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Maŕıa Gav́ın Prof. Sergio Carrato

Correlatore
Prof. Antonio Romeo

Anno Accademico 2017/2018



This planet, with all its appalling immensity,
is to electric currents virtually

no more than a small metal ball.
—

Nikola Tesla
—

to my parents and friends
to my sister, Marina

to Julia, Gema and Miriam



Sommario

Questo elaborato riguarda il criterio di Barkhausen e in particolare la rela-
zione che intercorre tra tale criterio e la instabilità di un sistema. Si riporta
innanzitutto la dimostrazione di necessarietà del criterio di Barkhausen af-
finché un sistema retroazionato positivamente produca un’uscita oscillatoria
ad ampiezza costante, per un tempo indefinito. Sebbene questo criterio non
garantisca sempre l’oscillazione. Viene anche studiato il feedback negati-
vo negli oscillatori e il problema per calcolare la frequenza di oscillazione
del circuito. Infine, studieremo questi circuiti in laboratorio e il ritardo del
gruppo esistente.
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Introduzione

Questo progetto nasce con l’interesse di studiare il comportamento degli
oscillatori sinusoidali, essendo in grado di analizzare il loro comportamento
in base alle diverse variabili che modellano detto sistema e di trovare una
condizione che soddisfi la sua oscillazione, poiché il suo principio di fun-
zionamento, formulato dal criterio di Barkhausen, non garantisce sempre
l’oscillazione.

L’obiettivo di questo progetto é lo sviluppo di circuiti elettronici in gra-
do di produrre oscillazioni sinodali sostenute ad una singola frequenza, in
assenza di fonti CA esterne.

Gli oscillatori da studiare in questo lavoro sono oscillatori lineari. Il
metodo consiste in un’analisi della risposta temporale e in frequenza di questi
dispositivi e quindi un confronto con il modello lineare offerto dal criterio
di Barkhausen. In particolare, questo studio si è concentrato sul ponte
Wien, un tipo di oscillatore del secondo ordine ampiamente utilizzato nelle
applicazioni elettroniche a bassa frequenza; l’oscillatore a sfasamento, un
oscillatore di terzo ordine, utilizzato anche nelle applicazioni elettroniche a
bassa frequenza e l’oscillatore condizionatamente stabile che oscillerà quando
il guadagno è tra un gamma di ampiezza, in modo che il circuito sia instabile.

Per realizzare questo studio, sono stati utilizzati due strumenti informa-
tici, MATLAB e PSpice.

Una volta analizzati matematicamente i circuiti, precedentemente com-
mentati, sono stati simulati in PSpice e in laboratorio, per analizzare e
confrontare il loro ideale (VCVS) e la risposta reale, mediante amplifica-
tori operazionali, nel dominio del tempo e della frequenza, con i calcoli
matematici.

Usando MATLAB è stato progettato un modello matematico che ripro-
duce come teoricamente dovrebbe essere il segnale di uscita che diverge da
un oscillatore, tenendo conto del ritardo di gruppo esistente, per confron-
tarlo con il suo output ideale ottenuto da PSpice. L’analisi mostra che ci
saranno delle differenze che verranno trattate in seguito.

Infine, sono stati effettuati test in laboratorio che dimostrano che i
modelli sopra citati sono corretti.

Per ottenere un oscillatore accurato, sarebbe necessario introdurre alcune
modifiche ai criteri comunemente utilizzati e alcune modifiche al circuito,
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INTRODUZIONE

poiché in realtà la saturazione dello stadio di amplificazione non consente di
ottenere un’uscita sinodale.

Inoltre, vi è l’inconveniente che la frequenza di oscillazione non è la stessa
per cui è progettato il circuito, cioè la frequenza di oscillazione, a cui il cir-
cuito dovrebbe oscillare, progettato dalla rete di retroazione B(jω),dipende
dal guadagno dal della rete A(jω).

Infine, quando si confrontano i modelli ideale e non ideale, si può vedere
che c’è una differenza tra loro, a causa dell’uso di amplificatori operazionali
nel secondo.
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Capitolo 1

Sistemi e Stabilità

In questo primo capitolo vengono riportati, introduttivamente, concetti noti
dalla teoria dei sistemi, tratti da [4, 25, 27]. La scelta di dedicare un in-
tero capitolo a tale introduzione è motivata dalla possibilità di introdurre
la simbologia e i risultati salienti in maniera organica, in modo da poter
essere citati agevolmente in tutto il resto del testo, snellendo la successiva
trattazione.

1.1 Sistemi dinamici

Con sistema dinamico a tempo continuo a parametri concentrati ci
si riferisce ad un sistema fisico descritto da un sistema di equazioni del tipo:{

ẋ(t) = f(x(t), u(t), t)

y(t) = g(x(t), u(t), t)
(1.1.1)

dove, dato un dominio T = [t0, t1] ⊆ R, x : T → Rn è il vettore di stato,
u : T → Rm è il vettore d’ingresso e y : T → Rp è il vettore d’uscita. Pertanto
f e g sono definite su Rn×Rm× T . Per i casi da noi affrontati, sarà T = R
e m = p = 1, ossia sistemi con solamente un ingresso e un’uscita, detti
Single Input - Single Output (abbreviato SISO). La prima equazione
viene detta equazione di stato, la seconda equazione d’uscita.

Il sistema si dice a tempo continuo poiché il tempo è modellizzato
con una variabile che si muove in un intervallo di R, ossia varia con con-
tinuità. A questo tipo di sistemi si contrappongono i sistemi a tempo
discreto, in cui il tempo viene modellizzato come una variabile k in un
dominio E = [k0, k1] ⊆ Z, ossia gli istanti di interesse sono numerabili. Tali
sistemi, invece di essere descritti da equazioni differenziali, sono descritti da
equazioni alle differenze.

La dicitura a parametri concentrati sta a significare che ciascun com-
ponente del sistema ha una proprietà che fisicamente si può considerare
concentrata in un punto, e pertanto può essere descritta da uno scalare, che
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CAPITOLO 1. SISTEMI E STABILITÀ

può o meno variare nel tempo. Vi si contrappongono i sistemi a parametri
distribuiti, in cui le proprietà fisiche sono invece distribuite nello spazio, e
pertanto devono essere descritte da funzioni il cui valore varia al variare del
punto considerato (ed eventualmente nel tempo). In questo caso le equazio-
ni che si ottengono sono alle derivate parziali. Nel mondo reale i parametri
sono sempre distribuiti, ma in caso di sistemi che operano a basse frequenze,
la minima lunghezza d’onda che può interessare il sistema è normalmente
molto maggiore delle dimensioni del sistema stesso. Pertanto si può assu-
mere che ogni variazione si propaghi istantaneamente attraverso il sistema,
mentre nei sistemi a parametri distribuiti questa assunzione è falsa.

Se in un sistema l’uscita non dipende direttamente dall’ingresso, os-
sia y(t) = g(x(t), t), il sistema si dice strettamente proprio. In caso
contrario, il sistema è non strettamente proprio.

1.2 Sistemi LTI

Se tutti i componenti di un sistema hanno proprietà che non variano nel
tempo, allora la f e la g in 1.1.1 non dipendono da t, e si parla di sistema
stazionario o tempo-invariante. Il sistema di equazioni diventa dunque:{

ẋ(t) = f(x(t), u(t))

y(t) = g(x(t), u(t))
(1.2.1)

Nel caso particolare in cui f e g siano lineari, il sistema si dice lineare e il
sistema di equazioni 1.1.1 diventa:{

ẋ(t) = A(t)x(t) +B(t)u(t)

y(t) = C(t)x(t) +D(t)u(t)
(1.2.2)

dove A : T → Rn×n, B : T → Rn×m, C : T → Rp×n e D : T → Rp×m.
Qualora entrambe le proprietà siano soddisfatte, si parla di sistemi li-

neari tempo-invarianti, spesso abbreviato in sistemi LTI. Il sistema di
equazioni, in tal caso, si riduce a:{

ẋ(t) = Ax(t) +B u(t)

y(t) = C x(t) +Du(t)
(1.2.3)

Si osservi che in questo caso A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n e D ∈ Rp×m,
ossia le matrici sono costanti. Inoltre, il sistema è strettamente proprio se
D = 0.

I sistemi LTI sono di fondamentale importanza in ingegneria (e in parti-
colare in questa trattazione) per due ragioni:

2



CAPITOLO 1. SISTEMI E STABILITÀ

• tranne in casi particolarissimi, si vogliono realizzare sistemi le cui pro-
prietà fisiche rimangano idealmente inalterate con lo scorrere del tem-
po, ossia sistemi tempo-invarianti; inoltre, alcuni sistemi non stazionari
variano in funzione di t in modo cos̀ı lento che si possono considerare
tempo-invarianti anche su intervalli T ragionevolmente lunghi;

• si prediligono i sistemi lineari per la semplicità di trattazione data dal
principio di sovrapposizione degli effetti, tanto che spesso si restrin-
ge il range di impiego di sistemi non lineari in modo tale da poterli
linearizzare in un intorno di un determinato punto di lavoro.

1.3 Stato di un sistema

Il concetto di stato distingue un sistema dinamico da uno non dinamico. In
un sistema non dinamico, l’uscita y all’istante di tempo t dipende esclusiva-
mente dal valore dell’ingresso u allo stesso istante di tempo. In un sistema
dinamico, invece, l’uscita dipende sia dall’ingresso che dal valore di alcune
altre grandezze variabili, dette variabili di stato del sistema. Presentia-
mo due esempi significativi per chiarire la necessità dell’introduzione di tale
concetto.

Un esempio in ambito elettrotecnico di sistema non dinamico è il resi-
store, descritto dalla legge di Ohm:

v = R i

La differenza di potenziale (in breve d.d.p.) v ai capi di un resistore (usci-
ta) dipende unicamente dalla corrente i che scorre attraverso di esso, e dal
parametro concentrato R - la resistenza del componente. Si osservi che tale
sistema si può considerare un sistema dinamico con stato costante e matrici
A, B, C nulle, mentre D = R. In pratica, i sistemi non dinamici sono un
sottoinsieme dei sistemi dinamici, e le equazioni che descrivono i sistemi non
dinamici LTI sono equazioni lineari algebriche, piuttosto che differenziali.

Rimanendo sempre nell’elettrotecnica, un esempio di sistema dinamico
è invece il condensatore, la cui caratteristica è:

i(t) = C1
dv

dt
(t) (1.3.1)

dove C1 è la capacità del condensatore. Volendola porre nella forma riportata
in 1.2.3: 

dv

dt
(t) =

1

C1
i(t)

y(t) = v(t)

3



CAPITOLO 1. SISTEMI E STABILITÀ

ossia, lo stato è rappresentato da v, le matrici A e C si riducono a 0 ∈ R, la
matrice B a 1

C1
e la D diventa 1 ∈ R (ossia l’uscita coincide con lo stato).

Dalla 1.3.1 si ricava facilmente che:

v(t) = v(t0) +
1

C1

∫ t

t0

i(τ) dτ

Si osservi che la v non dipende soltanto dalla i, ma anche dal valore iniziale
v(t0) della d.d.p., che di fatto misura il livello di carica del condensatore
(poiché C1 := Q

v ⇒ Q = C1v). Applicando la stessa corrente nel medesimo
periodo temporale a due condensatori con d.d.p. iniziale diversa (ossia che
si trovano in uno stato differente), si giunge a una d.d.p. finale diversa.

Pertanto, i sistemi fisici aventi un’inerzia o una memoria di qualche tipo,
o (più rigorosamente) descritti da equazioni integrali, differenziali o integro-
differenziali, hanno evidenziato il bisogno del concetto di stato affinché il
modello di sistema rispecchi opportunamente la realtà fisica.

1.4 Descrizione esterna

La notazione usata finora per descrivere un sistema viene detta descrizione
interna, poiché presuppone la conoscenza dello stato, di come esso sia con-
dizionato dall’ingresso e da come esso condizioni se stesso e l’uscita. Vi è la
possibilità di trovare una descrizione del sistema che esprima direttamente
l’uscita in funzione dell’ingresso. Per farlo è necessario usare la trasforma-
ta di Laplace (in breve L -trasformata). La L -trasformata unilatera di
una funzione f è una funzione F , in generale a valori complessi, definita da:

F (s) = L [f(t)] :=

∫ +∞

0−
f(t) e−st dt (1.4.1)

L’integrale da 0− è un modo compatto per scrivere:

lim
E→0

∫ +∞

−E
f(t) e−st dt

Ciò serve a includere nell’integrale eventuali impulsi di Dirac che si trovassero
in t = 0.

Tra le varie importanti proprietà che caratterizzano la trasformata di
Laplace, riportiamo la seguente:

L
[df

dt
(t)
]

= sL [f(t)]− f(0+) (1.4.2)

Applichiamola ora al sistema 1.2.3:{
sX(s)− x(0+) = AX(s) +B U(s)

Y (s) = C X(s) +DU(s)

4



CAPITOLO 1. SISTEMI E STABILITÀ

Allora l’equazione di stato diventa:

X(s) (sI −A) = x(0+) +B U(s)

Dovendo invertire (sI−A), ci si chiede per quali valori di s ciò sia possibile,
ossia per quali valori di s si ha det(sI − A) 6= 0 . Poiché il determinante
di (sI − A) è proprio il polinomio caratteristico di A, esso sarà di grado n.
Pertanto solo per n valori di s tale determinante è nullo (i.e., gli autovalori
di A). Per tutti gli altri, (sI −A) è invertibile, e possiamo scrivere:

X(s) = (sI −A)−1 (x(0+) +B U(s))

Sostituendo nell’equazione d’uscita:

Y (s) = C (sI −A)−1 (x(0+) +B U(s)) +DU(s)

⇒ Y (s) = C (sI −A)−1 x(0+) + (D + C (sI −A)−1B)U(s) (1.4.3)

Si osservi che se x(0+) = 0 (ossia lo stato iniziale è nullo e non sono stati
applicati impulsi all’istante iniziale), allora:

Y (s) = (D + C (sI −A)−1B)U(s) (1.4.4)

La (D + C (sI − A)−1B) viene indicata con H(s) e detta funzione di
trasferimento (in breve f.d.t.). Nota la trasformata U del vettore d’ingresso
e nota la f.d.t. del sistema, moltiplicandole tra loro e antitrasformando il
risultato, si ottiene y funzione del tempo, detta in questo caso evoluzione
forzata dell’uscita del sistema. Per questo, vista anche l’assenza dello stato
nella 1.4.4, si parla in questo caso di descrizione esterna del sistema.

È opportuno osservare che (sI − A)−1 ha per elementi delle funzioni
algebriche razionali fratte. Questo perché:

• come già detto, il determinante è il polinomio caratteristico di A (che
quindi è di grado n), e va al denominatore di ciascun elemento;

• ciascun complemento algebrico deriva dal calcolo del minore comple-
mentare, che è il determinante di una sottomatrice di (sI − A) di
dimensione n− 1, e quindi un polinomio di grado n− 1.

Se il sistema è strettamente proprio, D è la matrice nulla e gli elementi di
H(s) sono razionali fratte con grado n−1 al numeratore, n al denominatore.
Altrimenti, a causa di D, dovendo sviluppare un denominatore comune per
ogni elemento, si ottengono razionali fratte con grado n sia al numeratore che
al denominatore. Per sistemi SISO, la H(s) si riduce ad una sola funzione
razionale fratta, ossia:

5



CAPITOLO 1. SISTEMI E STABILITÀ

H(s) =
N(s)

D(s)
= K

(s− z1)(s− z2) · · · (s− zm)

(s− p1)(s− p2) · · · (s− pn)
(1.4.5)

con m pari a n− 1 o n come già spiegato sopra, K ∈ C costante. Le radici
del denominatore vengono dette poli della funzione di trasferimento, quelle
del numeratore zeri. Salvo cancellazioni (ossia semplificazioni in caso di zeri
e poli coincidenti), i poli coincidono con gli autovalori di A.

Riprendendo la 1.4.3 e ponendo U(s) = 0, che è la trasformata dell’in-
gresso nullo, si ha:

Y (s) = C (sI −A)−1 x(0+) (1.4.6)

La C (sI−A)−1, che noi indicheremo con HL(s), esprime la proporzionalità
tra Y (s) e x(0+), permettendo quindi di studiare la cosiddetta evoluzione
libera dell’uscita del sistema. Per gli stessi ragionamenti fatti per la f.d.t.,
HL è, nel caso SISO, una funzione algebrica razionale fratta del tipo:

HL(s) =
NL(s)

D(s)
= KL

(s− zL,1)(s− zL,2) · · · (s− zL,n−1)

(s− p1)(s− p2) · · · (s− pn)
(1.4.7)

Il denominatore è, per ovvi motivi, lo stesso visto nella H(s), e quindi le due
condividono gli stessi poli (sempre salvo cancellazioni).

1.5 Equilibri e stabilità

L’equilibrio è un concetto presente nella vita di tutti i giorni. Diciamo che un
corpo è in equilibrio quando, malgrado non sia fissato saldamente al terreno,
a un edificio, o comunque a un corpo ritenuto relativamente inamovibile,
esso mantiene la sua posizione, o non cade, seppure tale eventualità sia
contemplata. Di tutto questo, ciò che realmente conta è lo stato di quiete
del corpo nonostante le sollecitazioni esterne che esso possa subire, mentre
la precarietà o meno dell’equilibrio ricadrà nel concetto di stabilità.

In riferimento a 1.1.1, fissata una funzione d’ingresso u, se esiste x ∈ Rn
tale che:

x(t0) = x ⇒ x(t) = x ∀t > t0, t ∈ D (1.5.1)

esso si dice stato di equilibrio o semplicemente equilibrio. In maniera
del tutto analoga, fissata u, se esiste y ∈ Rp tale che:

y(t0) = y ⇒ y(t) = y ∀t > t0, t ∈ D (1.5.2)

si parla di uscita di equilibrio.

