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RESUMEN 

La actual preocupación por el agotamiento de los recursos fósiles impulsa la búsqueda de 

fuentes alternativas de origen renovable, entre los cuales la celulosa posee un gran potencial de 

aprovechamiento. Una de las vías para su conversión se basa en el empleo de sistemas 

catalíticos multifuncionales que operan en procesos one-pot (varias reacciones ocurren de 

manera consecutiva en un mismo reactor). Se ha estudiado el caso de la hidrogenación 

hidrolítica de celulosa a sorbitol mediante catalizadores heterogéneos bifuncionales, que 

combinan la acidez del soporte (nanofibras de carbono (CNF)) para favorecer la hidrolisis, y 

partículas metálicas de Ni que catalizan la reacción de hidrogenación. Con objeto de mejorar la 

capacidad de hidrogenación del Ni se prepararon diferentes combinaciones bimetálicas Ni-metal 

noble (Ru, Pt, Pd) soportadas sobre CNF oxidadas (CNFox) con una carga metálica teórica del 

3% en Ni y 0,5% en metal noble (% peso). Los catalizadores obtenidos se caracterizaron por 

diversas técnicas: reducción a temperatura programada (TPR), difracción de Rayos-X (XRD), 

espectroscopia fotoelectronica de Rayos-X (XPS) y microscopia electrónica de transmisión 

(TEM), su actividad se evaluó en la hidrogenación hidrolítica de un compuesto modelo 

(celobiosa) a 180ºC y 3h, comparándola con sus respectivos componentes monometálicos. Los 

tres catalizadores bimetálicos mostraron una actividad catalítica superior al Ni (rendimientos del 

47,04% a celobitol y 37,47% a sorbitol para NiRu/CNFox, 32,68% a celobitol y 28,51% a 

sorbitol para NiPd/CNFox, 47,94% a celobitol y 43,90% a sorbitol para NiPt/CNFox frente al 

17,89% a celobitol y 15,02% a sorbitol para el Ni/CNFox), si bien en el NiRu/CNFox, el 

Ru/CNFox es suficiente para la hidrogenación de la celobiosa en su totalidad. La selectividad a 

sorbitol fue mejorada posteriormente hasta el 60,9% sobre el catalizador NiPt/CNFox tras el 

ajuste de las condiciones experimentales. Sin embargo, mostró una pérdida de actividad 

irreversible a lo largo de repetidos usos.  

ABSTRACT 

Currently, concerns about fossil fuels depletion has sparked the search for alternative sources, 

among them cellulose has a great potential of utilization. One of the routes for its conversion is 

based on the use of multifunctional catalytic systems which work in one-pot processes (several 

reactions occur simultaneously in the same reactor). This is the case of the hydrolytic 

hydrogenation of cellulose to sorbitol by using bifunctional heterogeneous catalysts, which 

combine the acidity of the support (carbon nanofibers (CNF)) to favor hydrolysis, and metallic 

Ni particles that catalyze the hydrogenation reaction. In order to improve the Ni hydrogenation 

performance, different bimetallic combinations based on Ni-metal noble (Ru, Pt, Pd) supported 

on oxidized carbon nanofibers (CNFox) were prepared, with a theorical Ni and noble metal 

loading of 3.wt %  and 0,5 .wt%, respectively. The synthesized catalysts were characterized by 

several techniques: programmed temperature reduction (TPR), X-ray diffraction (XRD), X-ray 

photoelectric spectroscopy (XPS) and transmission electron microscopy (TEM) and its activity 

was tested in the hydrolytic hydrogenation of a model compound (cellobiose) at 180ºC and 3h 

and compared with their respective monometallic components. The three bimetallic catalysts 

showed a superior catalytic activity than the Ni (cellobitol and sorbitol yields of 47,04% and 

37,47%  for NiRu/CNFox, 32,68% and 28,51%  for NiPd/CNFox and 47,94% and 43,90% for 

NiPt/CNFox, compared to 17,89% of  cellobitol and 15,02% of  sorbitol for Ni/CNFox), although 

in NiRu/CNFox, the Ru/CNFox is sufficient for the totally hydrogenation of cellobiose. By 

properly adjusting of the experimental conditions, the selectivity to sorbitol was subsequently 

improved up to 60,9% on the NiPt/CNFox catalyst. However, it showed an irreversible loss of 

activity over repeated uses. 
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1. Introducción 

En la actualidad, las preocupaciones sobre el agotamiento de las reservas de combustibles 

fósiles, el aumento de la demanda energética (llegando a superar en ciertas ocasiones a la 

oferta), junto a la mala gestión de los recursos y el calentamiento global provocan que para 

conseguir los desafíos que se presentan para un futuro próximo estén cobrando protagonismo las 

investigaciones en torno a las materias primas renovables como alternativa a las fósiles
[1]

. Estas 

cuestiones promueven un gran esfuerzo en la valorización de la biomasa como sustituto del 

petróleo para producir combustibles, energía y productos químicos, ya que esta se presenta 

como un recurso renovable, versátil y en gran abundancia
 [2,3]

.  

Particularmente, la biomasa lignocelulosica es una de las fuentes renovables de carbono más 

prometedoras y potencialmente sostenible, y a su vez es la única que posee la versatilidad de 

convertirse en combustibles sólidos, líquidos o gaseosos mediante el uso de procesos  

termoquímicos o biológicos
[4]

. Junto a su abundancia hay que resaltar que esta fuente de 

biomasa posee un precio relativamente bajo y la disponibilidad es alta en todo el mundo, no 

concentrando los yacimientos en varios puntos como ocurre con el petróleo. Además, a 

diferencia de la biomasa de primera generación como el maíz o el almidón, su uso en la 

industria no estaría reñido con el suministro de alimentos a los seres humanos. En general, un 

material lignocelulósico comprende tres fracciones principales, cuya composición promedio es 

de un 34-50% de celulosa, 19-34% de hemicelulosa y 11-30% de lignina
[4]

. 

La celulosa, como principal componente de la biomasa lignocelulosica, se considera 

actualmente como una alternativa prometedora como suministro sostenible de productos 

químicos de alto valor añadido. La celulosa se define como un polisacárido formado 

exclusivamente por moléculas de D-glucosa unidas entre sí mediante enlaces β-1,4-O-

glucosidico, formando cadenas lineales que pueden llegar a entrelazarse mediante puentes de 

hidrogeno entre los grupos hidroxilo de las distintas cadenas (Figura 1). Sin embargo, su 

valorización sigue siendo un reto, ya que la red cristalina formada por los puentes de hidrogeno 

la hacen insoluble en solventes convencionales como el agua, dificultando el acceso al enlace β-

1,4-O-glucosicico, enlace que interesa romper para llevar a cabo su degradación
[5-6]

. 

 

Figura 1. Estructura de la celulosa. 
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Para la transformación de la celulosa en productos de valor añadido es necesario desarrollar 

procesos catalíticos eficientes y sostenibles. Actualmente, se plantean vías biológicas y 

químicas para la conversión de celulosa. Los procesos biológicos se basan en el uso de enzimas 

celulasas que pueden derivarse de penicilinium funiculosum, aspergillus nidulan, aspergillus 

niger, entre otras, especializadas en la rotura del enlace β-1,4-O-glucosidico
[6]

. Estos procesos, 

aunque suelen ser muy selectivos, son muy sensibles a las condiciones de reacción (temperatura 

y pH) y generalmente necesitan tiempos de reacción muy elevados para obtener rendimientos 

aceptables que aumentan los costes del proceso, y que sumado a los actuales costes de las 

enzimas celulasas, hace inviables este tipo de opción para la descomposición de la celulosa
[6]

. 

Por su parte, los procesos químicos necesitan de la combinación de altas temperaturas y/o de 

ácidos comunes como H2SO4, HCl o heteropoliácidos como H4SiW12O40 para romper la 

estructura cristalina y lograr la despolimerización
[7]

. El uso de ácidos requiere de equipos de 

reacción resistentes a la corrosión, y etapas de separación y neutralización post-reacción. 

Además del alto consumo de energía, estos procesos suelen presentar baja selectividad hacia los 

productos deseados, ya que la glucosa en esas condiciones se vuelve altamente reactiva. En este 

sentido, la hidrogenación hidrolítica de celulosa (conversión one-pot) se presenta como una ruta 

alternativa eficiente para estabilizar la molécula de glucosa en productos más estables 

térmicamente, como es el sorbitol (Figura 2)
[8]

. Las dos reacciones que se llevan a cabo en este 

proceso son la hidrólisis del enlace β-1,4-O-glucosídico y la hidrogenación del grupo aldehído 

de los azucares.  

