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Sommario

Questo elaborato riguarda il criterio di Barkhausen e in particolare la rela-
zione che intercorre tra tale criterio e la instabilita di un sistema. Si riporta
innanzitutto la dimostrazione di necessarieta del criterio di Barkhausen af-
finché un sistema retroazionato positivamente produca un’uscita oscillatoria
ad ampiezza costante, per un tempo indefinito. Sebbene questo criterio non
garantisca sempre l'oscillazione. Viene anche studiato il feedback negati-
vo negli oscillatori e il problema per calcolare la frequenza di oscillazione
del circuito. Infine, studieremo questi circuiti in laboratorio e il ritardo del
gruppo esistente.
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Introduzione

Questo progetto nasce con l'interesse di studiare il comportamento degli
oscillatori sinusoidali, essendo in grado di analizzare il loro comportamento
in base alle diverse variabili che modellano detto sistema e di trovare una
condizione che soddisfi la sua oscillazione, poiché il suo principio di fun-
zionamento, formulato dal criterio di Barkhausen, non garantisce sempre
loscillazione.

L’obiettivo di questo progetto é lo sviluppo di circuiti elettronici in gra-
do di produrre oscillazioni sinodali sostenute ad una singola frequenza, in
assenza di fonti CA esterne.

Gli oscillatori da studiare in questo lavoro sono oscillatori lineari. 1l
metodo consiste in un’analisi della risposta temporale e in frequenza di questi
dispositivi e quindi un confronto con il modello lineare offerto dal criterio
di Barkhausen. In particolare, questo studio si € concentrato sul ponte
Wien, un tipo di oscillatore del secondo ordine ampiamente utilizzato nelle
applicazioni elettroniche a bassa frequenza; 'oscillatore a sfasamento, un
oscillatore di terzo ordine, utilizzato anche nelle applicazioni elettroniche a
bassa frequenza e I'oscillatore condizionatamente stabile che oscillera quando
il guadagno e tra un gamma di ampiezza, in modo che il circuito sia instabile.

Per realizzare questo studio, sono stati utilizzati due strumenti informa-
tici, MATLAB e PSpice.

Una volta analizzati matematicamente i circuiti, precedentemente com-
mentati, sono stati simulati in PSpice e in laboratorio, per analizzare e
confrontare il loro ideale (VCVS) e la risposta reale, mediante amplifica-
tori operazionali, nel dominio del tempo e della frequenza, con i calcoli
matematici.

Usando MATLAB ¢ stato progettato un modello matematico che ripro-
duce come teoricamente dovrebbe essere il segnale di uscita che diverge da
un oscillatore, tenendo conto del ritardo di gruppo esistente, per confron-
tarlo con il suo output ideale ottenuto da PSpice. L’analisi mostra che ci
saranno delle differenze che verranno trattate in seguito.

Infine, sono stati effettuati test in laboratorio che dimostrano che i
modelli sopra citati sono corretti.

Per ottenere un oscillatore accurato, sarebbe necessario introdurre alcune
modifiche ai criteri comunemente utilizzati e alcune modifiche al circuito,
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INTRODUZIONE

poiché in realta la saturazione dello stadio di amplificazione non consente di
ottenere un’uscita sinodale.

Inoltre, vi & I'inconveniente che la frequenza di oscillazione non ¢ la stessa
per cui e progettato il circuito, cioe la frequenza di oscillazione, a cui il cir-
cuito dovrebbe oscillare, progettato dalla rete di retroazione B(jw),dipende
dal guadagno dal della rete A(jw).

Infine, quando si confrontano i modelli ideale e non ideale, si puo vedere
che c¢’e una differenza tra loro, a causa dell’uso di amplificatori operazionali
nel secondo.



Capitolo 1

Sistemi e Stabilita

In questo primo capitolo vengono riportati, introduttivamente, concetti noti
dalla teoria dei sistemi, tratti da [4, 25, 27]. La scelta di dedicare un in-
tero capitolo a tale introduzione e motivata dalla possibilita di introdurre
la simbologia e i risultati salienti in maniera organica, in modo da poter
essere citati agevolmente in tutto il resto del testo, snellendo la successiva
trattazione.

1.1 Sistemi dinamici

Con sistema dinamico a tempo continuo a parametri concentrati ci
si riferisce ad un sistema fisico descritto da un sistema di equazioni del tipo:

{a‘s(t) = f(a(t), u(t), 1) (111)
y(t) = g<m(t)7 u(t), t)

dove, dato un dominio T = [tg,t1] C R, « : T — R™ & il vettore di stato,
u T — R™ eil vettore d’ingresso ey : T — RP ¢ il vettore d’uscita. Pertanto
f e g sono definite su R™ x R™ x T'. Per i casi da noi affrontati, sara T'= R
e m = p = 1, ossia sistemi con solamente un ingresso e un’uscita, detti
Single Input - Single Output (abbreviato SISO). La prima equazione
viene detta equazione di stato, la seconda equazione d’uscita.

Il sistema si dice a tempo continuo poiché il tempo ¢ modellizzato
con una variabile che si muove in un intervallo di R, ossia varia con con-
tinuita. A questo tipo di sistemi si contrappongono i sistemi a tempo
discreto, in cui il tempo viene modellizzato come una variabile k£ in un
dominio F = [ko, k1] C Z, ossia gli istanti di interesse sono numerabili. Tali
sistemi, invece di essere descritti da equazioni differenziali, sono descritti da
equazioni alle differenze.

La dicitura a parametri concentrati sta a significare che ciascun com-
ponente del sistema ha una proprieta che fisicamente si puo considerare
concentrata in un punto, e pertanto puo essere descritta da uno scalare, che
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puo o meno variare nel tempo. Vi si contrappongono i sistemi a parametri
distribuiti, in cui le proprieta fisiche sono invece distribuite nello spazio, e
pertanto devono essere descritte da funzioni il cui valore varia al variare del
punto considerato (ed eventualmente nel tempo). In questo caso le equazio-
ni che si ottengono sono alle derivate parziali. Nel mondo reale i parametri
sono sempre distribuiti, ma in caso di sistemi che operano a basse frequenze,
la minima lunghezza d’onda che puo interessare il sistema € normalmente
molto maggiore delle dimensioni del sistema stesso. Pertanto si puo assu-
mere che ogni variazione si propaghi istantaneamente attraverso il sistema,
mentre nei sistemi a parametri distribuiti questa assunzione ¢ falsa.

Se in un sistema l'uscita non dipende direttamente dall’ingresso, os-
sia y(t) = g(z(t), t), il sistema si dice strettamente proprio. In caso
contrario, il sistema & non strettamente proprio.

1.2 Sistemi LTI

Se tutti i componenti di un sistema hanno proprieta che non variano nel
tempo, allora la f e la g in 1.1.1 non dipendono da t, e si parla di sistema
stazionario o tempo-invariante. Il sistema di equazioni diventa dunque:

(1.2.1)

Nel caso particolare in cui f e g siano lineari, il sistema si dice lineare e il
sistema, di equazioni 1.1.1 diventa:

{:’B(t) = A(t) z(t) + B(t) u(t) (1.2.2)

y(t) = C(t) 2(t) + D(t) u(t)

dove A: T - R"™"™ B:T —-R"™™" C:T—RP"eD:T — RP*™,

Qualora entrambe le proprieta siano soddisfatte, si parla di sistemi li-
neari tempo-invarianti, spesso abbreviato in sistemi LTI. Il sistema di
equazioni, in tal caso, si riduce a:

{x(t) = Az(t) + Bu(t) 123
y(t) = Cx(t) + Du(t)
Si osservi che in questo caso A € R™*" B € R™™, (C € RP*"™ ¢ D € RP*™,
ossia le matrici sono costanti. Inoltre, il sistema ¢ strettamente proprio se
D =0.

I sistemi LTI sono di fondamentale importanza in ingegneria (e in parti-
colare in questa trattazione) per due ragioni:
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e tranne in casi particolarissimi, si vogliono realizzare sistemi le cui pro-
prieta fisiche rimangano idealmente inalterate con lo scorrere del tem-
po, ossia sistemi tempo-invarianti; inoltre, alcuni sistemi non stazionari
variano in funzione di ¢ in modo cosi lento che si possono considerare
tempo-invarianti anche su intervalli T' ragionevolmente lunghi;

e si prediligono i sistemi lineari per la semplicita di trattazione data dal
principio di sovrapposizione degli effetti, tanto che spesso si restrin-
ge il range di impiego di sistemi non lineari in modo tale da poterli
linearizzare in un intorno di un determinato punto di lavoro.

1.3 Stato di un sistema

Il concetto di stato distingue un sistema dinamico da uno non dinamico. In
un sistema non dinamico, 'uscita y all’istante di tempo ¢ dipende esclusiva-
mente dal valore dell’ingresso u allo stesso istante di tempo. In un sistema
dinamico, invece, 'uscita dipende sia dall’ingresso che dal valore di alcune
altre grandezze variabili, dette variabili di stato del sistema. Presentia-
mo due esempi significativi per chiarire la necessita dell’introduzione di tale
concetto.

Un esempio in ambito elettrotecnico di sistema non dinamico & il resi-
store, descritto dalla legge di Ohm:

v=Ri

La differenza di potenziale (in breve d.d.p.) v ai capi di un resistore (usci-
ta) dipende unicamente dalla corrente i che scorre attraverso di esso, e dal
parametro concentrato R - la resistenza del componente. Si osservi che tale
sistema si puo considerare un sistema dinamico con stato costante e matrici
A, B, C nulle, mentre D = R. In pratica, i sistemi non dinamici sono un
sottoinsieme dei sistemi dinamici, e le equazioni che descrivono i sistemi non
dinamici LTI sono equazioni lineari algebriche, piuttosto che differenziali.

Rimanendo sempre nell’elettrotecnica, un esempio di sistema dinamico
¢ invece il condensatore, la cui caratteristica é:

i(t) = Cl%(t) (1.3.1)

dove C1 ¢ la capacita del condensatore. Volendola porre nella forma riportata

in 1.2.3:
dv 1

E(t) =0 i(t)

y(t) = v(?)
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ossia, lo stato e rappresentato da v, le matrici A e C si riducono a 0 € R, la
matrice B a C% e la D diventa 1 € R (ossia I'uscita coincide con lo stato).
Dalla 1.3.1 si ricava facilmente che:

v(t) = v(ty) + 61‘1 /to i(r)dr

Si osservi che la v non dipende soltanto dalla ¢, ma anche dal valore iniziale
v(to) della d.d.p., che di fatto misura il livello di carica del condensatore
(poiché C := % = @ = Cyv). Applicando la stessa corrente nel medesimo
periodo temporale a due condensatori con d.d.p. iniziale diversa (ossia che
si trovano in uno stato differente), si giunge a una d.d.p. finale diversa.

Pertanto, i sistemi fisici aventi un’inerzia o una memoria di qualche tipo,
o (piu rigorosamente) descritti da equazioni integrali, differenziali o integro-
differenziali, hanno evidenziato il bisogno del concetto di stato affinché il
modello di sistema rispecchi opportunamente la realta fisica.

1.4 Descrizione esterna

La notazione usata finora per descrivere un sistema viene detta descrizione
interna, poiché presuppone la conoscenza dello stato, di come esso sia con-
dizionato dall’ingresso e da come esso condizioni se stesso e 1'uscita. Vi e la
possibilita di trovare una descrizione del sistema che esprima direttamente
I’uscita in funzione dell’ingresso. Per farlo & necessario usare la trasforma-
ta di Laplace (in breve .#Z-trasformata). La .Z-trasformata unilatera di
una funzione f e una funzione F', in generale a valori complessi, definita da:

F(s)=Z[f(t)] :== +Oof(t) e st dt (1.4.1)

0-
L’integrale da 0~ € un modo compatto per scrivere:

+o0

li —st
lim . ft)ye*"dt

Cio serve a includere nell’integrale eventuali impulsi di Dirac che si trovassero
int=0.

Tra le varie importanti proprieta che caratterizzano la trasformata di
Laplace, riportiamo la seguente:

2[SLw) = szipw) - roh) (142)

Applichiamola ora al sistema 1.2.3:

sX(s)—x(0")=AX(s)+ BU(s)
Y(s)=CX(s)+DU(s)
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Allora I'equazione di stato diventa:
X(s)(sI —A)=2z(0")+ BU(s)

Dovendo invertire (sI — A), ci si chiede per quali valori di s cio sia possibile,
ossia per quali valori di s si ha det(sI — A) # 0 . Poiché il determinante
di (sI — A) e proprio il polinomio caratteristico di A, esso sara di grado n.
Pertanto solo per n valori di s tale determinante ¢ nullo (i.e., gli autovalori
di A). Per tutti gli altri, (sI — A) ¢ invertibile, e possiamo scrivere:

X(s) = (s — A~ (2(0%) + BU(s))
Sostituendo nell’equazione d’uscita:
Y(s)=C (sI — A)~' (z(07) 4+ BU(s)) + DU(s)

=Y(s)=C(s[—A)'z(0") + (D+C(sI-A)'B)U(s) (1.4.3)

Si osservi che se z(0%) = 0 (ossia lo stato iniziale ¢ nullo e non sono stati
applicati impulsi all’istante iniziale), allora:

Y(s)=(D+C(sI —A)'B)U(s) (1.4.4)

La (D + C(sI — A)~! B) viene indicata con H(s) e detta funzione di
trasferimento (in breve f.d.t.). Nota la trasformata U del vettore d’ingresso
e nota la f.d.t. del sistema, moltiplicandole tra loro e antitrasformando il
risultato, si ottiene y funzione del tempo, detta in questo caso evoluzione
forzata dell’uscita del sistema. Per questo, vista anche 'assenza dello stato
nella 1.4.4, si parla in questo caso di descrizione esterna del sistema.

E opportuno osservare che (sI — A)~! ha per elementi delle funzioni
algebriche razionali fratte. Questo perché:

e come gia detto, il determinante ¢ il polinomio caratteristico di A (che
quindi & di grado n), e va al denominatore di ciascun elemento;

e ciascun complemento algebrico deriva dal calcolo del minore comple-
mentare, che ¢ il determinante di una sottomatrice di (s/ — A) di
dimensione n — 1, e quindi un polinomio di grado n — 1.

Se il sistema e strettamente proprio, D & la matrice nulla e gli elementi di
H (s) sono razionali fratte con grado n—1 al numeratore, n al denominatore.
Altrimenti, a causa di D, dovendo sviluppare un denominatore comune per
ogni elemento, si ottengono razionali fratte con grado n sia al numeratore che
al denominatore. Per sistemi SISO, la H(s) si riduce ad una sola funzione
razionale fratta, ossia:
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H(s) = M) _ s m)(s=20) (s = 2m)

D) ) —p) (5 pm) (1.45)

con m pari an — 1 o n come gia spiegato sopra, K € C costante. Le radici
del denominatore vengono dette poli della funzione di trasferimento, quelle
del numeratore zeri. Salvo cancellazioni (ossia semplificazioni in caso di zeri
e poli coincidenti), i poli coincidono con gli autovalori di A.

Riprendendo la 1.4.3 e ponendo U(s) = 0, che ¢ la trasformata dell’in-

gresso nullo, si ha:
Y(s)=C(sI — A)~tz(0h) (1.4.6)

La C (sI — A)~!, che noi indicheremo con Hy (s), esprime la proporzionalita
tra Y (s) e z(0"), permettendo quindi di studiare la cosiddetta evoluzione
libera dell’uscita del sistema. Per gli stessi ragionamenti fatti per la f.d.t.,
Hp &, nel caso SISO, una funzione algebrica razionale fratta del tipo:

(s —zr1)(s —2zr2) - (s — 2Ln—1)
D(s) (s —p1)(s—p2)-- (s —pn)

(1.4.7)

Il denominatore ¢, per ovvi motivi, lo stesso visto nella H(s), e quindi le due
condividono gli stessi poli (sempre salvo cancellazioni).

