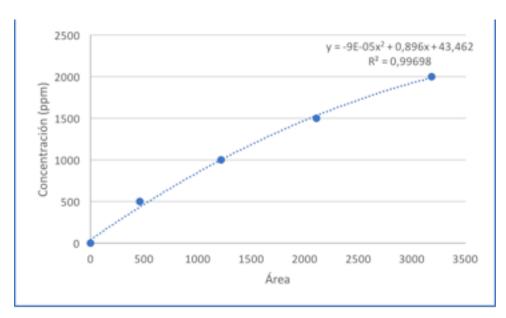


Figura A.2: Representación de la calibración 2, con ecuación.

ANEXO B: Instalación experimental.

Los experimentos realizados en este trabajo se han llevado a cabo en el laboratorio de Reacciones de Combustión del Grupo de Procesos Termoquímicos (GTP) del Instituto de Investigación en Ingeniería de Aragón (I3A).

La Figura B.1 muestra de manera esquemática, lo que sería nuestra instalación experimental.

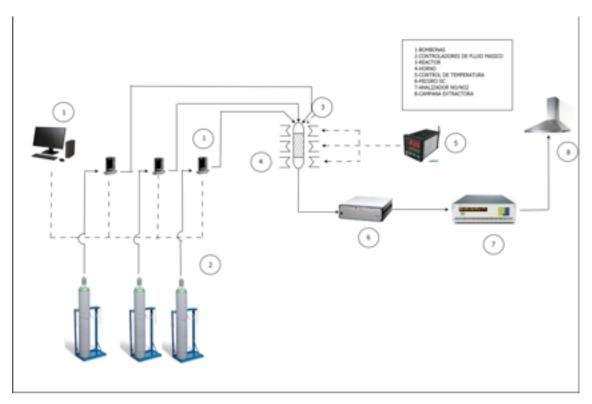


Figura B.1. Esquema de la instalación de combustión de amoniaco (NH₃).

Dicha instalación la componen 3 bloques: el sistema de alimentación de gases, el sistema de reacción y el sistema de análisis de gases.

B.1 Sistema de alimentación de gases.

Lo constituyen las bombonas presurizadas, en las que se encuentran los gases, los controladores de flujo másico y el medidor de caudal.

Controladores de flujo másico.

Los controladores de flujo másico se encargan de determinar con exactitud la cantidad de cada gas que entra a nuestro reactor y mantener dicho valor de manera constante. En nuestro caso utilizamos 4 controladores de flujo, usaremos uno para el amoniaco, otro para el O₂ y dos para nuestro diluyente, en este caso nitrógeno. El encargado de controlar el amoniaco es un controlador de 200 mL/min de caudal máximo controlable, el encargado de controlar el O₂ es otro controlador de 200 mL/min de caudal máximo. En cuanto a los encargados de controlar el nitrógeno son dos controladores de 1000 mL/min de caudal máximo. El rango de funcionamiento óptimo de estos es de entre un 10 y un 90% de apertura de la válvula.

Los controladores de flujo másico son regulados mediante un software desarrollado por el Servicio de apoyo a la investigación de la universidad de Zaragoza. Dicho programa permite al usuario introducir el % de apertura deseado en cada uno de los controladores utilizados.

Medidor de caudal.

-El m

El medidor de caudal es un burbujímetro digital (Figura B.2), el cual al introducir un gas por su extremo se genera una burbuja, se mide la velocidad de esta y con dicha velocidad y la sección del cilindro se calcula el caudal circulante con una precisión aproximada de 1 mL/min. Utilizaremos este dispositivo para calcular los % de apertura necesarios en cada controlador. Esto es necesario ya que los

controladores de flujo másico están calibrados utilizando nitrógeno como gas de calibrado y los gases utilizados al ser diferentes al nitrógeno hacen que los caudales reales no se correspondan por completo con los teóricos por lo que el medidor de caudal nos ayudara a cerciorarnos de que los caudales introducidos son los correctos.

El rango de medida de este dispositivo va de los 5 a los 5000 mL/min

Figura B.2: caudalímetro

B.2 Sistema de reacción.

Comprende los equipos necesarios para llevar a cabo la reacción, estos son: reactor de cuarzo, el horno y el sistema de control de temperatura del mismo.

Reactor de cuarzo.

El reactor utilizado en los experimentos es un reactor de flujo de cuarzo. Se utiliza cuarzo por las elevadas temperaturas de trabajo que resiste. A continuación, en la Figura B.3 se muestra un esquema de dicho reactor.

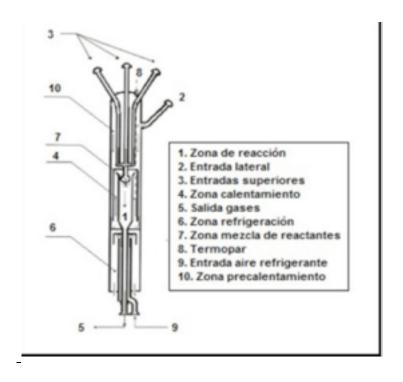


Figura B.3 Esquema del reactor.