 

Figura 2. Ruta de  conversión one-pot de la celulosa a azúcares alcohólicos  

El sorbitol puede ser utilizado como molécula plataforma para la síntesis de otros compuestos 

químicos tales como sorbitan, glicerol, vitamina C, entre otros
[9]

. También tiene aplicaciones en 

farmacia, cosmética, industria textil y alimentaria, como edulcorante, agente dispersante y 

humectante. Además, su transformación posterior permitiría llegar a la producción de 

biocombustibles de tipo alcanos
[10]

. Químicamente, el sorbitol es un monosacárido derivado de 

la D-glucosa presentando la estructura química que se encuentra en la Figura 2.  
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La mayor parte de la producción de sorbitol a escala industrial se realiza por hidrogenación 

catalítica de D-glucosa, usando catalizadores de níquel raney
[11]

.  

La reacción de conversión one-pot requiere de un componente ácido para llevar a cabo la 

despolimerización de celulosa, y partículas metálicas que catalicen la reacción de 

hidrogenación. Combinando ácido fosfórico (H3PO4) con partículas de Ru soportadas sobre 

nanotubos de carbono (CNT), Deng et al. alcanzaron rendimientos del 69% a sorbitol
[12]

.
 
A 

pesar de los buenos resultados obtenidos, este sistema arrastra los problemas asociados al uso de 

ácidos. La solución más acertada para remediar los problemas asociados al uso de ácidos es la 

utilización de un catalizador heterogéneo ácido para llevar a cabo la hidrólisis de la celulosa. La 

ventaja de usar catalizadores heterogéneos es que las dos reacciones ocurrirán de manera 

consecutiva sin necesidad de realizar ningún paso intermedio de separación o limpieza del 

medio de reacción. Una vez realizado el proceso se filtra el catalizador y ya se obtienen los 

productos deseados. En 2006, Fukuoka y Dhepe informaron de la primera hidrogenación 

hidrolítica de la celulosa utilizando catalizadores sólidos obteniendo un rendimiento a sorbitol 

del 25% utilizando Pt/γ-Al2O3, demostrando la posible aplicación de catalizadores heterogéneos 

a este tipo de reacción
[13]

. Posteriormente, Luo et al. reportaron un rendimiento del 30% de 

sorbitol usando partículas de Ru sobre carbón activo (AC)
[14]

. Más recientemente se han 

estudiado catalizadores basados en Ni soportándolo sobre nanofibras de carbono (CNF) y el Ni 

demostró una estabilidad en su actividad catalítica, haciéndolo atractivo como posible opción 

junto a los metales nobles
[15]

. Las investigaciones más recientes giran en torno a los 

catalizadores heterogéneos basados en materiales de carbono, debido a sus excelentes 

propiedades tales como la estabilidad térmica y mecánica, facilidad de funcionalización, elevada 

área superficial y el hecho de que sean fácilmente separables del medio de reacción mediante 

filtración
[16]

. En concreto, en este Proyecto se han elegido nanofibras de carbono oxidadas 

(CNFox) como materiales de soporte. Además de utilizarlas como soporte de las partículas 

metálicas, la posibilidad de funcionalizar estos materiales con grupos oxigenados superficiales 

ácidos resuelve las dificultades asociadas al uso de ácidos minerales ya citadas. La elección de 

las CNFox resulta en una configuración que proporcionará una oportunidad prometedora para la 

conversión de la celulosa en productos de valor añadido como el sorbitol. 

Como metales elegidos para soportarlos sobre las CNFox, los catalizadores basados en Ni han 

suscitado un gran interés debido a su bajo coste y a su actividad catalítica aceptable con respecto 

a su precio, permitiendo usarlo en cantidades mayores solventando así esa actividad catalítica 

moderada. Pero estos catalizadores basados en Ni presentan ciertas desventajas ya que son 

susceptibles a la desactivación después de su reciclado; alguna de las causas de esta 

desactivación son la lixiviación del Ni al medio de reacción
[17]

, la sinterización del metal 

soportado
[18]

 y el posible envenenamiento de la superficie activa de las partículas metálicas 

atribuido a productos orgánicos de la reacción
[19]

. Estas desventajas han promovido la búsqueda 

de otro tipo de metal como es por ejemplo el Ru, mostrando actividades catalíticas por masa de 

metal entre 20 y 50 veces mayor a la actividad catalítica del Ni; otros metales nobles también 

elegidos habitualmente son el Pd y Pt. Sin embargo el principal inconveniente del uso de 

metales nobles es su alto precio. En este Proyecto se propone una solución de compromiso entre 

los costes de los metales nobles y la baja estabilidad del Ni que consiste en el desarrollo de 

catalizadores bimetálicos. La formación de aleaciones de Ni con bajas cantidades de metales 

nobles modifican las propiedades del catalizador monometálico de Ni, pudiendo resultar una 

mejora en la actividad catalítica, la selectividad hacia el producto deseado y un aumento en la 

estabilidad del catalizador, reduciendo así el precio del catalizador y obteniendo una actividad 
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catalítica equiparable a la de un catalizador formado por un metal noble. La obtención de este 

tipo de catalizadores bimetálicos propone ciertos retos a la hora de obtener mezclas metálicas 

homogéneas: Hoffer et al. determinaron que la adición de Mo y Cr tenía un efecto positivo 

incrementando la actividad y estabilidad catalítica del catalizador de níquel raney en la 

hidrogenación hidrolítica de D-glucosa
[20]

. Bizhanov et al. estudiaron la influencia de metales 

nobles como Pt, Ru, Rh y Pd en catalizadores de níquel raney en la hidrogenación hidrolítica de 

D-glucosa sacando como conclusiones que la mejor opción era la de Ni/Ru, pero en su caso las 

partículas metálicas no estaban depositadas sobre un soporte
[21]

. Romero et al. continuaron la 

investigación de Bizhanov et al. usando un catalizador compuesto por Ni/Ru soportado sobre 

MCM-48, demostrando un buen comportamiento catalítico
[4]

. Nuestro estudio puede entenderse 

como una continuación a los citados anteriormente, extendiéndolo a nuevas combinaciones 

bimetálicas y con unas concentraciones de metal menores, así como el uso de un soporte 

catalítico basado en un material de carbono nanoestructurado como las CNF. 

Para evitar que los resultados se vean influenciados por la etapa de hidrólisis, se decidió trabajar 

con celobiosa en lugar de celulosa. La celobiosa es la unidad fundamental de la celulosa y 

consiste en dos monómeros de glucosa unidos por un enlace β-1,4-O-glucosidico (Figura 3)
 [17]

. 

El estudio de la reacción a través de un compuesto soluble como es la celobiosa simplifica al 

máximo la etapa de hidrólisis y nos permite centrar los esfuerzos del trabajo en la reacción de 

hidrogenación, etapa en la que actúan los catalizadores a estudiar.  

 

Figura 3. Estructura de la celobiosa 

Para ello, se prepararon tres catalizadores bimetálicos: (3%Ni-0,5%Ru, 3%Ni-0,5%Pd, 3%Ni-

0,5%Pt) todos ellos depositados sobre CNFox, y su actividad se comparó con sus catalizadores 

monometálicos por separado (3%Ni, 0,5%Ru, 0,5%Pd y 0,5%Pt).  
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2. Objetivos y planteamiento 

Objetivos generales 

El principal objetivo de este Proyecto es el estudio de una serie de catalizadores heterogéneos 

basados en nanopartículas mono- y bimetálicas soportadas sobre CNF y llegar a la elección de 

cuáles de ellos son aptos para la hidrogenación de celulosa en azúcares alcohólicos 

(mayoritariamente sorbitol). Para ello los objetivos generales serán la síntesis de catalizadores 

bimetálicos activos y estables y realizar una comparación físico-química de los catalizadores 

obtenidos mediante diferentes técnicas de caracterización (reducción a temperatura programada 

(TPR), espectroscopia fotoelectronica de rayos X (XPS), difracción de rayos X (XRD), plasma 

de acoplamiento inductivo (ICP) y microscopia electrónica de transmisión (TEM)) realizando 

una elección de los catalizadores aptos para esta aplicación. 

Objetivos formativos 

Además de los objetivos generales de este TFG, también se tiene como objetivo la adquisición 

de competencias básicas y la formación inherente de un TFG de carácter experimental: 

- Conocer los recursos disponibles para obtener y analizar bibliografía previa.  

- Conocer diferentes métodos de preparación de catalizadores heterogéneos y de síntesis 

de soportes basados en materiales nanoestructurados de base carbonosa. 

- Familiarizarse con técnicas de caracterización de catalizadores heterogéneos, entre ellas 

se incluyen técnicas como TPR, TEM, ICP, XRD y XPS. 