1.5 Equilibri e stabilita

L’ equilibrio € un concetto presente nella vita di tutti i giorni. Diciamo che un
corpo ¢ in equilibrio quando, malgrado non sia fissato saldamente al terreno,
a un edificio, o comunque a un corpo ritenuto relativamente inamovibile,
esso mantiene la sua posizione, o non cade, seppure tale eventualita sia
contemplata. Di tutto questo, cido che realmente conta e lo stato di quiete
del corpo nonostante le sollecitazioni esterne che esso possa subire, mentre
la precarieta o meno dell’equilibrio ricadra nel concetto di stabilita.
In riferimento a 1.1.1, fissata una funzione d’ingresso u, se esiste T € R™
tale che:
z(ty)) =7 = z(t) =T Vt>=ty, t€D (1.5.1)

esso si dice stato di equilibrio o semplicemente equilibrio. In maniera
del tutto analoga, fissata u, se esiste 7 € R? tale che:

y(to) =y = y(t) =y Vt=>ty, t€D (1.5.2)

si parla di uscita di equilibrio.
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Per sistemi stazionari (vedi 1.2.1), essendo I'equazione di stato indipen-
dente da ¢, si ha in generale:

f@ult)=0 < ult)=u

e dunque & necessario che anche 'ingresso sia costante affinché sia possibile
trovare degli equilibri. Per ogni stato di equilibrio, poi, si evidenzia un’uscita
di equilibrio, poiché:

9@, u) =y RP

Informalmente, un equilibrio (u,Z) ¢ stabile se, perturbato leggermente lo
stato iniziale, ’evoluzione dello stato non si discosta troppo da T. In altre
parole, per piccole variazioni dello stato iniziale si hanno piccole variazioni
del movimento dello stato (ossia di ¢t — x(t)). L’equilibrio sara poi asin-
toticamente stabile se, perturbato lo stato iniziale, il movimento dello
stato tendera nuovamente all’equilibrio. In simboli, se ¢y € l'istante iniziale,
v = (u, T) & un equilibrio stabile se:

VE>0 F0=06(E,v)>0 :||x(to)) —T|[<d = ||z(t) —T||<E VE>1o
(1.5.3)

ed e inoltre asintoticamente stabile se:
li t)—7 || = 1.5.4
i) =7 =0 (1.5.4)
Per i sistemi lineari (e quindi in particolare per i sistemi LTI) si puo
dimostrare che la stabilita ¢ una proprieta del sistema e non dell’equilibrio.
Cio significa tutti gli equilibri del sistema hanno le medesime proprieta di

stabilith. B possibile dimostrare anche che la stabilitd del sistema dipende
esclusivamente dagli autovalori della matrice A. In particolare:

e se gli autovalori hanno tutti parte reale negativa, il sistema ¢ asintoti-
camente stabile

e se esistono autovalori a parte reale nulla ma sono tutti distinti, il
sistema ¢ stabile (non asintoticamente).

e se esiste almeno un autovalore a parte reale positiva, il sistema e
instabile

Sul caso autovalori multipli a parte reale nulla non si puo decretare nulla:
ci sono casi in cui il sistema e stabile, casi in cui si rivela instabile.

Un altro tipo di stabilita & la cosiddetta stabilita esterna, o stabilita
Bounded Input - Bounded Output (abbreviato BIBO). Un sistema ¢
BIBO-stabile se a input di ampiezza limitata corrispondono sempre output

7
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di ampiezza limitata. Il nome stabilita esterna suggerisce una stretta corre-
lazione tra questa caratteristica e la descrizione esterna del sistema. Infatti,
un sistema LTI ¢ BIBO-stabile se, a seguito delle cancellazioni tra poli e zeri
nella f.d.t., non vi sono in essa poli a parte reale positiva o nulla. Questo fat-
to si dimostra banalmente scomponendo la generica f.d.t. in fratti semplici e
antitrasformando: tali fratti danno infatti luogo a componenti divergenti se
e solo se i corrispondenti poli sono a parte reale positiva, o a parte reale nulla
e con molteplicita maggiore di 1. Moltiplicando la f.d.t. per la trasformata
di un input, non si fa che aggiungere poli, o alzare la molteplicita di quelli
presenti. Se i poli dell’input sono a parte reale negativa, non si lede in alcun
modo la limitatezza dell’output. Tuttavia, se la f.d.t. avesse poli a parte
reale nulla, sarebbe possibile scegliere opportunamente degli input limitati
con poli a parte reale nulla coincidenti con quelli della f.d.t., in modo da
ottenere output illimitati.

Nel caso di sistemi LTI, la asintotica stabilita implica la stabilita BIBO,
ma non e vero il viceversa. Cio e di semplice spiegazione ricordando che,
salvo cancellazioni, i poli della f.d.t. sono gli autovalori della matrice A:

e se tutti gli autovalori sono a parte reale negativa, tutti i poli sono
a parte reale negativa (anche dopo eventuali cancellazioni); pertanto
asintotica stabilita = stabilita esterna;

e viceversa si puo avere stabilita BIBO anche con poli a parte reale nulla,
od ottenere la cancellazione di poli a parte reale positiva (che quindi
continuano a esistere come autovalori, anche se non appaiono nella
f.d.t.); pertanto stabilita esterna = asintotica stabilita.



Capitolo 2

Introduzione teorica agli
oscillatori

2.1 Oscillatori sinusoidali. Concetto

Un oscillatore e un circuito in cui un segnale di uscita periodica viene genera-
ta spontaneamente, poiché ha solo i feed e la massa [9]. E quindi inteso come
un oscillatore uno stadio elettronico che, essendo alimentato con una tensione
continua, fornisce un’uscita periodica, che puo essere approssimativamente
sinusoidale, quadrata, triangolare, ecc.

Tutti gli oscillatori hanno una frequenza di lavoro caratteristica, che di-
pende dai valori dei componenti del circuito (resistori, condensatori, bobine
...) e che, in alcuni casi, ¢ controllabile dall’esterno mediante una tensione
applicata (VCO). Pertanto, un oscillatore converte la potenza fornita dal-
le sorgenti di alimentazione in corrente continua in una corrente alternata
avente le caratteristiche desiderate. [9]

Sono ampiamente utilizzati e per questo é importante studiare come
funzionano. Gli oscillatori possono essere classificati come:

- Armoniche: quando l'uscita ¢ sinusoidale.
- Rilassamento o multivibratore: se generano un’onda quadra.

Il requisito principale di un oscillatore & una distorsione armonica molto
bassa (THD) e ampiezza e frequenza fissa.

Ma ci sono anche oscillatori a frequenza variabile. La frequenza puo es-
sere regolata meccanicamente (condensatori o bobine a valore regolabile) o
applicando la tensione a un elemento. Questi ultimi sono noti come oscil-
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latori a tensione controllata o VCO, ovvero oscillatori la cui frequenza di
oscillazione dipende dal valore di una tensione di controllo.

I parametri principali di un oscillatore sono: [1]
- Frequenza: ¢ la frequenza della modalita operativa.

- Il campo di regolazione, per gli oscillatori di frequenza regolabili, ¢ il
campo di regolazione.

- Potenza e prestazioni in uscita. Le prestazioni sono il quoziente tra la
potenza del segnale di uscita e la potenza che consuma.

- Livello armonico: potenza dell’armonica riferita alla potenza del fon-
damentale, in dB.

- Deriva con la temperatura: variazione della frequenza dell’oscillatore
quando la temperatura varia.

- Rumore di fase o derive istantanee della frequenza.

- Stabilita della frequenza a lungo termine durante la vita dell’oscillatore.

Gli oscillatori possono essere basati su amplificatori operazionali e tran-
sistor. L’applicazione di A.O. ha i suoi limiti, data principalmente dal-
la larghezza di banda, quindi non & possibile progettare oscillatori ad alta

frequenza (superiori a 1 MHz), sostituiti da transistor bipolari o F.E.T.

In questo progetto ci limiteremo allo studio degli oscillatori ad onda
sinusoidale o ”"quasi sinusoidali” con amplificatore operazionale.
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2.2 Principio di Funzionamento. Criterio di Bar-
khausen

Una prima idea della forma acquisita da un oscillatore riguarda il concetto
di feedback e instabilita.

Xi A > Xo

Figura 2.1: Struttura di feedback di base di un oscillatore con feedback
positivo

Xi A >Xo

[20]

Figura 2.2: Principio di funzionamento di un oscillatore con feedback
negativo

Essendo A il guadagno dell’amplificatore e B la funzione di trasferimento
della rete di feedback con Xi I'ingresso e x o I'uscita, puo succedere:

Se il feedback ¢ positivo (Figura 2.1):

a) A-B-Xi < Xi (tensione di ingresso) e quindi in assenza di un segnale,
le oscillazioni cesseranno dopo un certo periodo di tempo, cioe il segnale di

uscita verra attenuato.

b) A-B-Xi > Xi, la retroazione sara rigenerativa e il valore della tensione
di uscita, Xo=A-Xi, aumentera.

¢) A-B-Xi = Xi, significa che il sistema ¢ in grado di fornire un segnale
di uscita senza la necessita di applicare un segnale all’ingresso.

11
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L’uguaglianza A-B-Xi=Xi implica che |[AB| = 1, vale a dire che il gua-
dagno del ciclo € uguale all’'unita. Perché una tensione sinusoidale soddisfi
A-B-Xi = Xi, 'ampiezza, la fase e la frequenza di entrambi i segnali devono
essere identici.

La condizione |AB| = 1 & il requisito di ampiezza e la condizione di
uguaglianza nella fase del segnale di retroazione con quella del segnale di
ingresso, e il requisito di fase; in modo che questi requisiti rappresentino le
condizioni necessarie e sufficienti per far oscillare un amplificatore di retroa-
zione. Queste condizioni fondamentali sono conosciute come il criterio di
Barkhausen.

ouT

[9]
Figura 2.3: Struttura alimentata senza input

Dove B ¢ la rete di frequenza selettiva (rete di feedback B(jw) che utilizza
elementi passivi, resistori, condensatori, bobine) e A(jw) € un amplificatore
indipendente dalla frequenza.

Pertanto, le condizioni necessarie affinché un oscillatore oscilli sono:

1- Che il segnale di retroazione sia in fase con il segnale di ingresso ¢=0
(con feedback positivo. Figura 2.1) o ¢=180° (nel caso di feedback negativo.
Figura 2.2).

2- Che il guadagno dell’anello aperto |AB| sia uguale a 1.

Per i circuiti delle figure 2.1 e 2.2:

Se il guadagno dell’anello aperto |[AB|<1 (0 dB) non si verificano oscil-
lazioni. Se il valore |[AB| & vicino a 1 e viene applicato un disturbo (passo,

impulso, ecc. O il rumore presente nei componenti) puo essere osservato
un’oscillazione.

12
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Nel caso in cui il guadagno del loop |AB|> 1 (0 dB) generi un’oscillazione
che cresce in modo esponenziale, in pratica, smettera di crescere quando
I’amplificatore smettera di essere lineare a causa dell’input nel taglio o nella
saturazione dei transistor. In questo caso, il segnale verra interrotto e quindi
non sara pit un segnale sinusoidale.

2.3 Stabilita negli oscillatori

Come abbiamo detto prima, una prima idea sulla forma acquisita da un
oscillatore riguarda il concetto di feedback e instabilita.

Normalmente I'instabilita influisce negativamente sui sistemi, tranne nel
caso degli oscillatori. Dato che stiamo cercando un’uscita sinusoidale pura,
senza input, cioe che il sistema abbia una risposta libera sinusoidale, i poli
devono essere sull’asse immaginario.

Jay,

W

[24]

Figura 2.4: Struttura alimentata senza input

In altre parole, 1+A-B(denominatore della funzione di trasferimento)
ha zeri immaginari +jwo, cioe: A(jwo)-B(jwo)=-1. Pertanto, il criterio di
Barkhausen puo essere espresso come:

|A(jwo)B(jwo)| > 1 (2.3.1)

Arg(A(jwo)B(jwo)) = 0° (2.3.2)

13
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O come,

Arg(A(jwo)B(jwo)) = 180° (2.3.3)

Eq. 2.3.2 nel caso di un oscillatore con feedback positivo (Figura 2.1),
dove wo ¢ la frequenza naturale di oscillazione; Eq. 2.3.3, nel caso di un oscil-
latore con feedback negativo (Figura 2.2), essendo T(jwo)=A (jwo)B(jwo) la
funzione di trasferimento dell’anello aperto.

Teoricamente con il criterio di Barkhausen si potrebbe sostenere che i
poli si trovino sull’asse immaginario, perd, a causa di derive termiche, in-
vecchiamento o dispersione dei parametri i poli tendono a spostarsi verso il
semipiano positivo o negativo. In quest’ultimo caso, le oscillazioni scompaio-
no. Se, invece, i poli si trovano sul semipiano positivo, tendono ad aumentare
di ampiezza fino alla saturazione.

] Yo

~ -
’
-
S 4“
S ’.,"
- -

\/ N V/\\/ f

%
kY
%

[20]
Figura 2.5: Uscita quando i poli sono nella mezza sinistra e mezza destra
Questo puo essere spiegato meglio considerando che la saturazione puo
essere interpretata come una variazione di guadagno. Quando il guadagno

varia, la posizione dei poli varia. Se 'ampiezza aumenta molto, il guadagno
del sistema diminuisce e i poli tornano all’asse immaginario (Figura 2.7).

14



CAPITOLO 2. INTRODUZIONE TEORICA AGLI OSCILLATORI

alto guadagno
(senza saturazione)

- 1

)

guadagno basso
(con saturazione)

""-n'.'.l 1

Figura 2.6: Quando il segnale di ingresso e piccolo, il guadagno e alto.
Quando il segnale si avvicina alla saturazione, il guadagno apparente viene
ridotto

[20]

Im Im

= Re > Re

Ny

E

s

1

Figura 2.7: 1- Quando il guadagno viene ridotto, i poli si spostano sull’asse
immaginario. 2- Quando 'uscita raggiunge la saturazione, i poli si trovano
sull’asse immaginario
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Pertanto, dal punto di vista pratico, i poli si devvono trovare nella
parte reale positiva perché attraverso il processo di feedback di ampiezza-
guadagno, questa ampiezza non cresce indefinitamente. Questo e perche
all’aumentare ’ampiezza, il guadagno diminuisce e l’ampiezza diminuisce di
nuovo, ritornando alla situazione precedente.

Tuttavia, in modo piu dettagliato, cio che accade é:

[18]

At

Figura 2.8: Segnale che diverge all’uscita di un oscillatore

Durante At si perde la linearita. Durante questo periodo, i condensatori
del circuito vengono riorganizzati e quando entrano nella zona lineare si
inizia una nuova onda sinusoidale che ¢ una esponenziale crescente. Questo
non dovrebbe essere confuso con un ritaglio. Se & cosi, il segnale sarebbe
sempre piu quadrata.

Da quanto sopra la condizione di Barkhausen e quindi:

|T(jwo)| > 1 (2.3.4)

arg(T(jwo)) = 0°con feedbackpositivo( Figura2.1) (2.3.5)
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arg(T(jwo)) = 180°con feedbacknegativo( Figura2.2) (2.3.6)

2.4 Criterio di Nyquist

Dato che, come indicato sopra, l'obiettivo nella progettazione di un oscil-
latore ¢ lo studio della particolare instabilita del sistema per ottenere le
oscillazioni, una delle metodologie applicabili a un sistema di feedback e il
criterio di Nyquist.

Il criterio di Nyquist si basa su un teorema complesso di analisi delle
variabili noto come principio dell’argomento:

Principio dell’argomento: Se F(z) € una funzione analitica e C & un
contorno nel piano complesso che racchiude Z zeri e P poli di F, quindi il
contorno C '= F(C), circoscrive l'origine N volte, dove: [19]

N=Z-P (2.4.1)

La figura seguente mostra un caso particolare di questo teorema:

[24]
Im F) I
A~ Ty C* =F(O)
" i
© = Ra =
(a) (b)

Figura 2.9: Esempio Nyquist
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(a) Una curva C che racchiude 4 zeri (indicati da cerchi) e 2 poli (indicati
da croci) della funzione analitica F(s).

(b) La curva C ’trasformata da F(s) circonda 4-2=2 volte all’origine.

Essendo la funzione di trasferimento H(s)=A(s)/(14+A(s)-B(s)) del siste-
ma di retroazione, i suoi poli saranno gli zeri del suo denominatore (14+A(s)-B(s)).
I poli del suo numeratore A(s), che potrebbero anche essere aggiunti, saran-
no effettivamente cancellati con i poli 1+A(s)-B(s) !, poiché coincidono con
questi (a meno che B(s) abbia zeri coincidenti con poli di (s), caso che
vedremo pil avanti).

In conclusione, la stabilita di H(s) puo essere studiata determinando se
1+a(s)-B(s) ha zeri nel mezzo piano reale positivo, Re(s)> 0. Per questo
applicheremo il principio dell’argomento alla funzione F(s)=1+A(s)-B(s).

Consideriamo il contorno semicircolare C indicato in figura 2.10, per

il quale abbiamo preso la precauzione di scegliere R abbastanza grande in
modo che tutti gli zeri del mezzo piano reale positivo siano racchiusi da esso.

[24]
Im Im

o
27 N
: . - - = Ra &_EJ > Ra

(a) (b)

Figura 2.10: (a) Contorno C usato per determinare se la funzione F (s) ha
zeri nel mezzo piano reale positivo. Gli zeri indicati con cerchi. (b) Contour
C ’trasformato da F (s). Poiché C racchiude 4 zeri, C ’circonda 'origine 4
volte

1(1) T poli di 1 + A(s)-B(s) sono uguali ai poli di A(s)-B(s) perché I'aggiunta della
costante 1 non altera la posizione dei poli, e i poli di A(s)-B(s) includono i poli di A(s).
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Se partiamo dal presupposto che A(s) e B(s) sono stabili, allora F(s) non
avra poli con una parte reale positiva, quindi:

N=2 (2.4.2)

Cioe, il numero di giri che C ’= F(s) da intorno a 0 coincide con il numero
di zeri di F(s) dentro C. Se questo numero ¢ maggiore di 0, ci sara almeno
uno zero e il Il sistema di feedback sara instabile.