6



CAPITOLO 1. SISTEMI E STABILITÀ

Per sistemi stazionari (vedi 1.2.1), essendo l’equazione di stato indipen-
dente da t, si ha in generale:

f(x, u(t)) = 0 ⇔ u(t) = u

e dunque è necessario che anche l’ingresso sia costante affinché sia possibile
trovare degli equilibri. Per ogni stato di equilibrio, poi, si evidenzia un’uscita
di equilibrio, poiché:

g(x, u) = y ∈ Rp

Informalmente, un equilibrio (u, x) è stabile se, perturbato leggermente lo
stato iniziale, l’evoluzione dello stato non si discosta troppo da x. In altre
parole, per piccole variazioni dello stato iniziale si hanno piccole variazioni
del movimento dello stato (ossia di t 7→ x(t)). L’equilibrio sarà poi asin-
toticamente stabile se, perturbato lo stato iniziale, il movimento dello
stato tenderà nuovamente all’equilibrio. In simboli, se t0 è l’istante iniziale,
v = (u, x) è un equilibrio stabile se:

∀E > 0 ∃δ = δ(E , v) > 0 : ‖ x(t0)− x ‖< δ ⇒ ‖ x(t)− x ‖< E ∀t > t0
(1.5.3)

ed è inoltre asintoticamente stabile se:

lim
t→+∞

‖ x(t)− x ‖= 0 (1.5.4)

Per i sistemi lineari (e quindi in particolare per i sistemi LTI) si può
dimostrare che la stabilità è una proprietà del sistema e non dell’equilibrio.
Ciò significa tutti gli equilibri del sistema hanno le medesime proprietà di
stabilità. È possibile dimostrare anche che la stabilità del sistema dipende
esclusivamente dagli autovalori della matrice A. In particolare:

• se gli autovalori hanno tutti parte reale negativa, il sistema è asintoti-
camente stabile

• se esistono autovalori a parte reale nulla ma sono tutti distinti, il
sistema è stabile (non asintoticamente).

• se esiste almeno un autovalore a parte reale positiva, il sistema è
instabile

Sul caso autovalori multipli a parte reale nulla non si può decretare nulla:
ci sono casi in cui il sistema è stabile, casi in cui si rivela instabile.

Un altro tipo di stabilità è la cosiddetta stabilità esterna, o stabilità
Bounded Input - Bounded Output (abbreviato BIBO). Un sistema è
BIBO-stabile se a input di ampiezza limitata corrispondono sempre output

7



CAPITOLO 1. SISTEMI E STABILITÀ

di ampiezza limitata. Il nome stabilità esterna suggerisce una stretta corre-
lazione tra questa caratteristica e la descrizione esterna del sistema. Infatti,
un sistema LTI è BIBO-stabile se, a seguito delle cancellazioni tra poli e zeri
nella f.d.t., non vi sono in essa poli a parte reale positiva o nulla. Questo fat-
to si dimostra banalmente scomponendo la generica f.d.t. in fratti semplici e
antitrasformando: tali fratti danno infatti luogo a componenti divergenti se
e solo se i corrispondenti poli sono a parte reale positiva, o a parte reale nulla
e con molteplicità maggiore di 1. Moltiplicando la f.d.t. per la trasformata
di un input, non si fa che aggiungere poli, o alzare la molteplicità di quelli
presenti. Se i poli dell’input sono a parte reale negativa, non si lede in alcun
modo la limitatezza dell’output. Tuttavia, se la f.d.t. avesse poli a parte
reale nulla, sarebbe possibile scegliere opportunamente degli input limitati
con poli a parte reale nulla coincidenti con quelli della f.d.t., in modo da
ottenere output illimitati.

Nel caso di sistemi LTI, la asintotica stabilità implica la stabilità BIBO,
ma non è vero il viceversa. Ciò è di semplice spiegazione ricordando che,
salvo cancellazioni, i poli della f.d.t. sono gli autovalori della matrice A:

• se tutti gli autovalori sono a parte reale negativa, tutti i poli sono
a parte reale negativa (anche dopo eventuali cancellazioni); pertanto
asintotica stabilità ⇒ stabilità esterna;

• viceversa si può avere stabilità BIBO anche con poli a parte reale nulla,
od ottenere la cancellazione di poli a parte reale positiva (che quindi
continuano a esistere come autovalori, anche se non appaiono nella
f.d.t.); pertanto stabilità esterna 6⇒ asintotica stabilità.
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Capitolo 2

Introduzione teorica agli
oscillatori

2.1 Oscillatori sinusoidali. Concetto

Un oscillatore è un circuito in cui un segnale di uscita periodica viene genera-
ta spontaneamente, poiché ha solo i feed e la massa [9]. È quindi inteso come
un oscillatore uno stadio elettronico che, essendo alimentato con una tensione
continua, fornisce un’uscita periodica, che può essere approssimativamente
sinusoidale, quadrata, triangolare, ecc.

Tutti gli oscillatori hanno una frequenza di lavoro caratteristica, che di-
pende dai valori dei componenti del circuito (resistori, condensatori, bobine
...) e che, in alcuni casi, è controllabile dall’esterno mediante una tensione
applicata (VCO). Pertanto, un oscillatore converte la potenza fornita dal-
le sorgenti di alimentazione in corrente continua in una corrente alternata
avente le caratteristiche desiderate. [9]

Sono ampiamente utilizzati e per questo é importante studiare come
funzionano. Gli oscillatori possono essere classificati come:

- Armoniche: quando l’uscita è sinusoidale.

- Rilassamento o multivibratore: se generano un’onda quadra.

Il requisito principale di un oscillatore è una distorsione armonica molto
bassa (THD) e ampiezza e frequenza fissa.

Ma ci sono anche oscillatori a frequenza variabile. La frequenza può es-
sere regolata meccanicamente (condensatori o bobine a valore regolabile) o
applicando la tensione a un elemento. Questi ultimi sono noti come oscil-
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latori a tensione controllata o VCO, ovvero oscillatori la cui frequenza di
oscillazione dipende dal valore di una tensione di controllo.

I parametri principali di un oscillatore sono: [1]

- Frequenza: è la frequenza della modalità operativa.

- Il campo di regolazione, per gli oscillatori di frequenza regolabili, è il
campo di regolazione.

- Potenza e prestazioni in uscita. Le prestazioni sono il quoziente tra la
potenza del segnale di uscita e la potenza che consuma.

- Livello armonico: potenza dell’armonica riferita alla potenza del fon-
damentale, in dB.

- Deriva con la temperatura: variazione della frequenza dell’oscillatore
quando la temperatura varia.

- Rumore di fase o derive istantanee della frequenza.

- Stabilità della frequenza a lungo termine durante la vita dell’oscillatore.

Gli oscillatori possono essere basati su amplificatori operazionali e tran-
sistor. L’applicazione di A.O. ha i suoi limiti, data principalmente dal-
la larghezza di banda, quindi non è possibile progettare oscillatori ad alta
frequenza (superiori a 1 MHz), sostituiti da transistor bipolari o F.E.T.

In questo progetto ci limiteremo allo studio degli oscillatori ad onda
sinusoidale o ”quasi sinusoidali” con amplificatore operazionale.

10
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2.2 Principio di Funzionamento. Criterio di Bar-
khausen

Una prima idea della forma acquisita da un oscillatore riguarda il concetto
di feedback e instabilità.

Figura 2.1: Struttura di feedback di base di un oscillatore con feedback
positivo

[20]

Figura 2.2: Principio di funzionamento di un oscillatore con feedback
negativo

Essendo A il guadagno dell’amplificatore e B la funzione di trasferimento
della rete di feedback con Xi l’ingresso e x o l’uscita, può succedere:

Se il feedback è positivo (Figura 2.1):

a) A·B·Xi < Xi (tensione di ingresso) e quindi in assenza di un segnale,
le oscillazioni cesseranno dopo un certo periodo di tempo, cioè il segnale di
uscita verrà attenuato.

b) A·B·Xi > Xi, la retroazione sarà rigenerativa e il valore della tensione
di uscita, Xo=A·Xi, aumenterà.

c) A·B·Xi = Xi, significa che il sistema è in grado di fornire un segnale
di uscita senza la necessità di applicare un segnale all’ingresso.

11
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L’uguaglianza A·B·Xi=Xi implica che |AB| = 1, vale a dire che il gua-
dagno del ciclo è uguale all’unità. Perché una tensione sinusoidale soddisfi
A·B·Xi = Xi, l’ampiezza, la fase e la frequenza di entrambi i segnali devono
essere identici.

La condizione |AB| = 1 è il requisito di ampiezza e la condizione di
uguaglianza nella fase del segnale di retroazione con quella del segnale di
ingresso, è il requisito di fase; in modo che questi requisiti rappresentino le
condizioni necessarie e sufficienti per far oscillare un amplificatore di retroa-
zione. Queste condizioni fondamentali sono conosciute come il criterio di
Barkhausen.

[9]

Figura 2.3: Struttura alimentata senza input

Dove B è la rete di frequenza selettiva (rete di feedback B(jω) che utilizza
elementi passivi, resistori, condensatori, bobine) e A(jω) è un amplificatore
indipendente dalla frequenza.

Pertanto, le condizioni necessarie affinché un oscillatore oscilli sono:

1- Che il segnale di retroazione sia in fase con il segnale di ingresso φ=0
(con feedback positivo. Figura 2.1) o φ=180o (nel caso di feedback negativo.
Figura 2.2).

2- Che il guadagno dell’anello aperto |AB| sia uguale a 1.

Per i circuiti delle figure 2.1 e 2.2:

Se il guadagno dell’anello aperto |AB|<1 (0 dB) non si verificano oscil-
lazioni. Se il valore |AB| è vicino a 1 e viene applicato un disturbo (passo,
impulso, ecc. O il rumore presente nei componenti) può essere osservato
un’oscillazione.
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Nel caso in cui il guadagno del loop |AB|> 1 (0 dB) generi un’oscillazione
che cresce in modo esponenziale, in pratica, smetterà di crescere quando
l’amplificatore smetterà di essere lineare a causa dell’input nel taglio o nella
saturazione dei transistor. In questo caso, il segnale verrà interrotto e quindi
non sarà più un segnale sinusoidale.

2.3 Stabilità negli oscillatori

Come abbiamo detto prima, una prima idea sulla forma acquisita da un
oscillatore riguarda il concetto di feedback e instabilità.

Normalmente l’instabilità influisce negativamente sui sistemi, tranne nel
caso degli oscillatori. Dato che stiamo cercando un’uscita sinusoidale pura,
senza input, cioè che il sistema abbia una risposta libera sinusoidale, i poli
devono essere sull’asse immaginario.

[24]

Figura 2.4: Struttura alimentata senza input

In altre parole, 1+A·B(denominatore della funzione di trasferimento)
ha zeri immaginari ±jωo, cioè: A(jωo)·B(jωo)=-1. Pertanto, il criterio di
Barkhausen può essere espresso come:

|A(jωo)B(jωo)| ≥ 1 (2.3.1)

Arg(A(jωo)B(jωo)) = 0o (2.3.2)
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O come,

Arg(A(jωo)B(jωo)) = 180o (2.3.3)

Eq. 2.3.2 nel caso di un oscillatore con feedback positivo (Figura 2.1),
dove ωo è la frequenza naturale di oscillazione; Eq. 2.3.3, nel caso di un oscil-
latore con feedback negativo (Figura 2.2), essendo T(jωo)=A(jωo)B(jωo) la
funzione di trasferimento dell’anello aperto.

Teoricamente con il criterio di Barkhausen si potrebbe sostenere che i
poli si trovino sull’asse immaginario, peró, a causa di derive termiche, in-
vecchiamento o dispersione dei parametri i poli tendono a spostarsi verso il
semipiano positivo o negativo. In quest’ultimo caso, le oscillazioni scompaio-
no. Se, invece, i poli si trovano sul semipiano positivo, tendono ad aumentare
di ampiezza fino alla saturazione.

[20]

Figura 2.5: Uscita quando i poli sono nella mezza sinistra e mezza destra

Questo può essere spiegato meglio considerando che la saturazione può
essere interpretata come una variazione di guadagno. Quando il guadagno
varia, la posizione dei poli varia. Se l’ampiezza aumenta molto, il guadagno
del sistema diminuisce e i poli tornano all’asse immaginario (Figura 2.7).

14



CAPITOLO 2. INTRODUZIONE TEORICA AGLI OSCILLATORI

Figura 2.6: Quando il segnale di ingresso è piccolo, il guadagno è alto.
Quando il segnale si avvicina alla saturazione, il guadagno apparente viene
ridotto

[20]

Figura 2.7: 1- Quando il guadagno viene ridotto, i poli si spostano sull’asse
immaginario. 2- Quando l’uscita raggiunge la saturazione, i poli si trovano
sull’asse immaginario
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Pertanto, dal punto di vista pratico, i poli si devvono trovare nella
parte reale positiva perché attraverso il processo di feedback di ampiezza-
guadagno, questa ampiezza non cresce indefinitamente. Questo è perchè
all’aumentare l’ampiezza, il guadagno diminuisce e l’ampiezza diminuisce di
nuovo, ritornando alla situazione precedente.

Tuttavia, in modo più dettagliato, ciò che accade è:

[18]

Figura 2.8: Segnale che diverge all’uscita di un oscillatore

Durante ∆t si perde la linearità. Durante questo periodo, i condensatori
del circuito vengono riorganizzati e quando entrano nella zona lineare si
inizia una nuova onda sinusoidale che è una esponenziale crescente. Questo
non dovrebbe essere confuso con un ritaglio. Se è cos̀ı, il segnale sarebbe
sempre più quadrata.

Da quanto sopra la condizione di Barkhausen è quindi:

|T (jωo)| ≥ 1 (2.3.4)

arg(T (jωo)) = 0oconfeedbackpositivo(Figura2.1) (2.3.5)
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arg(T (jωo)) = 180oconfeedbacknegativo(Figura2.2) (2.3.6)

2.4 Criterio di Nyquist

Dato che, come indicato sopra, l’obiettivo nella progettazione di un oscil-
latore è lo studio della particolare instabilità del sistema per ottenere le
oscillazioni, una delle metodologie applicabili a un sistema di feedback è il
criterio di Nyquist.

Il criterio di Nyquist si basa su un teorema complesso di analisi delle
variabili noto come principio dell’argomento:

Principio dell’argomento: Se F(z) è una funzione analitica e C è un
contorno nel piano complesso che racchiude Z zeri e P poli di F, quindi il
contorno C ’= F(C), circoscrive l’origine N volte, dove: [19]

N = Z − P (2.4.1)

La figura seguente mostra un caso particolare di questo teorema:

[24]

Figura 2.9: Esempio Nyquist
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(a) Una curva C che racchiude 4 zeri (indicati da cerchi) e 2 poli (indicati
da croci) della funzione analitica F(s).

(b) La curva C ’trasformata da F(s) circonda 4-2=2 volte all’origine.

Essendo la funzione di trasferimento H(s)=A(s)/(1+A(s)·B(s)) del siste-
ma di retroazione, i suoi poli saranno gli zeri del suo denominatore (1+A(s)·B(s)).
I poli del suo numeratore A(s), che potrebbero anche essere aggiunti, saran-
no effettivamente cancellati con i poli 1+A(s)·B(s) 1, poiché coincidono con
questi (a meno che B(s) abbia zeri coincidenti con poli di (s), caso che
vedremo più avanti).

In conclusione, la stabilità di H(s) può essere studiata determinando se
1+a(s)·B(s) ha zeri nel mezzo piano reale positivo, Re(s)> 0. Per questo
applicheremo il principio dell’argomento alla funzione F(s)=1+A(s)·B(s).

Consideriamo il contorno semicircolare C indicato in figura 2.10, per
il quale abbiamo preso la precauzione di scegliere R abbastanza grande in
modo che tutti gli zeri del mezzo piano reale positivo siano racchiusi da esso.

[24]

Figura 2.10: (a) Contorno C usato per determinare se la funzione F (s) ha
zeri nel mezzo piano reale positivo. Gli zeri indicati con cerchi. (b) Contour
C ’trasformato da F (s). Poiché C racchiude 4 zeri, C ’circonda l’origine 4
volte

1(1) I poli di 1 + A(s)·B(s) sono uguali ai poli di A(s)·B(s) perché l’aggiunta della
costante 1 non altera la posizione dei poli, e i poli di A(s)·B(s) includono i poli di A(s).
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Se partiamo dal presupposto che A(s) e B(s) sono stabili, allora F(s) non
avrà poli con una parte reale positiva, quindi:

N = Z (2.4.2)

Cioè, il numero di giri che C ’= F(s) dà intorno a 0 coincide con il numero
di zeri di F(s) dentro C. Se questo numero è maggiore di 0, ci sarà almeno
uno zero e il Il sistema di feedback sarà instabile.

Osserviamo che invece di considerare F(s)=1+A(s)·B(s) potremmo sem-
plificare la traccia considerando la funzione G(s)=A(s)·B(s), funzione del-
l’anello aperto. L’unica differenza sarà che il contorno trasformato ruoterà
attorno a -1 invece che intorno a 0. Figura 2.11.

[19]

Figura 2.11:
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(a) Sullo stesso contorno C della figura 12 viene applicata la funzione
G(s) = A(s)·B(s) invece di F(s)=1+A(s)·B(s). Il numero di zeri di F(s) è
ora il numero di volte in cui il contorno trasformato circonda -1.

(b) Tendono a R a T∞. I valori di A·B sull’estensione semicircolare ten-
dono a 0. Il contorno ottenuto trasformando l’asse immaginario attraverso
A(s)·B(s) è chiamato il punto o contorno di Nyquist e quindi il criterio di
stabilità può essere definito come segue:

“Un sistema di feedback sarà stabile se il suo contorno di Nyquist (l’as-
se immaginario trasformato da uno A(s)·B(s) non racchiude il punto -1,
chiamato punto critico.” [2]

Di seguito sono riportati due esempi di applicazione del criterio di Ny-
quist. Nel caso instabile, il contorno di Nyquist circonda il punto -1 e nel
caso stabile non lo fa.

Figura 2.12:

Il vantaggio principale del criterio di Nyquist è la sua semplicità quando
è solo necessario determinare se un sistema sarà stabile o instabile quando
viene riconsegnato.