- Manejo de equipos a  altas presiones y temperaturas  y técnicas de análisis de productos 

(cromatografía liquida de alta eficacia(HPLC) y cromatografía de gases (GC)). 

- Estudio de rutas químicas y mecanismos de reacción de los materiales celulósicos. 

- Test de actividad catalítica y relación estructura-actividad de los materiales preparados 

- Análisis  crítico y exposición de los resultados. 
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3. Resultados y discusión 

3.1. Caracterización de los catalizadores 

Todos los catalizadores fueron caracterizados antes de su uso. La reducibilidad de los 

catalizadores se estudió individualmente por reducción a temperatura programada (TPR-H2, 

Figura 4). Cada catalizador monometálico requiere de una temperatura de reducción diferente, 

en función de las propiedades del metal que lo compone. Para los bimetálicos, la temperatura es 

la misma para todos debido a la presencia del Ni en la aleación, que posee la mayor temperatura 

de reducción. 

En la serie de catalizadores monometálicos se aprecia un mayor consumo de H2 para el 

catalizador de Ni/CNFox  (Figura 4a), puesto que el contenido metálico es mayor que en el resto. 

En este perfil se observan tres regiones de reducción diferentes, la primera, situada en torno a 

los 255ºC y otros dos picos a 300ºC y 450ºC, que se atribuyen a la reducción de las especies de 

NiO a estado metálico con distinto grado de interacción con el soporte. Por lo tanto, la 

temperatura de reducción se determinó en 450ºC. Los perfiles de TPR-H2 del resto de 

monometálicos presentan un solo pico de reducción a temperaturas inferiores a 250ºC, eligiendo 

esta temperatura para los catalizadores Ru/CNFox y Pd/CNFox y una temperatura de 200ºC para 

la reducción del catalizador Pt/CNFox. En todos los catalizadores se observa un consumo de H2 

por encima de los 450ºC, debido a la gasificación del soporte:              .  
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Figura 4. Perfiles del TPR-H2 para los catalizadores mono- (a) y bimetálicos (b) soportados 
sobre CNFox, tras sustraer la señal correspondiente a la gasificación del soporte. 
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Este hecho se comprueba con el TPR-H2 de la CNFox, viéndose un incremento del consumo de 

H2 con la temperatura. 

En la Figura 4b se observa la serie de los bimetálicos, dónde las regiones de reducción de los 

metales que componen el catalizador se aproximan entre sí, en comparación a los perfiles de los 

monometálicos (Figura 5). Más específicamente, la reducción comienza con la reducción del 

metal noble, y el Ni disminuye su temperatura de reducción en presencia de éste (efecto 

promotor); esto indica que se ha formado una aleación entre el Ni y el metal que compone cada 

catalizador. La razón de la mejora de reducción del Ni en la aleación viene dada por la 

exposición a un entorno más rico en H2: quimisorción de H2 sobre la superficie de los metales 

nobles y posterior transferencia de especies de H activas a las inmediaciones del Ni. Esto se 

refleja con un mayor consumo de H2 para los bimetálicos, mayor del que se esperaría para la 

reducción del Ni y el metal noble. Por otro lado el pico característico del Ni que aparece a 300 

ºC nos sirve para analizar el grado de miscibilidad de nuestra aleación. Para NiPt/CNFox, vemos 

que este pico ha desaparecido, prediciendo la formación de una aleación homogénea. El caso 

contrario lo podemos ver en el NiPd/CNFox, ya que el pico a 300 ºC mantiene su identidad, 

esperando en este caso una segregación de las fases de Ni y Pd, sin haber formado una aleación 

completa. La situación intermedia la obtenemos para el NiRu/CNFox, donde hay presencia del 

pico a 300 ºC pero con una disminución notable con respecto al original. No obstante, aunque la 

reducibilidad del Ni se encuentra favorecida con la formación de la aleación, la temperatura de 

reducción escogida para los bimetálicos es de 450ºC, para cubrir la reducción de las especies 

metálicas de Ni con una fuerte interacción con el soporte. 
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Figura 5. Perfiles de los TPR-H2 comparando los catalizadores bimetálicos con respecto a 

sus compuestos puros. 

La carga metálica real de los catalizadores se determinó por análisis por ICP (Tabla 1). Los 

resultados muestran un mayor porcentaje en masa de metal que la cantidad teórica calculada 

(3% para Ni y 0,5% para los metales nobles) excepto para el Ru. Esto podría explicarse a partir 

de la pérdida de material del soporte por gasificación durante el proceso de reducción. Este 

exceso de carga en los catalizadores son asumibles puesto que ocurre en todos ellos, y tampoco 

se observan grandes diferencias entre las desviaciones observadas para un mismo metal entre 

los catalizadores mono y bimetálicos que impidan una comparación justa. En el caso del Ru, 

este parece ser más difícil de fijar sobre el soporte, ya que la cantidad metálica es menor a lo 

esperado teóricamente. 

Tabla 1.  Contenido metálico en los catalizadores determinado por ICP 

Catalizador % Ni % metal noble 

3%Ni/CNFox 3,40 --- 

0,5Ru%/CNFox --- 0,36 

0,5Pt%/CNFox --- 0,70 

0,5Pd%/CNFox --- 0,60 

3%Ni-0,5%Ru/CNFox 3,70 0,30 

3%Ni-0,5%Pt/CNFox 3,50 0,69 

3%Ni-0,5%Pd/CNFox 3,60 0,50 

 

Así mismo, se puede saber si se ha formado una aleación por medio del estudio de los 

catalizadores por TEM, donde realizando el análisis por EDS de partículas metálicas 

individuales, se puede conocer su composición (Anexo). 

Los análisis EDS para los catalizadores bimetálicos muestran una composición homogénea en 

las aleaciones formadas por NiPt/CNFox y NiRu/CNFox: partículas metálicas con una 

composición mayoritaria en Ni y minoritaria en metal noble. En contra, el catalizador de NiPd, 

muestra cantidades de Ni y Pd desiguales entre diferentes partículas:  algunas partículas, las más 

grandes, poseen cantidades equiparables de los dos metales, mientras que las más pequeñas se 

encuentran formadas mayoritariamente por Ni. Esto nos confirma que la aleación formada no es 

homogénea, como ya se había predicho por TPR.  

Por otro lado, el análisis por TEM nos aporta datos sobre el tamaño y la dispersión de las 

partículas metálicas sobre el soporte (Figura 6.). 
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Figura 6. Imágenes HRTEM y distribución de los tamaños de partícula de los 

catalizadores a) Ni/CNFox, b) Ru/CNFox, c) Pd/CNFox, d) Pt/CNFox, e) NiRu/CNFox, f) 

NiPd/CNFox, g) NiPt/CNFox 

Se puede observar una buena dispersión de las partículas metálicas sobre la CNFox en la mayoría 

de los catalizadores, excepto para el catalizador mono- y bimetálico de Pd. El Ni monometálico 

tiende a formar partículas medianamente grandes (11.38 ±7.17 nm), promovidas por su 

naturaleza química que le confiere baja capacidad de dispersión y la necesidad de reducción a 

alta temperatura. Por otra parte, los metales nobles muestran tamaños de partículas más 

pequeños (1.25 ±0.36 nm para Ru/CNFox, 2.49 ±1.07 nm para el Pd/CNFox, y 1.50 ±0.64 nm 

para el Pt/CNFox ), teniendo en cuenta que presentan una mejor capacidad de dispersión y que se 

someten a menores temperaturas en la reducción. No obstante, el Pd presenta mayores tamaños 

de partícula y una peor dispersión en el soporte, en comparación con el resto de los metales 

nobles. El tamaño del Ni se ve reducido con la formación de la aleación, (2.10 ±1.22 nm para el 

NiRu/CNFox y 3.28 ±2.14 nm  para el NiPt/CNFox), aunque este efecto es menos pronunciado 

para la composición NiPd/CNFox (8.73 ±7.05 nm).  

a) 

b) 

c) 

d) 

e) 

f) 

g) 
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Con la disminución del tamaño de partícula, se prevé un aumento en la actividad catalítica del 

Ni, debido a que el área superficial activa es mayor y por tanto la superficie catalítica aumenta. 

Otra forma de saber cuál es el tamaño de las partículas metálicas es realizar un análisis por 

XRD, en nuestro caso concreto no se pudo determinar el tamaño por XRD debido a las bajas 

cargas metálicas y los pequeños tamaños cristalinos (Anexo).  