Osserviamo che invece di considerare F(s)=1+A(s)-B(s) potremmo sem-
plificare la traccia considerando la funzione G(s)=A(s)-B(s), funzione del-
I’anello aperto. L’unica differenza sara che il contorno trasformato ruotera
attorno a -1 invece che intorno a 0. Figura 2.11.

[19]

Im Im

=

o AB(C)

(@
Im Im
"n
\'\
Cy .
F = ",
o] I"-
L}
i
H
:':: o 'I
o > Re
o o lI
II
I3
o I
*
&
&
td
r
-
-~ {bj

Figura 2.11:
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(a) Sullo stesso contorno C della figura 12 viene applicata la funzione
G(s) = A(s)-B(s) invece di F(s)=1+A(s)-B(s). Il numero di zeri di F(s) ¢
ora il numero di volte in cui il contorno trasformato circonda -1.

(b) Tendono a R a T'co. I valori di A-B sull’estensione semicircolare ten-
dono a 0. Il contorno ottenuto trasformando ’asse immaginario attraverso
A(s)-B(s) e chiamato il punto o contorno di Nyquist e quindi il criterio di
stabilita puo essere definito come segue:

“Un sistema di feedback sara stabile se il suo contorno di Nyquist (I’as-
se immaginario trasformato da uno A(s)-B(s) non racchiude il punto -1,
chiamato punto critico.” [2]

Di seguito sono riportati due esempi di applicazione del criterio di Ny-

quist. Nel caso instabile, il contorno di Nyquist circonda il punto -1 e nel
caso stabile non lo fa.

Im Im

A(0)B(D A(0}B(0)
{ } { J?R{" b > Re
1 ‘//
Aljw)B(je)
Alje)B(jeo)
stabile instabile
Figura 2.12:

Il vantaggio principale del criterio di Nyquist e la sua semplicita quando
¢ solo necessario determinare se un sistema sara stabile o instabile quando
viene riconsegnato.

Pertanto, nel nostro studio, gli oscillatori dovrebbero essere progettati in

modo che il diagramma di Nyquist della funzione di loop A(s)-B(s) circondi
il punto critico -1, come condizione per la sua instabilita.
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Capitolo 3

Guadagno ad anello aperto

Se apriamo l'ingresso dell’amplificatore e applichiamo un generatore di se-
gnali come que-llo mostrato nella figura:

[3]

"._,':[:. W A
Vi

w--—{B}-— _ B L

Figura 3.1:

Vo=A-Vi (3.0.1)

Vr=B-Vo (3.0.2)
Vr=A-B-Vi (3.0.3)

Se ora rimuoviamo il generatore e ricolleghiamo il circuito, come in Figu-
ra 1, 'ingresso dell’amplifica-tore e il segnale di retroazione. Quindi, avremo
comportamenti diversi a seconda del valore del guadagno del circuito A-B.
I casi possibili sono:
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- Se A-B<1, Vo verra attenuato nel tempo:

[24]

Vo ﬁ\,
,
Sy
S

Figura 3.2: Attenuazione dell’uscita
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- Se A-B> 1 Vo aumenta nel tempo

[18]
;
Vo #
-
mf
A ﬁ ﬂ ﬂ ﬂ
-7 U U U U :
"h.\\.
.
A"
‘.-

Figura 3.3: Il segnale diverge nel tempo

Cio portera "amplificatore alle zone di saturazione, deformando il segnale
di uscita.

23



CAPITOLO 3. GUADAGNO AD ANELLO APERTO

- Se A-B=1 Vo sara un segnale sinusoidale stabile nel tempo

INAIRTAIATAIAIR

Figura 3.4: Segnale stabile nel tempo

Quindi per costruire un oscillatore, abbiamo bisogno che, quando si eccita
il circuito, A-B>1 e poi quando 'uscita Vo & cresciuta fino all’ampiezza
desiderata il guadagno del circuito diminuisce automaticamente e assume
un valore uguale a uno (A-B=1). Ricordiamo che A e B sono in realta A(jw)
e B(jw), cioe sono funzioni della frequenza e per tanto 'oscillazione pué
succedere per una gamma di frequenze o per una particolare frequenza. In
un oscillatore faremo in modo che questo accada solo per una frequenza fo,
la frequenza di oscillazione che vogliamo avere nel circuito.
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Capitolo 4

L’approccio seriale

In questo capitolo si mira a formalizzare il ragionamento visto nella sezione
[2.2], partendo dapprima da un caso semplificato, ossia in assenza di dinami-
ca, per poi affrontare il caso generale. L’obiettivo ¢ trarre da tale approccio
informazioni corrette sul comportamento del sistema in funzione di H e G.
In particolare siamo interessati alla stabilita del sistema e alla presenza di
oscillazioni nella risposta libera.

4.1 Un risultato preliminare

Si consideri un sistema non dinamico, retroazionato positivamente, in cui
H(s) = H € Re G(s) = G € R. In questo modo, a tutte le pulsazioni w
Pamplificazione dell’anello risulta essere H(jw)G(jw) = HG € R. Se ad
esempio H = 4 e G = 0.5, calcolando il valore della f.d.t.:

H(s) 4

S H(s)Gls) 1-2 *

F(s)

Da questa ci aspetteremmo di aver descritto un amplificatore invertente con
amplificazione pari a 4. In realta tale sistema ¢ BIBO-instabile. Questo &
uno dei casi in cui la rimozione del ritardo di propagazione dall’anello trae
in inganno. Una volta reintrodotta, il ragionamento con cui si € ricavato il
criterio esteso nella sezione [14] fornisce una predizione ragionevole.

Per prima cosa, modifichiamo il nostro sistema retroazionato positiva-
mente come in figura 4.1. Si dimostra facilmente che inserire un unico ritardo
nell’anello di retroazione pari alla somma dei ritardi introdotti dai singoli
rami e equivalente a considerare il ritardo di ciascun ramo. Facendo tendere
At a 0, alla fine, otterremo predizioni valide per il sistema di partenza.

Rimaniamo nel dominio del tempo, e indichiamo il ritardo con At. Dal
momento che il sistema e tempo invariante, consideriamo ¢t = 0 l'istante
iniziale senza perdere in generalita. Le equazioni che descrivono il sistema
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H(s) >

[A] G(s) [—

Figura 4.1: Sistema a retroazione positiva con ritardo di propagazione

Sono:
y(t) = He(t)
w(t) = Gy(t — At)
e(t) = u(t) + w(t)
Sostituendo la terza nella prima:
y(t) = H(u(t) +w(t))
E scrivendo l’espressione di w(t) come riportato nella seconda:
y(t) = H(u(t) + Gy(t — At))
Che, riarrangiata, diventa:
y(t) = HGy(t — At) + Hu(t)
Ci si puo dunque ricondurre ad una rappresentazione per successioni:

Yn = HGyp—1 + Huy, (4.1.1)

Per prima cosa, cerchiamo un equilibrio della successione (yy)n, 0ssia un
valore y tale che se y, =y, allora y,+1 = y per ogni n.

y=HGy+ Hu,

< y(1—-HG) = Hu,

YT i-mEe™
e cio ¢ valido se e solo se u, = u costante:
H
= 4.1.2
V=T"gal (4.1.2)

Se non volessimo avere u, = u € y, = % u per ogni n € Z, basterebbe

imporre la condizione u, =upern>0ey_; = % u. Infatti, applicando
la 4.1.1:
Yo =HGy_1+ Hug =
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H
=HG (1_HGU>+HUZ

_ HGu+H(-HGu _

1—HG
H
“1-mg"

e per induzione, si ha che y, = % u Vn > —1. Cio ¢ gia irrealizzabile di
per sé nel caso reale, poiché nella realta fisica possiamo controllare solamente
la u: la y ne € una conseguenza. Infatti le condizioni di studio dei sistemi
sono, usualmente, a stato nullo e ingressi nulli per istanti precedenti a quello
iniziale. Cio implica, grazie all’equazione d’uscita in 1.2.3 che anche 1'uscita
sia nulla per istanti precedenti a quello iniziale. Ciononostante, studiamo
la stabilita di questo equilibrio nel senso delle successioni, per capire se
I'uscita vi tenda anche qualora la condizione sulla y_;1 sopra citata non sia
soddisfatta (e in particolare per y, = 0 per n < 0.

Chiamiamo L = % u per semplicita. Sia £ € R, esiay_; = L+ €.
Allora:

yo=HGy-1 + Hup =

=HG(L+&)+ Hu=
=HGL+ Hu+ HGE =
=L+ HGE

e quindi, induttivamente:
yn = L+ (HG)"H'E

11 che significa che se |HG| < 1, l'uscita y,, tendera a L anche se la y_; non &
esattamente L. Se |HG| >, invece, 'uscita divergera. Un interessante caso
particolare si ha per u =0. Allora L=0¢e & = y,,—1.

yn = (HG)"TLE

Dal momento che & sempre presente del rumore termico in sistemi reali, an-
che un sistema in cui I’equilibrio dovrebbe essere 'uscita nulla sara instabile,
e l'uscita saturera in breve tempo (praticamente nullo).

Vale la pena di calcolare y,, applicando ricorsivamente la 4.1.1 in condi-
zioni iniziali nulle (ossia u, =y, = 0 se n < 0).

Yo = Hug
Y1 = HG(HUO) + Huy = H(HGUO +U1)

Yo = HG(H(HGUO + ul)) + Huy = H((HG)QUQ + HGuq + UQ))
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Yo = H(uo(HG)" + ur (HG)" ' + - + up1 (HG) + up)

yn =H> (HG) up, (4.1.3)
k=0

In particolare, sia u, = u per n > 0

yn=uHY (HG)*
k=0

Si osservi che > p_o(HG)* & 'ennesimo termine di una serie geometrica.
Pertanto:

e se |HG| > 1 'uscita e illimitata

e se |[HG| < 1, la serie converge a ﬁ, quindi:

H

limy, - colYn =

Si consideri ora di far tendere a 0 il At. Questo ¢ equivalente ad avere infinite
propagazioni attraverso il circuito in tempo zero, e questo ad ogni istante ¢.
Pertanto lim,, — «oyn non & piu il valore dell’uscita all’istante n-esimo, bensi:

y(t) = limn 00 Y _(HG) u(t)
k=0

Quando |HG| < 1 la serie converge ed effettivamente si ha:

(1) = 1 el

Quando |HG| > 1, invece, la serie diverge e si potrebbe dire che, nel modello:
y(t) =400 VE=0

Nel caso reale non si ha mai At = 0 e quindi 'uscita ha 'andamento di y,.
Non appare a gradini perche il ritardo attraverso il loop, alla velocita della
luce, & dell’ordine di circa trenta picosecondi per centimetro da percorrere.
Pertanto i gradini sarebbero molto brevi anche in assenza di altri disturbi,
e a un normale strumento di misura sono impossibili da apprezzare.

Un altro importante caso particolare della 4.1.3 si ha quando ug = 1,
uy = 0 per n # 0. In questa situazione 'uscita é:

yn = H(HG)" (4.1.5)
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In altre parole, la risposta all’impulso del sistema a tempo discreto ¢ la
successione h, = H(HG)" per n > 0. Se |HG| < 1 si ha che h,, tende
a zero per n — oo. Viceversa, per |[HG| > 1 si ha h,, illimitata. Per il
valore di frontiera tra i due casi, ossia |HG| = 1, h,, = H, costante. Tale
condizione & esattamente la traduzione di quanto riportato nella sezione
[2.2] per w = 0. Infatti, per quel che riguarda la stabilita del sistema, grazie
a quanto dimostrato precedentemente si puo affermare che il sistema sia
esternamente stabile se |[HG| < 1, e non lo sia altrimenti. Per quel che
riguarda la stabilita in senso stretto, invece, si sarebbe persuasi di definire
il sistema:

e stabile quando |HG| < 1, poiche y tende a 0 quando non si applicano
ingressi;

e marginalmente stabile quando |HG| = 1, poiche il sistema "oscilla a
frequenza nulla”, ossia mantiene autonomamente un’uscita costante

e instabile quando |HG| > 1, poiché non appena un qualsiasi segnale nel
sistema dovesse discostarsi da 0, 'uscita y crescerebbe illimitatamente
in valore assoluto

Tale visione, a rigore, ¢ corretta solo per il sistema a tempo discreto. Infatti
per i sistemi a tempo discreto ’equazione differenziale in 1.1.1 diventa un’e-
quazione alle differenze, la quale nel nostro caso sarebbe la 4.1.3. Da cio si
deduce che lo stato puo essere rappresentato proprio dalla y.

In conclusione, la descrizione classica di questo sistema con I'imposizione
del tempo di propagazione pari a zero fornisce risultati corretti soltanto se
|[HG| < 1. Quando invece |HG| > 1, la f.d.t. ricavata in modo classico for-
nisce risultati scorretti sul reale comportamento del sistema, e bisognerebbe
piuttosto ricorrere all’introduzione del ritardo, per poi farlo tendere a zero.
Di seguito riportiamo delle simulazioni svolte per il circuito di cui sopra, sia
col modello di figura (figura 4.2), sia col modello appena introdotto (figura
4.1) e ritardi decrescenti (figure 4.3, 4.4, 4.5, 4.6, 4.7. Qualora il lettore stes-
se visualizzando ’elaborato in formato pdf, per la visualizzazione corretta
dei grafici delle risposte nel tempo si consiglia un fattore di zoom del 150%
0 superiore.
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* C:\Users\simsa\Documents\00 MATTEO\0O0 Universit\01 - TESI\Simulazioni pSpice\Non Dinamico retroaz positivo\Sch...
Date/Time run: 03/05/18 18:43:33 Temperature: 27.0
(B) Schematicl.dat (active

-2.0v
-3.0v
-4.0v
-5.0v
-6.0
=7.0v
s 2ms 4ms 6ms 8ms 10ms 12ms l4ms 16ms 18ms 20ms
o V(H:3)
Time
Date: March 05, 2018 Page 1 Time: 18:46:41

Figura 4.2: Risposta del circuito non dinamico ad ingresso costante di
ampiezza 1, modello senza ritardo di propagazione

* C:\Users\sim 0 MATTEO\00 Universit\01 - TEST\Simulazioni pSpice\Non Dinamico retroaz positivo con...
Date/Time run: 1 Temperature: 27.0
(A) Schematicl.dat (active

10.0GV
8.0G
6.0G
4.0GV
2.0GV
ov. T
0s 50us 100us 150us 200us 250us 300us 350us 400us 450us
o V(H:3)
Time
Date: March 05, 2018 Page 1 Time: 19:04:23

Figura 4.3: Risposta del circuito non dinamico ad ingresso costante di am-
piezza 1, modello con ritardo di propagazione. At = 10us, Step ceiling =
100ns
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* C:\Users\simsa\Documents\00 MATTEO\00 Universit\01 - TESI\Simulazioni pSpice\Non Dinamico retroaz positivo con...
Date/Time run: 03/05/18 19:03:31 Temperature: 27.0
(A) Schematicl.dat (active

10.0Gv
8.0GV
6.0GV
4.0GV
2.0
ov: —
0s 50us 100us 150us 200us 250us 300us 350us 400us 450us
o V(H:3)
Time
Date: March 05, 2018 Page 1 Time: 19:04:23

Figura 4.4: Risposta del circuito non dinamico ad ingresso costante di am-
piezza 1, modello con ritardo di propagazione. At = bus, Step ceiling =
100ns

* C:\Users\
Date/Time ru

sa\Documents\00 MATTEO\0O Universit\01 - TESI\Simulazioni pSpice\Non Dinamico retroaz positivo con...
03/05/18 19:10:05 Temperature: 27.0

(2) Schematicl.dat (active
10.0GV;
8.0
6.0
4.0GV
2.0GV
el
ov-
0s 40us 80us 120us 160us 200us 240us
o V(H:3)
Time
Date: March 05, 2018 Page 1 Time: 19:10:21

Figura 4.5: Risposta del circuito non dinamico ad ingresso costante di am-
piezza 1, modello con ritardo di propagazione. At = lus, Step ceiling =
10ms
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* C:\Users\simsa\Documents\00 MATTEO\0O Universit\01 - TESI\Simulazioni pSpice\Non Dinamico retroaz positivo con...
Date/Time run: 03/05/18 19:10:05 Temperature: 27.0
(A) Schematicl.dat (active

10.0GV
8.0
6.0GV
4.0Gv
2.0Gv
fussaf
ov
0s 40us 80us 120us 160us 200us 240us
o V(H:3)
Time
Date: March 05, 2018 Page 1 Time: 19:10:21

Figura 4.6: Risposta del circuito non dinamico ad ingresso costante di am-
piezza 1, modello con ritardo di propagazione. At = 500nss, Step ceiling =
Ins

* C:\Users\simsa\Documents\00 MATTEO\0O Universit\01 - TESI\Simulazioni pSpice\Non Dinamico retroaz positivo con...
Date/Time run: 03/05/18 19:10:05 Temperature: 27.0
(A) Schematicl.dat (active)

10.0GV
8.0GV
6.0GV
4.0
2.0
o]
ov
0s 40us 80us 120us 160us 200us 240us
o V(H:3)
Time
Date: March 05, 2018 Page 1 Time: 19:10:21

Figura 4.7: Risposta del circuito non dinamico ad ingresso costante di am-
piezza 1, modello con ritardo di propagazione. At = 1nss, Step ceiling =
1ps
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Queste rispecchiano le previsioni teoriche appena presentate. Nella fat-
tispecie si noti che per le simulazioni con ritardo decrescente (figure da 4.3 a
4.7), al tendere a zero del tempo di propagazione, il tempo in cui il segnale
d’uscita diverge tende a zero.