Pertanto, nel nostro studio, gli oscillatori dovrebbero essere progettati in
modo che il diagramma di Nyquist della funzione di loop A(s)·B(s) circondi
il punto critico -1, come condizione per la sua instabilità.
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Capitolo 3

Guadagno ad anello aperto

Se apriamo l’ingresso dell’amplificatore e applichiamo un generatore di se-
gnali come que-llo mostrato nella figura:

[3]

Figura 3.1:

V o = A · V i (3.0.1)

V r = B · V o (3.0.2)

V r = A ·B · V i (3.0.3)

Se ora rimuoviamo il generatore e ricolleghiamo il circuito, come in Figu-
ra 1, l’ingresso dell’amplifica-tore è il segnale di retroazione. Quindi, avremo
comportamenti diversi a seconda del valore del guadagno del circuito A·B.
I casi possibili sono:
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- Se A·B<1, Vo verrà attenuato nel tempo:

[24]

Figura 3.2: Attenuazione dell’uscita
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- Se A·B> 1 Vo aumenta nel tempo

[18]

Figura 3.3: Il segnale diverge nel tempo

Ciò porterà l’amplificatore alle zone di saturazione, deformando il segnale
di uscita.
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- Se A·B=1 Vo sarà un segnale sinusoidale stabile nel tempo

[18]

Figura 3.4: Segnale stabile nel tempo

Quindi per costruire un oscillatore, abbiamo bisogno che, quando si eccita
il circuito, A·B>1 e poi quando l’uscita Vo è cresciuta fino all’ampiezza
desiderata il guadagno del circuito diminuisce automaticamente e assume
un valore uguale a uno (A·B=1). Ricordiamo che A e B sono in realtà A(jω)
e B(jω), cioè sono funzioni della frequenza e per tanto l’oscillazione puó
succedere per una gamma di frequenze o per una particolare frequenza. In
un oscillatore faremo in modo che questo accada solo per una frequenza fo,
la frequenza di oscillazione che vogliamo avere nel circuito.
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Capitolo 4

L’approccio seriale

In questo capitolo si mira a formalizzare il ragionamento visto nella sezione
[2.2], partendo dapprima da un caso semplificato, ossia in assenza di dinami-
ca, per poi affrontare il caso generale. L’obiettivo è trarre da tale approccio
informazioni corrette sul comportamento del sistema in funzione di H e G.
In particolare siamo interessati alla stabilità del sistema e alla presenza di
oscillazioni nella risposta libera.

4.1 Un risultato preliminare

Si consideri un sistema non dinamico, retroazionato positivamente, in cui
H(s) = H ∈ R e G(s) = G ∈ R. In questo modo, a tutte le pulsazioni ω
l’amplificazione dell’anello risulta essere H(jω)G(jω) = HG ∈ R. Se ad
esempio H = 4 e G = 0.5, calcolando il valore della f.d.t.:

F (s) =
H(s)

1−H(s)G(s)
=

4

1− 2
= −4

Da questa ci aspetteremmo di aver descritto un amplificatore invertente con
amplificazione pari a 4. In realtà tale sistema è BIBO-instabile. Questo è
uno dei casi in cui la rimozione del ritardo di propagazione dall’anello trae
in inganno. Una volta reintrodotta, il ragionamento con cui si è ricavato il
criterio esteso nella sezione [14] fornisce una predizione ragionevole.

Per prima cosa, modifichiamo il nostro sistema retroazionato positiva-
mente come in figura 4.1. Si dimostra facilmente che inserire un unico ritardo
nell’anello di retroazione pari alla somma dei ritardi introdotti dai singoli
rami è equivalente a considerare il ritardo di ciascun ramo. Facendo tendere
∆t a 0, alla fine, otterremo predizioni valide per il sistema di partenza.

Rimaniamo nel dominio del tempo, e indichiamo il ritardo con ∆t. Dal
momento che il sistema è tempo invariante, consideriamo t = 0 l’istante
iniziale senza perdere in generalità. Le equazioni che descrivono il sistema
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Figura 4.1: Sistema a retroazione positiva con ritardo di propagazione

sono: 
y(t) = He(t)

w(t) = Gy(t−∆t)

e(t) = u(t) + w(t)

Sostituendo la terza nella prima:

y(t) = H(u(t) + w(t))

E scrivendo l’espressione di w(t) come riportato nella seconda:

y(t) = H(u(t) +Gy(t−∆t))

Che, riarrangiata, diventa:

y(t) = HGy(t−∆t) +Hu(t)

Ci si può dunque ricondurre ad una rappresentazione per successioni:

yn = HGyn−1 +Hun (4.1.1)

Per prima cosa, cerchiamo un equilibrio della successione (yn)n, ossia un
valore y tale che se yn = y, allora yn+1 = y per ogni n.

y = HGy +Hun

⇐⇒ y (1−HG) = Hun

⇐⇒ y =
H

1−HG
un

e ciò è valido se e solo se un = u costante:

y =
H

1−HG
u (4.1.2)

Se non volessimo avere un = u e yn = H
1−HG u per ogni n ∈ Z, basterebbe

imporre la condizione un = u per n > 0 e y−1 = H
1−HG u. Infatti, applicando

la 4.1.1:
y0 = HGy−1 +Hu0 =
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= HG

(
H

1−HG
u

)
+Hu =

=
H2Gu+H(1−HG)u

1−HG
=

=
H

1−HG
u

e per induzione, si ha che yn = H
1−HG u ∀n ≥ −1. Ciò è già irrealizzabile di

per sé nel caso reale, poiché nella realtà fisica possiamo controllare solamente
la u: la y ne è una conseguenza. Infatti le condizioni di studio dei sistemi
sono, usualmente, a stato nullo e ingressi nulli per istanti precedenti a quello
iniziale. Ciò implica, grazie all’equazione d’uscita in 1.2.3 che anche l’uscita
sia nulla per istanti precedenti a quello iniziale. Ciononostante, studiamo
la stabilità di questo equilibrio nel senso delle successioni, per capire se
l’uscita vi tenda anche qualora la condizione sulla y−1 sopra citata non sia
soddisfatta (e in particolare per yn = 0 per n < 0.

Chiamiamo L = H
1−HG u per semplicità. Sia E ∈ R, e sia y−1 = L + E .

Allora:
y0 = HGy−1 +Hu0 =

= HG (L+ E) +Hu =

= HGL+Hu+HGE =

= L+HGE

e quindi, induttivamente:

yn = L+ (HG)n+1E

Il che significa che se |HG| < 1, l’uscita yn tenderà a L anche se la y−1 non è
esattamente L. Se |HG| >, invece, l’uscita divergerà. Un interessante caso
particolare si ha per u = 0. Allora L = 0 e E = yn−1.

yn = (HG)n+1E

Dal momento che è sempre presente del rumore termico in sistemi reali, an-
che un sistema in cui l’equilibrio dovrebbe essere l’uscita nulla sarà instabile,
e l’uscita saturerà in breve tempo (praticamente nullo).

Vale la pena di calcolare yn applicando ricorsivamente la 4.1.1 in condi-
zioni iniziali nulle (ossia un = yn = 0 se n < 0).

y0 = Hu0

y1 = HG(Hu0) +Hu1 = H(HGu0 + u1)

y2 = HG
(
H(HGu0 + u1)

)
+Hu2 = H

(
(HG)2u0 +HGu1 + u2)

)
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...

yn = H
(
u0(HG)n + u1(HG)n−1 + · · ·+ un−1(HG) + un

)
yn = H

n∑
k=0

(HG)kun−k (4.1.3)

In particolare, sia un = u per n > 0

yn = uH

n∑
k=0

(HG)k

Si osservi che
∑n

k=0(HG)k è l’ennesimo termine di una serie geometrica.
Pertanto:

• se |HG| > 1 l’uscita è illimitata

• se |HG| < 1, la serie converge a 1
1−HG , quindi:

limn→∞yn =
H

1−HG
u (4.1.4)

Si consideri ora di far tendere a 0 il ∆t. Questo è equivalente ad avere infinite
propagazioni attraverso il circuito in tempo zero, e questo ad ogni istante t.
Pertanto limn→∞yn non è più il valore dell’uscita all’istante n-esimo, bens̀ı:

y(t) = limn→∞

n∑
k=0

(HG)ku(t)

Quando |HG| < 1 la serie converge ed effettivamente si ha:

y(t) =
H

1−GH
u(t)

Quando |HG| > 1, invece, la serie diverge e si potrebbe dire che, nel modello:

y(t) = +∞ ∀t > 0

Nel caso reale non si ha mai ∆t = 0 e quindi l’uscita ha l’andamento di yn.
Non appare a gradini perchè il ritardo attraverso il loop, alla velocità della
luce, è dell’ordine di circa trenta picosecondi per centimetro da percorrere.
Pertanto i gradini sarebbero molto brevi anche in assenza di altri disturbi,
e a un normale strumento di misura sono impossibili da apprezzare.

Un altro importante caso particolare della 4.1.3 si ha quando u0 = 1,
un = 0 per n 6= 0. In questa situazione l’uscita è:

yn = H(HG)n (4.1.5)
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In altre parole, la risposta all’impulso del sistema a tempo discreto è la
successione hn = H(HG)n per n > 0. Se |HG| < 1 si ha che hn tende
a zero per n → ∞. Viceversa, per |HG| > 1 si ha hn illimitata. Per il
valore di frontiera tra i due casi, ossia |HG| = 1, hn = H, costante. Tale
condizione è esattamente la traduzione di quanto riportato nella sezione
[2.2] per ω = 0. Infatti, per quel che riguarda la stabilità del sistema, grazie
a quanto dimostrato precedentemente si può affermare che il sistema sia
esternamente stabile se |HG| < 1, e non lo sia altrimenti. Per quel che
riguarda la stabilità in senso stretto, invece, si sarebbe persuasi di definire
il sistema:

• stabile quando |HG| < 1, poichè y tende a 0 quando non si applicano
ingressi;

• marginalmente stabile quando |HG| = 1, poichè il sistema ”oscilla a
frequenza nulla”, ossia mantiene autonomamente un’uscita costante

• instabile quando |HG| > 1, poichè non appena un qualsiasi segnale nel
sistema dovesse discostarsi da 0, l’uscita y crescerebbe illimitatamente
in valore assoluto

Tale visione, a rigore, è corretta solo per il sistema a tempo discreto. Infatti
per i sistemi a tempo discreto l’equazione differenziale in 1.1.1 diventa un’e-
quazione alle differenze, la quale nel nostro caso sarebbe la 4.1.3. Da ciò si
deduce che lo stato può essere rappresentato proprio dalla y.

In conclusione, la descrizione classica di questo sistema con l’imposizione
del tempo di propagazione pari a zero fornisce risultati corretti soltanto se
|HG| < 1. Quando invece |HG| > 1, la f.d.t. ricavata in modo classico for-
nisce risultati scorretti sul reale comportamento del sistema, e bisognerebbe
piuttosto ricorrere all’introduzione del ritardo, per poi farlo tendere a zero.
Di seguito riportiamo delle simulazioni svolte per il circuito di cui sopra, sia
col modello di figura (figura 4.2), sia col modello appena introdotto (figura
4.1) e ritardi decrescenti (figure 4.3, 4.4, 4.5, 4.6, 4.7. Qualora il lettore stes-
se visualizzando l’elaborato in formato pdf, per la visualizzazione corretta
dei grafici delle risposte nel tempo si consiglia un fattore di zoom del 150%
o superiore.
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Date/Time run: 03/05/18 18:43:33
* C:\Users\simsa\Documents\00 MATTEO\00 Universit\01 - TESI\Simulazioni pSpice\Non Dinamico retroaz positivo\Sch...

Temperature: 27.0

Date: March 05, 2018 Page 1 Time: 18:46:41

(B) Schematic1.dat (active)

           Time

0s 2ms 4ms 6ms 8ms 10ms 12ms 14ms 16ms 18ms 20ms
V(H:3)

-7.0V

-6.0V

-5.0V

-4.0V

-3.0V

-2.0V

Figura 4.2: Risposta del circuito non dinamico ad ingresso costante di
ampiezza 1, modello senza ritardo di propagazione

Date/Time run: 03/05/18 19:03:31
* C:\Users\simsa\Documents\00 MATTEO\00 Universit\01 - TESI\Simulazioni pSpice\Non Dinamico retroaz positivo con...

Temperature: 27.0

Date: March 05, 2018 Page 1 Time: 19:04:23

(A) Schematic1.dat (active)

           Time

0s 50us 100us 150us 200us 250us 300us 350us 400us 450us
V(H:3)

0V

2.0GV

4.0GV

6.0GV

8.0GV

10.0GV

Figura 4.3: Risposta del circuito non dinamico ad ingresso costante di am-
piezza 1, modello con ritardo di propagazione. ∆t = 10µs, Step ceiling =
100ns
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Date/Time run: 03/05/18 19:03:31
* C:\Users\simsa\Documents\00 MATTEO\00 Universit\01 - TESI\Simulazioni pSpice\Non Dinamico retroaz positivo con...

Temperature: 27.0

Date: March 05, 2018 Page 1 Time: 19:04:23

(A) Schematic1.dat (active)

           Time

0s 50us 100us 150us 200us 250us 300us 350us 400us 450us
V(H:3)

0V

2.0GV

4.0GV

6.0GV

8.0GV

10.0GV

Figura 4.4: Risposta del circuito non dinamico ad ingresso costante di am-
piezza 1, modello con ritardo di propagazione. ∆t = 5µs, Step ceiling =
100ns

Date/Time run: 03/05/18 19:10:05
* C:\Users\simsa\Documents\00 MATTEO\00 Universit\01 - TESI\Simulazioni pSpice\Non Dinamico retroaz positivo con...

Temperature: 27.0

Date: March 05, 2018 Page 1 Time: 19:10:21

(A) Schematic1.dat (active)

           Time

0s 40us 80us 120us 160us 200us 240us
V(H:3)

0V

2.0GV

4.0GV

6.0GV

8.0GV

10.0GV

Figura 4.5: Risposta del circuito non dinamico ad ingresso costante di am-
piezza 1, modello con ritardo di propagazione. ∆t = 1µs, Step ceiling =
10ns
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Date/Time run: 03/05/18 19:10:05
* C:\Users\simsa\Documents\00 MATTEO\00 Universit\01 - TESI\Simulazioni pSpice\Non Dinamico retroaz positivo con...

Temperature: 27.0

Date: March 05, 2018 Page 1 Time: 19:10:21

(A) Schematic1.dat (active)

           Time

0s 40us 80us 120us 160us 200us 240us
V(H:3)

0V

2.0GV

4.0GV

6.0GV

8.0GV

10.0GV

Figura 4.6: Risposta del circuito non dinamico ad ingresso costante di am-
piezza 1, modello con ritardo di propagazione. ∆t = 500nss, Step ceiling =
1ns

Date/Time run: 03/05/18 19:10:05
* C:\Users\simsa\Documents\00 MATTEO\00 Universit\01 - TESI\Simulazioni pSpice\Non Dinamico retroaz positivo con...

Temperature: 27.0

Date: March 05, 2018 Page 1 Time: 19:10:21

(A) Schematic1.dat (active)

           Time

0s 40us 80us 120us 160us 200us 240us
V(H:3)

0V

2.0GV

4.0GV

6.0GV

8.0GV

10.0GV

Figura 4.7: Risposta del circuito non dinamico ad ingresso costante di am-
piezza 1, modello con ritardo di propagazione. ∆t = 1nss, Step ceiling =
1ps
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Queste rispecchiano le previsioni teoriche appena presentate. Nella fat-
tispecie si noti che per le simulazioni con ritardo decrescente (figure da 4.3 a
4.7), al tendere a zero del tempo di propagazione, il tempo in cui il segnale
d’uscita diverge tende a zero.

Nella prossima sezione, estendiamo il ragionamento ai sistemi LTI ge-
nerali, evidenziando la maggior complessità della trattazione e ricavando
risultati più generali.

4.2 L’approccio seriale per i sistemi LTI

Consideriamo il caso generale di sistema LTI, e facciamo ancora riferimento
allo schema in 4.1. Sia ∆t il ritardo di propagazione attraverso l’anello di re-
troazione. Consideriamo un segnale di ingresso u tale che la sua trasformata
di Laplace sia U . Sia Y la trasformata dell’uscita.

Consideriamo l’intervallo [0, ∆t). Durante tale intervallo, il segnale non
si è ancora propagato attraverso il ramo di retroazione e quindi w è ancora
nullo. La trasformata dell’uscita del sistema è pertanto:

Y (s) = H(s)U(s)

mentre in uscita dal blocco G si ha un segnale la cui trasformata è:

Y (s)G(s) =
(
H(s)G(s)

)
U(s)

All’istante ∆t finalmente il segnale w non è più nullo, e in particolare è una
versione ritardata di ∆t secondi del segnale in uscita dal blocco G. Pertanto,
la sua trasformata è:

W (s) =
(
H(s)G(s)

)
U(s) e−s∆t

Durante l’intervallo [∆t, 2∆t) , il segnale e avrà dunque trasformata:

E(s) = U(s) +W (s) = U(s) +
(
H(s)G(s)

)
U(s) e−s∆t =

= U(s)
(
1 + (H(s)G(s) e−s∆t

)
Dunque l’uscita sarà:

Y (s) = H(s)E(s) = H(s)
(
U(s) (1 + (H(s)G(s) e−s∆t

))
Ripetendo il procedimento, si ottiene che durante l’intervallo [2∆t, 3∆t) la
W è:

W (s) =
(
H(s)G(s)

) (
U(s) (1 + (H(s)G(s) e−s∆t

))
e−s∆t =

W (s) = U(s)
((
H(s)G(s)

)
e−s∆t +

(
H(s)G(s)

)2
e−2s∆t

)
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E dunque la Y risulta essere:

Y (s) =
(
U(s) +W (s)

)
H(s) =

= H(s)U(s)
(

1 +
(
H(s)G(s)

)
e−s∆t +

(
H(s)G(s)

)2
e−2s∆t

)
In generale, iterando, si ottiene la trasformata di Y per l’intervallo

[
n∆t, (n+1) ∆t

)
:

Y (s) =

[
H(s)

n∑
k=0

(
H(s)G(s)

)k
e−ks∆t

]
U(s) (4.2.1)

Come si può vedere, questa forma è la versione più generale della 4.1.3.
Inoltre, se ∆t→ 0, la 4.2.1 tende a:

Y (s) =

[
H(s)

n∑
k=0

(
H(s)G(s)

)k]
U(s) (4.2.2)

Ci sono diverse osservazioni da fare. La prima è che la serie geometrica
per numeri complessi è formalmente uguale a quella per numeri reali: con-
verge se, essendo ak la generatrice, si ha |a| < 1, e il limite è 1

1−a (∈ C, in
questo caso).