La química superficial del catalizador se estudió por XPS (Anexo). Se puede confirmar que en 

la superficie de los catalizadores se encuentran las partículas metálicas correspondientes a cada 

catalizador según la energía de enlace propia de cada metal. La composición superficial 

resultante para cada catalizador se recoge en la Tabla 2. Entre un 4,32% y un 6,58% de la 

superficie se encuentra cubierta por grupos oxigenados introducidos durante el tratamiento de 

oxidación del soporte HNO3. Aparentemente, aquellos catalizadores reducidos a menor 

temperatura (monometálicos de metal noble) presentan un contenido ligeramente superior en 

oxígeno (posible  pérdida de los grupos más inestables a alta temperatura), si bien esta tendencia 

no se cumple con el catalizador NiRu/CNFox. La composición superficial también proporciona 

información sobre la dispersión de las partículas sobre el soporte y la ordenación de los átomos 

metálicos dentro de la aleación. Así, un menor ratio Ni/C en los catalizadores bimetálicos 

(0,0017% para el NiPd/CNFox y 0,0019% para el NiPt/CNFox) frente al valor de 0,038% para 

catalizador de Ni monometálico (Ni/CNFox) refleja una mejora en la dispersión del Ni con la 

formación de la aleación. Este efecto no se refleja para el catalizador NiRu/CNFox, 

probablemente por la diferencia de concentración de C. El comportamiento opuesto se 

encuentra para los metales nobles, que aumentan su ratio M/C en presencia del Ni. Estos 

resultados concuerdan con las observaciones TEM. Por otro lado, todos los catalizadores 

muestran ratios superficiales M/Ni superiores al valor teórico del bulk (0.166), indicando que 

los metales nobles se encuentran dispuestos en la capa más superficial de las nanopartículas 

metálicas. Finalmente, una proporción de Cl prácticamente nula (1,66% máximo) indica el 

consumo completo de la sal precursora durante el tratamiento térmico/reducción para su 

transformación en metal. 

Tabla 2. Composición superficial (% atómico) de los catalizadores determinado por XPS. 

 

O (1s) C (1s) Ni (2p) Cl (2p) M* ratio M/C ratio Ni/C ratio M/Ni 

Ni/CNFox 4,32 95,32 0,36 --- --- 0,0000 0,00380 --- 

Pd/CNFox 6,55 93,05 0 0,00 0,40 0,0043 0 0 

Pt/CNFox 5,70 93,49 0 0,09 0,18 0,0019 0 0 

Ru/CNFox 5,98 93,24 0 0,03 0,75 0,0080 0 0 

NiPd/CNFox 4,57 94,85 0,16 0 0,42 0,0044 0,00171 2,557 

NiPt/CNFox 4,44 95,19 0,18 0 0,20 0,0021 0,00186 1,133 

NiRu/CNFox 6,58 90,78 0,98 1,66 11,90 0,1310 0,01082 12,115 

* M= Pd 3d, Pt 4f, Ru 3p 
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3.2. Actividad catalítica 

3.2.1. Actividad hidrolítica  

Como ya se ha explicado anteriormente, la reacción de conversión one-pot consta de una etapa 

de hidrólisis y una etapa de hidrogenación. Cabe esperar que la reacción de hidrolisis se vea 

favorecida por las CNFox, por la presencia de grupos oxigenados ácidos introducidos durante el 

tratamiento de oxidación con HNO3, así como los protones generados por la disociación del 

agua en las condiciones de reacción (180ºC). Esta influencia se evalúo con un ensayo con el 

soporte (CNFox) (Figura 7). Los resultados muestran como productos de reacción, glucosa en su 

mayoría (26,70%) y una pequeña fracción de fructosa (5,56%), xilitol (1,47%) e hidroximetil 

furfural (HMF, 5,75%). Estos productos minoritarios provienen de la degradación de la glucosa, 

isomerización a fructosa y posterior hidrogenólisis a xilitol y deshidratación ácida a HMF, 

respectivamente
[23]

. El análisis de productos de la fase gas medidos mediante micro-GC 

representan menos del 1% de los productos de reacción. El resto de compuestos hasta llegar al 

84,24% de conversión final son productos no identificados asociados a la degradación de la 

celobiosa. Había una posibilidad de que el análisis de la celobiosa pudiera estar falseado debido 

a la adsorción de ésta sobre el soporte, como una etapa previa a cualquier reacción catalítica 

heterogénea. Para comprobar si se estaba analizando una cantidad menor de celobiosa en la fase 

liquida debida a este efecto, se realizó un lavado de las CNFox al finalizar el ensayo de 

hidrolisis. Esta muestra se concentró y se analizó por GC. Los resultados concluyeron que no 

había celobiosa adsorbida en el soporte y que los datos de conversión obtenidos eran los reales. 

Se puede concluir entonces que el 39.5% de los productos corresponde a productos de hidrólisis 

(glucosa y su posterior degradación), mientras que el resto de productos no cuantificables se 

asocia a la degradación de celobiosa a través del grupo aldehído (previo a su ruptura) hacia 

compuestos de tipo ácido, los cuales redujeron el pH desde 6,09 a 3,92 con el trascurso de la 

reacción. También se puede concluir que el soporte no tiene influencia en la reacción de 

hidrogenación (ausencia de productos hidrogenados).  
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Figura 7. Test de actividad hidrolítica de las CNFox 
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3.2.2 Test de hidrogenación 

Una vez establecido cual es la influencia del soporte, sin partículas metálicas, en el proceso de 

descomposición de la celobiosa, se estudió la actividad catalítica de los catalizadores; en primer 

lugar, se presentarán los datos obtenidos con los catalizadores monometálicos para saber cuál es 

su capacidad hidrogenante en solitario y posteriormente se mostrará la actividad catalítica de los 

catalizadores bimetálicos. La comparación de actividad de todos los catalizadores se realizó a 

una temperatura de reacción de 180ºC y una presión de hidrogeno de 40 bares. 

3.2.2.1 Catalizadores monometálicos 

Los resultados de los test de hidrogenación se muestran en la Figura 8. Como se puede observar, 

se obtienen unas altas conversiones por parte de todos los catalizadores, pero la distribución de 

los productos de reacción es muy diferente en función de cada metal. 
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Figura 8. Test de hidrogenación de los catalizadores monometálicos A) Ni/CNFox B) 

Pd/CNFox C) Pt/CNFox D) Ru/CNFox 

Para el catalizador de Ni/CNFox se obtuvo una conversión del 95,10% con una selectividad 

hacia el sorbitol bastante baja, un 15,02%, lo que indica que el Ni posee capacidad hidrogenante 

pero no la suficiente selectividad para transformar la totalidad de glucosa, la cual se acumula en 

el medio de reacción (14,01%) junto a sus productos de degradación (1,21%). Otra parte de la 

celobiosa es degradada en las condiciones de reacción (46,97%) mientras que un 17,89% es 

estabilizado a través de la formación de celobitol. Este compuesto es debido a la hidrogenación 
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del enlace –C5-O-C1- de una de las glucosas de la celobiosa. La presencia de este compuesto 

indica que al menos la mitad del celobitol formado terminará en la forma de sorbitol una vez 

hidrolizado. Se calculó el lixiviado del metal en la fase acuosa determinándolo por análisis ICP 

obteniendo una pérdida de 8,21% del Ni. 

El catalizador de Pd/CNFox permitió obtener una conversión de celobiosa del 91,61%, la cual es 

transformada mayoritariamente a productos no identificados (64,36%), probablemente 

provenientes de la degradación de la glucosa a productos de menor peso molecular en lugar de 

la ruta de hidrogenación objetivo (ausencia de sorbitol y celobitol). Op de Beeck et al. 

mostraron en su investigación posibles rutas alternativas que ha podido favorecer este 

catalizador y los posibles productos de reacción que no han sido identificados
[23]

. El análisis 

mediante micro-GC de productos gaseosos de bajo peso molecular (CH4, CO2, etc.) se encuentra 

por debajo del 1% en peso. En este caso, el cambio de pH en el medio de reacción no fue tan 

acusado como en el caso de la CNFox, (de 5,73 hasta 4,59). 

El catalizador de Pt/CNFox resultó en una conversión del 90,99% con un 26% de productos de 

hidrogenación (13,30% de sorbitol y 12,69% de celobitol), lo que nos indica que el Pt sí que 

está realizando la hidrogenación de la glucosa hacia sorbitol pero probablemente la carga 

metálica del catalizador no sea suficiente para la cantidad de sustrato. 