Nella prossima sezione, estendiamo il ragionamento ai sistemi LTI ge-
nerali, evidenziando la maggior complessita della trattazione e ricavando
risultati piti generali.

4.2 L’approccio seriale per i sistemi LTI

Consideriamo il caso generale di sistema LTI, e facciamo ancora riferimento
allo schema in 4.1. Sia At il ritardo di propagazione attraverso I’anello di re-
troazione. Consideriamo un segnale di ingresso u tale che la sua trasformata
di Laplace sia U. Sia Y la trasformata dell’uscita.

Consideriamo 'intervallo [0, At). Durante tale intervallo, il segnale non
si & ancora propagato attraverso il ramo di retroazione e quindi w & ancora
nullo. La trasformata dell’uscita del sistema ¢ pertanto:

All’istante At finalmente il segnale w non ¢ piu nullo, e in particolare ¢ una
versione ritardata di At secondi del segnale in uscita dal blocco G. Pertanto,
la sua trasformata e:

W(s) = (H(s) G(s)) U(s) N
Durante Uintervallo [At, 2At) , il segnale e avra dunque trasformata:
E(s)=U(s) + W(s) =U(s) + (H(s) G(s)) U(s) e A =

=U(s)(1 + (H(s) G(s) e 2)

Dunque l'uscita sara:
Y(s) = H(s) E(s) = H(s) (U(s) (1+ (H(s)G(s) e—sAt))

Ripetendo il procedimento, si ottiene che durante I'intervallo [2At¢, 3At) la
W e:
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E dunque la Y risulta essere:

In generale, iterando, si ottiene la trasformata di Y per I'intervallo [nAt, (n+1) At):

Y(s) = [H(s) > (H(s) G(s)) e F2 U (s) (4.2.1)

k=0

Come si puo vedere, questa forma ¢ la versione piu generale della 4.1.3.
Inoltre, se At — 0, la 4.2.1 tende a:

U(s) (4.2.2)

k=0

Ci sono diverse osservazioni da fare. La prima ¢ che la serie geometrica
per numeri complessi ¢ formalmente uguale a quella per numeri reali: con-
verge se, essendo a® la generatrice, si ha |a| < 1, e il limite & ﬁ (e C, in
questo caso).

La seconda e piu importante considerazione € che nel risultato prelimina-
re si aveva a che fare con una serie numerica, mentre in questo caso generale
si ha a che fare con una serie di funzioni (in questo caso complesse). Si osser-
vi che, pertanto, € necessario stabilire a priori la definizione di convergenza
da utilizzare.

La trasformata inversa di Laplace € definita da [35]:

y+iM

1
)= — i F(s)etd
F®) = 507 . (s)e™ ds

e in particolare, nei casi di nostro interesse, si ha v = 0. Supponiamo che
la serie 4.2.2 converga, per cui ¢ lecito scriverne il limite per n tendende
a +00, e supponiamo che la convergenza al limite sia uniforme. Poiche la
convergenza uniforme implica la convergenza puntuale, per unicita del limite
si ha, necessariamente:

lim H(s) (Z (H(s) G(s))k> U(s) =

n—-+o0o
k=0

_ H(y)
1—H(s)G(s)

34



CAPITOLO 4. ’APPROCCIO SERIALE

per ogni s nella ROC [35] di quest’ultima. Dunque:

Jim H (Zn: (HG)k> U=

k=0

H

“1-mc?

dove la convergenza si intende in senso uniforme. Possiamo dunque scrivere:

1 H _
< L—HGU B

z! [nETwH (znj (HG)k> Ul =

k=0

n

+joo
L7 [H(s) (Z(H@)G@))’“) U(s)

- et ds
2mg o M—too
J J—joo k=0

Poiché la convergenza & uniforme per ipotesi, possiamo invertire il segno di
limite col segno di integrale e scrivere:

n

+joo
nEToozjrj / ’ [H(s) (Z (H(S)G(s))k> Uls)

—joo k=0

eStds =

: L st 1]
= lim kZ_O[/ H(s) (H(s) G(s))" U(s) e ds} =

271—.7 —joo

k

U(s)]

n

_ —1

= lim 27 [H(s) (H(s) G(s))
k=0

Riassumendo, se la serie converge uniformemente, converge alla f.d.t. e allora

la risposta del sistema al segnale u coincide con la serie delle risposte a u
dei sistemi H(HG), H(HG)?, H(HG)3 .. In simboli:

oo
7! [1 _HHG U] =Y w7t HHe) U (4.2.3)
k=0

L’uniforme convergenza ¢ solo condizione sufficiente affinche si possa
invertire il segno di limite con il segno di integrale. Pertanto, ci potrebbero
essere casi in cui nonostante la convergenza non sia uniforme, la risposta del
sistema reale si pud comunque calcolare con la f.d.t. intesa in senso classico.

Mentre per il caso in sezione 4.1 bastava imporre |[HG| < 1 per ave-
re stabilita esterna e quindi stabilita asintotica, nel caso generale imporre
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|H(s) G(s)| < 1 per ogni s appartenente alla ROC non e sufficiente, poiche
cio implica solamente la convergenza puntuale. Inoltre, se anche trovassimo
una condizione affinche valga la 4.2.3, questo ci permetterebbe soltanto di

affermare che la risposta del sistema ¢ effettivamente pari a £ ! [1—7{6 } ,
senza poter dedurre niente riguardo la stabilita esterna. A maggior ra-
gione, dunque, non puo essere sufficiente imporre |H (jw) G(jw)| < 1 per
w : ZH(jw) G(jw) = 0 per decretare alcunché sulla stabilita esterna, men
che meno su quella interna.
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Capitolo 5

Un controesempio

In questo capitolo anche analizzeremo diversi circuiti, il loro feedback e in-
stabilita e la loro risposta nel dominio della frequenza per confrontare i
risultati con il criterio di Barkhausen e ottenere le condizioni sufficienti per
I'oscillazione.

5.1 Controesempio

La fase preliminare di ricerca bibliografica ha portato ad esaminare gli arti-
coli [30][8][2]. In particolare, al punto 3 “Ezample 2”di [30] viene presentato
un circuito in cui il blocco H € un amplificatore non invertente di guada-
gno K, mentre il blocco G di retroazione ¢ realizzato come un partitore tra
una serie RC' e un parallelo RC', in modo da presentare un comportamento
oscillatorio (vedasi figura 5.1, tratta da [30]. Tale circuito ha la proprieta di
essere asintoticamente stabile per K < 1 e K > 1.5, mentre ¢ instabile se
K € (1, 1.5). Sulla frontiera dell’intervallo si ha marginale stabilita. Il fatto
interessante ¢ che il criterio esteso di Barkhausen prevederebbe comporta-
mento oscillatorio instabile per K > 1.5, stabile per K < 1.5. La funzione
di trasferimento e:

1+ s2R2C? + 2 sRC

H(s) G = K ey 3she (5-1.1)

In figura 5.2 il diagramma di Nyquist per il circuito per K = 1, R = 1kf,
C = 1nF. Su di esso e riportato il punto % per i valori piu significativi
di K (si faccia riferimento a [22], tenendo presente che nel nostro caso si
ha retroazione positiva, non negativa). Si riportano inoltre in figura 5.3 i
diagrammi di Bode per modulo e fase, tracciato per gli stessi valori di K,
R e C. Innanzitutto, il circuito ¢ stato simulato su pSpice 9.1 utilizzando
lo schema circuitale di figura 5.4. Lo schema e differente da quello visto in
figura 5.1. Si vuole dunque motivare 'introduzione di due dispositivi VCVS

(Voltage Controlled Voltage Source) in piu rispetto al circuito originale:
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Vi | : VO=KVi P

—Po
+

<
O

e
SR

no
1

-~ C

Figura 5.1: Lo schema circuitale come in [32]

Figura 5.2: Il diagramma di Nyquist per il circuito in figura 5.1

dB)

magnitude |

e ]

105 108 10

i A
Wi

105 108 107

(degrees)

phase

frequency

Figura 5.3: I diagrammi di Bode per il circuito in figura 5.1

e il VCVS A ¢ un amplificatore ideale di tensione controllato in tensione;
fa le veci dell’amplificatore a guadagno K presentato in figura 5.1;
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J |
o : [
\j/ R1 <1k c1-11
1 i 2 l . [
LS5 L R2 1k
\
c2 Lm

Figura 5.4: Lo schema circuitale ideale su pSpice 9.1

e il VCVS S viene usato come sommatore non invertente, in modo da
poter dare un impulso iniziale al circuito con I'ausilio del generatore V);
detta w l'uscita del blocco B, e facile verificare, sfruttando la sovrap-
posizione degli effetti, che all’ingresso di S si ha éw + %V},; pertanto il
blocco B ha guadagno pari a 3;

e il VCVS B fa da buffer non invertente, neccessario a causa dell’introu-
zione delle resistenze R, R, Ryq.

Dare un impulso iniziale al circuito & necessario perche altrimenti, essendo
tutti i componenti ideali, si ha uscita nulla anche in caso di circuito instabile,
causa le condizioni iniziali nulle. L’impulso iniziale permette di perturbare
dunque lo stato del sistema.

L’impulso iniziale utilizzato nella simulazione e rettangolare, di durata
1us, fronti di salita e discesa molto ripidi (tempo di salita e di discesa pari
a 10ns), ampiezza 1V. Come previsto dall’articolo [32], il circuito esibisce
un comportamento stabile per K < 1. In particolare, si puo osservare dal-
le figure 5.5, 5.6, 5.7, 5.8 e 5.9 come le capacita nell’anello di retroazione
reagiscano ai fronti dell’'impulso generando degli spike molto brevi in corri-
spondenza di essi. Tali impulsi tendono ad avere durata nulla e ampiezza
infinita quando K tende a 1 (figure 5.8 e 5.9).
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* C:\Users\simsa\Documents\00 MATTEO\00 Universit\01 - TESI\Simulazioni pSpice\Counterexample\Schematicl.sch
Date/Time run: 03/04/18 00:51:16 Temperature: 27.0
(A) Schematicl.dat (active)

1.0V
0.5V
L1 [ | | | |
ov P
-0.5v
0s 2us 4us 6us 8us 10us 12us l4us 16us 18us 20us
o V(Cl1l:2)
Time
Date: March 04, 2018 Page 1 Time: 00:51:38
Figura 5.5: K=0.5; Step ceiling = 100ns
* C:\Users\simsa\Documents\00 MATTEO\00 Universit\0l - TESI\Simulazioni pSpice\Counterexample\Schematicl.sc
Date/Time run: 03/04/18 00:52:37 Temperature: 27.0
(A) Schematicl.dat (active)
10V
5V

T rtT1T—Ttt
ov ;é

_sy

_1ov
0s 2us 4us 6us 8us 10us 12us 14us 1l6us 18us 20us

o V(Cll:2)
Time

Date: March 04, 2018 Page 1 Time: 00:53:02

Figura 5.6: K=0.9; Step ceiling = 100ns
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* C:\Users\simsa\Documents\00 MATTEO\00 Universit\01 - TESI\Simulazioni pSpice\Counterexample\Schematicl.sch
Temperature: 27.0

Date/Time run: 03/04/18 00:53:20
(A) Schematicl.dat (active
100V
50V
ov4+——
-50v
-100v
0s 2us 4us 6us 8us 10us 12us l4us 16us 18us 20us
o V(Cll:2
Time
Page 1 Time: 00:53:45

Date: March 04, 2018

Figura 5.7: K=0.99; Step ceiling = 100ns

s\simsa\Documents\00 MATTEO\0O Universit\0l - TESI\Simulazioni pSpice\Counterexample\Schematicl.sc

* C:\Users
Date/Time run: 03/04/18 00:57:27 Temperature:
(A) Schematicl.dat (active
800KV
600KV
400KV T*
200KV \
ov
0s 10ps 20ps 30ps 40ps 50ps 60ps 70ps 80ps 90ps 100ps
o V(Cll:2
Time
Time: 00:57:5

Date: March 04, 2018

Figura 5.8: K=0.999999; Step ceiling = 1ps
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* C:\Users\simsa\Documents\00 MATTEO\0O Universit\0l - TESI\Simulazioni pSpice\Counterexample\Schematicl.sch
Date/Time run: 03/04/18 00:58:30

Temperature: 27.0

(A) Schematicl.dat (active)

0KV

B //-—El/
-200KV \ /
-400KV ¥
-600KV n\
~700KV

1.000000us 1.000002us 1.000004us 1.000006us 1.000008us 1.000010us

o V(Cl1:2)
Time

Date: March 04, 2018

Page 1

Figura 5.9: K=0.999999; Step ceiling = 1ps

Time:

01:05:11
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Per K = 1 non ¢ possibile ottenere una simulazione. Per K > 1 si ha
un comportamento che sembra semplicemente divergente, mentre si rive-
la essere oscillatorio e divergente via via che si impostano valori di K piu
elevati (si faccia riferimento alle figure da 5.10 a 5.35). Il limite a 10GV
imposto dal simulatore, combinato con la rapidita con cui ’ampiezza dell’u-
scita diverge, non permette di apprezzare I’andamento oscillatorio. Questo
perché, raggiunta tale tensione d’uscita (comunque irrealistica, poiché am-
plificatori reali saturerebbero a poco meno della tensione di alimentazione),
la simulazione si interrompe.

Poiché all’aumentare di K tale crescita esponenziale diventa via via meno
brusca, da K = 1.26 (figura 5.14) si riesce a notare un leggero innalzamento
della tensione prima del crollo in negativo. Da K = 1.27 (figura 5.15) a
salire, tale andamento si rende sempre piu evidente. Per K = 1.35 (figura
5.23) si riescono finalmente ad apprezzare due interi periodi della sinusoide.
Via via che K approccia il valore di 1.5, il numero di cicli visibili prima che
il simulatore arrivi al suo limite d’ampiezza cresce, tendendo all’infinito.

* C:\Users\simsa\Documents\00 MATTEO\0O Universit\0l - TESI\Simulazioni pSpice\Counterexample\Schematicl.sch
Date/Time run: 03/04/18 01:05:56 Temperature: 27.0
(A) Schematicl.dat (active)

oGv =]

-2GV

-4Gv
3

—6GV

-8GV

\
3

0s 1ps 2ps 3ps 4ps 5ps 6ps Tps 8ps 9ps 10ps
o V(Cll:2)

-10GvV

Date: March 04, 2018 Page 1 Time: 01:06:55

Figura 5.10: K=1.000001; Step ceiling = 1ps
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* C:\Users\simsa\Documents\00 MATTEO\00 Universit\01 - TESI\Simulazioni pSpice\Counterexample\Schematicl.sch
Date/Time run: 03/04/18 01:07:41 Temperature: 27.0
(A) Schematicl.dat (active
oGV 7
[~s
_2Gv
\\
-6GV
“i\
-10GV \
0s 0.4us 0.8us 1.2us 1.6us 2.0us 2.4us 2.8us
o V(Cll:2
Time
Date: March 04, 2018 Page 1 Time: 01:08:10
Figura 5.11: K=1.1; Step ceiling = 50ns
* C:\Users\simsa\Documents\00 MATTEO\0O Universit\0l - TESI\Simulazioni pSpice\Counterexample\Schematicl.sc
Date/Time run: 03/04/18 01:08:4 Temperature: 27.0
(A) Schematicl.dat (active
oGV
—
-4GV

. \\
-10GV \
1.0us 2.0us 3.0us 4.0us 5.0us 6.0us 7.0us 8.0us
o V(Cll:2
Time
Date: March 04, 2018 Page 1 Time: 01:09:10

Figura 5.12: K=1.2; Step ceiling = 50ns
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* C:\Users\simsa\Documents\00 MATTEO\00 Universit\01 - TESI\Simulazioni pSpice\Counterexample\Schematicl.sch
Date/Time run: 03/04/18 01:09:49 Temperature: 27.0
(A) Schematicl.dat (active
oGV —
]
_2Gv
-4Gv
ﬁ
\\
-10GV T
0s 2us 4us 6us 8us 10us 12us l4us 16us 18us
o V(Cll:2
Time
Date: March 04, 2018 Page 1 Time: 01:11:20
Figura 5.13: K=1.25; Step ceiling = 50ns
* C:\Users\simsa\Documents\00 MATTEO\00 Universit\0l - TESI\Simulazioni pSpice\Counterexample\Schematicl.sc
Date/Time run: 03/04/18 01:12:1 Temperature:
(A) Schematicl.dat (active
26V
—oGv
-2GV
-4G6v
-6GV

-8GV \
-10GV
4us 8us 12us 16us 20us 24us
o V(Cll:2
Time
Date: March 04, 2018 Page 1 Time: 01:12:52

Figura 5.14: K=1.26; Step ceiling = 50ns
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* C:\Users\simsa\Documents\00 MATTEO\00 Universit\01 - TESI\Simulazioni pSpice\Counterexample\Schematicl.sch
Temperature: 27.0

Date/Time run: 03/04/18 01:13:16
(A) Schematicl.dat (active)

56V

-5GV

20us 25us

-10GV
10us

Os
o V(Cl1:2)
Time
Page 1 Time: 01:13:41

Date: March 04, 2018

Figura 5.15: K=1.27; Step ceiling = 50ns

s\simsa\Documents\00 MATTEO\00 Universit\01 - TESI\Simulazioni pSpice\Counterexample\Schematicl.sc
22 Temperature:

* C:\Users
Date/Time run: 03/04/18 01:14:22

(A) Schematicl.dat (active)

10GV.