La seconda e più importante considerazione è che nel risultato prelimina-
re si aveva a che fare con una serie numerica, mentre in questo caso generale
si ha a che fare con una serie di funzioni (in questo caso complesse). Si osser-
vi che, pertanto, è necessario stabilire a priori la definizione di convergenza
da utilizzare.

La trasformata inversa di Laplace è definita da [35]:

f(t) =
1

2πj
lim
M→∞

∫ γ+jM

γ−jM
F (s) est ds

e in particolare, nei casi di nostro interesse, si ha γ = 0. Supponiamo che
la serie 4.2.2 converga, per cui è lecito scriverne il limite per n tendende
a +∞, e supponiamo che la convergenza al limite sia uniforme. Poichè la
convergenza uniforme implica la convergenza puntuale, per unicità del limite
si ha, necessariamente:

lim
n→+∞

H(s)

(
n∑
k=0

(
H(s)G(s)

)k)
U(s) =

=
H(s)

1−H(s)G(s)
U(s)
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per ogni s nella ROC [35] di quest’ultima. Dunque:

lim
n→+∞

H

(
n∑
k=0

(
H G

)k)
U =

=
H

1−H G
U

dove la convergenza si intende in senso uniforme. Possiamo dunque scrivere:

L −1

[
H

1−H G
U

]
=

L −1

[
lim

n→+∞
H

(
n∑
k=0

(
H G

)k)
U

]
=

=
1

2πj

∫ +j∞

−j∞
lim

n→+∞

[
H(s)

(
n∑
k=0

(
H(s)G(s)

)k)
U(s)

]
est ds

Poiché la convergenza è uniforme per ipotesi, possiamo invertire il segno di
limite col segno di integrale e scrivere:

lim
n→+∞

1

2πj

∫ +j∞

−j∞

[
H(s)

(
n∑
k=0

(
H(s)G(s)

)k)
U(s)

]
est ds =

= lim
n→+∞

n∑
k=0

[
1

2πj

∫ +j∞

−j∞
H(s)

(
H(s)G(s)

)k
U(s) est ds

]
=

= lim
n→+∞

n∑
k=0

L −1
[
H(s)

(
H(s)G(s)

)k
U(s)

]
Riassumendo, se la serie converge uniformemente, converge alla f.d.t. e allora
la risposta del sistema al segnale u coincide con la serie delle risposte a u
dei sistemi H(HG), H(HG)2, H(HG)3. . . In simboli:

L −1

[
H

1−HG
U

]
=
∞∑
k=0

L −1
[
H
(
H G

)k
U
]

(4.2.3)

L’uniforme convergenza è solo condizione sufficiente affinchè si possa
invertire il segno di limite con il segno di integrale. Pertanto, ci potrebbero
essere casi in cui nonostante la convergenza non sia uniforme, la risposta del
sistema reale si può comunque calcolare con la f.d.t. intesa in senso classico.

Mentre per il caso in sezione 4.1 bastava imporre |HG| < 1 per ave-
re stabilità esterna e quindi stabilità asintotica, nel caso generale imporre
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|H(s)G(s)| < 1 per ogni s appartenente alla ROC non è sufficiente, poichè
ciò implica solamente la convergenza puntuale. Inoltre, se anche trovassimo
una condizione affinchè valga la 4.2.3, questo ci permetterebbe soltanto di

affermare che la risposta del sistema è effettivamente pari a L −1
[

H
1−HG U

]
,

senza poter dedurre niente riguardo la stabilità esterna. A maggior ra-
gione, dunque, non può essere sufficiente imporre |H(jω)G(jω)| < 1 per
ω : ∠H(jω)G(jω) = 0 per decretare alcunché sulla stabilità esterna, men
che meno su quella interna.
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Capitolo 5

Un controesempio

In questo capitolo anchè analizzeremo diversi circuiti, il loro feedback e in-
stabilità e la loro risposta nel dominio della frequenza per confrontare i
risultati con il criterio di Barkhausen e ottenere le condizioni sufficienti per
l’oscillazione.

5.1 Controesempio

La fase preliminare di ricerca bibliografica ha portato ad esaminare gli arti-
coli [30][8][2]. In particolare, al punto 3 “Example 2” di [30] viene presentato
un circuito in cui il blocco H è un amplificatore non invertente di guada-
gno K, mentre il blocco G di retroazione è realizzato come un partitore tra
una serie RC e un parallelo RC, in modo da presentare un comportamento
oscillatorio (vedasi figura 5.1, tratta da [30]. Tale circuito ha la proprietà di
essere asintoticamente stabile per K < 1 e K > 1.5, mentre è instabile se
K ∈ (1, 1.5). Sulla frontiera dell’intervallo si ha marginale stabilità. Il fatto
interessante è che il criterio esteso di Barkhausen prevederebbe comporta-
mento oscillatorio instabile per K > 1.5, stabile per K < 1.5. La funzione
di trasferimento è:

H(s)G(s) = K
1 + s2R2C2 + 2 sRC

1 + s2R2C2 + 3 sRC
(5.1.1)

In figura 5.2 il diagramma di Nyquist per il circuito per K = 1, R = 1 kΩ,
C = 1 nF. Su di esso è riportato il punto 1

K per i valori più significativi
di K (si faccia riferimento a [22], tenendo presente che nel nostro caso si
ha retroazione positiva, non negativa). Si riportano inoltre in figura 5.3 i
diagrammi di Bode per modulo e fase, tracciato per gli stessi valori di K,
R e C. Innanzitutto, il circuito è stato simulato su pSpice 9.1 utilizzando
lo schema circuitale di figura 5.4. Lo schema è differente da quello visto in
figura 5.1. Si vuole dunque motivare l’introduzione di due dispositivi VCVS
(Voltage Controlled Voltage Source) in più rispetto al circuito originale:
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Figura 5.1: Lo schema circuitale come in [32]

Figura 5.2: Il diagramma di Nyquist per il circuito in figura 5.1

Figura 5.3: I diagrammi di Bode per il circuito in figura 5.1

• il VCVS A è un amplificatore ideale di tensione controllato in tensione;
fa le veci dell’amplificatore a guadagno K presentato in figura 5.1;
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Figura 5.4: Lo schema circuitale ideale su pSpice 9.1

• il VCVS S viene usato come sommatore non invertente, in modo da
poter dare un impulso iniziale al circuito con l’ausilio del generatore Vp;
detta w l’uscita del blocco B, è facile verificare, sfruttando la sovrap-
posizione degli effetti, che all’ingresso di S si ha 1

3w+ 1
3Vp; pertanto il

blocco B ha guadagno pari a 3;

• il VCVS B fa da buffer non invertente, neccessario a causa dell’introu-
zione delle resistenze Rp, Rw, Rpd.

Dare un impulso iniziale al circuito è necessario perchè altrimenti, essendo
tutti i componenti ideali, si ha uscita nulla anche in caso di circuito instabile,
causa le condizioni iniziali nulle. L’impulso iniziale permette di perturbare
dunque lo stato del sistema.

L’impulso iniziale utilizzato nella simulazione è rettangolare, di durata
1µs, fronti di salita e discesa molto ripidi (tempo di salita e di discesa pari
a 10 ns), ampiezza 1V. Come previsto dall’articolo [32], il circuito esibisce
un comportamento stabile per K < 1. In particolare, si può osservare dal-
le figure 5.5, 5.6, 5.7, 5.8 e 5.9 come le capacità nell’anello di retroazione
reagiscano ai fronti dell’impulso generando degli spike molto brevi in corri-
spondenza di essi. Tali impulsi tendono ad avere durata nulla e ampiezza
infinita quando K tende a 1 (figure 5.8 e 5.9).
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Date/Time run: 03/04/18 00:51:16
* C:\Users\simsa\Documents\00 MATTEO\00 Universit\01 - TESI\Simulazioni pSpice\Counterexample\Schematic1.sch

Temperature: 27.0

Date: March 04, 2018 Page 1 Time: 00:51:38

(A) Schematic1.dat (active)

           Time

0s 2us 4us 6us 8us 10us 12us 14us 16us 18us 20us
V(C11:2)

-0.5V

0V

0.5V

1.0V

Figura 5.5: K=0.5; Step ceiling = 100ns

Date/Time run: 03/04/18 00:52:37
* C:\Users\simsa\Documents\00 MATTEO\00 Universit\01 - TESI\Simulazioni pSpice\Counterexample\Schematic1.sch

Temperature: 27.0

Date: March 04, 2018 Page 1 Time: 00:53:02

(A) Schematic1.dat (active)

           Time

0s 2us 4us 6us 8us 10us 12us 14us 16us 18us 20us
V(C11:2)

-10V

-5V

0V

5V

10V

Figura 5.6: K=0.9; Step ceiling = 100ns
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Date/Time run: 03/04/18 00:53:20
* C:\Users\simsa\Documents\00 MATTEO\00 Universit\01 - TESI\Simulazioni pSpice\Counterexample\Schematic1.sch

Temperature: 27.0

Date: March 04, 2018 Page 1 Time: 00:53:45

(A) Schematic1.dat (active)

           Time

0s 2us 4us 6us 8us 10us 12us 14us 16us 18us 20us
V(C11:2)

-100V

-50V

0V

50V

100V

Figura 5.7: K=0.99; Step ceiling = 100ns

Date/Time run: 03/04/18 00:57:27
* C:\Users\simsa\Documents\00 MATTEO\00 Universit\01 - TESI\Simulazioni pSpice\Counterexample\Schematic1.sch

Temperature: 27.0

Date: March 04, 2018 Page 1 Time: 00:57:59

(A) Schematic1.dat (active)

           Time

0s 10ps 20ps 30ps 40ps 50ps 60ps 70ps 80ps 90ps 100ps
V(C11:2)

0V

200KV

400KV

600KV

800KV

Figura 5.8: K=0.999999; Step ceiling = 1ps
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Date/Time run: 03/04/18 00:58:30
* C:\Users\simsa\Documents\00 MATTEO\00 Universit\01 - TESI\Simulazioni pSpice\Counterexample\Schematic1.sch

Temperature: 27.0

Date: March 04, 2018 Page 1 Time: 01:05:11

(A) Schematic1.dat (active)

           Time

1.000000us 1.000002us 1.000004us 1.000006us 1.000008us 1.000010us
V(C11:2)

-600KV

-400KV

-200KV

0KV

-700KV

Figura 5.9: K=0.999999; Step ceiling = 1ps
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Per K = 1 non è possibile ottenere una simulazione. Per K > 1 si ha
un comportamento che sembra semplicemente divergente, mentre si rive-
la essere oscillatorio e divergente via via che si impostano valori di K più
elevati (si faccia riferimento alle figure da 5.10 a 5.35). Il limite a 10 GV
imposto dal simulatore, combinato con la rapidità con cui l’ampiezza dell’u-
scita diverge, non permette di apprezzare l’andamento oscillatorio. Questo
perché, raggiunta tale tensione d’uscita (comunque irrealistica, poiché am-
plificatori reali saturerebbero a poco meno della tensione di alimentazione),
la simulazione si interrompe.

Poiché all’aumentare di K tale crescita esponenziale diventa via via meno
brusca, da K = 1.26 (figura 5.14) si riesce a notare un leggero innalzamento
della tensione prima del crollo in negativo. Da K = 1.27 (figura 5.15) a
salire, tale andamento si rende sempre più evidente. Per K = 1.35 (figura
5.23) si riescono finalmente ad apprezzare due interi periodi della sinusoide.
Via via che K approccia il valore di 1.5, il numero di cicli visibili prima che
il simulatore arrivi al suo limite d’ampiezza cresce, tendendo all’infinito.

Date/Time run: 03/04/18 01:05:56
* C:\Users\simsa\Documents\00 MATTEO\00 Universit\01 - TESI\Simulazioni pSpice\Counterexample\Schematic1.sch

Temperature: 27.0

Date: March 04, 2018 Page 1 Time: 01:06:55

(A) Schematic1.dat (active)

           Time

0s 1ps 2ps 3ps 4ps 5ps 6ps 7ps 8ps 9ps 10ps
V(C11:2)

-10GV

-8GV

-6GV

-4GV

-2GV

0GV

Figura 5.10: K=1.000001; Step ceiling = 1ps
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Date/Time run: 03/04/18 01:07:41
* C:\Users\simsa\Documents\00 MATTEO\00 Universit\01 - TESI\Simulazioni pSpice\Counterexample\Schematic1.sch

Temperature: 27.0

Date: March 04, 2018 Page 1 Time: 01:08:10

(A) Schematic1.dat (active)

           Time

0s 0.4us 0.8us 1.2us 1.6us 2.0us 2.4us 2.8us
V(C11:2)

-10GV

-8GV

-6GV

-4GV

-2GV

0GV

Figura 5.11: K=1.1; Step ceiling = 50ns

Date/Time run: 03/04/18 01:08:49
* C:\Users\simsa\Documents\00 MATTEO\00 Universit\01 - TESI\Simulazioni pSpice\Counterexample\Schematic1.sch

Temperature: 27.0

Date: March 04, 2018 Page 1 Time: 01:09:10

(A) Schematic1.dat (active)

           Time

0s 1.0us 2.0us 3.0us 4.0us 5.0us 6.0us 7.0us 8.0us
V(C11:2)

-10GV

-8GV

-6GV

-4GV

-2GV

0GV

Figura 5.12: K=1.2; Step ceiling = 50ns
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Date/Time run: 03/04/18 01:09:49
* C:\Users\simsa\Documents\00 MATTEO\00 Universit\01 - TESI\Simulazioni pSpice\Counterexample\Schematic1.sch

Temperature: 27.0

Date: March 04, 2018 Page 1 Time: 01:11:20

(A) Schematic1.dat (active)

           Time

0s 2us 4us 6us 8us 10us 12us 14us 16us 18us
V(C11:2)

-10GV

-8GV

-6GV

-4GV

-2GV

0GV

Figura 5.13: K=1.25; Step ceiling = 50ns

Date/Time run: 03/04/18 01:12:19
* C:\Users\simsa\Documents\00 MATTEO\00 Universit\01 - TESI\Simulazioni pSpice\Counterexample\Schematic1.sch

Temperature: 27.0

Date: March 04, 2018 Page 1 Time: 01:12:52

(A) Schematic1.dat (active)

           Time

0s 4us 8us 12us 16us 20us 24us
V(C11:2)

-10GV

-8GV

-6GV

-4GV

-2GV

-0GV

2GV

Figura 5.14: K=1.26; Step ceiling = 50ns
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Date/Time run: 03/04/18 01:13:16
* C:\Users\simsa\Documents\00 MATTEO\00 Universit\01 - TESI\Simulazioni pSpice\Counterexample\Schematic1.sch

Temperature: 27.0

Date: March 04, 2018 Page 1 Time: 01:13:41

(A) Schematic1.dat (active)

           Time

0s 5us 10us 15us 20us 25us
V(C11:2)

-10GV

-5GV

0V

5GV

Figura 5.15: K=1.27; Step ceiling = 50ns

Date/Time run: 03/04/18 01:14:22
* C:\Users\simsa\Documents\00 MATTEO\00 Universit\01 - TESI\Simulazioni pSpice\Counterexample\Schematic1.sch

Temperature: 27.0

Date: March 04, 2018 Page 1 Time: 01:14:45

(A) Schematic1.dat (active)

           Time

0s 4us 8us 12us 16us 20us 24us 28us
V(C11:2)

-2GV

0V

2GV

4GV

6GV

8GV

10GV

Figura 5.16: K=1.28; Step ceiling = 50ns
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Date/Time run: 03/04/18 01:14:54
* C:\Users\simsa\Documents\00 MATTEO\00 Universit\01 - TESI\Simulazioni pSpice\Counterexample\Schematic1.sch

Temperature: 27.0

Date: March 04, 2018 Page 1 Time: 01:15:13

(A) Schematic1.dat (active)

           Time

0s 4us 8us 12us 16us 20us 24us 28us
V(C11:2)

-10GV

-8GV

-6GV

-4GV

-2GV

-0GV

2GV

Figura 5.17: K=1.29; Step ceiling = 50ns

Date/Time run: 03/04/18 01:15:34
* C:\Users\simsa\Documents\00 MATTEO\00 Universit\01 - TESI\Simulazioni pSpice\Counterexample\Schematic1.sch

Temperature: 27.0

Date: March 04, 2018 Page 1 Time: 01:16:12

(A) Schematic1.dat (active)

           Time

0s 4us 8us 12us 16us 20us 24us 28us 32us
V(C11:2)

-2GV

0V

2GV

4GV

6GV

8GV

10GV

Figura 5.18: K=1.30; Step ceiling = 50ns
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Date/Time run: 03/04/18 01:16:35
* C:\Users\simsa\Documents\00 MATTEO\00 Universit\01 - TESI\Simulazioni pSpice\Counterexample\Schematic1.sch

Temperature: 27.0

Date: March 04, 2018 Page 1 Time: 01:16:49

(A) Schematic1.dat (active)

           Time

0s 5us 10us 15us 20us 25us 30us 35us
V(C11:2)

-10GV

-8GV

-6GV

-4GV

-2GV

-0GV

2GV

Figura 5.19: K=1.31; Step ceiling = 50ns

Date/Time run: 03/04/18 01:17:03
* C:\Users\simsa\Documents\00 MATTEO\00 Universit\01 - TESI\Simulazioni pSpice\Counterexample\Schematic1.sch

Temperature: 27.0

Date: March 04, 2018 Page 1 Time: 01:17:23

(A) Schematic1.dat (active)

           Time

0s 5us 10us 15us 20us 25us 30us 35us 40us
V(C11:2)

-10GV

-5GV

0V

5GV

10GV

Figura 5.20: K=1.32; Step ceiling = 50ns
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Date/Time run: 03/04/18 01:17:35
* C:\Users\simsa\Documents\00 MATTEO\00 Universit\01 - TESI\Simulazioni pSpice\Counterexample\Schematic1.sch

Temperature: 27.0

Date: March 04, 2018 Page 1 Time: 01:17:52

(A) Schematic1.dat (active)

           Time

0s 5us 10us 15us 20us 25us 30us 35us 40us 45us
V(C11:2)

-5GV

0V

5GV

10GV

Figura 5.21: K=1.33; Step ceiling = 50ns

Date/Time run: 03/04/18 01:18:17
* C:\Users\simsa\Documents\00 MATTEO\00 Universit\01 - TESI\Simulazioni pSpice\Counterexample\Schematic1.sch

Temperature: 27.0

Date: March 04, 2018 Page 1 Time: 01:19:02

(A) Schematic1.dat (active)