Por último, el catalizador de Ru nos muestra los mejores resultados, aun teniendo una carga 

menor a la teórica, obteniendo una conversión de prácticamente el 100% en la primera media 

hora del test (74,75% a celobitol y 18,28% a sorbitol). La alta capacidad de hidrogenación del 

Ru ya ha sido reconocida anteriormente por estudios anteriores
[24]

. Al final del ensayo, se 

obtuvo un 45,94% de conversión hacia sorbitol. Un punto a destacar de este catalizador es que 

obteniendo una conversión tan alta al comienzo de la reacción y un porcentaje al final de la 

reacción de celobitol de 46,51% quiere decir que la hidrólisis está limitando la velocidad de la 

reacción. Con el aumento en la velocidad de la hidrólisis o tiempos de reacción más largos se 

esperaría mejorar el rendimiento a sorbitol. 

3.2.2.2 Catalizadores bimetálicos  

Los resultados obtenidos con los catalizadores bimetálicos se representan en la Figura 9. A 

simple vista se puede observar una actividad catalítica mejorada del Ni con la introducción de 

metales nobles en su estructura, con conversiones del 100% y mayor selectividad hacia 

productos de hidrogenación (celobitol y sorbitol).  
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Figura 9. Test de hidrogenación de los catalizadores bimetálicos, A)NiPd/CNFox 

B)NiRu/CNFox C)NiPt/CNFox  

El NiPd/CNFox muestra una menor capacidad de hidrogenación que el resto de bimetálicos, 

(28,51% de sorbitol, 32,68% celobitol y 6,98%de glucosa sin hidrogenar). Esto es así puesto 

que como se ha ido comentando anteriormente, este catalizador bimetálico no está en forma de 

aleación homogénea.  

El catalizador de NiRu/CNFox mejora el comportamiento del catalizador de Ni monometálico 

(37.47% frente a 15,02% de sorbitol), aunque la alta capacidad de hidrogenación del Ru 

(45.94% de sorbitol) por sí sólo no justificaría la adicción de un 3% de Ni adicional.  

Por último, coincidiendo con el alto grado de aleación (dispersión y miscibilidad), el catalizador 

de NiPt/CNFox proporciona los mejores resultados de las tres composiciones bimetálicas, 

mostrando un efecto sinérgico destacable con respecto a sus componentes puros por separado, 

dándonos unos resultados de conversión del 100%, con un 91,87% hacia productos de 

hidrogenación (43,90% a sorbitol y 47,95% de celobitol). Este catalizador se eligió para 

estudios posteriores en mayor profundidad. 

Las muestras liquidas de los test fueron sometidas a análisis ICP para averiguar la perdida 

metálica después de cada reacción. Los resultados indican en todos los casos perdida de Ni 

(4,43% para NiPd/ CNFox, 4,03% para NiRu/CNFox y 3,53% para NiPt/CNFox) y perdidas de 

metal noble despreciables. 

3.2.2.3 Mecanismo de reacción 

En base a los resultados anteriores, es posible esbozar el mecanismo de la reacción. En los 

análisis de los test de hidrogenación se obtiene celobitol como uno de los productos de reacción 

mayoritarios, resultado de la hidrogenación del enlace –C5-O-C1- de una de las glucosas que 

forman la celobiosa. Este tipo de compuesto no se puede explicar teniendo en cuenta el 

mecanismo descrito en la introducción, es decir, que primero ocurra la hidrolisis y en una 

segunda etapa se produzca la hidrogenación de la glucosa, sino que invierte el orden de las 

reacciones, y la etapa de hidrogenación se adelanta a la hidrólisis, tal y como otros autores han 

descrito
[22]

. La posterior hidrólisis del celobitol desprenderá una unidad de glucosa y otra de 

sorbitol. Este nuevo mecanismo que nos ayuda a explicar el intermedio encontrado plantea dos 

secuencias de reacción posibles (Figura 10), en función de que la hidrólisis ocurra en primer 

lugar o viceversa. La preferencia por que ocurra una reacción en primer lugar depende de la 
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química del catalizador y de las condiciones de reacción. La etapa de hidrolisis vendrá 

influenciada por factores como la temperatura de la reacción, que favorece la generación de 

protones en el agua (disolvente de la reacción), la acidez de las CNFox impartida por los grupos 

funcionales oxigenados y el spill-over generado por ciertos metales
[13,25]

. El efecto spill-over 

consiste en la adsorción del H2 sobre la superficie metálica y posterior rotura del enlace H-H. Si 

estos tres factores cobran relevancia desplazarían la reacción hacia el camino que dicta la 

hidrolisis en primer lugar, sin embargo si el catalizador muestra gran capacidad de 

hidrogenación, como es en este trabajo, desplazará la reacción hacia la hidrogenación en primer 

lugar. 

 

Figura 10. Mecanismo de reacción del proceso de conversión de celobiosa one-pot. 

Con el fin de mejorar la velocidad de hidrolisis, se efectuaron dos ensayos a mayor temperatura  

(190ºC y a 200ºC) con dos objetivos diferentes: a) evaluar la posibilidad de que la velocidad de 

hidrolisis supere a la de hidrogenación, y b) obtener mayores rendimientos de sorbitol a partir 

de celobitol para un mismo tiempo de reacción. Efectivamente, el aumento de temperatura 

mejoró la productividad a sorbitol, pasando de un 43,90% de sorbitol a los 180ºC a un 60,92% a 

los 190ºC y un 65,80% a los 200ºC después de 3h (Figura 11). En este último caso, la 

temperatura es demasiado alta y el sorbitol se comienza a degradar a partir de la 1,5h, momento 

en el que alcanza un máximo del 77,58%. 
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Figura 11. Test de hidrogenación para NiPt/CNFox, A) 190ºC y B) 200ºC 

Sin embargo, la aparición de celobitol a tiempos cortos mantiene el orden 

hidrogenación→hidrólisis como la ruta de reacción predominante, debido a la alta capacidad 

hidrogenante de nuestros catalizadores y la acidez media del soporte, haciendo que la velocidad 

de la reacción de hidrogenación supere a la velocidad de la hidrólisis.  

3.2.3 Test de reciclabilidad 

Por último, se realizaron ensayos de reciclabilidad del catalizador bimetálico con mejor 

actividad catalítica (NiPt/CNFox), para saber si su aplicación es válida para varios usos seguidos. 

Para ello se realizaron dos test sucesivos en las mejores condiciones (190ºC, dónde no hay 

degradación del sorbitol). Como la cantidad de catalizador a usar fue menor, por perdidas en las 

operaciones de carga y descarga del reactor, las cantidades de celobiosa y de disolvente se 

reajustaron conforme a la cantidad de catalizador recuperada, con la finalidad de respetar en 

todos los test la misma relación entre sustrato y catalizador. 

En la Figura 12 se muestran dichos resultados, haciéndose evidente la desactivación del 

catalizador a lo largo de tres ciclos sucesivos (caída del rendimiento de sorbitol del 60,92% al 

9,53%). La posibilidad de desactivación del catalizador por oxidación de la fase metálica se 

descarta tras una etapa de reactivación con H2 a 450ºC durante 2h. Los resultados continúan 

reflejando que el catalizador ha quedado inactivo.  

 

 



17 
 

1st 2nd 3rd red 450
0

20

40

60

80

100

C
o

n
v
e

rs
iَ

n
 (

%
)

Tiempo (h)

 Otros

 HMF

 Eritriol

 Xilitol

 Sorbitol

 Glucosa

 Celobitol

 

Figura 12. Test de reciclabilidad para el catalizador bimetálico NiPt (1
er

, 2º, 3
er

 uso y red 

450ºC con H2) 

El lixiviado del metal a fase acuosa se determinó por un análisis ICP del medio de reacción al 

final de cada test. Los resultados de los análisis nos dan una pequeña perdida metálica de Ni en 

la muestra del catalizador (6.88% después del primer uso, 2,35% y 2,41% tras el 2º y 3er ciclo) 

y despreciable de metal noble, siendo esta pérdida un posible factor de desactivación, pero no es 

suficiente cantidad de metal para explicar la caída de actividad del catalizador. El factor para 

esta desactivación es el sinterizado de las partículas metálicas, tal y como queda demostrado 

mediante XRD: en la comparación de la Figura 13 se puede observar que el tamaño de las 

partículas aumenta considerablemente, observando picos de mayor tamaño, reduciendo su 

superficie activa y llevando al catalizador a un estado de mínima actividad catalítica. 
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Figura 13. Perfiles del XRD para el catalizador Ni-Pt/CNFox antes (inferior) y después de 

la reacción (superior) 
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4. Parte Experimental 

Consideraciones generales. Tanto la preparación de los catalizadores mono- y bimetálicos, 

como las reacciones de conversión se llevaron a cabo con el uso de agua mili-Q 

(conductividad=14.8 µS) dispensada por un equipo de filtración Millipore. Todos los gases 

usados (en los test de hidrogenación, preparación de  catalizadores y análisis de productos)  son  

de alto grado de pureza: Nitrógeno premiere X50S (99,9992%, Air Liquid), Hidrogeno premiere 

plus X50S (99,9992%, Air Liquid), He premiere X50S (99,9992%, Air Liquid), Aire sintético 

premiere X50S (20.9% O2 ±1%, 99.995%, Air Liquid), Argón premier X50S (99,9992%, Air 

Liquid). Para la realización de los ensayos de actividad catalítica se usó D-(+)-Celobiosa (Sigma 

Aldrich) como sustrato, con un contenido en humedad del 3% aproximadamente.  