8GV

acv

[
|

J
i

J

]

I

sov I
]

I

I

|

|

J

I

I

r

26V
o /
e //
-26v
0s 4us 8us 12us 16us 20us 24us 28us
o V(Cll:2)
Time
Page 1 Time: 01:14:45

Date: March 04, 2018

Figura 5.16: K=1.28; Step ceiling = 50ns
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* C:\Users\simsa\Documents\00 MATTEO\00 Universit\01 - TESI\Simulazioni pSpice\Counterexample\Schematicl.sch
Date/Time run: 03/04/18 01:14:54 Temperature: 27.0
(A) Schematicl.dat (active
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o V(Cll:2
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Date: March 04, 2018 Page 1

Figura 5.17: K=1.29; Step ceiling = 50ns

* C:\Users\simsa\Documents\00 MATTEO\0O Universit\0l - TESI\Simulazioni pSpice\Counterexample\Schematicl.sc
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Figura 5.18: K=1.30; Step ceiling = 50ns
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* C:\Users\simsa\Documents\00 MATTEO\00 Universit\0l - TESI\Simulazioni pSpice\Counterexample\Schematicl.sch
Date/Time run: 03/04/18 01:16:35 Temperature: 27.0
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Figura 5.19: K=1.31; Step ceiling = 50ns
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Figura 5.20: K=1.32; Step ceiling = 50ns
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* C:\Users\simsa\Documents\00 MATTEO\00 Universit\01 - TESI\Simulazioni pSpice\Counterexample\Schematicl.sch
Date/Time run: 03/04/18 01:17:35 Temperature: 27.0
(A) Schematicl.dat (active
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Figura 5.21: K=1.33; Step ceiling = 50ns

* C:\Users\simsa\Documents\00 MATTEO\00 Universit\0l - TESI\Simulazioni pSpice\Counterexample\Schematicl.sc
Date/Time run: 03/04/18 01:18:17 Temperature:
(A) Schematicl.dat (active
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o V(Cll:2
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Date: March 04, 2018 Page 1 Time: 01:19:02

Figura 5.22: K=1.34; Step ceiling = 50ns
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* C:\Users\simsa\Documents\00 MATTEO\00 Universit\01 - TESI\Simulazioni pSpice\Counterexample\Schematicl.sch
Date/Time run: 03/04/18 01:19:14 Temperature: 27.0
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Figura 5.23: K=1.35; Step ceiling = 50ns

* C:\Users\simsa\Documents\00 MATTEO\0O Universit\0l - TESI\Simulazioni pSpice\Counterexample\Schematicl.sc
Date/Time run: 03/04/18 01:20:08 Temperature: 27.0
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Figura 5.24: K=1.36; Step ceiling = 50ns
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* C:\Users\simsa\Documents\00 MATTEO\00 Universit\01 - TESI\Simulazioni pSpice\Counterexample\Schematicl.sch
Date/Time run: 03/04/18 01:20:34
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Figura 5.25: K=1.37; Step ceiling = 50ns

* C:\Users\simsa\Documents\00 MATTEO\0O Universit\0l - TESI\Simulazioni pSpice\Counterexample\Schematicl.sc
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Figura 5.26: K=1.38; Step ceiling = 50ns
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* C:\Users\simsa\Documents\00 MATTEO\00 Universit\01 - TESI\Simulazioni pSpice\Counterexample\Schematicl.sch
Date/Time run: 03/04/18 01:21:37 Temperature: 27.0
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Figura 5.27: K=1.39; Step ceiling = 50ns

* C:\Users\simsa\Documents\00 MATTEO\0O Universit\0l - TESI\Simulazioni pSpice\Counterexample\Schematicl.sch
Date/Time run: 03/04/18 01:22:05 Temperature: 27.0
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Figura 5.28: K=1.40; Step ceiling = 50ns
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* C:\Users\simsa\Documents\00 MATTEO\00 Universit\01 - TESI\Simulazioni pSpice\Counterexample\Schematicl.sch
Date/Time run: 03/04/18 01:22:46 Temperature: 27.0
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Figura 5.29: K=1.42; Step ceiling = 50ns

* C:\Users\simsa\Documents\00 MATTEO\0O Universit\0l - TESI\Simulazioni pSpice\Counterexample\Schematicl.sch
Date/Time run: 03/04/18 01:23:41 Temperature: 27.0
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Figura 5.30: K=1.44; Step ceiling = 50ns
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* C:\Users\simsa\Documents\00 MATTEO\00 Universit\01 - TESI\Simulazioni pSpice\Counterexample\Schematicl.sch
Date/Time run: 03/04/18 01:24:46 Temperature: 27.0
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Figura 5.31: K=1.46; Step ceiling = 50ns

* C:\Users\simsa\Documents\00 MATTEO\0O Universit\0l - TESI\Simulazioni pSpice\Counterexample\Schematicl.sch
Date/Time run: 03/04/18 01:25:34 Temperature: 27.0
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Figura 5.32: K=1.48; Step ceiling = 50ns
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* C:\Users\simsa\Documents\00 MATTEO\00 Universit\01 - TESI\Simulazioni pSpice\Counterexample\Schematicl.sch
Date/Time run: 03/04/18 01:26:31 Temperature: 27.0
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Figura 5.33: K=1.49; Step ceiling = 50ns
* C:\Users\simsa\Documents\00 MATTEO\0OO Universit\01l - TESI\Simulazioni pSpice\Counterexample\Schematicl.sc
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Figura 5.34: K=1.495; Step ceiling = 50ns
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* C:\Users\simsa\Documents\00 MATTEO\0O Universit\0l - TESI\Simulazioni pSpice\Counterexample\Schematicl.sch
Temperature: 27.0
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Figura 5.35: K=1.499; Step ceiling = 50ns
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Prevedibilmente, per il valore di 1.5 (figure 5.36 e 5.37), si ha un’oscilla-
zione ad ampiezza costante. Siamo dunque in regime di marginale stabilita.
Per K > 1.5 si puo apprezzare un’uscita oscillatoria ma tendente asintotica-
mente a zero. Tale convergenza a zero dell’ampiezza € via via piu marcata,
al punto da non riuscire piti a notare visivamente l’oscillazione. Si osser-
vano, per K > 1.5, i picchi di risposta ai fronti dell’impulso d’ingresso,
prontamente smorzati.

ers\simsa\Documents\00 MATTEO\OO Universit\01l - TESI\Simulazioni pSpice\Counterexample\Schematicl.sch
un: 03/04/18 01:29:18 Temperature: 27.0
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o V(Cl1l:2)

Time
Date: March 04, 2018 Page 1 Time: 01:29:45

Figura 5.36: K=1.5; Step ceiling = 50ns
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* C:\Users\simsa\Documents\00 MATTEO\00 Universit\01 - TESI\Simulazioni pSpice\Counterexample\Schematicl.sch
Date/Time run: 03/04/18 01:29:59 Temperature: 27.0
(A) Schematicl.dat (active)
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Figura 5.37: K=1.5; Step ceiling = 50ns

* C:\Users\simsa\Documents\00 MATTEO\0O Universit\0l - TESI\Simulazioni pSpice\Counterexample\Schematicl.sch
Date/Time run: 03/04/18 01:38:43 Temperature: 27.0
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Figura 5.38: K=1.51; Step ceiling = 50ns
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* C:\Users\simsa\Documents\00 MATTEO\00 Universit\01 - TESI\Simulazioni pSpice\Counterexample\Schematicl.sch
Date/Time run: 03/04/18 01:40:39 Temperature: 27.0
(A) Schematicl.dat (active)
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Figura 5.39: K=1.52; Step ceiling = 50ns
* C:\Users\simsa\Documents\00 MATTEO\0O Universit\0l1 - TESI\Simulazioni pSpice\Counterexample\Schematicl.sch
Date/Time run: 03/04/18 01:41:25 Temperature: 27.0
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Figura 5.40: K=1.53; Step ceiling = 50ns
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* C:\Users\simsa\Documents\00 MATTEO\00 Universit\01 - TESI\Simulazioni pSpice\Counterexample\Schematicl.sch
Date/Time run: 03/04/18 01:43:11 Temperature: 27.0
(A) Schematicl.dat (active)
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o V(Cl1l:2)
Time
Date: March 04, 2018 Page 1

Time: 01:43:17

Figura 5.41: K=1.55; Step ceiling = 50ns

* C:\Users\simsa\Documents\00 MATTEO\0O Universit\0l - TESI\Simulazioni pSpice\Counterexample\Schematicl.sc
Date/Time run: 03/04/18 01:43:31
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Figura 5.42: K=1.6; Step ceiling = 50ns
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* C:\Users\simsa\Documents\00 MATTEO\00 Universit\01 - TESI\Simulazioni pSpice\Counterexample\Schematicl.sch
Date/Time run: 03/04/18 01:43:54 Temperature: 27.0
(A) Schematicl.dat (active)
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Figura 5.43

: K=1.8; Step ceiling = 50ns

* C:\Users\simsa\Documents\00 MATTEO\0O Universit\0l - TESI\Simulazioni pSpice\Counterexample\Schematicl.sc
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Figura 5.44: K=2; Step ceiling = 50ns
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Figura 5.45: K=3; Step ceiling = 50ns
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* C:\Users\simsa\Documents\00 MATTEO\00 Universit\01 - TESI\Simulazioni pSpice\Counterexample\Schematicl.sch
Date/Time run: 03/04/18 01:45:42 Temperature: 27.0
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Figura 5.47: K=5; Step ceiling = 50ns
* C:\Users\simsa\Documents\00 MATTEO\00 Universit\01 - TESI\Simulazioni pSpice\Counterexample\Schematicl.sc
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Figura 5.48: K=10; Step ceiling = 50ns
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5.2 1l circuito

Figura 5.49: 1l circuito reale, realizzato su breadboard

Anche in questa sezione ricordiamo che qualora il lettore stesse visualiz-
zando ’elaborato in formato pdf, per la visualizzazione corretta dei grafici
delle risposte nel tempo si consiglia un fattore di zoom del 150% o superiore.

Il circuito & stato realizzato su breadboard (figura 5.49) con tre operazio-
nali del tipo UAT741CP, e collegato come in figura 5.50. Sono stati utilizzati
i seguenti strumenti:

e Generatore di segnali GW INSTEK SFG-1013
e Alimentatore duale Ningbo FTZ Hopewell PS23023DL
e Oscilloscopio PeakTech 1265

Le prove sono state eseguite sia senza segnale d’ingresso, sia con segnale in
ingresso ad onda quadra di periodo 100ms, ampiezza 1V e duty-cycle del
10%, in modo da sollecitare il circuito e leggerne la risposta sull’oscilloscopio.
Al segnale & stato aggiunto anche un opportuno offset di 1V in modo che
assumesse i valori di 0V e 1V, invece di —0.5V e 0.5V, replicando quindi
I'impulso fornito nelle simulazioni.

I blocchi S e A della simulazione sono divenuti il blocco A di questo
circuito: infatti esso fa sia da amplificatore che da sommatore. E immediato
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Figura 5.50: Il circuito reale, riprodotto su pSpice 9.1

vedere che, complessivamente, il blocco A ha amplificazione minima di % e
massima di % In questo modo ¢ possibile studiare il comportamento del

circuito sia per K < 1 che per K > 1.5. Il buffer non invertente B e il
buffer non invertente By servono ad adattare le impedenze tra un blocco e
I’altro, in modo che il blocco composto da Ri, Re, Ci e Cy veda a monte
un’impedenza d’uscita prossima a zero, e a valle un’impedenza d’ingresso
elevata.

Con R; ed Ry pari a 1 k{2 si ottiene un comportamento stabile del circuito
per K < 1 come da previsioni teoriche e dalla simulazione del circuito in
figura 5.4. Cortocircuitando a massa l'ingresso, si ha risposta nulla finche K
non supera l'unita. Superata I'unita, tuttavia, non si innesca come sperato
un’oscillazione, bensi si ha una saturazione dell’'uscita a +12V. Inoltre, con
K anche molto maggiore di 1.5 non si ottiene nuovamente risposta nulla
del circuito. Quest’ultimo fatto si spiega facilmente: i sistemi reali hanno
sempre poli causati da capacita parassite alle alte frequenze. Cio fa si che il
diagramma di Nyquist vada inesorabilmente verso 1’origine degli assi quando
w tende a 4+00. Si osservi ad esempio il diagramma in figura 5.51, tracciato
per la f.d.t. 5.1.1 con 'aggiunta di un polo in s = —10%. Per K > 1, in
un caso come questo, si avra sempre % interno al diagramma di Nyquist, e
dunque instabilita del sistema.

Applicando il segnale d’ingresso come precedentemente specificato, si ha
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Figura 5.51: Il circuito reale, riprodotto su pSpice 9.1

una risposta analoga a quella di un filtro passa basso (si veda figura 5.52
per il fronte di salita, 5.53 per fronte di discesa). Per K maggiori di 1,
nuovamente, si ha uscita costante a 12V.

C:\Users\simsa\Documents\00 MATTEO\0O Universit\0l - TESI\Simulazioni pSpice\Counterexample\Schematic2 - True ...

Date/Time run: 03/05/18 17:04:22

Temperature: 27.0

(A) Schematic2 - True Circuit.dat (active)
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o V(Cl:2) o V(Ru:l)
Time
Date: March 05, 2018 Page 1 Time: 17:05:15

Figura 5.52: Risposta
Ry =Ry=1kQ, K <1

del circuito al fronte

di salita dell’impulso per
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C:\Users\simsa\Documents\00 MATTEO\0O Universit\0l - TESI\Simulazioni pSpice\Counterexample\Schematic2 - True ...
Date/Time run: 03/05/18 17:05:52 Temperature: 27.0

(A) Schematic2 - True Circuit.dat (active)

2.4V

0.4v:
ov N
10.0ms 10.2ms 10.4ms 10.6ms 10.8ms 11.0ms 11.2ms 11.4ms 11.6ms 11.8ms 12.0ms
o V(Cl:2) o V(Ru:l)
Time
Date: March 05, 2018 Page 1 Time: 17:06:05

Figura 5.53: Risposta del circuito al fronte di discesa dell'impulso per
Ri=Ry=1kQ, K <1

Con R; ed Rs pari a 100 k(2 si ottiene lo stesso comportamento in termini
di stabilita, ma si pud apprezzare un comportamento oscillatorio. Tuttavia,
tale comportamento si presenta per K < 1 e per alcuni valori di K > 1,
mentre nella sezione 5.1 si riporta che 1’oscillazione del circuito deve avvenire
per K > 1 soltanto.