           Time

0s 5us 10us 15us 20us 25us 30us 35us 40us 45us
V(C11:2)

-10GV

-5GV

0V

5GV

Figura 5.22: K=1.34; Step ceiling = 50ns
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Date/Time run: 03/04/18 01:19:14
* C:\Users\simsa\Documents\00 MATTEO\00 Universit\01 - TESI\Simulazioni pSpice\Counterexample\Schematic1.sch

Temperature: 27.0

Date: March 04, 2018 Page 1 Time: 01:19:33

(A) Schematic1.dat (active)

           Time

0s 5us 10us 15us 20us 25us 30us 35us 40us 45us 50us
V(C11:2)

-10GV

-5GV

0V

5GV

10GV

Figura 5.23: K=1.35; Step ceiling = 50ns

Date/Time run: 03/04/18 01:20:08
* C:\Users\simsa\Documents\00 MATTEO\00 Universit\01 - TESI\Simulazioni pSpice\Counterexample\Schematic1.sch

Temperature: 27.0

Date: March 04, 2018 Page 1 Time: 01:20:23

(A) Schematic1.dat (active)

           Time

0s 10us 20us 30us 40us 50us 60us
V(C11:2)

-10GV

-5GV

0V

5GV

10GV

Figura 5.24: K=1.36; Step ceiling = 50ns
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Date/Time run: 03/04/18 01:20:34
* C:\Users\simsa\Documents\00 MATTEO\00 Universit\01 - TESI\Simulazioni pSpice\Counterexample\Schematic1.sch

Temperature: 27.0

Date: March 04, 2018 Page 1 Time: 01:20:52

(A) Schematic1.dat (active)

           Time

0s 10us 20us 30us 40us 50us 60us 70us
V(C11:2)

-10GV

-5GV

0V

5GV

10GV

Figura 5.25: K=1.37; Step ceiling = 50ns

Date/Time run: 03/04/18 01:21:05
* C:\Users\simsa\Documents\00 MATTEO\00 Universit\01 - TESI\Simulazioni pSpice\Counterexample\Schematic1.sch

Temperature: 27.0

Date: March 04, 2018 Page 1 Time: 01:21:26

(A) Schematic1.dat (active)

           Time

0s 10us 20us 30us 40us 50us 60us 70us
V(C11:2)

-10GV

-5GV

0V

5GV

10GV

Figura 5.26: K=1.38; Step ceiling = 50ns
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Date/Time run: 03/04/18 01:21:37
* C:\Users\simsa\Documents\00 MATTEO\00 Universit\01 - TESI\Simulazioni pSpice\Counterexample\Schematic1.sch

Temperature: 27.0

Date: March 04, 2018 Page 1 Time: 01:21:55

(A) Schematic1.dat (active)

           Time

0s 10us 20us 30us 40us 50us 60us 70us 80us
V(C11:2)

-10GV

-5GV

0V

5GV

10GV

Figura 5.27: K=1.39; Step ceiling = 50ns

Date/Time run: 03/04/18 01:22:05
* C:\Users\simsa\Documents\00 MATTEO\00 Universit\01 - TESI\Simulazioni pSpice\Counterexample\Schematic1.sch

Temperature: 27.0

Date: March 04, 2018 Page 1 Time: 01:22:26

(A) Schematic1.dat (active)

           Time

0s 10us 20us 30us 40us 50us 60us 70us 80us 90us
V(C11:2)

-10GV

-5GV

0V

5GV

10GV

Figura 5.28: K=1.40; Step ceiling = 50ns
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Date/Time run: 03/04/18 01:22:46
* C:\Users\simsa\Documents\00 MATTEO\00 Universit\01 - TESI\Simulazioni pSpice\Counterexample\Schematic1.sch

Temperature: 27.0

Date: March 04, 2018 Page 1 Time: 01:22:59

(A) Schematic1.dat (active)

           Time

0s 20us 40us 60us 80us 100us
V(C11:2)

-2.0GV

-1.0GV

0V

1.0GV

2.0GV

Figura 5.29: K=1.42; Step ceiling = 50ns

Date/Time run: 03/04/18 01:23:41
* C:\Users\simsa\Documents\00 MATTEO\00 Universit\01 - TESI\Simulazioni pSpice\Counterexample\Schematic1.sch

Temperature: 27.0

Date: March 04, 2018 Page 1 Time: 01:24:05

(A) Schematic1.dat (active)

           Time

0s 20us 40us 60us 80us 100us 120us 140us 160us
V(C11:2)

-10GV

-5GV

0V

5GV

10GV

Figura 5.30: K=1.44; Step ceiling = 50ns
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Date/Time run: 03/04/18 01:24:46
* C:\Users\simsa\Documents\00 MATTEO\00 Universit\01 - TESI\Simulazioni pSpice\Counterexample\Schematic1.sch

Temperature: 27.0

Date: March 04, 2018 Page 1 Time: 01:25:04

(A) Schematic1.dat (active)

           Time

0s 40us 80us 120us 160us 200us 240us
V(C11:2)

-10GV

-5GV

0V

5GV

10GV

Figura 5.31: K=1.46; Step ceiling = 50ns

Date/Time run: 03/04/18 01:25:34
* C:\Users\simsa\Documents\00 MATTEO\00 Universit\01 - TESI\Simulazioni pSpice\Counterexample\Schematic1.sch

Temperature: 27.0

Date: March 04, 2018 Page 1 Time: 01:25:54

(A) Schematic1.dat (active)

           Time

0s 100us 200us 300us 400us 500us 600us
V(C11:2)

-10GV

-5GV

0V

5GV

10GV

Figura 5.32: K=1.48; Step ceiling = 50ns
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Date/Time run: 03/04/18 01:26:31
* C:\Users\simsa\Documents\00 MATTEO\00 Universit\01 - TESI\Simulazioni pSpice\Counterexample\Schematic1.sch

Temperature: 27.0

Date: March 04, 2018 Page 1 Time: 01:26:53

(A) Schematic1.dat (active)

           Time

0s 0.2ms 0.4ms 0.6ms 0.8ms 1.0ms
V(C11:2)

-8.0GV

-4.0GV

0V

4.0GV

8.0GV

Figura 5.33: K=1.49; Step ceiling = 50ns

Date/Time run: 03/04/18 01:27:15
* C:\Users\simsa\Documents\00 MATTEO\00 Universit\01 - TESI\Simulazioni pSpice\Counterexample\Schematic1.sch

Temperature: 27.0

Date: March 04, 2018 Page 1 Time: 01:27:42

(A) Schematic1.dat (active)

           Time

0s 0.4ms 0.8ms 1.2ms 1.6ms 2.0ms 2.4ms
V(C11:2)

-10GV

-5GV

0V

5GV

10GV

Figura 5.34: K=1.495; Step ceiling = 50ns
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Date/Time run: 03/04/18 01:27:53
* C:\Users\simsa\Documents\00 MATTEO\00 Universit\01 - TESI\Simulazioni pSpice\Counterexample\Schematic1.sch

Temperature: 27.0

Date: March 04, 2018 Page 1 Time: 01:28:34

(A) Schematic1.dat (active)

           Time

0s 2ms 4ms 6ms 8ms 10ms
V(C11:2)

-5.0GV

0V

5.0GV

Figura 5.35: K=1.499; Step ceiling = 50ns
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Prevedibilmente, per il valore di 1.5 (figure 5.36 e 5.37), si ha un’oscilla-
zione ad ampiezza costante. Siamo dunque in regime di marginale stabilità.
Per K > 1.5 si può apprezzare un’uscita oscillatoria ma tendente asintotica-
mente a zero. Tale convergenza a zero dell’ampiezza è via via più marcata,
al punto da non riuscire più a notare visivamente l’oscillazione. Si osser-
vano, per K � 1.5, i picchi di risposta ai fronti dell’impulso d’ingresso,
prontamente smorzati.

Date/Time run: 03/04/18 01:29:18
* C:\Users\simsa\Documents\00 MATTEO\00 Universit\01 - TESI\Simulazioni pSpice\Counterexample\Schematic1.sch

Temperature: 27.0

Date: March 04, 2018 Page 1 Time: 01:29:45

(A) Schematic1.dat (active)

           Time

0s 10us 20us 30us 40us 50us 60us 70us 80us 90us 100us
V(C11:2)

-12V

-8V

-4V

0V

4V

8V

12V

Figura 5.36: K=1.5; Step ceiling = 50ns
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Date/Time run: 03/04/18 01:29:59
* C:\Users\simsa\Documents\00 MATTEO\00 Universit\01 - TESI\Simulazioni pSpice\Counterexample\Schematic1.sch

Temperature: 27.0

Date: March 04, 2018 Page 1 Time: 01:30:24

(A) Schematic1.dat (active)

           Time

0s 50us 100us 150us 200us 250us 300us 350us 400us 450us 500us
V(C11:2)

-12V

-8V

-4V

0V

4V

8V

12V

Figura 5.37: K=1.5; Step ceiling = 50ns

Date/Time run: 03/04/18 01:38:43
* C:\Users\simsa\Documents\00 MATTEO\00 Universit\01 - TESI\Simulazioni pSpice\Counterexample\Schematic1.sch

Temperature: 27.0

Date: March 04, 2018 Page 1 Time: 01:40:12

(A) Schematic1.dat (active)

           Time

0s 20us 40us 60us 80us 100us 120us 140us 160us 180us 200us
V(C11:2)

-12V

-8V

-4V

0V

4V

8V

12V

Figura 5.38: K=1.51; Step ceiling = 50ns
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Date/Time run: 03/04/18 01:40:39
* C:\Users\simsa\Documents\00 MATTEO\00 Universit\01 - TESI\Simulazioni pSpice\Counterexample\Schematic1.sch

Temperature: 27.0

Date: March 04, 2018 Page 1 Time: 01:40:51

(A) Schematic1.dat (active)

           Time

0s 20us 40us 60us 80us 100us 120us 140us 160us 180us 200us
V(C11:2)

-10V

-5V

0V

5V

10V

Figura 5.39: K=1.52; Step ceiling = 50ns

Date/Time run: 03/04/18 01:41:25
* C:\Users\simsa\Documents\00 MATTEO\00 Universit\01 - TESI\Simulazioni pSpice\Counterexample\Schematic1.sch

Temperature: 27.0

Date: March 04, 2018 Page 1 Time: 01:41:37

(A) Schematic1.dat (active)

           Time

0s 10us 20us 30us 40us 50us 60us 70us 80us 90us 100us
V(C11:2)

-10V

-5V

0V

5V

10V

Figura 5.40: K=1.53; Step ceiling = 50ns
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Date/Time run: 03/04/18 01:43:11
* C:\Users\simsa\Documents\00 MATTEO\00 Universit\01 - TESI\Simulazioni pSpice\Counterexample\Schematic1.sch

Temperature: 27.0

Date: March 04, 2018 Page 1 Time: 01:43:17

(A) Schematic1.dat (active)

           Time

0s 10us 20us 30us 40us 50us 60us 70us 80us 90us 100us
V(C11:2)

-10V

-5V

0V

5V

10V

Figura 5.41: K=1.55; Step ceiling = 50ns

Date/Time run: 03/04/18 01:43:31
* C:\Users\simsa\Documents\00 MATTEO\00 Universit\01 - TESI\Simulazioni pSpice\Counterexample\Schematic1.sch

Temperature: 27.0

Date: March 04, 2018 Page 1 Time: 01:43:44

(A) Schematic1.dat (active)

           Time

0s 10us 20us 30us 40us 50us 60us 70us 80us 90us 100us
V(C11:2)

-10V

-5V

0V

5V

Figura 5.42: K=1.6; Step ceiling = 50ns
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Date/Time run: 03/04/18 01:43:54
* C:\Users\simsa\Documents\00 MATTEO\00 Universit\01 - TESI\Simulazioni pSpice\Counterexample\Schematic1.sch

Temperature: 27.0

Date: March 04, 2018 Page 1 Time: 01:44:03

(A) Schematic1.dat (active)

           Time

0s 10us 20us 30us 40us 50us 60us 70us 80us 90us 100us
V(C11:2)

-6.0V

-4.0V

-2.0V

0V

2.0V

Figura 5.43: K=1.8; Step ceiling = 50ns

Date/Time run: 03/04/18 01:44:26
* C:\Users\simsa\Documents\00 MATTEO\00 Universit\01 - TESI\Simulazioni pSpice\Counterexample\Schematic1.sch

Temperature: 27.0

Date: March 04, 2018 Page 1 Time: 01:44:39

(A) Schematic1.dat (active)

           Time

0s 10us 20us 30us 40us 50us 60us 70us 80us 90us 100us
V(C11:2)

-6.0V

-4.0V

-2.0V

0V

2.0V

Figura 5.44: K=2; Step ceiling = 50ns
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Date/Time run: 03/04/18 01:44:55
* C:\Users\simsa\Documents\00 MATTEO\00 Universit\01 - TESI\Simulazioni pSpice\Counterexample\Schematic1.sch

Temperature: 27.0

Date: March 04, 2018 Page 1 Time: 01:45:05

(A) Schematic1.dat (active)

           Time

0s 10us 20us 30us 40us 50us 60us 70us 80us 90us 100us
V(C11:2)

-2.5V

-2.0V

-1.5V

-1.0V

-0.5V

-0.0V

0.5V

Figura 5.45: K=3; Step ceiling = 50ns

Date/Time run: 03/04/18 01:45:17
* C:\Users\simsa\Documents\00 MATTEO\00 Universit\01 - TESI\Simulazioni pSpice\Counterexample\Schematic1.sch

Temperature: 27.0

Date: March 04, 2018 Page 1 Time: 01:45:25

(A) Schematic1.dat (active)

           Time

0s 10us 20us 30us 40us 50us 60us 70us 80us 90us 100us
V(C11:2)

-2.5V

-2.0V

-1.5V

-1.0V

-0.5V

-0.0V

0.5V

Figura 5.46: K=4; Step ceiling = 50ns
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Date/Time run: 03/04/18 01:45:42
* C:\Users\simsa\Documents\00 MATTEO\00 Universit\01 - TESI\Simulazioni pSpice\Counterexample\Schematic1.sch

Temperature: 27.0

Date: March 04, 2018 Page 1 Time: 01:45:55

(A) Schematic1.dat (active)

           Time

0s 10us 20us 30us 40us 50us 60us 70us 80us 90us 100us
V(C11:2)

-2.0V

-1.6V

-1.2V

-0.8V

-0.4V

0V

0.4V

Figura 5.47: K=5; Step ceiling = 50ns

Date/Time run: 03/04/18 01:46:06
* C:\Users\simsa\Documents\00 MATTEO\00 Universit\01 - TESI\Simulazioni pSpice\Counterexample\Schematic1.sch

Temperature: 27.0

Date: March 04, 2018 Page 1 Time: 01:46:15

(A) Schematic1.dat (active)

           Time

0s 10us 20us 30us 40us 50us 60us 70us 80us 90us 100us
V(C11:2)

-1.6V

-1.2V

-0.8V

-0.4V

0V

0.4V

Figura 5.48: K=10; Step ceiling = 50ns
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5.2 Il circuito

Figura 5.49: Il circuito reale, realizzato su breadboard

Anche in questa sezione ricordiamo che qualora il lettore stesse visualiz-
zando l’elaborato in formato pdf, per la visualizzazione corretta dei grafici
delle risposte nel tempo si consiglia un fattore di zoom del 150% o superiore.

Il circuito è stato realizzato su breadboard (figura 5.49) con tre operazio-
nali del tipo UA741CP, e collegato come in figura 5.50. Sono stati utilizzati
i seguenti strumenti:

• Generatore di segnali GW INSTEK SFG-1013

• Alimentatore duale Ningbo FTZ Hopewell PS23023DL

• Oscilloscopio PeakTech 1265

Le prove sono state eseguite sia senza segnale d’ingresso, sia con segnale in
ingresso ad onda quadra di periodo 100ms, ampiezza 1 V e duty-cycle del
10%, in modo da sollecitare il circuito e leggerne la risposta sull’oscilloscopio.
Al segnale è stato aggiunto anche un opportuno offset di 1 V in modo che
assumesse i valori di 0 V e 1 V, invece di −0.5 V e 0.5 V, replicando quindi
l’impulso fornito nelle simulazioni.

I blocchi S e A della simulazione sono divenuti il blocco A di questo
circuito: infatti esso fa sia da amplificatore che da sommatore. È immediato

64



CAPITOLO 5. UN CONTROESEMPIO

Figura 5.50: Il circuito reale, riprodotto su pSpice 9.1

vedere che, complessivamente, il blocco A ha amplificazione minima di 2
3 e

massima di 11
3 . In questo modo è possibile studiare il comportamento del

circuito sia per K < 1 che per K > 1.5. Il buffer non invertente B1 e il
buffer non invertente B2 servono ad adattare le impedenze tra un blocco e
l’altro, in modo che il blocco composto da R1, R2, C1 e C2 veda a monte
un’impedenza d’uscita prossima a zero, e a valle un’impedenza d’ingresso
elevata.

Con R1 ed R2 pari a 1 kΩ si ottiene un comportamento stabile del circuito
per K < 1 come da previsioni teoriche e dalla simulazione del circuito in
figura 5.4. Cortocircuitando a massa l’ingresso, si ha risposta nulla finchè K
non supera l’unità. Superata l’unità, tuttavia, non si innesca come sperato
un’oscillazione, bens̀ı si ha una saturazione dell’uscita a +12 V. Inoltre, con
K anche molto maggiore di 1.5 non si ottiene nuovamente risposta nulla
del circuito. Quest’ultimo fatto si spiega facilmente: i sistemi reali hanno
sempre poli causati da capacità parassite alle alte frequenze. Ciò fa s̀ı che il
diagramma di Nyquist vada inesorabilmente verso l’origine degli assi quando
ω tende a +∞. Si osservi ad esempio il diagramma in figura 5.51, tracciato
per la f.d.t. 5.1.1 con l’aggiunta di un polo in s = −106. Per K > 1, in
un caso come questo, si avrà sempre 1

K interno al diagramma di Nyquist, e
dunque instabilità del sistema.

Applicando il segnale d’ingresso come precedentemente specificato, si ha
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Figura 5.51: Il circuito reale, riprodotto su pSpice 9.1

una risposta analoga a quella di un filtro passa basso (si veda figura 5.52
per il fronte di salita, 5.53 per fronte di discesa). Per K maggiori di 1,
nuovamente, si ha uscita costante a 12 V.