4.1. Preparación de catalizadores.  

Los catalizadores heterogéneos están constituidos por nanopartículas metálicas soportadas sobre 

nanofibras de carbono oxidadas de tipo fishbone (CNFox). En total se prepararon un conjunto de 

tres catalizadores bimetálicos, con una carga teórica nominal del 3% Ni y 0.5% metal noble (Ru, 

Pt, Pd), y cuya actividad se compara con sus respectivos catalizadores monometálicos. Como 

precursores de Ru, Pt, Pd y Ni se utilizaron, cloruro de rutenio (III) (RuCl3·H2O, Reagent Plus
®
 

(Sigma Aldrich), hexacloro platinato (IV) de hidrogeno hidratado (H2PtCl6·H2O, 8wt% en H2O, 

Sigma Aldrich), cloruro de paladio (II), (PdCl2, 99´999%, Acros Organics), y nitrato de níquel 

(II) hexahidratado   (Ni(NO3)2·6H2O, 98% (Alfa Aesar). 

La preparación de los catalizadores consta de dos etapas: síntesis del soporte del catalizador y 

formación de nanoparticulas metálicas:  

4.1.1. Síntesis del soporte del catalizador.  

La síntesis de las CNF se llevó a cabo por descomposición catalítica de biogás (CH4-CO2, 

50/50, vol%, 150 L/h) sobre un catalizador de Ni:Co:Al2O3, (33,5:33,5:33), (30 L/(gcat.h) en un 

reactor de lecho rotatorio a 650ºC durante 4h
[25]

. Las nanofibras resultantes se funcionalizaron 

en dos etapas en serie: la primera de ellos es el tratamiento con HCl (37%, 60ºC, 4h bajo 

ultrasonidos) eliminando la mayoría del material catalítico de la formación de las nanofibras;  la  

segunda etapa consiste en la oxidación con HNO3 (65%, en reflujo a 130ºC, 1h), para la 

creación de grupos funcionales, que facilitan  el anclaje y la dispersión de la fase metálica
[26]

. 

4.1.2. Formación de nanopartículas metálicas  

La formación de nanopartículas metálicas se realiza por el método de impregnación vía seca de 

los precursores metálicos y posterior reducción con H2
[27]

. Este método consiste en la 

preparación de una disolución acuosa de la sal precursora. La concentración del precursor en la 

disolución se calcula para ajustar a una carga teórica del metal del 3% en masa de Ni y de 0,5% 

en masa del resto de metales en un volumen de agua igual al volumen de mojabilidad de la 

CNFox, definido como el volumen necesario para rellenar todos los poros de las CNFox y 

determinado experimentalmente con un valor de 2,7 ml H2O/g CNFox. En el caso de los 

catalizadores bimetálicos se realiza la coimpregnación de ambos precursores metálicos, con la 

finalidad de que al acabar el proceso se obtenga una aleación formada por los dos metales. Una 

vez impregnado todo el soporte se lleva a ultrasonidos (10 min, Tªamb) y posteriormente a 

evaporación en estufa para eliminar todo el agua de la disolución. Para realizar la 

descomposición térmica de los precursores y reducción de los catalizadores se hace uso de un 
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reactor tubular de cuarzo de lecho fijo (75x1.5cm), con unas condiciones de descomposición del 

precursor de 75ml/min N2, con una rampa de calentamiento de 10ºC/min hasta la temperatura 

deseada y sostenida durante 1h. La temperatura de descomposición coincide con la de 

reducción, y se estableció en base a los perfiles del TPR-H2 para cada metal. Después del 

tratamiento de descomposición, comienza el tratamiento térmico de reducción, (100 ml/min H2, 

2h), el tiempo suficiente para la reducción del catalizador. Por último se realiza el enfriamiento 

a Tªamb con N2 (75 ml/min) y se pasiva  (20 ml/min de una mezcla de gases O2/N2, 1/99, vol%, 

una noche, Tª amb.) de esta manera se controla la oxidación que pudiera darse con el oxígeno 

atmosférico. 

4.2. Caracterización de los catalizadores. 

La temperatura de reducción específica para cada uno de los catalizadores se consigue mediante 

el estudio por Reducción a Temperatura Programada (TPR-H2); estos análisis se han realizado 

en un equipo AutoChem II 2920 (Micromeritis). Para ello,  una muestra de catalizador fresco 

(20 mg), estabilizada a 110ºC con un gas inerte, es sometida  a una rampa de calentamiento de 

10ºC/min desde 45ºC hasta los 600ºC bajo una corriente de H2 (H2/Ar, 10/90 vol%, 50cm
3
/min) 

mientras un Detector de Conductividad Térmica (TCD),  mide el consumo de hidrogeno a lo 

largo de todo el ensayo. 

La presencia y el tamaño de fases cristalinas en los catalizadores se analizaron mediante 

difracción de rayos X (XRD). El patrón de difracción se adquiere con un difractometro Bruker 

(Modelo D8 Advance, Series 2) con un modo de escaneo por etapas (rango de ángulo 2Ɵ=5º-

80º, tamaño de paso =0.05º, tiempo de conteo=4s/paso), usando como fuente de rayos X un 

ánodo de cobre (λ=1.54 Å) y un monocromador secundario de grafito, operado a 40.0 kV y 30.0 

mA. Para el procesamiento de los datos y la asignación de las fases cristalinas, se utilizó el 

software adjunto Difract Plus Eva 8.0 (Bruker) y la base de datos ICCD.  

El análisis de la superficie del catalizador se llevó a cabo por espectroscopia fotoelectronica de 

rayos X (XPS), mediante un sistema Omicron ESCAPlus, equipado con un analizador de 

energía de electrones hemisférico, con un ánodo no monocromatizado de Mg (λ=1253.6 eV) 

como fuente de radiación, operado a 15 mA y 15 kV, a vacío (˂5·10
-9

 torr). El escaneo (1 

barrido/200 ms) fue adquirido entre 1000 y 0 eV, con un analizador de energía de paso de 50 eV 

(20 eV para los análisis de alta resolución). Los valores de las energías de enlace se 

referenciaron al pico del grafito, C 1s (284.5 eV). El espectro fue procesado e interpretado 

usando el software XPS CASA. 

Para la obtención de información morfológica y el tamaño de las nanoparticulas metálicas se 

utilizó la microscopia electrónica de transmisión (TEM). Las imágenes HRTEM son obtenidas 

por un microscopio Tecnai F30 (FEI company) operado en modos TEM y STEM, con una 

aceleración del voltaje de 300 kV. El instrumento está equipado con un emisor de campo y 

lentes SuperTwin
®
 que permiten una resolución máxima de 1.5 Å. Un espectrómetro acoplado 

de dispersión de energía de rayos X (EDS microanalysis, Oxford Instruments Inca) aporta la 

información sobre la composición puntual del catalizador. Previo a los análisis, las muestras se 

preparan por dispersión en etanol mediante ultrasonidos. Después, una gota de la disolución 

resultante es depositada y evaporada sobre una rejilla de cobre cubierta por una película de 

carbono amorfo. Se usó el software ImageJ para procesar las imágenes obtenidas. Se midieron 

al menos 100 nanoparticulas metálicas para estimar el tamaño medio de estas. 
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La determinación de la carga metálica en cada catalizador se realiza por espectroscopia de 

emisión atómica de plasma acoplado por inducción (ICP-AES) usando un espectrómetro 

Spectroblue (Ametek). La digestión de la muestra se realiza mediante fusión con peróxido de 

sodio (Na2O2). 

4.3. Test de actividad catalítica.  

El reactor donde se realizaron los test de actividad catalítica consiste en un autoclave de 300 ml 

(Parr Instruments Co.), equipado con un controlador de temperatura y agitación (modelo 4836) 

Foto 1. La metodología a seguir para los test de actividad catalítica es la siguiente: sobre un 

liner de teflón, se prepara una disolución de celobiosa (375mg) y el catalizador (187,5mg), 

relación en masa 2:1, en 150 ml de agua mili-Q. El reactor se cierra, se purga con N2 e H2 y 

presuriza con H2 hasta 40 bar (Tª amb). La reacción se lleva a cabo a 180ºC durante 3 h, 

tomando muestras cada 30 min, (tras cada muestreo se repondrá la posible pérdida de H2). 