Nella fattispecie, quando R, + R4 € pari a 185k(), ossia K = 0.95, si
osserva un andamento del tipo riportato in figura 5.54 in risposta al fronte
di discesa dell'impulso in ingresso. Inoltre, togliendo l'offset dal segnale
d’ingresso e aumentando R, + R4 a 210kS), arrivando dunque a K = 1.03,
si osserva 'innsescarsi di un’oscillazione ben piu evidente (vedi figure 5.55 e

5.56).
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C:\Users\simsa\Documents\00 MATTEO\0O Universit\0l - TESI\Simulazioni pSpice\Counterexample\Schematic2 - True
Date/Time run: 03/05/18 17:45:15 Temperature: 27.0
(A) Schematic2 - True Circuit.dat (active)
12v,
f
- i
q \l
(3%
4V
2v
ov
10.0ms 10.2ms 10.4ms 10.6ms 10.8ms 11.0ms 11.2ms 11.4ms 11.6ms 11.8ms 12.0ms
o V(Cl:2) o V(Ru:l)
Time
Page 1 Time: 17:46:00

Date: March 05, 2018

Figura 5.54: Risposta del circuito al fronte di discesa dell'impulso per
Ry =Ry =100k, K <1

C:\Users\simsa\Documents\00 MATTEO\0O Universit\0l - TESI\Simulazioni pSpice\Counterexample\Schematic2 - True
Date/Time run: 03/05/18 17:45:15 Temperature: 27.0
(A) Schematic2 - True Circuit.dat (active)
12v
i
10V {\
8v ‘l e
6V
av
2v
ov
10.0ms 10.2ms 10.4ms 10.6ms 10.8ms 11.0ms 11.2ms 11.4ms 11.6ms 11.8ms 12.0ms
o V(C1:2) o V(Ru:l)
Time
Page 1 Time: 17:46:00

Date: March 05, 2018

Figura 5.55: Risposta del circuito al fronte di discesa dell'impulso per
Ry = Ry =100k, K =1.03
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* C:\Users\simsa\Documents\00 MATTEO\0O Universit\0l - TESI\Simulazioni pSpice\Counterexample\Schematic2 - True ...
Date/Time run: 03/05/18 15:52:40 Temperature: 27.0

(RA) Schematic2 - True Circuit.dat (active)

12v

n mm il

i i

-12v

T
9ms 10ms 1lms 12ms 13ms l4ms 15ms 16ms
o V(Cl:2) o V(Ru:l)

Time
Date: March 05, 2018 Page 1 Time: 15:53:05

Figura 5.56: Risposta del circuito al fronte di discesa dell'impulso senza
offset per R = Ry = 100k2, K = 1.03

Figura 5.57: Risposta del circuito al fronte di discesa dell’impulso sen-
za offset per Ry = Ry = 100k}, K di poco superiore a 1, visualizzata
sull’oscilloscopio in laboratorio
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Il discostamento del comportamento del circuito da quello previsto in 5.1
puo essere dovuto a vari fattori. Innanzitutto, le oscillazioni che si riescono
a visualizzare sono sempre sommate ad esponenziali decrescenti che si pos-
sono associare alla scarica dei condensatori. In particolare, si osservi figura
5.56. In essa appare evidente che il clipping introdotto dagli amplificatori
operazionali occorre troppo presto, essendo il valore medio della sinusoide
molto elevato. Di fatto, il duty-cycle del segnale onda quadra & troppo al-
to, seppure fosse il minimo consentito dal generatore di segnali. Per prove
future, si rende necessario lo sviluppo di un generatore di impulsi di durata
ridotta. Questo si puo realizzare inserendo in cascata al generatore di se-
gnali un semplice derivatore, seguito da un raddrizzatore che elimini i picchi
negativi.

In secondo luogo, sara necessario scegliere una piu affidabile tecnica rea-
lizzativa del circuito. Al di 1a del gia discusso effetto delle proprieta passa
basso degli amplificatori reali, il sospetto € che le capacita parassite intro-
dotte dal montaggio su breadboard siano tali da modificare sensibilmente il
comportamento del sistema.
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Capitolo 6

Feedback positivo, instabilita
e frequenza di oscilazione

In questo capitolo analizzeremo diversi circuiti, il loro feedback e instabilita
e la loro risposta nel dominio della frequenza per confrontare i risultati con
il criterio di Barkhausen e ottenere le condizioni suficienti per 1'oscillazione.

6.1 Ponte di Wien

L’oscillatore Ponte di Wien & un oscillatore comunemente usato, specialmen-
te nei generatori di frequenza audio commerciali.

6.1.1 Circuito 1

L’oscillatore Ponte Wien, utilizza un circuito risonante nella rete di retroa-
zione B, come mostrato nella parte blue della figura 6.1 e una rete A come
amplificatore di guadagno no invertente, parte verde della figura 6.1. La
funzione di trasferimento ha due poli e feedback positivo.

A partire del schema del ponte di Wien:

R2
A=1+"= 1.1
TR (6.1.1)

E la rete di feedback ¢ formata da un circuito risonante RC dove:

Rll(=7Xc) conXc= L (6.1.2)

V=V R X o) (R (—jX0) we
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| u2e |7 o| V13
L35~ 5 T oV iI—-
VIl R29 cs T
L AAA | . [
UAT41 o _— VW . t
2 V- <y 10k 10n »
L '_-_____.-"'f — L—*lj
< - Ler lon
R1 <1K - R30 <i0k
= "'\.-"._u"l". L
V23 2k - =10V
vip | *
0
0
Figura 6.1: Schema del ponte di Wien
11 risultato della funzione di trasferimento é:
R2 RC's
T =(1+—)- 6.1.3
() =0+ 57) (Reczz s 3RCs 11 (6.1.3)

Dove il primo termine corrisponde alla rete di guadagno A (s) e il secondo
alla rete di retroazione B (s).

La funzione di trasferimento nel dominio della frequenza ¢ data da:

) R2 RCjw
T =(1+—)- 6.1.4
) =0+ 50 (e T srojo 1) (6.14)
Applicando il criterio di Barkhausen,
T(jw) =1 (6.1.5)
3RCw
¢ = —CLTCOtg(m) = OO (616)
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il circuito oscilla alla frequenza wo:

1

Im(T(jw)) =0 —1— R?’C%*? =1 =
m(T(jw)) — w — wo RO

(6.1.7)

Quando:

T(jwo) = (1 + %) >1— R2 > 2Rl (6.1.8)

Cioe, quando il loro guadagno ¢ uguale o maggiore di 3, le oscillazio-
ni inizieranno. Facendo riferimento al gia citato sulla situazione dei poli,
possiamo osservare che per R2=2R1 (A=3), i poli si trovano sull’asse im-
maginario. Per i valori di A superiori a 3 i poli si troveranno nella meta
destra.

Figura 6.2: Rlocus A=3
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Nel dominio della frequenza, analizzando il diagramma di Nyquist osser-
viamo che i valori di A maggiori o uguali a 3 circondano il punto critico 1, e
quindi si conclude che il sistema ¢ instabile (Figura 6.3). Il circuito oscilla.

(Al ponteWien_sizcuitol [motiw

-

BT A- 21

Figura 6.3: Diagrama di Nyquist per A=3

Per valori di guadagno inferiori, il diagramma di Nyquist non circonda
il punto critico 1 e quindi il sistema e stabile, ovvero il circuito non oscilla.
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DI OSCILAZIONE

[+:%] ;::'.':ﬂi*_o:_c'_::u izel (acciwve)

ov S50mv 100mV 150mV 200mV 250mV 300=V
@ VI{RLO:Z}

Figura 6.4: Diagrama di Nyquist per A=1
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Analizzando il diagramma di Bode, la rete di feedback e un filtro passa-
banda, che produce uno sfasamento di 0° alla frequenza wo.

Frequency

Figura 6.5: Diagrama di Bode per A=3
** T risultati ideali coincidono con le simulazioni con OPAMP.

Nel diagramma Bode possiamo osservare come la fase varia da 90° a -90°
e come la frequenza di taglio (frequenza per ampiezza di 0dB) corresponde
alla frequenza teorica fo=1/2rRC=1.591 kHz e quella ottenuta nelle simu-
lazioni, e lo sfazamento € uguale a zero, in modo che il segnale all’uscita del
circuito di retroazione abbia uno sfasamento di 0°.

Il segnale all’uscita della rete di retroazione, quando entra attraverso il
terminale positivo dell’amplificatore (retroazione positiva e sfasamento di
0°), fara si che il segnale sia in fase e oscile.

Analizzando intuitivamente il circuito, vediamo che alle basse frequenze
il condensatore in serie si comporta come un circuito aperto, quindi 1'uscita
Vr sara zero.

Tra questi estremi 'uscita Vr raggiunge un valore massimo, precisamente

per la frequenza di risonanza fo del circuito. Per questa frequenza il feedback
raggiunge il suo valore massimo, come vediamo nel diagramma di bode.
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6.1.2 Circuito 2

Analizzando lo stesso circuito, Ponte di Wien, ma adesso cambiando i suoi
componenti di posto e il segno del feedback abbiamo i seguenti circuiti.

Il circuito della figura 6.6 ¢ formato per un filtro passa-banda eliminata
come rete di feedback

_ 1+42RCs+ R?°C?s?

= 1.
) = [ 3RCs + RO (6.1.9)
e la rete di guadagno A ¢
R2
A=1+4— 1.1
+ 7l (6.1.10)

Figura 6.6: Ponte di Wien scambiando i suoi componente e feedback positivo

La funzione di trasferimento dell’anello aperto del circuito é:

R2 R2C?s2 +2RCs + 1

T(s) =0+ 57) (mecez y3RCs + 1

(6.1.11)
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DI OSCILAZIONE

Dalla funzione di trasferimento e applicando il criterio di Barkhausen
otteniamo che per il circuito di oscillare a una frequenza wo, wo = 1/RC,
deve essere soddisfatto che R1>2R2. Nelle simulazioni in PSpice, sia ideali
che reali, si osserva che il circuito non oscilla per nessun valore di guadagno.

8 VIIRLL:Z

Figura 6.7: Diagrama di Nyquist per A=3 del circuito 6.6

Analizzando i diagrammi di Nyquist, osserviamo che per guadagni mag-
giori o uguali a 3 (guadagni per i quali il criterio di Barkhausen e la con-
dizione di partenza sono soddisfatti), non circonda il punto critico +1, di
conseguenza, il circuito e stabile e non oscillera.

Le simulazioni nel tempo coincidono con i risultati ottenuti nell’analisi
nel dominio del tempo. Il circuito non oscilla indipendentemente dal fatto

che il criterio di Barkhausen sia soddisfatto.
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(Al poatedien_sissuitsd (asTivel
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e BWiRll:2))
20d
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;f' N
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S f
|
R
a0d
lo=H= 1.0H=z 100H=z 10¥H=z 1.0HE=z LO0xE= 10GHZ
a YRIRL ]
Frasuansy

Figura 6.8: Diagrama di Bode del circuito 6.6

Alla frequenza di oscillazione f=1/(27RC)=1.59 kHz lo sfasamento ¢ di
0°.
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6.1.3 Circuito 3

Figura 6.9: Circuito 6.6 con feedback negativo

La funzione di trasferimento di questo circuito dell’anello aperto é:

R2 R?*C?s®> +3RCs + 1

T(s) =1+ ﬁ) ' (R2C232 +2RCs+1

) (6.1.12)

Nel dominio della frequenza:

—R?C?w? + 3RCjw + 1

TGw) = A (e T aRrCjw T 1

) (6.1.13)
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Applicando il criterio di Barkhausen:

IT(jw)| = 1 (6.1.14)
D212, 2
6= —arcotg(%) = —180° (6.1.15)

dalla seguente uguaglianza, avviamo che la frequenza di oscillazione é:

Im(T(jw)) =0 — 1 — R*C%w? =0 — wo = 1/RC (6.1.16)
‘ R2. —EC 4388541
T(jwo) = (14 57) (_gigi ho——)>1—=R2>2Rl  (6.1.17)
recz T 2R0) 1

e che il circuito oscilla quando il guadagno sia A>3/4.

. A} ponceWien_sizsuizsl (mctive)
4T C [ —
m ,/
A K
f=v /
/ A
/ 4
3
|
|\ J
\ /
. N
p
/ﬂ
= “"-\-._\_H‘ '—,.r"
1 I

Figura 6.10: Diagrama di Nyquist per A=3/4 del circuito 6.9

Analizzando il diagramma di Nyquist, per valori di guadagno superiori
a 3/4 notiamo che questo circonda il punto critico -1 e percié il sistema
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oscilla. Per valori menori, il circuito non oscila e il suo diagrama di Nyquist
non circonda il punto critico. Il sistema ¢ stabile., non si produrra nessuna

oscillazione.
i\
V[
L
V]
i !
/
SEL> W
: 8 D8{(ViR 2
200d:
r.
ff
od r? \"\_.
B {
.
o
1604
limilz 1.0%: 1008= LikH: 1.0M3=x 150HE= 1068 1.0T8%=
B VYRi{R10:2)

Frecuencv

Figura 6.11: Diagrama di Bode per A=3/4 del circuito 6.9

Lo sfasamento ¢ 180° a causa di la realimentazione negativa.
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6.1.4 Circuito 4

L’oscillatore Wien Bridge, ma di nuovo scambiando i suoi componenti come
mostrato nella figura:

U g : | Vi3
Lh 5 Y
] = —
V+ // R1 | T
osa & AAA | . |
e 6 f{, WA — K |
. 2. 1 ik ' '
uAT41 ¢ I | T .
co L | C11 -40n R30 <iok :]7
=T 10n - < 0
R2 | | |
R26 < 10K 4K oV l
— -0V
623 Vig |+
|

&

Figura 6.12: Schema del Ponte di Wien scambiando i suoi componenti

La funzione di trasferimento del circuito é:

R2C's R’Cs+R

i+ r0s) \®OsTOmikcs r R TRy O

T(s)=(1+

R2Cjw —R?’Cw?+ R

. 1.1
1-|-RCjw) ((RCjw-l-l)(RlRCjw-i-Rl-i-R)) (6.1.19)

T(jw) = (1+

Applicando il criterio di Barkhausen, dobbiamo rispettare la seguente
uguaglianza per oscillazione:

Z1 73 . R1(1+ RCs)  R2Cs
72 74 R - 14+ RCs0

— R1(1+ RCs)* = R2RC's
(6.1.20)
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R1+2R1RCs + RIR*C?s*> = R2RC's (6.1.21)
R1 + 2R1RCjw — R1R*C*w? = R2RCjw (6.1.22)

Raggruppando le parti reali e immaginarie otteniamo che:

La frequenza di oscillazione sara: wo=0y R2>2R1

I risultati ottenuti dopo le simulazioni con VCV e OPAMP indicano che
il sistema oscillera, ma si saturera rapidamente.

Analizzando il diagramma di Nyquist, circonda il punto critico +1 quan-
do viene soddisfatta la condizione precedente R2>2R1.

MNyguist Diagram

Imaginary Axis

Rianl Axis

Figura 6.13: Diagrama di Nyquist del circuito 6.12
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Per quanto riguarda il diagramma di bode, ha una pendenza negati-
va da 0 a -90°, contribuito dall’ampiezza, e per la frequenza di risonanza
fo=1/27RC lo sfasamente & 0°.

Magnituce (d3)

Phase {deg)

Bode Diagram

10 10"
Fraqu ancy (rad's)

Figura 6.14: Diagrama di Bode del circuito 6.12
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6.1.5 Conclusione

Come conclusione quindi all’analisi dell’oscillatore Ponte di Wien possiamo
concludere che per esso l'oscillazione, indipendentemente dalla connessione
dei suoi componenti, deve soddisfare i seguenti requisiti:

1. 11 criterio di Barkhausen ci da un risultato teorico del valore del gua-
dagno per l'oscillazione del circuito, ma questo non ¢ sempre vero. Inoltre,
questo criterio ci serve solo idealmente poiché in pratica vogliamo che i poli
si trovino nella meta destra, a causa dell’'impossibilita di posizionare i poli
nell’asse complesso.

Se il feedback ¢ positivo, il segnale all’'uscita della rete di retrozione B
deve avere un sfasamento di 0° e -180° in caso di feedback negativo.

2. Il diagramma di Nyquist dovrebbe circondare il punto critico 1 in
senso orario.

3. La fase del diagramma di Bode deve avere una pendenza negativa.
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6.2 Phase shift

Successivamente, analizzeremo lo sfasamento o 1’oscillatore phase-shift con
3 poli, che oscilla con feedback negativo e non con feedback positivo.

Cio e dovuto al fatto che la rete di retroazione B(s) introduce uno sfa-
samento di -180° (60° per ogni RC). Pertanto, il segnale sinusoidale con
frequenza wd ad una certa ampiezza all’ingresso della rete di retroazione
B(s), si spostera di -180° all’uscita di questo, e piun avanti di 180° quando
passera at-traverso il loop A(s) a causa della feedback negativo, tornando
alla sua forma originale per conti-nuare a oscillare.

Questo e importante poiché, considerando tutte le frequenze nel segnale
di ingresso, se una delle sue frequenze soddisfa le condizioni di |A(s)-B(s)|>1
e modulo -180° indefinitamente sara amplifi-cata a passare attraverso il ciclo
in passaggi successivi, ottenendo una risposta divergente e instabi-le.

Pertanto, se alimentiamo il circuito in modo positivo, avremo un segnale
sfasato di -180 all’ingresso dell’oscillatore e all’uscita avremo 0V.

u: |y +| i3
3 [~ __ 5 1V ==
ve | [ Vo T
af~_ | H (] .6 )
- "_'-_u_ e Red - '
Ve " Ve e
g AN 2 - 1
W E—
2], N1 o wA741
WA T4 kT |
_"':"-"‘v_ !
200k * J;v
0

c12 cn ci

——r—i=

2 6.8a > EBA 68n
R38 <H0k R38 Sox - RIT Sk
0 [ J-’un

Figura 6.15: Schema del oscillatore Phase shift
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Analizzando il circuito abbiamo che la sua funzione dell’anello aperto e:

A.R3C3s3
T(s) = 21
(5) = (B3cos 1 6R2C2s2 1 5RCs 1 1) (6.2.1)
, A R3C3ju3
T(jw) = ( J ) (6.2.2)

R3C3w3 — 6R2C?jw? — 5RCw + j
Di dove otteniamo la frequenza di oscillazione:

1
V6RC

Im(T(jw)) =0 = 6R?C%w? =1 = wo = (6.2.3)

Sostituendo nella funzione di trasferimento la frequenza di oscillazione
ottenuta, il circuito oscillara quando il guadagno sia A>29 con una frequenza

1
WO=T6RC

Analizzando il diagramma di Nyquist, osserviamo che per guadagni su-
periori a 29, circonda il punto -1 e quindi il sistema e instabile. Viceversa,
quando il guadagno ¢é inferiore a 29, il diagramma di Nyquist non circonda
il punto critico -1.