Date/Time run: 03/05/18 17:04:22
* C:\Users\simsa\Documents\00 MATTEO\00 Universit\01 - TESI\Simulazioni pSpice\Counterexample\Schematic2 - True ...

Temperature: 27.0

Date: March 05, 2018 Page 1 Time: 17:05:15

(A) Schematic2 - True Circuit.dat (active)

           Time

0s 0.2ms 0.4ms 0.6ms 0.8ms 1.0ms 1.2ms 1.4ms 1.6ms 1.8ms 2.0ms
V(C1:2) V(Ru:1)

0V

0.4V

0.8V

1.2V

1.6V

2.0V

2.4V

Figura 5.52: Risposta del circuito al fronte di salita dell’impulso per
R1 = R2 = 1 kΩ, K < 1
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Date/Time run: 03/05/18 17:05:52
* C:\Users\simsa\Documents\00 MATTEO\00 Universit\01 - TESI\Simulazioni pSpice\Counterexample\Schematic2 - True ...

Temperature: 27.0

Date: March 05, 2018 Page 1 Time: 17:06:05

(A) Schematic2 - True Circuit.dat (active)

           Time

10.0ms 10.2ms 10.4ms 10.6ms 10.8ms 11.0ms 11.2ms 11.4ms 11.6ms 11.8ms 12.0ms
V(C1:2) V(Ru:1)

0V

0.4V

0.8V

1.2V

1.6V

2.0V

2.4V

Figura 5.53: Risposta del circuito al fronte di discesa dell’impulso per
R1 = R2 = 1 kΩ, K < 1

Con R1 ed R2 pari a 100 kΩ si ottiene lo stesso comportamento in termini
di stabilità, ma si può apprezzare un comportamento oscillatorio. Tuttavia,
tale comportamento si presenta per K < 1 e per alcuni valori di K > 1,
mentre nella sezione 5.1 si riporta che l’oscillazione del circuito deve avvenire
per K > 1 soltanto.

Nella fattispecie, quando Rv + R4 è pari a 185kΩ, ossia K = 0.95, si
osserva un andamento del tipo riportato in figura 5.54 in risposta al fronte
di discesa dell’impulso in ingresso. Inoltre, togliendo l’offset dal segnale
d’ingresso e aumentando Rv + R4 a 210 kΩ, arrivando dunque a K = 1.03,
si osserva l’innsescarsi di un’oscillazione ben più evidente (vedi figure 5.55 e
5.56).
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Date/Time run: 03/05/18 17:45:15
* C:\Users\simsa\Documents\00 MATTEO\00 Universit\01 - TESI\Simulazioni pSpice\Counterexample\Schematic2 - True ...

Temperature: 27.0

Date: March 05, 2018 Page 1 Time: 17:46:00

(A) Schematic2 - True Circuit.dat (active)

           Time

10.0ms 10.2ms 10.4ms 10.6ms 10.8ms 11.0ms 11.2ms 11.4ms 11.6ms 11.8ms 12.0ms
V(C1:2) V(Ru:1)

0V

2V

4V

6V

8V

10V

12V

Figura 5.54: Risposta del circuito al fronte di discesa dell’impulso per
R1 = R2 = 100 kΩ, K < 1

Date/Time run: 03/05/18 17:45:15
* C:\Users\simsa\Documents\00 MATTEO\00 Universit\01 - TESI\Simulazioni pSpice\Counterexample\Schematic2 - True ...

Temperature: 27.0

Date: March 05, 2018 Page 1 Time: 17:46:00

(A) Schematic2 - True Circuit.dat (active)

           Time

10.0ms 10.2ms 10.4ms 10.6ms 10.8ms 11.0ms 11.2ms 11.4ms 11.6ms 11.8ms 12.0ms
V(C1:2) V(Ru:1)

0V

2V

4V

6V

8V

10V

12V

Figura 5.55: Risposta del circuito al fronte di discesa dell’impulso per
R1 = R2 = 100 kΩ, K = 1.03
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Date/Time run: 03/05/18 15:52:40
* C:\Users\simsa\Documents\00 MATTEO\00 Universit\01 - TESI\Simulazioni pSpice\Counterexample\Schematic2 - True ...

Temperature: 27.0

Date: March 05, 2018 Page 1 Time: 15:53:05

(A) Schematic2 - True Circuit.dat (active)

           Time

9ms 10ms 11ms 12ms 13ms 14ms 15ms 16ms
V(C1:2) V(Ru:1)

-12V

-8V

-4V

0V

4V

8V

12V

Figura 5.56: Risposta del circuito al fronte di discesa dell’impulso senza
offset per R1 = R2 = 100 kΩ, K = 1.03

Figura 5.57: Risposta del circuito al fronte di discesa dell’impulso sen-
za offset per R1 = R2 = 100 kΩ, K di poco superiore a 1, visualizzata
sull’oscilloscopio in laboratorio
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Il discostamento del comportamento del circuito da quello previsto in 5.1
può essere dovuto a vari fattori. Innanzitutto, le oscillazioni che si riescono
a visualizzare sono sempre sommate ad esponenziali decrescenti che si pos-
sono associare alla scarica dei condensatori. In particolare, si osservi figura
5.56. In essa appare evidente che il clipping introdotto dagli amplificatori
operazionali occorre troppo presto, essendo il valore medio della sinusoide
molto elevato. Di fatto, il duty-cycle del segnale onda quadra è troppo al-
to, seppure fosse il minimo consentito dal generatore di segnali. Per prove
future, si rende necessario lo sviluppo di un generatore di impulsi di durata
ridotta. Questo si può realizzare inserendo in cascata al generatore di se-
gnali un semplice derivatore, seguito da un raddrizzatore che elimini i picchi
negativi.

In secondo luogo, sarà necessario scegliere una più affidabile tecnica rea-
lizzativa del circuito. Al di là del già discusso effetto delle proprietà passa
basso degli amplificatori reali, il sospetto è che le capacità parassite intro-
dotte dal montaggio su breadboard siano tali da modificare sensibilmente il
comportamento del sistema.
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Capitolo 6

Feedback positivo, instabilità
e frequenza di oscilazione

In questo capitolo analizzeremo diversi circuiti, il loro feedback e instabilità
e la loro risposta nel dominio della frequenza per confrontare i risultati con
il criterio di Barkhausen e ottenere le condizioni suficienti per l’oscillazione.

6.1 Ponte di Wien

L’oscillatore Ponte di Wien è un oscillatore comunemente usato, specialmen-
te nei generatori di frequenza audio commerciali.

6.1.1 Circuito 1

L’oscillatore Ponte Wien, utilizza un circuito risonante nella rete di retroa-
zione B, come mostrato nella parte blue della figura 6.1 e una rete A come
amplificatore di guadagno no invertente, parte verde della figura 6.1. La
funzione di trasferimento ha due poli e feedback positivo.

A partire del schema del ponte di Wien:

A = 1 +
R2

R1
(6.1.1)

E la rete di feedback è formata da un circuito risonante RC dove:

V i = V o · R||(−jXc)
(R− jXc)||(R||(−jXc))

conXc =
1

ωc
(6.1.2)
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DI OSCILAZIONE

Figura 6.1: Schema del ponte di Wien

Il risultato della funzione di trasferimento è:

T (s) = (1 +
R2

R1
) · ( RCs

R2C2s2 + 3RCs+ 1
) (6.1.3)

Dove il primo termine corrisponde alla rete di guadagno A (s) e il secondo
alla rete di retroazione B (s).

La funzione di trasferimento nel dominio della frequenza è data da:

T (jω) = (1 +
R2

R1
) · ( RCjω

−R2C2ω2 + 3RCjω + 1
) (6.1.4)

Applicando il criterio di Barkhausen,

T (jω) = 1 (6.1.5)

φ = −arcotg(
3RCω

−R2C2ω2 + 1
) = 0o (6.1.6)
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il circuito oscilla alla frequenza ωo:

Im(T (jω)) = 0→ 1−R2C2ω2 = 1→ ωo =
1

RC
(6.1.7)

Quando:

T (jωo) = (1 +
R2

R1
) ≥ 1→ R2 ≥ 2R1 (6.1.8)

Cioè, quando il loro guadagno è uguale o maggiore di 3, le oscillazio-
ni inizieranno. Facendo riferimento al già citato sulla situazione dei poli,
possiamo osservare che per R2=2R1 (A=3), i poli si trovano sull’asse im-
maginario. Per i valori di A superiori a 3 i poli si troveranno nella metà
destra.

Figura 6.2: Rlocus A=3
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Nel dominio della frequenza, analizzando il diagramma di Nyquist osser-
viamo che i valori di A maggiori o uguali a 3 circondano il punto critico 1, e
quindi si conclude che il sistema è instabile (Figura 6.3). Il circuito oscilla.

Figura 6.3: Diagrama di Nyquist per A=3

Per valori di guadagno inferiori, il diagramma di Nyquist non circonda
il punto critico 1 e quindi il sistema è stabile, ovvero il circuito non oscilla.

74



CAPITOLO 6. FEEDBACK POSITIVO, INSTABILITÀ E FREQUENZA
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Figura 6.4: Diagrama di Nyquist per A=1
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Analizzando il diagramma di Bode, la rete di feedback è un filtro passa-
banda, che produce uno sfasamento di 0o alla frequenza ωo.

Figura 6.5: Diagrama di Bode per A=3

** I risultati ideali coincidono con le simulazioni con OPAMP.

Nel diagramma Bode possiamo osservare come la fase varia da 90o a -90o

e come la frequenza di taglio (frequenza per ampiezza di 0dB) corresponde
alla frequenza teorica fo=1/2πRC=1.591 kHz e quella ottenuta nelle simu-
lazioni, e lo sfazamento è uguale a zero, in modo che il segnale all’uscita del
circuito di retroazione abbia uno sfasamento di 0o.

Il segnale all’uscita della rete di retroazione, quando entra attraverso il
terminale positivo dell’amplificatore (retroazione positiva e sfasamento di
0o), farà s̀ı che il segnale sia in fase e oscile.

Analizzando intuitivamente il circuito, vediamo che alle basse frequenze
il condensatore in serie si comporta come un circuito aperto, quindi l’uscita
Vr sarà zero.

Tra questi estremi l’uscita Vr raggiunge un valore massimo, precisamente
per la frequenza di risonanza fo del circuito. Per questa frequenza il feedback
raggiunge il suo valore massimo, come vediamo nel diagramma di bode.
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6.1.2 Circuito 2

Analizzando lo stesso circuito, Ponte di Wien, ma adesso cambiando i suoi
componenti di posto e il segno del feedback abbiamo i seguenti circuiti.

Il circuito della figura 6.6 è formato per un filtro passa-banda eliminata
come rete di feedback

B(s) =
1 + 2RCs+R2C2s2

1 + 3RCs+R2C2s2
(6.1.9)

e la rete di guadagno A è

A = 1 +
R2

R1
(6.1.10)

Figura 6.6: Ponte di Wien scambiando i suoi componente e feedback positivo

La funzione di trasferimento dell’anello aperto del circuito è:

T (s) = (1 +
R2

R1
) · (R

2C2s2 + 2RCs+ 1

R2C2s2 + 3RCs+ 1
) (6.1.11)
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Dalla funzione di trasferimento e applicando il criterio di Barkhausen
otteniamo che per il circuito di oscillare a una frequenza ωo, ωo = 1/RC,
deve essere soddisfatto che R1≥2R2. Nelle simulazioni in PSpice, sia ideali
che reali, si osserva che il circuito non oscilla per nessun valore di guadagno.

Figura 6.7: Diagrama di Nyquist per A=3 del circuito 6.6

Analizzando i diagrammi di Nyquist, osserviamo che per guadagni mag-
giori o uguali a 3 (guadagni per i quali il criterio di Barkhausen e la con-
dizione di partenza sono soddisfatti), non circonda il punto critico +1, di
conseguenza, il circuito è stabile e non oscillerà.

Le simulazioni nel tempo coincidono con i risultati ottenuti nell’analisi
nel dominio del tempo. Il circuito non oscilla indipendentemente dal fatto
che il criterio di Barkhausen sia soddisfatto.
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Figura 6.8: Diagrama di Bode del circuito 6.6

Alla frequenza di oscillazione f=1/(2πRC)=1.59 kHz lo sfasamento è di
0o.
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6.1.3 Circuito 3

Figura 6.9: Circuito 6.6 con feedback negativo

La funzione di trasferimento di questo circuito dell’anello aperto è:

T (s) = (1 +
R2

R1
) · (R

2C2s2 + 3RCs+ 1

R2C2s2 + 2RCs+ 1
) (6.1.12)

Nel dominio della frequenza:

T (jω) = A · (−R
2C2ω2 + 3RCjω + 1

−R2C2ω2 + 2RCjω + 1
) (6.1.13)
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Applicando il criterio di Barkhausen:

|T (jω)| = 1 (6.1.14)

φ = −arcotg(
−R2C2ω2 + 1

−2RCω
) = −180o (6.1.15)

dalla seguente uguaglianza, avviamo che la frequenza di oscillazione è:

Im(T (jω)) = 0→ 1−R2C2ω2 = 0→ ωo = 1/RC (6.1.16)

T (jωo) = (1 +
R2

R1
) · (
−R2C2

R2C2 + 3RCRC j + 1

−R2C2

R2C2 + 2RCRC j + 1
) ≥ 1→ R2 ≥ 2R1 (6.1.17)

e che il circuito oscilla quando il guadagno sia A≥3/4.

Figura 6.10: Diagrama di Nyquist per A=3/4 del circuito 6.9

Analizzando il diagramma di Nyquist, per valori di guadagno superiori
a 3/4 notiamo che questo circonda il punto critico -1 e perció il sistema
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oscilla. Per valori menori, il circuito non oscila e il suo diagrama di Nyquist
non circonda il punto critico. Il sistema è stabile., non si produrrà nessuna
oscillazione.

Figura 6.11: Diagrama di Bode per A=3/4 del circuito 6.9

Lo sfasamento è 180o a causa di la realimentazione negativa.
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6.1.4 Circuito 4

L’oscillatore Wien Bridge, ma di nuovo scambiando i suoi componenti come
mostrato nella figura:

Figura 6.12: Schema del Ponte di Wien scambiando i suoi componenti

La funzione di trasferimento del circuito è:

T (s) = (1 +
R2Cs

1 +RCs
) · ( R2Cs+R

(RCs+ 1)(R1RCs+R1 +R)
) (6.1.18)

T (jω) = (1 +
R2Cjω

1 +RCjω
) · ( −R2Cω2 +R

(RCjω + 1)(R1RCjω +R1 +R)
) (6.1.19)

Applicando il criterio di Barkhausen, dobbiamo rispettare la seguente
uguaglianza per oscillazione:

Z1

Z2
=
Z3

Z4
→ R1(1 +RCs)

R
=

R2Cs

1 +RCs0
→ R1(1 +RCs)2 = R2RCs

(6.1.20)
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DI OSCILAZIONE

R1 + 2R1RCs+R1R2C2s2 = R2RCs (6.1.21)

R1 + 2R1RCjω −R1R2C2ω2 = R2RCjω (6.1.22)

Raggruppando le parti reali e immaginarie otteniamo che:

La frequenza di oscillazione sarà: ωo=0 y R2≥2R1

I risultati ottenuti dopo le simulazioni con VCV e OPAMP indicano che
il sistema oscillerà, ma si saturerà rapidamente.

Analizzando il diagramma di Nyquist, circonda il punto critico +1 quan-
do viene soddisfatta la condizione precedente R2≥2R1.

Figura 6.13: Diagrama di Nyquist del circuito 6.12
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Per quanto riguarda il diagramma di bode, ha una pendenza negati-
va da 0 a -90o, contribuito dall’ampiezza, e per la frequenza di risonanza
fo=1/2πRC lo sfasamente è 0o.

Figura 6.14: Diagrama di Bode del circuito 6.12
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6.1.5 Conclusione

Come conclusione quindi all’analisi dell’oscillatore Ponte di Wien possiamo
concludere che per esso l’oscillazione, indipendentemente dalla connessione
dei suoi componenti, deve soddisfare i seguenti requisiti:

1. Il criterio di Barkhausen ci dà un risultato teorico del valore del gua-
dagno per l’oscillazione del circuito, ma questo non è sempre vero. Inoltre,
questo criterio ci serve solo idealmente poiché in pratica vogliamo che i poli
si trovino nella metà destra, a causa dell’impossibilità di posizionare i poli
nell’asse complesso.

Se il feedback è positivo, il segnale all’uscita della rete di retrozione B
deve avere un sfasamento di 0o e -180o in caso di feedback negativo.

2. Il diagramma di Nyquist dovrebbe circondare il punto critico 1 in
senso orario.

3. La fase del diagramma di Bode deve avere una pendenza negativa.
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6.2 Phase shift

Successivamente, analizzeremo lo sfasamento o l’oscillatore phase-shift con
3 poli, che oscilla con feedback negativo e non con feedback positivo.

Ciò è dovuto al fatto che la rete di retroazione B(s) introduce uno sfa-
samento di -180o (60o per ogni RC). Pertanto, il segnale sinusoidale con
frequenza ωd ad una certa ampiezza all’ingresso della rete di retroazione
B(s), si sposterà di -180o all’uscita di questo, e più avanti di 180o quando
passerà at-traverso il loop A(s) a causa della feedback negativo, tornando
alla sua forma originale per conti-nuare a oscillare.

Questo è importante poiché, considerando tutte le frequenze nel segnale
di ingresso, se una delle sue frequenze soddisfa le condizioni di |A(s)·B(s)|≥1
e modulo -180o indefinitamente sarà amplifi-cata a passare attraverso il ciclo
in passaggi successivi, ottenendo una risposta divergente e instabi-le.

Pertanto, se alimentiamo il circuito in modo positivo, avremo un segnale
sfasato di -180 all’ingresso dell’oscillatore e all’uscita avremo 0V.