Transcurrido el tiempo de reacción, el catalizador se recupera por filtración, y los productos 

solubles en agua son derivatizados y analizados por cromatografía de gases (GC) y HPLC. La 

representatividad del muestreo se verifica por comparación de la muestra tomada a las 3h y la 

final total. También se toma muestra de los gases a la salida y se mide el pH de todas las 

muestras, cómo un indicador de la posible formación de productos ácidos). 

 

Foto 1. Reactor autoclave. 1. Salida de gases. 2. Manta calefactora. 3. Salida de líquidos. 4. 

Entrada de gases. 5. Controlador. 6. Termopar. 7. Agitador. 

El estudio se complementa con dos ensayos adicionales, utilizando el catalizador con mejor 

comportamiento catalítico: a) test de estabilidad, dónde el catalizador recuperado se somete a 

dos usos sucesivos y se evalúa su reciclabilidad. Ante una posible desactivación por oxidación, 

también se incluyó la posibilidad de su activación (reducción con H2 a 450ºC, 2h). En estos 

casos, la cantidad de celobiosa y agua se ajusta en función de la cantidad de catalizador 

recuperado, manteniendo así, la relación entre el sustrato y el catalizador y la concentración de 

la disolución, b) Efecto de las condiciones de proceso (temperatura). El efecto de la temperatura 

sobre el mecanismo de reacción se realiza con dos ensayos adicionales a 190ºC y 200ºC. 
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4.4. Determinación de los productos de reacción.  

Los productos de reacción requieren una derivatización previa como requisito necesario para el 

análisis de estos por cromatografía de gases
[28]

.
 
Debido a la alta polaridad de los productos es 

necesario la derivatización de estos, confiriéndoles volatilidad y una mayor estabilidad al 

sustituir los numerosos átomos de hidrogeno móviles de los OH por grupos menos polares (en 

nuestro caso, grupo Si(CH3)3). 

El primer paso para comenzar con la derivatización es la evaporación de una cantidad conocida 

de muestra (3 ml) mediante el uso de rotavapor. Una vez evaporada el agua, se hace reaccionar 

los productos con una mezcla de derivatizante comercial, compuesto por trimetilclorosilano 

(TMCS) y hexametildi-silazano (HMDS) disueltos en piridina (HMDS + TMCS + Pyridine, 

3:1:9,Sylon
TM

 HTP, Supelco). TMCS y HMDC se encargan de sililar todos los grupos polares 

que poseen nuestras moléculas producto. La reacción de derivatización que da lugar se puede 

apreciar en la Figura 14. Se ha elegido esta mezcla de reactivos en concreto debido a su alta 

versatilidad para sililar todos los grupos polares. Por otro lado, la piridina se encargará de ser el 

disolvente de la reacción y de capturar los protones libres que se generan de la reacción, 

evitando la formación de un medio ácido (generación de HCl, por unión de los H
+
 y Cl

- 

resultantes del TMCS), también formaremos NH4Cl proveniente del NH3 generado de la 

reacción con HMDS con los H
+
 libres y los Cl

-
, que precipita y se eliminara por  filtración. 

 

 

Figura 14. Reacción genérica de sililación (superior) y con nuestro reactivo comercial 

(inferior). 

La reacción de derivatización se lleva a cabo durante 30 minutos, a 60ºC bajo ultrasonidos. La 

relación entre derivatizante y productos será de 10:1 aproximadamente, un exceso de 

derivatizante para asegurar que todos los grupos polares de los productos se han sililado. Estas 

condiciones de derivatización siguen una optimización ya realizada con anterioridad para el 

análisis de esta clase de productos. La disolución compuesta por el reactivo y nuestros 

productos sililados se evapora nuevamente, esta vez mediante arrastre con una corriente de N2, 

arrastrando el exceso de derivatizante y la piridina (su presencia dejaría colas en los picos del 

cromatograma) y dejando los productos sililados como sólidos. El residuo resultante de la 

evaporación es disuelto en una cantidad conocida de tolueno (1ml). La muestra se filtra 

(separación del NH4Cl) y se analiza por cromatografía de gases, para la determinación de las 

concentraciones de los productos y con ellas permitiéndonos calcular las conversiones, 

selectividades y rendimientos catalíticos correspondientes. 
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Para el análisis por cromatografía de gases se hace uso de un equipo  (Perkin Elmer Gas 

Cromatograph Clarus®580), dispuesto con una columna Elite-5 (Crossbond 5% diphenil-95% 

dimetyl polioxane, 30 m, diámetro interno=0,25mm, diámetro fase estacionaria=0,25µm). Las 

condiciones usadas para el análisis son: VInyección: 0.5µl, relación de split: 11. TInyección: 275ºC, y 

He como gas carrier (36ml/min), el programa de calentamiento del horno se inicia a 40ºC (Tª 

mantenida durante 2,5 min), seguida de una rampa de calentamiento de 10ºC/min hasta 330ºC 

(y sostenida durante 1 min). Los productos son detectados con un detector FID (330ºC), 

alimentado con una mezcla de H2 (45 ml/min) y Aire sintético (450ml/min).
 

Para determinar aquellos productos más volátiles que pudiesen ser evaporados durante la etapa 

de eliminación del agua (etilenglicol, hexano, hidroximetil furfural…), una alícuota de la 

muestra es diluida en metanol (1:4) y pinchada directamente en el cromatografo. La dilución en 

metanol ayudará a la volatilización de la muestra. Por otro lado, las muestras gaseosas extraídas 

al final de los test de actividad catalítica se analizan mediante cromatografía de gas con un 

micro GC Varian CP4900 equipado con dos columnas empaquetadas (Molecular Sieve y 

Porapack) junto a un detector TCD. Las condiciones usadas para el análisis son: Tinyeccion: 110ºC. 

Tcolumna: 110ºC. Pcolumna: 150KPa. Carrier: Ar/He. Este análisis permitirá detectar la posible 

formación de CO, CO2 o CH4. 

El análisis de productos es posteriormente confirmado por cromatografía líquida de alta 

resolución (HPLC) con la siguiente configuración: una bomba Jasco PU-2085 Plus, un detector 

de índice de refracción (RI) (Jasco RI-2031 Plus Intelligent RI Detector) y una columna 

dispuesta con una resina de intercambio catiónico formada por el entrecruzamiento del 

copolimero estireno-divinilbenceno sulfonado, de aproximadamente 9 µm de diámetro. Las 

condiciones usadas para el análisis son: Vinyeccion: 50µl. Tcolumna: 80ºC. Tdetector: 30ºC. Fase móvil: 

Agua mili-Q (0.5 ml/min) 

En cuanto a los resultados numéricos, el cálculo de la conversión se realiza mediante la 

diferencia entre la celobiosa cargada y recuperada al principio y al final de la reacción (% 

masa).  El rendimiento de la reacción se expresa como rendimiento en masa calculado como la 

masa de un producto (obtenida del análisis por cromatografía) entre la masa de celobiosa al 

inicio de la reacción. La selectividad hacia un producto se calcula como el rendimiento del 

producto entre la conversión de la reacción. 
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5. Conclusiones 

Este Proyecto explora diferentes nanopartículas bimetálicas basadas en Ni-metal noble (Pt, Ru, 

Pd) soportadas sobre nanofibras de carbono como fases activas en la reacción de hidrogenación 

de celobiosa a hexitoles (sorbitol). Los tres catalizadores bimetálicos sintetizados muestran 

propiedades mejoradas con respecto al Ni monometálico, en términos de reducibilidad (mayor 

resistencia a la desactivación por oxidación. y mayor concentración de especies de H activas en 

las inmediaciones del Ni para participar en la reacción de hidrogenación) y dispersión 

(disminución del tamaño de partícula y mayor superficie catalítica), lo cual supuso una mejora 

en la actividad catalítica (rendimiento de productos de hidrogenación (sorbitol y celobitol) del 

61,18%, 84,51% y 91,58% para las combinaciones de NiPd/CNFox, NiRu/CNFox y NiPt/CNFox, 

respectivamente, comparado con el 32.91% que resulta del Ni monometálico Ni/CNFox). El 

rendimiento en productos de hidrogenación supera la actividad de los compuestos puros por 

separado en todos los casos, excepto para el Ru/CNFox que muestra alta capacidad de 

hidrogenación por como catalizador individual (93,03%).  