[~
|1

=1
-

RIVIRLO:I})

Figura 6.16: Diagrama di Nyquist per A=29 del circuito 6.15
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(R} ps (acsivel

o

Figura 6.17: Diagrama di Nyquist per A=1 del circuito 6.15
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Analizzando il diagramma di Bode, la fase alla frequenza di oscillazione
fo=1/(27v/6RC)=995.5 Hz ha un sfasamento da 0°, in relazione all'introdu-
zione di -180° della rete di retroazione e 180° in pil rispetto alla retroazione
negativa. (-180+180=0).

(Al pe (active)

Fragusncy

Figura 6.18: Diagrama di Bode per A=29 del circuito 6.15

Con realimentazione positiva, lo sfasamento e di -180° a causa di la rete
di realimentazione; alla frequenza di oscillazione fo=955.5 Hz, lo safasamento
¢ di -180°.
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Figura 6.19: Diagrama di Bode per A=1 del circuito 6.15

Finora abbiamo analizzato i circuiti ipotizzando che la loro frequenza di
oscillazione fosse quella ottenuta dal criterio di Barkhausen.

Tuttavia, analizzando sia le simulazioni reali che quelle ideali, si osserva
che la frequenza di oscillazione varia in funzione del guadagno.

Questi risultati potrebbero essere la causa del comportamento effettivo
degli amplificatori e dei componenti, ma non dovrebbero esserlo se il circuito
viene idealmente analizzato, poiché, come accennato in precedenza, lo scopo
del progetto di un oscillatore & di ottenere una frequenza di oscillazione
indipendente del suo guadagno, dal ciclo di feedback.

Successivamente, la tabella con i valori del periodo e la frequenza, ottenu-

ti dalla simulazione in PSpice viene mostrata usando un amplificatore ideale
per Doscillatore di sfasamento quando il guadagno del circuito aumenta.
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A T[] f=1/T [Hz]
29 1.031e-3 S570.628
30 1.085e-3 521.591
31 1.104e-3 905.371
32 1.123e-3 290.686
33 1.137e-3 B78.974
34 1.155e-3 265.456
35 1.319e-3 #53.555
45 1.315e-3 T58.265
55 1.401e-3 713.852
05 1.583e-3 031.672
75 1.636e-3 611.037
85 1.733e-3 577.027

Figura 6.20: Frequenza del circuito 6.15 VCVS ottenuta con PSpice

** T valori ottenuti sono la media di 10 valori.

Analizzando i diagrammi di bode, si osserva che la frequenza di taglio
o la frequenza di crossover, cioe il valore della frequenza quando si verifica
il crossover del guadagno (|A(jw)-B(jw)| = 1 = 0 dB, corrisponde ai valori
precedenti (le frequenze alle quali il circuito oscilla in funzione del guadagno,
che difiere della teorica). La frequenza diminuisce per valori piu grandi di
guadagno, per tanto la frequenza di oscillazione del oscillatore dipende del
guadagno e non de la rete di realimentazione come sia ha studiato nel criterio

di Barkhausen.

Pertanto, la frequenza di oscillazione dipende dal guadagno del circuito.

Analizzando la funzione di trasferimento in anello chiuso,

Dove F(jw) ¢ la funzione in anello chiuso:

—ARSCS%w5 + 6AR?C?w? + 5RCjw + 1

F(jw) = —

Im(jw) =0 — —(1+A)R*C3w3+5RCw = 0 — wol = 0;wo2 =

(14 A)R3C3jw? — 6R2C?w? + 5RCjw + 1

RC

(6.2.4)

V5

(1+A)

(6.2.5)
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I valori ottenuti teoricamente con wo2=(1/5)/(RCy/(1 + A)) sono i se-
guenti, dove E.assoluto ¢ I’errore assoluto |Valore medio—valore reale|=|f.simulazioni-{.teorica|
e E.relativo & l'errore relativo |(Errore assoluto)/(Valore reale)|=(|E.assoluto|)/(|f.teorical ).
L’errore relativo e inferiore a 1 in tutti i casi e i valori di frequenza ottenuti
teoricamente sono simili a quelli ottenuti nelle simulazioni VCVS. [Figura

6.21]
Guadagno | f.teorica [Hz] | f. simulazioni [Hz] E. assoluto E. relativo [%]
29 555.510 370.628 15.118 1.582
30 5935.972 921.628 18.344 1.951
31 525.169 505.371 15.798 2.139
32 511.043 890.686 20.357 2.234
33 8597.546 878.974 18.572 2.069
34 884.631 865.465 15.166 2.166
35 872.258 833.953 18.703 2.144
45 771.644 758.265 13.379 1.733
55 655.362 713.852 14.45 2.071
65 644.205 631.672 12.533 1.945
75 600.329 611.037 10.708 1.783
85 564.348 577.027 12.679 2.246

Figura 6.21: Relazione tra frequenza di simulazione e frequenza ottenuta
della funzione di trasferimento dell’anelo chiuso

Possiamo dire che la frequenza di oscillazione degli oscillatori dipende
dalla retroazione positiva o negativa del circuito e quindi dalla funzione di
trasferimento ad anello chiuso, dove I'ingresso sarebbe il rumore presente nei

componenti del circuito.
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Di seguito ¢ mostrato lo schema del circuito dettagliato precedente.
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Figura 6.22: Schema del oscillatore a 3 poli

La funzione di trasferimento dell’anello aperto per questo circuito e:

A

— 6.2.6
R3C3s3 +B5R2C?s2 + 6RCs + 1 ( )

T(s)

R{PICE1)}

Figura 6.23: Diagrama di Nyquist per A=1 del circuito 6.22

Il diagramma di Nyquist del circuito, sia VCV ideali che OPAMP, con-
ferma le previsioni di stabilita. Instabile quando A & maggiore del valore
critico e stabile al contrario.
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Dai diagrammi di Bode, relativi al diagramma di Nyquist, come prima
viene evidenziata l'introduzione di una fase aggiuntiva nella simulazione con
OPAMP a causa dei poli ad alte frequenze dovuti agli amplificatori. Nel
diagramma Bode VCVs si osserva come ci sia uno sfasamento di 180° dovuto
alla rete di feedback, che inverte il segnale.

Figura 6.24: Diagrama di bode VCVS per A=1 del circuito 6.22
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Figura 6.25: Diagrama di bode OPAMP per A=1 del circuito 6.22

Come si puo vedere, a differenza del diagramma di Bode VCVs, con uno
sfasamento di 270°, con il diagramma di bode che utilizza un amplificatore
operazionale, lo sfasamento ¢ di 450° poiché vi & un’ulteriore variazione di fa-
se causata dai poli alle alte frequenze a causa degli amplificatori operazionali
utilizzati. 2 poli = 1 amplificatore operazionale.

6.3 Sistema condizionalmente stabile

Un sistema ¢ definito condizionalmente stabile cuando e stabile per valori
critici. Le sue proprieta di stabilita possono cambiare pitl volte al crescere
del guadagno.

Sono sistemi che hanno diversi incroci di fase. Un sistema condizio-
nalmente stabile € uno che diventa instabile quando il guadagno ad anello
aperto viene variato tra valori critici e stabile se aumenta o diminuisce.

Il circuito mostrato sotto & un oscillatore condizionalmente stabile, poi-
ché, per un intervallo di guadagno, sara instabile e quindi oscillera. D’altra
parte, se il guadagno supera questo margine o & inferiore, il sistema sara
stabile e di conseguenza non oscillera. Pertanto, per ottenere le oscillazioni
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in questo tipo di circuito, sara necessario progettarle con un’ampiezza di
guadagno il cui valore & compreso tra alcuni valori limite.

Sl
ug

-

Figura 6.26: Schema di un oscillatore condizionalmente stabile

Si tratta di un circuito di 3 poli, cui funzione di trasferimento dell’anello
aperto é:

T(s) A(R*C?s® + 2R1Cs 4 1)
~ (RI2RC3 4 R1R?C3)s* + (R12C? + R?C? 4+ R?C? + 4R1RC?

(6.3.1)
+R1R2C%*+R3C?)s%*+(2R1C+3RC+3R1IRC+4R%C)s+3(1+R)

Il nostro sistema, oscillera quando il valore del guadagno si trova tra due
valori critici 22<A<230.
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Figura 6.27: Diagrama di Nyquist per A=20 del circuito 6.26. Il sistema
non oscilla
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Figura 6.28: Diagrama di Nyquist per A=100 del circuito 6.26. Il sistema
oscilla
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Figura 6.29: Diagrama di Nyquist per A=250 del circuito 6.26. Il sistema
non oscilla

I risultati mostrati coincidono con cio che & teoricamente previsto poiché
per i valori di guadagno tra 22 e 230 il diagramma di Nyquist circonda il
punto critico -1 ed & instabile. Se il guadagno aumenta (esempio A = 250) o
diminuisce (esempio A = 20) il diagramma di Nyquist non circonda il punto
-1 e il sistema diventa stabile.
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DI OSCILAZIONE
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Figura 6.30: Diagrama di Bode per A=20 del circuito 6.26. Il sistema non

oscilla
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Figura 6.31: Diagrama di Bode per A=100 del circuito 6.26.
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Figura 6.32: Diagrama di Bode per A=250 del circuito 6.26. Il sistema non
oscilla

Analizzando i diagrammi di Bode, basati sulla traccia di Nyquist e analiz-
zando i margini di guadagno e di fase, possiamo concludere che se il margine
di guadagno ¢ negativo e il margine di fase ¢ inferiore a -180°, il sistema e
instabile. D’altra parte, se il margine di guadagno & positivo e il margine di
fase anche il sistema ¢ stabile.

Come nello studio dell’oscillatore di sfasamento, la frequenza del circuito
varia al variare del guadagno: (f: risultati ottenuti con PSpice).

Dalla funzione di trasferimento in anello chiuso, la frequenza di oscilla-

zione dipende dal guadagno e i suoi valori sono simili a quelli ottenuti nelle
simulazioni PSpice. Pertanto, possiamo concludere, con questi risultati e
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quelli ottenuti nel circuito phase-shift, che la frequenza di oscillazione degli
oscillatori dipende dalla retroazione e quindi dalla funzione di trasferimento
ad anello chiuso e non solo della rete di feedback che volevamo.

Della funzione di trasferimento che in anello chiuso é:

A

F(s) = ——— 6.3.2
() =17 T(s) (6:32)
otteniamo:
o — 2R1C +5RC + 2AR1C (6.3.3)
~ RI2RC3 + 3R1R2C3 + R3C3 e
Nel nostro circuito:
0.068 + 2exp 3 +A4
- +lexp T+ (6.3.4)

1.31exp~6

Nella siguiente tabella possiamo osservare i resultati della frequenza delle
simulazione e della fre-quenza teorica ottenuta della funzione di trasferimen-
to dell’anello chiuso e il suo errore, in funzio-ne del guadagno. Come avviamo
detto nel oscillatore di displazamento di phase o phase shift, la relazione tra
la frequenza ottenuta attraverso la funzione di trasferimento dell’anello chiu-
S0 e piu prossima a la frequenza di simulazione che la ottenuta dell’anello
aperto.

Per tanto, come conclusione possiamo dire che la frequenza di oscillazione
dipende del guadagno e del feedback.
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Guadagno | f. simulazioni | f. teorica Errore asso- | E. relativo
(A) [Hz] [Hz] luto [%]
22 45,051 46,536 1.485 3.1%1
32 45,980 50,521 0.517 1.130
42 21,282 54,213 2.931 5.723
52 55,865 57,6659 1.804 3.128
62 39,135 60,930 1.795 2.946
72 63,291 64,025 0.734 1.146
82 64,935 66,977 2.042 3.043
92 69,930 65,804 0.126 0.181
102 71,428 72,521 1.083 1.507
112 80,424 73,141 5.283 7.031
122 78,740 77,671 1.069 1.376
132 81,301 80,122 1.179 1.471
142 83,333 82,501 0.832 1.008
152 86,206 84,811 1.395 1.644
162 87,7192 87,061 0.658 0.756
172 89,285 85,255 0.03 0.0336
182 92,592 91,395 1.197 1.309
192 94,3359 93,487 0.852 0.911
202 96,153 95,533 0.62 0.6438
212 98,0359 97,336 0.503 0.515
222 95,978 95,495 0.479 0.481

Figura 6.33: Relazione tra le frequenza di simulazione VCVS e la ottenuta
della funzione di trasfererimento in anello chiuso per il circuito 6.26
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Capitolo 7

Analisi in laboratorio

I precedenti circuiti sono stati analizzati in laboratorio.

7.1 Ponte di Wien

Per il circuito oscillatore di Ponte di Wien, i risultati in laboratorio coinci-
dono con quelli teorici e con le simulazioni in PSpice.

Per la sua realizzazione abbiamo usato, come in PSpice, due resistori
R di 10K e due condensatori C di 10nF come rete B di retroazione e un
amplificatore operazionale UA741 [12], un potenziometro di 100K e una
resistenza di 47K (Rete A del circuito).

Il circuito inizia ad oscillare quando il valore del potenziometro e 87 k,
con una frequenza di circa 1.6 kHz.
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PoakTech"

Figura 7.1: Oscillazioni

La saturazione inizia quando il potenziometro ¢ 92K con una frequenza
di circa 1.061 KHz.
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Figura 7.2: Saturazione

Teoricamente, il circuito oscillara quando il valore del potenziometro sia
2:47 k = 94 k e la frequenza di oscillazione e 1.59 kHz.
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7.2 Phase shift

I valori dei componenti utilizzati in questo circuito oscillatore sono 3 con-
densatori da 10 nF, 3 resistenze da 6,2 k e un potenziometro da 500 k.

Il circuito di feedback negativo inizia ad oscillare quando il suo guadagno
¢ approssimativamente 38.7

Valorepotenziometro 240k
ValoreR1 6.2k
con una frequenza di circa 0.988 kHz.

A=

(7.2.1)

I resultati ottenuti delle simulazioni con PSpice e OPAMP sono che il
circuito iniziara le oscillazione quando il valor del potenziometro sia 180 k
con una frequenza di 970 kHz. Quando il valore del potenziometro e di 240
k la frequenza di oscillazione ¢ 772.5 kHz.

Da questo momento, all’aumentare il valore del potenziometro, 1'uscita
aumenta in ampiezza e la frequenza diminuisce.

La saturazione inizia per un guadagno di circa 45.16, quando il valore
del potenziometro e 280 k. La frequenza del segnale di uscita & 0.880 kHz e
la distorsione ¢ molto piccola.

.mmﬁﬁm__u

Figura 7.3:
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La frequenza di oscillazione ottenuta con PSpice e OPAMP per Rpoten-
ziometro di 280 k e di 772.5 kHz.

Per valori maggiori del potenziometro, 480K, che equivale ad un guada-
gno teorico di circa 77.419, la frequenza di oscillazione e 0.716311 kHz e la
distorsione e maggiore. Il segnale ha un taglio piti grande.

I risultati ottenuti teoricamente sono:

- Una frequenza di oscillazione

1

fose = 2rRCV/6

(7.2.2)
di cerca 1 kHz.
- Il circuito oscillara per A>29.

Attraverso simulazioni in PSpice per valori di Rpot = 240 k, 1'uscita
satura nel tempo e la frequenza di oscillazione ¢ di 1.012 kHz.

Per Rpot = 280 k, la frequenza di oscillazione & di 1.008 KHz e 1'uscita
satura. I risultati ottenuti sia nel circuito dell’oscillatore di Ponte di Wien
che nel circuito Phase Shift sono simili a quelli ottenuti nelle simulazioni.
La non uguaglianza tra questi risultati ¢ dovuta alle derive termiche dei
componenti, alla non idealita dell’amplificatore e agli alimentatori, ecc.

7.3 Condizionalmente stabile

Non abbiamo osservato alcuna oscillazione in questo circuito. L’introdu-
zione di un seguitore di tensione e la variazione del potenzionmetro non
funzionano.

Se cambiamo il valore dei componente per ottenere oscillazioni, il circuito
smette di avere un comportamento condizionalmente stabile. Cio puo essere
dovuto alle tolleranze dei con-densatori utilizzati, poiché come & osservato
nel diagramma di Nyquist la curva che circon-da il punto critico -1 € molto
piccola.