Figura 6.15: Schema del oscillatore Phase shift
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Analizzando il circuito abbiamo che la sua funzione dell’anello aperto è:

T (s) = (
A ·R3C3s3

R3C3s3 + 6R2C2s2 + 5RCs+ 1
) (6.2.1)

T (jω) = (
A ·R3C3jω3

R3C3ω3 − 6R2C2jω2 − 5RCω + j
) (6.2.2)

Di dove otteniamo la frequenza di oscillazione:

Im(T (jω)) = 0→ 6R2C2ω2 = 1→ ωo =
1√

6RC
(6.2.3)

Sostituendo nella funzione di trasferimento la frequenza di oscillazione
ottenuta, il circuito oscillarà quando il guadagno sia A≥29 con una frequenza
ωo= 1√

6RC

Analizzando il diagramma di Nyquist, osserviamo che per guadagni su-
periori a 29, circonda il punto -1 e quindi il sistema è instabile. Viceversa,
quando il guadagno è inferiore a 29, il diagramma di Nyquist non circonda
il punto critico -1.

Figura 6.16: Diagrama di Nyquist per A=29 del circuito 6.15
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Figura 6.17: Diagrama di Nyquist per A=1 del circuito 6.15
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Analizzando il diagramma di Bode, la fase alla frequenza di oscillazione
fo=1/(2π

√
6RC)=995.5 Hz ha un sfasamento da 0o, in relazione all’introdu-

zione di -180o della rete di retroazione e 180o in più rispetto alla retroazione
negativa. (-180+180=0).

Figura 6.18: Diagrama di Bode per A=29 del circuito 6.15

Con realimentazione positiva, lo sfasamento è di -180o a causa di la rete
di realimentazione; alla frequenza di oscillazione fo=955.5 Hz, lo safasamento
è di -180o.
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Figura 6.19: Diagrama di Bode per A=1 del circuito 6.15

Finora abbiamo analizzato i circuiti ipotizzando che la loro frequenza di
oscillazione fosse quella ottenuta dal criterio di Barkhausen.

Tuttavia, analizzando sia le simulazioni reali che quelle ideali, si osserva
che la frequenza di oscillazione varia in funzione del guadagno.

Questi risultati potrebbero essere la causa del comportamento effettivo
degli amplificatori e dei componenti, ma non dovrebbero esserlo se il circuito
viene idealmente analizzato, poiché, come accennato in precedenza, lo scopo
del progetto di un oscillatore è di ottenere una frequenza di oscillazione
indipendente del suo guadagno, dal ciclo di feedback.

Successivamente, la tabella con i valori del periodo e la frequenza, ottenu-
ti dalla simulazione in PSpice viene mostrata usando un amplificatore ideale
per l’oscillatore di sfasamento quando il guadagno del circuito aumenta.
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Figura 6.20: Frequenza del circuito 6.15 VCVS ottenuta con PSpice

* * I valori ottenuti sono la media di 10 valori.

Analizzando i diagrammi di bode, si osserva che la frequenza di taglio
o la frequenza di crossover, cioè il valore della frequenza quando si verifica
il crossover del guadagno (|A(jω)·B(jω)| = 1 = 0 dB, corrisponde ai valori
precedenti (le frequenze alle quali il circuito oscilla in funzione del guadagno,
che difiere della teorica). La frequenza diminuisce per valori più grandi di
guadagno, per tanto la frequenza di oscillazione del oscillatore dipende del
guadagno e non de la rete di realimentazione come sia ha studiato nel criterio
di Barkhausen.

Pertanto, la frequenza di oscillazione dipende dal guadagno del circuito.
Analizzando la funzione di trasferimento in anello chiuso,

Dove F(jω) è la funzione in anello chiuso:

F (jω) =
−AR6C6ω6 + 6AR2C2ω2 + 5RCjω + 1

−(1 +A)R3C3jω3 − 6R2C2ω2 + 5RCjω + 1
(6.2.4)

Im(jω) = 0→ −(1+A)R3C3ω3+5RCω = 0→ ωo1 = 0;ωo2 =

√
5

RC
√

(1 +A)
(6.2.5)
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I valori ottenuti teoricamente con ωo2=(
√

5)/(RC
√

(1 +A)) sono i se-
guenti, dove E.assoluto è l’errore assoluto |Valore medio–valore reale|=|f.simulazioni–f.teorica|
e E.relativo è l’errore relativo |(Errore assoluto)/(Valore reale)|=(|E.assoluto|)/(|f.teorica|).
L’errore relativo è inferiore a 1 in tutti i casi e i valori di frequenza ottenuti
teoricamente sono simili a quelli ottenuti nelle simulazioni VCVS. [Figura
6.21]

Figura 6.21: Relazione tra frequenza di simulazione e frequenza ottenuta
della funzione di trasferimento dell’anelo chiuso

Possiamo dire che la frequenza di oscillazione degli oscillatori dipende
dalla retroazione positiva o negativa del circuito e quindi dalla funzione di
trasferimento ad anello chiuso, dove l’ingresso sarebbe il rumore presente nei
componenti del circuito.
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Di seguito è mostrato lo schema del circuito dettagliato precedente.

Figura 6.22: Schema del oscillatore a 3 poli

La funzione di trasferimento dell’anello aperto per questo circuito è:

T (s) =
A

R3C3s3 + 5R2C2s2 + 6RCs+ 1
(6.2.6)

Figura 6.23: Diagrama di Nyquist per A=1 del circuito 6.22

Il diagramma di Nyquist del circuito, sia VCV ideali che OPAMP, con-
ferma le previsioni di stabilità. Instabile quando A è maggiore del valore
critico e stabile al contrario.
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Dai diagrammi di Bode, relativi al diagramma di Nyquist, come prima
viene evidenziata l’introduzione di una fase aggiuntiva nella simulazione con
OPAMP a causa dei poli ad alte frequenze dovuti agli amplificatori. Nel
diagramma Bode VCVs si osserva come ci sia uno sfasamento di 180o dovuto
alla rete di feedback, che inverte il segnale.

Figura 6.24: Diagrama di bode VCVS per A=1 del circuito 6.22
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Figura 6.25: Diagrama di bode OPAMP per A=1 del circuito 6.22

Come si può vedere, a differenza del diagramma di Bode VCVs, con uno
sfasamento di 270o, con il diagramma di bode che utilizza un amplificatore
operazionale, lo sfasamento è di 450o poiché vi è un’ulteriore variazione di fa-
se causata dai poli alle alte frequenze a causa degli amplificatori operazionali
utilizzati. 2 poli = 1 amplificatore operazionale.

6.3 Sistema condizionalmente stabile

Un sistema è definito condizionalmente stabile cuando è stabile per valori
critici. Le sue proprietà di stabilità possono cambiare più volte al crescere
del guadagno.

Sono sistemi che hanno diversi incroci di fase. Un sistema condizio-
nalmente stabile è uno che diventa instabile quando il guadagno ad anello
aperto viene variato tra valori critici e stabile se aumenta o diminuisce.

Il circuito mostrato sotto è un oscillatore condizionalmente stabile, poi-
ché, per un intervallo di guadagno, sarà instabile e quindi oscillerà. D’altra
parte, se il guadagno supera questo margine o è inferiore, il sistema sarà
stabile e di conseguenza non oscillerà. Pertanto, per ottenere le oscillazioni
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in questo tipo di circuito, sarà necessario progettarle con un’ampiezza di
guadagno il cui valore è compreso tra alcuni valori limite.

Figura 6.26: Schema di un oscillatore condizionalmente stabile

Si tratta di un circuito di 3 poli, cui funzione di trasferimento dell’anello
aperto è:

T (s) =
A(R2C2s2 + 2R1Cs+ 1)

(R12RC3 +R1R2C3)s3 + (R12C2 +R2C2 +R2C2 + 4R1RC2

(6.3.1)
+R1R2C2+R3C2)s2+(2R1C+3RC+3R1RC+4R2C)s+3(1+R)

Il nostro sistema, oscillerà quando il valore del guadagno si trova tra due
valori critici 22<A<230.
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Figura 6.27: Diagrama di Nyquist per A=20 del circuito 6.26. Il sistema
non oscilla

Figura 6.28: Diagrama di Nyquist per A=100 del circuito 6.26. Il sistema
oscilla
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Figura 6.29: Diagrama di Nyquist per A=250 del circuito 6.26. Il sistema
non oscilla

I risultati mostrati coincidono con ciò che è teoricamente previsto poiché
per i valori di guadagno tra 22 e 230 il diagramma di Nyquist circonda il
punto critico -1 ed è instabile. Se il guadagno aumenta (esempio A = 250) o
diminuisce (esempio A = 20) il diagramma di Nyquist non circonda il punto
-1 e il sistema diventa stabile.
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Figura 6.30: Diagrama di Bode per A=20 del circuito 6.26. Il sistema non
oscilla

Figura 6.31: Diagrama di Bode per A=100 del circuito 6.26. Il sistema
oscilla
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Figura 6.32: Diagrama di Bode per A=250 del circuito 6.26. Il sistema non
oscilla

Analizzando i diagrammi di Bode, basati sulla traccia di Nyquist e analiz-
zando i margini di guadagno e di fase, possiamo concludere che se il margine
di guadagno è negativo e il margine di fase è inferiore a -180o, il sistema è
instabile. D’altra parte, se il margine di guadagno è positivo e il margine di
fase anche il sistema è stabile.

Come nello studio dell’oscillatore di sfasamento, la frequenza del circuito
varia al variare del guadagno: (f: risultati ottenuti con PSpice).

Dalla funzione di trasferimento in anello chiuso, la frequenza di oscilla-
zione dipende dal guadagno e i suoi valori sono simili a quelli ottenuti nelle
simulazioni PSpice. Pertanto, possiamo concludere, con questi risultati e
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quelli ottenuti nel circuito phase-shift, che la frequenza di oscillazione degli
oscillatori dipende dalla retroazione e quindi dalla funzione di trasferimento
ad anello chiuso e non solo della rete di feedback che volevamo.

Della funzione di trasferimento che in anello chiuso è:

F (s) =
A

1 + T (s)
(6.3.2)

otteniamo:

ωo =
2R1C + 5RC + 2AR1C

R12RC3 + 3R1R2C3 +R3C3
(6.3.3)

Nel nostro circuito:

ωo =
0.068 + 2 exp−3 +A

1.31 exp−6
(6.3.4)

Nella siguiente tabella possiamo osservare i resultati della frequenza delle
simulazione e della fre-quenza teorica ottenuta della funzione di trasferimen-
to dell’anello chiuso e il suo errore, in funzio-ne del guadagno. Come avviamo
detto nel oscillatore di displazamento di phase o phase shift, la relazione tra
la frequenza ottenuta attraverso la funzione di trasferimento dell’anello chiu-
so è più prossima a la frequenza di simulazione che la ottenuta dell’anello
aperto.

Per tanto, come conclusione possiamo dire che la frequenza di oscillazione
dipende del guadagno e del feedback.
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Figura 6.33: Relazione tra le frequenza di simulazione VCVS e la ottenuta
della funzione di trasfererimento in anello chiuso per il circuito 6.26
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Capitolo 7

Analisi in laboratorio

I precedenti circuiti sono stati analizzati in laboratorio.

7.1 Ponte di Wien

Per il circuito oscillatore di Ponte di Wien, i risultati in laboratorio coinci-
dono con quelli teorici e con le simulazioni in PSpice.

Per la sua realizzazione abbiamo usato, come in PSpice, due resistori
R di 10K e due condensatori C di 10nF come rete B di retroazione e un
amplificatore operazionale UA741 [12], un potenziometro di 100K e una
resistenza di 47K (Rete A del circuito).

Il circuito inizia ad oscillare quando il valore del potenziometro è 87 k,
con una frequenza di circa 1.6 kHz.
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Figura 7.1: Oscillazioni

La saturazione inizia quando il potenziometro è 92K con una frequenza
di circa 1.061 KHz.
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Figura 7.2: Saturazione

Teoricamente, il circuito oscillarà quando il valore del potenziometro sia
2·47 k = 94 k e la frequenza di oscillazione è 1.59 kHz.
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7.2 Phase shift

I valori dei componenti utilizzati in questo circuito oscillatore sono 3 con-
densatori da 10 nF, 3 resistenze da 6,2 k e un potenziometro da 500 k.

Il circuito di feedback negativo inizia ad oscillare quando il suo guadagno
è approssimativamente 38.7

A =
V alorepotenziometro

V aloreR1
=

240k

6.2k
(7.2.1)

con una frequenza di circa 0.988 kHz.

I resultati ottenuti delle simulazioni con PSpice e OPAMP sono che il
circuito iniziarà le oscillazione quando il valor del potenziometro sia 180 k
con una frequenza di 970 kHz. Quando il valore del potenziometro è di 240
k la frequenza di oscillazione è 772.5 kHz.

Da questo momento, all’aumentare il valore del potenziometro, l’uscita
aumenta in ampiezza e la frequenza diminuisce.

La saturazione inizia per un guadagno di circa 45.16, quando il valore
del potenziometro è 280 k. La frequenza del segnale di uscita è 0.880 kHz e
la distorsione è molto piccola.

Figura 7.3:
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La frequenza di oscillazione ottenuta con PSpice e OPAMP per Rpoten-
ziometro di 280 k è di 772.5 kHz.

Per valori maggiori del potenziometro, 480K, che equivale ad un guada-
gno teorico di circa 77.419, la frequenza di oscillazione è 0.716311 kHz e la
distorsione è maggiore. Il segnale ha un taglio più grande.

I risultati ottenuti teoricamente sono:

- Una frequenza di oscillazione

fosc =
1

2πRC
√

6
(7.2.2)

di cerca 1 kHz.
- Il circuito oscillara per A≥29.

Attraverso simulazioni in PSpice per valori di Rpot = 240 k, l’uscita
satura nel tempo e la frequenza di oscillazione è di 1.012 kHz.

Per Rpot = 280 k, la frequenza di oscillazione è di 1.008 KHz e l’uscita
satura. I risultati ottenuti sia nel circuito dell’oscillatore di Ponte di Wien
che nel circuito Phase Shift sono simili a quelli ottenuti nelle simulazioni.
La non uguaglianza tra questi risultati è dovuta alle derive termiche dei
componenti, alla non idealità dell’amplificatore e agli alimentatori, ecc.

7.3 Condizionalmente stabile

Non abbiamo osservato alcuna oscillazione in questo circuito. L’introdu-
zione di un seguitore di tensione e la variazione del potenzionmetro non
funzionano.

Se cambiamo il valore dei componente per ottenere oscillazioni, il circuito
smette di avere un comportamento condizionalmente stabile. Ciò può essere
dovuto alle tolleranze dei con-densatori utilizzati, poiché come è osservato
nel diagramma di Nyquist la curva che circon-da il punto critico -1 è molto
piccola.

D’altra parte, il piccolo margine di guadagno per il sistema di essere
instabile e oscillare (idealmente tra 22 e 230) potrebbe anche influenzare
questi risultati.
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Capitolo 8

Una condizione aggiuntiva

Nell’articolo [11] si illustra una possibile condizione necessaria aggiuntiva
da affiancare al criterio di Barkhausen affinché un sistema sia oscillante e
marginalmente stabile (ossia affinché abbia poli complessi coniugati sull’asse
complesso). La condizione è dφ

dω (ω0) < 0, dove φ(ω) è la fase della f.d.t.
considerata valutata in jω, mentre ω0 è la pulsazione alla quale vale il criterio
di Barkhausen. L’analisi svolta in [11] si basa sullo studio del luogo delle
radici di alcuni sistemi, e mostra che tutti i sistemi esaminati che oscillino
alla frequenza alla quale Barkhausen è soddisfatto, soddisfano anche dφ

dω < 0.
Viceversa, i sistemi che non oscillano alla frequenza individuata dal criterio
di Barkhausen, non soddisfano la suddetta condizione. In questo capitolo
si esaminano i diagrammi di Nyquist di sistemi comuni, evidenziando come
l’aggiunta di tale condizione, opportunamente modificata, permetta di far
funzionare il criterio esteso di Barkhausen in casi in cui esso, in assenza di
tale condizione, falliva. Inoltre, si propone un semplice ragionamento fisico
a supporto della condizione dφ

dω (ω0) < 0.
Premettiamo che un sistema retroazionato si dice a stabilità regolare

se è caratterizzato da un unico valore K0 tale che il sistema è stabile per
0 < K < K0 e instabile per K > K0. Si parla invece di sistema a stabilità
condizionata (o condizionatamente stabile) se vi sono più valori critici di K
per cui si passa da una condizione di stabilità a una condizione di instabilità,
o viceversa. Queste due classi non coprono tutti i sistemi possibili: ve ne
sono di altri, ad esempio, che sono instabili per 0 < K < K0 e instabili per
K > K0, al contrario di quelli a stabilità regolare. Questi sono di interesse
perlopiù teorico [13].

Ove non specificato diversamente, i diagrammi di Nyquist riportati in
questo capitolo sono stati tracciati con l’ausilio di Wolfram Alpha.
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8.1 Diagramma di Nyquist in funzione di K

I sistemi reali hanno comportamento passa basso, essendo sempre presenti
degli effetti capacitivi parassiti che ne limitano la banda. Pertanto, la prima
metà dei diagrammi di Nyquist di sistemi F reali ha termine nell’origine,
giacché ω → ∞ ⇒ F (jω) → 0. Ne è un esempio il sistema di cui il dia-
gramma in figura 8.1, che rappresenta proprio un passa basso (F (s) = 1

1+s).
Inoltre, nelle prossime pagine, non considereremo sistemi con comportamen-

Figura 8.1: Diagramma di Nyquist di un sistema passa basso

to passa alto. Per tali sistemi, l’origine rappresenta il punto di partenza del
diagramma, essendo F (0) = 0.

Si supponga che il diagramma in figura 8.1 sia il diagramma di una
H(s)G(s), in caso di sistema retroazionato negativamente (d’ora in poi tale
ipotesi sarà implicita per ogni sistema preso in considerazione). Si inserisca
nell’anello anche un blocco amplificatore ideale di guadagno K. Per quanto
riportato in [22], affinché tale sistema sia stabile, il diagramma non deve
girare attorno a − 1

K . In simboli, il sistema è instabile se:

0 < − 1

K
< 1

Ossia, scomponendo in due condizioni:

0 < − 1

K
⇐⇒ K < 0

− 1

K
< 1 ⇐⇒ K > −1

Tale metodo per valutare la stabilità mediante i diagrammi di Nyquist è
molto comodo all’atto pratico, poiché permette di usare un unico diagram-
ma invece di tracciarne uno per ogni valore di K, ma non rende l’idea di
come il diagramma del sistema cambi al variare di K. In figura 8.2 (im-
magine originale in [20], slide n. 26), invece, abbiamo una porzione di un
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diagramma di Nyquist di un sistema condizionatamente stabile. Si osservi
che, al crescere di K, il diagramma diviene più ampio. Con questa interpre-

Figura 8.2: Tratto finale del diagramma di Nyquist di un sistema
condizionatamente stabile al variare di K

tazione è immediato determinare che, riferendoci alla curva A, aumentando
o riducendo opportunamente K si arriverà ad una condizione di stabilità.