Como se ve en la Figura B.3, los gases se introducen por 2 (diluyente, mayor caudal) y 3 (reactivos, menor caudal), tras esto, el gas introducido por 2 se precalienta en 10, de ahí se pasa a la zona de mezcla de reactantes y de ahí entran en 1, que es la zona de reacción, una vez reaccionados los gases pasan a la zona de refrigeración (6) y de ahí salen a los distintos equipos del sistema de análisis.

Horno.

El horno constituye un encamisado alrededor del reactor de cuarzo, cuyo principal motivo es elevar la temperatura de los reactivos de manera que sea uniforme en la zona de reacción. Para conseguir dicho perfil uniforme de temperaturas en la zona de reacción cuenta con 3 zonas de resistencias cuyas

temperaturas pueden ser ajustadas de manera individual.

Tiene una potencia de 20 kW y trabaja en un rango de temperaturas que va desde temperatura ambiente hasta los 1250 °C.

Como aislantes se utilizará lana de cuarzo que se colocará en la parte superior e inferior del horno y un aislante de baja densidad que recubrirá el interior del horno.

La Figura B.4 muestra el horno utilizado.

Figura B.4: Horno.

Control de temperatura.

La temperatura del horno se controla mediante un sistema de 3 controladores de tipo PID los cuales permiten regular la temperatura en cada una de las zonas del reactor. Cuenta con un interruptor de alarma que en caso de sobrepasar la temperatura límite indicada, en el caso de nuestra instalación 1250 ° C salta el interruptor y apaga el horno de manera forzada.

Para conseguir la temperatura uniforme en el reactor se contaba con un perfil de temperaturas elaborado anteriormente al cual se le aplicó una corrección que fue calculada experimentalmente mediante un termopar midiendo centímetro a centímetro la temperatura en la zona de reacción hasta obtener una temperatura uniforme.

A continuación, se adjunta una imagen de dicho controlador (Figura B.4).

Figura B.4: Controlador de temperatura del horno.

B.3 Sistema de análisis de gases.

Al salir del reactor los gases se enfrían rápidamente para frenar la reacción, tras esto son conducidos al sistema de análisis de gases que en este caso está constituido por: micro cromatógrafo de gases y un analizador de NO/NO₂ en

continuo.

Micro cromatógrafo de gases.

Se utilizó un cromatógrafo 3000A de Agilent, con cuatro columnas independientes: OV-1, Plot-U, Stabilwax y Molsieve y utilizando como gas portador helio (He) y Argón (Ar). En la Figura B.5 se muestra el dispositivo, que, en este trabajo tiene como objetivo cuantificar el amoniaco, el hidrógeno, el O₂ y el N₂O. El software utilizado para controlar el equipo es Soprane, éste nos permite seleccionar tanto el número de pinchazos a realizar, así como el tratamiento de los mismos.

En el equipo se lleva a cabo el proceso de cuantificación de los componentes y este proceso se subdivide en 3: inyección, separación y detección.

En el proceso de inyección se introduce la muestra en la cámara del micro cromatógrafo, se regula la temperatura de la misma y se lleva al inyector el cual la introduce en las columnas.

En el proceso de separación, los analitos se desglosan.

Por último, en la etapa de detección el gas portador (He) fluye a través del detector de conductividad térmica. El detector se alimenta por un lado gas portador puro y por el otro acompañado por los analitos, haciéndose pasar a cada uno de ellos por distintos filamentos calientes. La conductividad térmica de las moléculas de la muestra produce una variación en la resistencia eléctrica de los filamentos por donde transcurre la muestra en comparación con los filamentos por donde ha pasado el gas portador, este fenómeno produce una variación de temperatura que se traduce en un cambio en una señal eléctrica que es amplificada y registrada.

Figura B.5: Micro-cromatógrafo de gases

Analizador de NO/NO2 en continuo.

Para detectar el monóxido y el dióxido de nitrógeno se empleó un analizador de la marca ECO PHYSICS (Figura B.6) con convertidor catalítico y sensor de quimiluminiscencia.

Este equipo mediante una bomba introduce un caudal constante de gases reaccionados en la celda de análisis y devuelve por pantalla el valor de ambos gases en continuo.

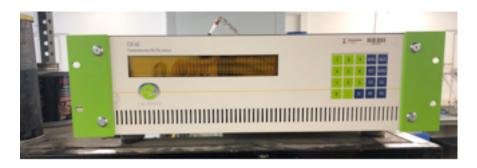


Figura B.6: Analizador NO/NO₂.