Las condiciones de trabajo (temperatura media, agua como disolvente y acidez del soporte 

moderada) resultaron en una actividad de hidrólisis moderada (39.48% a 180ºC) y el celobitol 

se encontró como intermedio de reacción mayoritario, indicando que la reacción de 

hidrogenación se adelanta a la etapa de hidrólisis. El aumento de la temperatura de reacción de 

180ºC a 200ºC aumenta la velocidad de hidrólisis, y se puede aumentar el rendimiento a 

sorbitol, aunque también se favorecen reacciones de degradación. Los ensayos de reciclabilidad 

con el mejor catalizador bimetálico obtenido (NiPt/CNFox), muestran una pérdida de actividad 

irreversible con los usos repetidos, atribuida a la sinterización de las partículas, tal y como 

reveló el análisis XRD y las imágenes HRTEM.  

En futuras investigaciones se buscara la manera de solventar el problema de la sinterización e 

las partículas metálicas. 
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ANEXO: 

EDS, perfiles XRD, perfiles XPS, cromatogramas, 

tablas de concentraciones, modificación del patrón 

XRD de los catalizadores antes y después de ser 

usados 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

3.1. Caracterización de los catalizadores 

Composición química por EDS: a)NiPt/CNFox, b) y c) NiPd/CNFox, d) NiRu/CNFox 
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Perfiles XRD para los catalizadores a) monometálicos y b) bimetálicos.  
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Las señales obtenidas para la mayoría de las fases metálicas se encuentran cercanas al límite de 

detección, debido a las bajas cargas de metal y al pequeño tamaño de los cristales, en la mayoría 

de los casos menor a 3 nm. En todas las muestras se puede apreciar la señal correspondiente a la 

estructura grafítica del soporte (pico de mayor tamaño situado en un valor de 2θ= 26, junto con 

otras señales menos intensas, 2θ= 42.5, 44 y 54). Sólo las partículas de mayor tamaño (Ni, 

partículas de Pt de una sola fase y de Pd en los bimetálicos) mostraron sus planos de difracción 

característicos, aunque su baja intensidad dificulta cualquier determinación precisa. 

Perfiles del XPS para los catalizadores a) monometálicos  y b) bimetálicos 
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3.2. Actividad catalítica 

Cromatogramas CNFox 
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HPLC 3h 
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Cromatogramas Ni/CNFox 
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Cromatogramas Pd/CNFox 
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Cromatogramas Pt/CNFox 
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Cromatogramas Ru/CNFox 

HPLC 0h 

 

HPLC 3h 

 

 

 

 



 
 

GC 0h y 3h 

 

Cromatogramas Ni-Pd/CNFox 
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Cromatogramas Ni-Ru/CNFox 
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Cromatogramas Ni-Pt/CNFox 
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Cromatogramas Ni-Pt/CNFox 190ºC 

HPLC 0h 

 

HPLC 3h 
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Cromatogramas Ni-Pt/CNFox 200ºC 

HPLC 0h 

 

 

 



 
 

HPLC 3h 

 

Cromatogramas Ni-Pt/CNFox 190ºC 2ºrun 
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Cromatogramas Ni-Pt/CNFox 190ºC 3ºrun 

HPLC 0h 
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GC 0h y 3h 

 

Cromatogramas Ni-Pt/CNFox 190ºC reducido 

HPLC 0h 

 

 



 
 

 

HPLC 3h 

 

Tablas de concentraciones (mg/ml) a las 3h 

Las diferencias encontradas entre los dos métodos son debidas a que por GC la celobiosa y el 

celobitol no se separan, contabilizándose como celobiosa, junto a esto hay que añadir que por 

GC se lleva a cabo una derivatización de las muestras introduciendo posibles errores 

experimentales, siendo más fiables por lo tanto los resultados obtenidos por HPLC. 

 

 

 Catalizadores Monometálicos 

 CNFox Ni/CNFox Pd/CNFox Pt/CNFox Ru/CNFox 

 HPLC GC HPLC GC HPLC GC HPLC GC HPLC GC 

Celobiosa 0,427 0,386 0,119 0,565 0,204 0,202 0,300 0,361 0 1,667 

Celobitol 0 - 0,435 - 0,439 - 0,341 - 1,130 - 

Glucosa 0,675 0,632 0,341 0,263 0,508 0,366 0,629 0,306 0,088 0,001 

Sorbitol 0 0 0,365 0,321 0,011 0,108 0,325 0,234 1,116 1,177 

Xilitol 0,036 0 0,029 0,090 0,088 0,098 0 0,081 0,095 0,053 

Fructosa 0,136 0,055 0 0 0 0,137 0 0 0 0 

Eritriol 0 0 0 0,028 0,055 0,016 0,050 0,044 0 0 

Glicerol 0 0 0 0 0 0 0 0,008 0 0,010 

HMF 0,142 0 0 0 0 0 0 0 0 0 

 

 

 



 
 

 Catalizadores Bimetálicos 

 Ni-Pd/CNFox Ni-Pt/CNFox Ni-Ru/CNFox 

 HPLC GC HPLC GC HPLC GC 

Celobiosa 0,009 1,063 0,002 1,531 0,049 1,539 

Celobitol 0,839 - 1,165 - 1,177 - 

Glucosa 0,158 0,126 0,030 0 0,113 0,012 

Sorbitol 0,693 0,566 1,067 0,852 0,911 0,771 

Xilitol 0,101 0,164 0,100 0,049 0,067 0,084 

Fructosa 0 0 0 0 0 0 

Eritriol 0 0,040 0 0 0,005 0,021 

Glicerol 0 0 0 0 0 0,150 

HMF 0 0 0 0 0 0 

 

Comparación XRD de catalizador/catalizador usado 

Las señales cristalinas de los catalizadores monometálicos son idénticas antes y después de su 

uso, indicando que el tamaño de partícula no se altera en las condiciones de reacción. Sin 

embargo, todas las nanopartículas bimetálicas usadas, independientemente de su composición, 

muestran señales más intensas que confirman su sinterización. 

20 30 40 50 60 70 80
0

1

40 50 60
0,0

0,1

0,2

Ni

C

C

Ni

C
C

In
te

n
s
id

a
d

 (
u

.a
.)

2cm
-1


 % Ni/CNFox Usado

 % Ni/CNFox

C

In
te

n
s
it
y
 (

a
.u

.)

2cm
-1


 

20 30 40 50 60 70 80
0

1

40 50
0,00

0,05

0,10

0,15

C

C
C

C
CC

C

In
te

n
s
id

a
d

 (
u

.a
.)

2cm
-1


 Ru/CNFox Usado

 Ru/CNFox

In
te

n
s
it
y
 (

a
.u

.)

2cm
-1


 

20 30 40 50 60 70 80
0

1

40 50
0,00

0,05

0,10

0,15

Pt
Pt

Pt

Pt

C
C

C

CC
C

C

In
te

n
s
id

a
d

 (
u

.a
.)

2cm
-1


Pt/CNFox Usado

Pt/CNFox

 I
n

te
n

s
it
y
 (

a
.u

.)

2

 

20 30 40 50 60 70 80
0,0

0,5

1,0

1,5

40 50
0,00

0,05

0,10

0,15

Pd
C

C
C

Pd C
CC

C

In
te

n
s
id

a
d

 (
u

.a
.)

2 cm
-1


 Pd/CNFox Usado

 Pd/CNFox

In
te

n
s
it
y
 (

a
.u

.)

2

 



 
 

20 30 40 50 60 70 80
0,0

0,5

1,0

1,5

40 50
0,00

0,05

0,10

0,15

0,20

0,25

0,30

Ru

Ru

Ru

Ru

C

C

C

C

C

C
In

te
n

s
id

a
d

 (
u

.a
.)

2cm
-1


 Ni-Ru/CNFox Usado

 Ni-Ru/CNFox

In
te

n
s
it
y
 (

a
.u

.)

2

 

20 30 40 50 60 70 80
0

1

40 50
0,00

0,05

0,10

0,15

0,20

Ni-Pt

Ni-Pt

C

C

Ni-Pt

Ni-Pt

C

C
C

C

In
te

n
s
id

a
d

 (
u

.a
.)

22.54 cm
-1


 Ni-Pt/CNFox Usado

 Ni-Pt/CNFox

 

20 30 40 50 60 70 80
0,0

0,5

1,0

1,5

40 50 60
0,00

0,05

0,10

0,15

0,20

0,25

0,30

Ni-Pd

Ni-Pd

Ni-Pd

Ni-Pd

C

C

C
C

C

In
te

n
s
id

a
d

 (
u

.a
.)

2cm
-1


 Ni-Pd/CNFox Usado

 Ni-Pd/CNFox

 I
n

te
n

s
it
y
 (

a
.u

.)

2

 
 

 