Per sistemi non condizionatamente stabili con comportamento passa bas-
so alle alte frequenze si ha un’unica soglia per determinare la stabilità del
sistema. Si faccia riferimento al grafico in figura 8.3. Si consideri il diagram-

Figura 8.3: Diagramma di Nyquist di F (s) = 1
(s+1)3

ma rappresentato quello per K = 1. Poiché il diagramma taglia l’asse reale
in −0.125, il sistema sarà stabile per K positivi minori di 8, mentre per K
maggiori di 8 il diagramma ingloberà il punto −1 + j0 e il sistema diverrà
instabile.
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Separiamo dunque i sistemi d’interesse, come da definizione in [13] già
accennata all’inizio del presente capitolo, in:

• Tipo A - regolarmente stabili: sistemi il cui diagramma di Nyquist
taglia il semiasse reale negativo una sola volta, ovvero che soddisfano
la condizione sulla fase di Barkhausen per una sola pulsazione ω0

• Tipo B - condizionatamente stabili sistemi il cui diagramma di
Nyquist taglia il semiasse reale negativo più di una volta, ovvero
soddisfano la condizione sulla fase di Barkhausen per più pulsazioni
ωi.

Si tenga a mente la limitazione a sistemi reali, ossia passa basso. Nella prossi-
ma sezione sfruttiamo questa categorizzazione e il metodo grafico introdotto
per evidenziare come la condizione dφ

dω < 0, modificata opportunamente,
fornisca previsioni corrette circa la stabilità dei sistemi più comuni.

8.2 Nyquist e dφ
dω < 0

Spesso ci si riferisce a − dφ
dω come al ritardo di gruppo. Non sarà il nostro caso,

poiché il concetto di ritardo di gruppo quale ritardo temporale è valido per
segnali modulati, e nella fattispecie si riferisce al ritardo subito dall’inviluppo
di una portante nell’attraversare un sistema a fase lineare [28].

Per i sistemi del tipo A di interesse comune sembra sempre essere soddi-
sfatta la condizione sulla derivata della fase. Essendo per ipotesi dei passa
basso, qualunque cosa succeda alle basse frequenze, si ha comunque una
rotazione in senso orario del diagramma per frequenze tendenti a +∞. In
figura 8.4, il diagramma di Nyquist per il sistema con la seguente funzione
di trasferimento:

F (s) = 109 s+ 1

(s+ 10)(s+ 100)(s+ 1000)2

Anche casi particolari come questo sono contemplati. È il caso dei sistemi
per cui il criterio esteso di Barkhausen era già apparentemente corretto.

Per i sistemi del tipo B, invece, facciamo riferimento alla figura 8.5,
versione modificata della 8.2, poiché è ragionevole che il tratto finale del
diagramma abbia tale forma. La linea tratteggiata rappresenta l’andamento
del diagramma tipo per sistemi con un numero di attraversamenti dell’asse
reale superiore a 2. Asseriamo dunque che il sistema è instabile se, alla più
alta pulsazione ω0 per cui vale:{

|H(jω)G(jω)| > 1

∠H(jω)G(jω) = 0
(8.2.1)

vale anche dφ
dω < 0. È stabile, viceversa, se dφ

dω > 0.
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Figura 8.4: Caso particolare di sistema del tipo A

Figura 8.5: Rappresentazione tipica dei sistemi di tipo B

Non si tratta di un criterio di sufficienza poiché non vi è dimostrazione,
ma si rimanda alla fine della sezione 8.3 per un collegamento con il concetto
in essa presentato. Tuttavia, è interessante notare che anche sistemi con-
dizionatamente stabili come quello in figura 8.6, per cui non vale l’ipotesi
di passa basso, valga comunque il nuovo criterio esteso (a patto di poter
considerare +∞ come ω0). Delimitare con rigore le classi di funzioni per cui
questa estensione del criterio fornisce risultati corretti sarà uno scopo del
proseguimento degli studi sull’argomento, e si dovrà per certo partire dalla
ricerca di possibili controesempi.
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Figura 8.6: Caso particolare di sistema condizionatamente stabile

8.3 Significato fisico della condizione aggiuntiva

Si propone infine una possibile spiegazione fisica del perché la condizione
aggiuntiva potrebbe effettivamente rivelarsi una condizione necessaria, as-
sieme al criterio di Barkhausen, affinché il sistema oscilli. In particolare, si
vuole sottolineare una sorta di funzione di stabilizzazione della frequenza di
oscillazione che tale condizione sembra operare.

Innanzitutto, sia f(t) = sin(ωt+φ(t)). Si immagini che la fase φ sia una
vari bruscamente in un dato istante di tempo t0. Allora, in un intorno di t0
si può scrivere, per Taylor, φ(t) ≈ φ(t0) + φ′(t0)(t− t0), ottendendo:

f(t) ≈ sin
((
ω + φ′(t0)

)
t+ φ(t0)− φ′(t0) t0

)
Si osservi che φ′(t0) ha le dimensioni di una pulsazione. In altre parole, va-
riazioni istantanee della fase si possono confondere con variazioni istantanee
della pulsazione di una sinusoide.

Si consideri un oscillatore, e sia ω0 la pulsazione per cui è soddisfatto il
criterio di Barkhausen. Si supponga che dφ

dω (ω0) < 0. Se ω dovesse aumen-

tare leggermente in un dato istante, vista l’ipotesi su dφ
dω (ω0) si avrebbe una

diminuizione istantanea dello sfasamento operato da HG sul segnale nell’a-
nello di retroazione, ossia, per quanto detto sopra, una diminuzione della
pulsazione. Viceversa, per decrementi istantanei di ω si ha un incremento
istantaneo dello sfasamento introdotto da HG, ossia un incremento della
pulsazione. Praticamente, la condizione aggiuntiva fa s̀ı che la frequenza di
oscillazione sia una frequenza d’equilibrio alla quale operare per l’oscillatore.
Viceversa, se dφ

dω (ω0) > 0, si ottiene l’effetto opposto, ossia un’enfatizzazione
della perturbazione della frequenza di oscillazione. Risulta pertanto che sep-
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pure idealmente il sistema potrebbe ragionevolmente oscillare alla pulsazione
ω0, in realtà essa è un equilibrio instabile.

Nei casi teorici di sistemi che non esibiscono un comportamento passa
basso, si può ottenere attraversamento dell’asse reale da parte del diagramma
di Nyquist anche per ω =∞ (vedasi figura 8.6). Mentre per gli attraversa-
menti per ω = 0 si può parlare di “oscillazione” a frequenza nulla, ossia di
marginale stabilità con un segnale d’uscita costante, non è del tutto chiaro
se abbia senso considerare gli attraversamenti per ω =∞ dal punto di vista
fisico. Nello specifico, bisogna indagare il comportamento teorico di sistemi
del tipo suddetto qualora l’attraversamento avvenga proprio in −1 + j0, che
negli altri casi corrisponde a una situazione di marginale stabilità.

Infine, si voglia osservare come potrebbe non essere un caso che il crite-
rio esteso di Barkhausen sulla stabilità funzioni per sistemi marginalmente
stabili che soddisfino la condizione aggiuntiva. Se questa si rivelasse essere,
assieme al criterio di Barkhausen, una condizione necessaria e sufficiente
affinché il sistema marginalmente stabile oscilli, allora la presenza di segnali
oscillanti renderebbe sensato il ragionamento fisico dietro al criterio esteso
di Barkhausen, motivandone la correttezza sotto tali ipotesi. Questo spie-
gherebbe il nuovo criterio esteso di Barkhausen (8.2.1) da un punto di vista
fisico - pur lasciando in ombra metà del criterio. Non sarebbe chiaro, in
tale prospettiva e sempre da un punto di vista puramente fisico, perché per
casi di stabilità marginale in cui dφ

dω (ω0) > 0 si debba avere un’inversione del
criterio (i.e., stabilità al diminuire di K, e viceversa).
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Capitolo 9

Analisi del Group Delay

Il ritardo di gruppo esprime il ritardo di un segnale dovuto al suo passaggio
attraverso il circuito e viene definita come:

τg = −dφ
dω

(9.0.1)

Quando un segnale attraversa un sistema, può apparire una distorsione
nella forma d’onda del sistema, ma se il segnale di uscita coincide con il
segnale di ingresso, significa che il sistema non distorce il segnale, sebbene
possa esserci un ritardo o un’amplificazione.

Sulla base al comportamento previsto di un circuito in anello chiuso, si
presume che l’ingresso per la rete di feedback B sia una tensione sinusoidale
in aumento esponenziale.

V (x) = eσ·t · ejωst (9.0.2)

La tensione all’uscita dell’amplificatore, V(y) (dell’anello aperto) avrà
una forma simile a V(x), ma con un ritardo di tempo, un sfasamento e
un’ampiezza leggermente maggiore di V(x).

Per tanto possiamo scrivere V(y) come:

V (y) = To · eσ(t−τ · ejω(t−τ)+φ (9.0.3)

T (jω) =
V (x)

V (y)
=

eσ·t · ejωst

To · eσ(t−τ · ejω(t−τ)+φ
> 1 (9.0.4)

116



CAPITOLO 9. ANALISI DEL GROUP DELAY

Risolvendo l’equazione Eq 4.0.7,

To · e−στ = 1→ To = eστ (9.0.5)

e−jωsτ · ejφ = 1→ ejφ = ejωsτ → φ = ωsτ (9.0.6)

Questo dimostra che τ e σ dipendono dal guadagno dell’anello aperto To
e che il ritardo di gruppo deve essere positivo per sodissfare l’equazione Eq.
4.0.5.

Per tanto:

τg = −dφ
dω

> 0 (9.0.7)

Per lo studio del Group Delay abbiamo creato un semplice programma in
Matlab che riproduce l’esponenziale dell’uscita divergente di un oscillatore
a sfasamento o Phase shift.

Questo programma riproduce i punti di uscita dell’anello aperto (AB)n,
dove n è il numero di volte in cui il valore di uscita viene convertito in ingresso
per attraversare nuovamente il ciclo aperto AB, per un tempo t+τg(ω).

Descripción de programa:

1 = 0; Tempo iniziale

i = 0; j = 0; n = 0; lunghezza del vettore

t = [0: i]; Vettore di tempo

x = [0: j]; vettore di tensione

while (t1 <0.1) Mentre il tempo è inferiore a 0,1 secondi verrà riprodotto
il ciclo while

x1 = 30·(30/29)n; x1 è la tensione di uscita quando si attraversa AB;
n sono le volte che il segnale passa attraverso il blocco AB. Inizialmente il
segnale di uscita sarà A poiché la frequenza iniziale è 0. Quindi il segnale
passerà ripetutamente attraverso il ciclo AB
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t(i+1) = t1; viene salvato nella posizione i+1 del vettore il valore del
tempo

x(j+1) = x1; nella posizione j+1 del vettore di tensione viene salvato il
valore della tensione.

t1 = t1 + (1.688e-4); tempo iniziale più ritardo del gruppo

i = i+1; aumenta la posizione del vettore temporale

j = j+1; aumento della posizione del vettore di tensione

n = n+1; aumento del numero di volte che il segnale passa attraverso
AB

plot (t, x, ’o’) Ritorna il plot della risposta ottenuta.

Per il circuito Phase shift (Figura 3.15), il ritardo di gruppo, derivato
dalla fase rispetto alla frequenza, per la frequenza di oscillazione ωo, è 1,69e-
4 secondi. Per la frequenza di oscillazione, la funzione dell’anello aperto AB
è 30/29.
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Figura 9.1: Esponenziale ottenuto con Matlab per il circuito Phase shift con
A = 30

Dai valori ottenuti e con l’uso di Excel possiamo ottenere l’esponenziale
all’uscita del circuito dell’anello aperto.
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Figura 9.2: Tabella con i valori ottenuti in Matlab

Figura 9.3: Esponenziale all’uscita del circuito Phase shift con Matlab
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Questo risultato dovrebbe coincidere con il valore ottenuto nelle simula-
zioni in PSpice come risultato di un ritardo di gruppo nel circuito. L’espo-
nenziale ottenuto con PSpice utilizzando come amplificatore un VCVS e un
guadagno di 30, R=10 k e C=6,8 n:

Figura 9.4: Esponenziale all’uscita del circuito Phase shift con PSpice

I risultati ottenuti con Matlab e le simulazioni in PSpice ideali non sono
equale. La esponeziale ottenuta con Matlab è 29.996exp 200.78t e con PSpice
VCVS 14.621exp38.044t.
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Lo stesso, ma per un filtro RC del primo ordine. Il ritardo de grupo per
questo circuito con R=1 k, C=1 nF e A=1.1 è 1exp(-6) con una frequenza
di oscillazione ωo=0 rad/s.

Figura 9.5: Circuito RC
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Figura 9.6: Esponenziale all’uscita del circuito RC con matalb

Figura 9.7: Esponenziale all’uscita del circuito RC con PSpice

In conclusione, possiamo assicurare che esiste un ritardo di gruppo ma
che questo non coincide per la funzione dell’anello aperto con la derivata
dell’argomento rispetto alla derivata della frequenza.
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Conclusioni

Il criterio di Barkhausen è stato studiato come criterio che ci permette di
costruire circuiti elettronici che oscillano per una certa frequenza, modellan-
done l’ampiezza, attraverso il guadagno e la sua frequenza attraverso una
rete di feedback e più volte usando una fonte esterna fornire un impulso per
controllare lo stato iniziale.

Come abbiamo detto prima, le condizioni necessarie per far oscillare un
sistema o un circuito sono il feedback e l’instabilità. È per quest’ultima
ragione una delle condizioni in base alle quali il criterio di Barkhausen non
può essere considerato come una singola condizione per l’oscillazione.

Pertanto, alla condizione del criterio di Barkhausen per l’oscillazione
degli oscillatori, dobbiamo aggiungere la condizione di instabilità nella pro-
gettazione degli oscillatori, cioè che il criterio di Nyquist circonda il punto
critico -1.

Il diagramma di bode ha una pendenza negativa e uno sfasamento di
0o alla frequenza di taglio, cos̀ı come una rete di feedback che produce uno
sfasamento di -180o quando la retroazione è negativa. Come conseguenza di
quest’ultimo -180o + 180o (a causa del feedback negativo) = 0o. Se, d’altra
parte, la rete B introduce uno sfasamento di -180o e la retroazione è positiva,
l’uscita sarà fuori fase e, di conseguenza, non si verificheranno oscillazioni.

Dal criterio di stabilità (criterio Nyquist semplificato), se la retroazione
è negativa, lo sfasamento deve essere inferiore a 180o per la frequenza di
crossover con 0 dB, in modo che il sistema sia instabile.

Inoltre, idealmente, quando si costruiscono gli oscillatori, non intendiamo
fornire al circuito ulteriori mezzi per controllare lo stato iniziale e ogni cir-
cuito è sempre soggetto a disturbi e rumore. Ecco perché il suo stato iniziale
incontrollato (rumore e perturbazioni degli elementi del circuito) renderà il
suo stato stazionario imprevedibile. Pertanto, vi è l’impossibilità di poter
posizionare esattamente i poli sull’asse immaginario jω, a causa delle tolle-
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ranze non nulle dei componenti del circuito, sempre presenti, che contengono
componenti a tutte le frequenze.

Quindi sorge la necessità di un’ulteriore condizione, nota come condi-
zione di partenza o condizione di start-up condition, per cui |A·B|>1, in
modo che i poli si trovino inizialmente nel semipiano destro. A causa del-
la retroazione, il segnale di uscita verrà amplificato indefinitamente fino a
quando l’amplificatore si saturazione o fino a quando un circuito ausiliario
raggiunge quello per la frequenza di oscillazione A·B=1. Da allora l’ampiez-
za dell’oscillazione viene mantenuta (il sistema diverge). In questo modo, i
poli inizialmente posizionati nella metà destra del piano s, in conseguenza
dell’aumento dell’ampiezza del segnale e della diminuzione del guadagno, si
sposteranno alla posizione jω di steady state.

Sebbene in generale il funzionamento dell’oscillatore sia non lineare, la
condizione di partenza può essere studiata con un modello lineare dell’am-
plificatore perché funziona con segnali molto piccoli.

Infine, è necessario prestare particolare attenzione, in quanto la frequen-
za di oscillazione dal criterio di Barkhausen viene calcolata dalla rete di
feedback. Dai risultati ottenuti teoricamente e in laboratorio, possiamo
concludere che la frequenza della rete di retroazione non coincide con la
frequenza ottenuta da la funzione di trasferimento dell’anello aperto |A·B|
= 1, e man mano che il guadagno aumenta questa frequenza aumenterà o
diminuirâ (filtro passo-basso e filtro passo-alto usato como rete di feedback
rispettivamente)

Pertanto, la frequenza di oscillazione dipende dal guadagno del circuito
e quindi dalla sua funzione di trasferimento in anello chiuso, a causa del
feedback.

Quest’ultimo non dovrebbe essere corretto poiché in un oscillatore l’usci-
ta e l’ingresso sono uguali e quindi l’uscita del circuito dovrebbe dipendere
solo dal guadagno dell’anello aperto T(jω)=A(jω)·B(jω).Ma se consideriamo
che un circuito dell’oscillatore può essere simile a un circuito con retroazione,
dove xi e xo sono i segnali di ingresso e di uscita, e xf e xe rispe-ttivamente
i segnali di retroazione e di errore. E il comportamento del circuito può es-
sere previsto conoscendo il modulo |A·B| e la fase φ del guadagno del loop,
eccetto per il calcolo della sua frequenza di oscillazione.

Per quanto riguarda il ritardo di gruppo, studi precedenti indicano che
questo coincide con la derivata dell’argomento dell’annello aperto rispetto
alla derivata della frequenza di oscillazione, omega. Tuttavia, sia in teoria
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che nella pratica questo non è vero. Il ritardo del gruppo non dipende solo
dalla frequenza di oscillazione, dipende anche dal guadagno.
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