D’altra parte, il piccolo margine di guadagno per il sistema di essere

instabile e oscillare (idealmente tra 22 e 230) potrebbe anche influenzare
questi risultati.
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Una condizione aggiuntiva

Nell’articolo [11] si illustra una possibile condizione necessaria aggiuntiva
da affiancare al criterio di Barkhausen affinché un sistema sia oscillante e
marginalmente stabile (ossia affinché abbia poli complessi coniugati sull’asse
complesso). La condizione ¢ %(wo) < 0, dove ¢(w) ¢ la fase della f.d.t.
considerata valutata in jw, mentre wg € la pulsazione alla quale vale il criterio
di Barkhausen. L’analisi svolta in [11] si basa sullo studio del luogo delle
radici di alcuni sistemi, e mostra che tutti i sistemi esaminati che oscillino
alla frequenza alla quale Barkhausen e soddisfatto, soddisfano anche % < 0.
Viceversa, i sistemi che non oscillano alla frequenza individuata dal criterio
di Barkhausen, non soddisfano la suddetta condizione. In questo capitolo
si esaminano i diagrammi di Nyquist di sistemi comuni, evidenziando come
I’aggiunta di tale condizione, opportunamente modificata, permetta di far
funzionare il criterio esteso di Barkhausen in casi in cui esso, in assenza di
tale condizione, falliva. Inoltre, si propone un semplice ragionamento fisico
a supporto della condizione %(wo) < 0.

Premettiamo che un sistema retroazionato si dice a stabilita regolare
se & caratterizzato da un unico valore K tale che il sistema e stabile per
0 < K < Ky e instabile per K > Kj. Si parla invece di sistema a stabilita
condizionata (o condizionatamente stabile) se vi sono piu valori critici di K
per cui si passa da una condizione di stabilita a una condizione di instabilita,
o viceversa. Queste due classi non coprono tutti i sistemi possibili: ve ne
sono di altri, ad esempio, che sono instabili per 0 < K < Kj e instabili per
K > K, al contrario di quelli a stabilita regolare. Questi sono di interesse
perlopiu teorico [13].

Ove non specificato diversamente, i diagrammi di Nyquist riportati in
questo capitolo sono stati tracciati con I'ausilio di Wolfram Alpha.
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8.1 Diagramma di Nyquist in funzione di K

I sistemi reali hanno comportamento passa basso, essendo sempre presenti
degli effetti capacitivi parassiti che ne limitano la banda. Pertanto, la prima
meta dei diagrammi di Nyquist di sistemi F' reali ha termine nell’origine,
giacché w — 0o = F(jw) — 0. Ne ¢ un esempio il sistema di cui il dia-
gramma in figura 8.1, che rappresenta proprio un passa basso (F(s) = —-).

1+s
Inoltre, nelle prossime pagine, non considereremo sistemi con comportamen-
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Figura 8.1: Diagramma di Nyquist di un sistema passa basso

to passa alto. Per tali sistemi, 1’origine rappresenta il punto di partenza del
diagramma, essendo F'(0) = 0.

Si supponga che il diagramma in figura 8.1 sia il diagramma di una
H(s)G(s), in caso di sistema retroazionato negativamente (d’ora in poi tale
ipotesi sara implicita per ogni sistema preso in considerazione). Si inserisca
nell’anello anche un blocco amplificatore ideale di guadagno K. Per quanto
riportato in [22], affinché tale sistema sia stabile, il diagramma non deve
girare attorno a —%. In simboli, il sistema e instabile se:

1
0<——=x<1
K

Ossia, scomponendo in due condizioni:

1
—— K
0< K<:> <0

1
—— <1 <= K>-1
K< >

Tale metodo per valutare la stabilita mediante i diagrammi di Nyquist e
molto comodo all’atto pratico, poiché permette di usare un unico diagram-
ma invece di tracciarne uno per ogni valore di K, ma non rende l'idea di
come il diagramma del sistema cambi al variare di K. In figura 8.2 (im-
magine originale in [20], slide n. 26), invece, abbiamo una porzione di un
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diagramma di Nyquist di un sistema condizionatamente stabile. Si osservi
che, al crescere di K, il diagramma diviene piu ampio. Con questa interpre-

Im

T HEGE) =1
\
\
J Re
//ll
_——‘//

Figura 8.2: Tratto finale del diagramma di Nyquist di un sistema
condizionatamente stabile al variare di K

tazione ¢ immediato determinare che, riferendoci alla curva A, aumentando
o riducendo opportunamente K si arrivera ad una condizione di stabilita.
Per sistemi non condizionatamente stabili con comportamento passa bas-
so alle alte frequenze si ha un’unica soglia per determinare la stabilita del
sistema. Si faccia riferimento al grafico in figura 8.3. Si consideri il diagram-

I

AN

>
L /

Figura 8.3: Diagramma di Nyquist di F(s) = —1

(S

ma rappresentato quello per K = 1. Poiché il diagramma taglia ’asse reale
in —0.125, il sistema sara stabile per K positivi minori di 8, mentre per K
maggiori di 8 il diagramma inglobera il punto —1 + 50 e il sistema diverra
instabile.
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Separiamo dunque i sistemi d’interesse, come da definizione in [13] gia
accennata all’inizio del presente capitolo, in:

e Tipo A - regolarmente stabili: sistemi il cui diagramma di Nyquist
taglia il semiasse reale negativo una sola volta, ovvero che soddisfano
la condizione sulla fase di Barkhausen per una sola pulsazione wy

e Tipo B - condizionatamente stabili sistemi il cui diagramma di
Nyquist taglia il semiasse reale negativo pit di una volta, ovvero
soddisfano la condizione sulla fase di Barkhausen per piu pulsazioni
Ws.

Si tenga a mente la limitazione a sistemi reali, ossia passa basso. Nella prossi-
ma sezione sfruttiamo questa categorizzazione e il metodo grafico introdotto
d

per evidenziare come la condizione £ < 0, modificata opportunamente,

fornisca previsioni corrette circa la stabilita dei sistemi piu comuni.

8.2 Nyquist e % <0

Spesso ci si riferisce a —£ come al ritardo di gruppo. Non sara il nostro caso,

poiché il concetto di ritardo di gruppo quale ritardo temporale ¢ valido per
segnali modulati, e nella fattispecie si riferisce al ritardo subito dall’inviluppo
di una portante nell’attraversare un sistema a fase lineare [28].

Per i sistemi del tipo A di interesse comune sembra sempre essere soddi-
sfatta la condizione sulla derivata della fase. Essendo per ipotesi dei passa
basso, qualunque cosa succeda alle basse frequenze, si ha comunque una
rotazione in senso orario del diagramma per frequenze tendenti a +oco. In
figura 8.4, il diagramma di Nyquist per il sistema con la seguente funzione
di trasferimento:

s+1
(s +10)(s 4+ 100)(s + 1000)2

F(s)=10°

Anche casi particolari come questo sono contemplati. E il caso dei sistemi
per cui il criterio esteso di Barkhausen era gia apparentemente corretto.

Per i sistemi del tipo B, invece, facciamo riferimento alla figura 8.5,
versione modificata della 8.2, poiché e ragionevole che il tratto finale del
diagramma abbia tale forma. La linea tratteggiata rappresenta ’andamento
del diagramma tipo per sistemi con un numero di attraversamenti dell’asse
reale superiore a 2. Asseriamo dunque che il sistema ¢ instabile se, alla piu
alta pulsazione wqg per cui vale:

{ |H(jw)G(jw)| > 1

o (8.2.1)
/ZH(jw)G(jw) =0

vale anche % <0.E stabile, viceversa, se % > 0.
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Figura 8.4: Caso particolare di sistema del tipo A
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Figura 8.5: Rappresentazione tipica dei sistemi di tipo B

Non si tratta di un criterio di sufficienza poiché non vi & dimostrazione,
ma si rimanda alla fine della sezione 8.3 per un collegamento con il concetto
in essa presentato. Tuttavia, € interessante notare che anche sistemi con-
dizionatamente stabili come quello in figura 8.6, per cui non vale I'ipotesi
di passa basso, valga comunque il nuovo criterio esteso (a patto di poter
considerare +00 come wyp). Delimitare con rigore le classi di funzioni per cui
questa estensione del criterio fornisce risultati corretti sara uno scopo del
proseguimento degli studi sull’argomento, e si dovra per certo partire dalla

ricerca di possibili controesempi.
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Figura 8.6: Caso particolare di sistema condizionatamente stabile

8.3 Significato fisico della condizione aggiuntiva

Si propone infine una possibile spiegazione fisica del perché la condizione
aggiuntiva potrebbe effettivamente rivelarsi una condizione necessaria, as-
sieme al criterio di Barkhausen, affinché il sistema oscilli. In particolare, si
vuole sottolineare una sorta di funzione di stabilizzazione della frequenza di
oscillazione che tale condizione sembra operare.

Innanzitutto, sia f(t) = sin(wt + ¢(t)). Siimmagini che la fase ¢ sia una
vari bruscamente in un dato istante di tempo ty. Allora, in un intorno di £g
si pud scrivere, per Taylor, ¢(t) ~ ¢(to) + ¢'(to)(t — to), ottendendo:

F(t) ~ sin((w + ¢/ (t0)) t + (o) — ' (to) t0>

Si osservi che ¢/(t) ha le dimensioni di una pulsazione. In altre parole, va-
riazioni istantanee della fase si possono confondere con variazioni istantanee
della pulsazione di una sinusoide.

Si consideri un oscillatore, e sia wy la pulsazione per cui e soddisfatto il
criterio di Barkhausen. Si supponga che %(wg) < 0. Se w dovesse aumen-

tare leggermente in un dato istante, vista l'ipotesi su %(wo) si avrebbe una

diminuizione istantanea dello sfasamento operato da HG sul segnale nell’a-
nello di retroazione, ossia, per quanto detto sopra, una diminuzione della
pulsazione. Viceversa, per decrementi istantanei di w si ha un incremento
istantaneo dello sfasamento introdotto da HG, ossia un incremento della
pulsazione. Praticamente, la condizione aggiuntiva fa si che la frequenza di
oscillazione sia una frequenza d’equilibrio alla quale operare per ’'oscillatore.
Viceversa, se g—z(wo) > 0, si ottiene I'effetto opposto, ossia un’enfatizzazione
della perturbazione della frequenza di oscillazione. Risulta pertanto che sep-
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pure idealmente il sistema potrebbe ragionevolmente oscillare alla pulsazione
wp, in realta essa € un equilibrio instabile.

Nei casi teorici di sistemi che non esibiscono un comportamento passa
basso, si puo ottenere attraversamento dell’asse reale da parte del diagramma
di Nyquist anche per w = oo (vedasi figura 8.6). Mentre per gli attraversa-
menti per w = 0 si puo parlare di “oscillazione” a frequenza nulla, ossia di
marginale stabilita con un segnale d’uscita costante, non e del tutto chiaro
se abbia senso considerare gli attraversamenti per w = oo dal punto di vista
fisico. Nello specifico, bisogna indagare il comportamento teorico di sistemi
del tipo suddetto qualora l'attraversamento avvenga proprio in —1 4 50, che
negli altri casi corrisponde a una situazione di marginale stabilita.

Infine, si voglia osservare come potrebbe non essere un caso che il crite-
rio esteso di Barkhausen sulla stabilita funzioni per sistemi marginalmente
stabili che soddisfino la condizione aggiuntiva. Se questa si rivelasse essere,
assieme al criterio di Barkhausen, una condizione necessaria e sufficiente
affinché il sistema marginalmente stabile oscilli, allora la presenza di segnali
oscillanti renderebbe sensato il ragionamento fisico dietro al criterio esteso
di Barkhausen, motivandone la correttezza sotto tali ipotesi. Questo spie-
gherebbe il nuovo criterio esteso di Barkhausen (8.2.1) da un punto di vista
fisico - pur lasciando in ombra meta del criterio. Non sarebbe chiaro, in
tale prospettiva e sempre da un punto di vista puramente fisico, perché per
casi di stabilita marginale in cui %(wo) > 0 si debba avere un’inversione del
criterio (i.e., stabilita al diminuire di K, e viceversa).
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Capitolo 9

Analisi del Group Delay

Il ritardo di gruppo esprime il ritardo di un segnale dovuto al suo passaggio
attraverso il circuito e viene definita come:

do
Tg=—— 9.0.1
9=- (9.0.1)

Quando un segnale attraversa un sistema, puo apparire una distorsione
nella forma d’onda del sistema, ma se il segnale di uscita coincide con il
segnale di ingresso, significa che il sistema non distorce il segnale, sebbene

possa esserci un ritardo o un’amplificazione.

Sulla base al comportamento previsto di un circuito in anello chiuso, si
presume che 'ingresso per la rete di feedback B sia una tensione sinusoidale
in aumento esponenziale.

V(z) =7t st (9.0.2)

La tensione all’'uscita dell’amplificatore, V(y) (dell’anello aperto) avra
una forma simile a V(x), ma con un ritardo di tempo, un sfasamento e
un’ampiezza leggermente maggiore di V(x).

Per tanto possiamo scrivere V(y) come:

V(y) =To- et . gwlt=r)+¢ (9.0.3)

‘ B V(CC) B ea-t . eju}st
T(jw) = 5; ) = Toerti=r - giai=e | (9.0.4)

116



CAPITOLO 9. ANALISI DEL GROUP DELAY

Risolvendo 'equazione Eq 4.0.7,

To-e?"=1—To=¢e"" (9.0.5)
eI LI =1 1P = &IWT y h = wsr (9.0.6)

Questo dimostra che 7 e o dipendono dal guadagno dell’anello aperto To
e che il ritardo di gruppo deve essere positivo per sodissfare ’equazione Eq.
4.0.5.

Per tanto:

Tg=——7>0 (9.0.7)

Per lo studio del Group Delay abbiamo creato un semplice programma in
Matlab che riproduce I'esponenziale dell’uscita divergente di un oscillatore
a sfasamento o Phase shift.

Questo programma riproduce i punti di uscita dell’anello aperto (AB)™,
dove n ¢ il numero di volte in cui il valore di uscita viene convertito in ingresso
per attraversare nuovamente il ciclo aperto AB, per un tempo t+7g(w).

Descripcion de programa:

1 = 0; Tempo iniziale

i=0;j = 0; n = 0; lunghezza del vettore

t = [0: i]; Vettore di tempo

x = [0: j]; vettore di tensione

while (t1 <0.1) Mentre il tempo ¢ inferiore a 0,1 secondi verra riprodotto
il ciclo while

x1 = 30-(30/29)™; x1 & la tensione di uscita quando si attraversa AB;
n sono le volte che il segnale passa attraverso il blocco AB. Inizialmente il
segnale di uscita sard A poiché la frequenza iniziale ¢ 0. Quindi il segnale
passera ripetutamente attraverso il ciclo AB
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t(i+1) = t1; viene salvato nella posizione i+1 del vettore il valore del
tempo

x(j+1) = x1; nella posizione j+1 del vettore di tensione viene salvato il
valore della tensione.

t1 = t1 + (1.688e-4); tempo iniziale piu ritardo del gruppo
i = i4+1; aumenta la posizione del vettore temporale
j = j+1; aumento della posizione del vettore di tensione

n = n+1; aumento del numero di volte che il segnale passa attraverso
AB

plot (t, x, ’0’) Ritorna il plot della risposta ottenuta.
Per il circuito Phase shift (Figura 3.15), il ritardo di gruppo, derivato
dalla fase rispetto alla frequenza, per la frequenza di oscillazione wo, ¢ 1,69¢-

4 secondi. Per la frequenza di oscillazione, la funzione dell’anello aperto AB
e 30/29.
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25] T T T T T T T T T

D i i i i i i

o 0001 0002 0003 0004 0005 0006 0007 0008 0002 0.01

Figura 9.1: Esponenziale ottenuto con Matlab per il circuito Phase shift con

A =30

Dai valori ottenuti e con 'uso di Excel possiamo ottenere I’esponenziale

all’uscita del circuito dell’anello aperto.
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t(x) viy) 0,0025 49,885 0,0052 | 858109 | 00079 | 147,6095
0 30 0,0027 | 51,6052 0,0054 | 88,7698 | 0,0081 | 152,6995
00002 | 31,0345 | 00029 | 53,3847 00056 | 91,8309 | 00083 | 157,965
0,0003 | 32,1046 0,003 55,2255 0,0057 | 945975 | o0,0084 | 1634121
0,0005 | 33,2117 | 0,0032 | 57,1299 0,0059 | 982732 | 0,0086 | 169,047
0,0007 | 343569 | 0,0034 | 59,0999 0,0061 | 101,662 | 0,0088 | 174,8762
0,0008 | 355416 | 00035 | 61,1378 0,0062 | 1051676 | 0,0083 | 180,9064
0,001 36,7672 || 0,0037 63,246 0,0064 | 108,794 | 0,001 | 187,1445
00012 | 380351 | 0,0039 | 654269 0,0066 | 112,5455 | 0,0033 | 193,5978
0,0014 | 39,3466 | 0,0041 67,683 0,0068 | 1164264 | 0,0035 | 200,2736
0,0015 | 40,7034 | 0,0042 | 70,0169 0,0069 | 120,4411 | 0,0036 | 207,1796
0,0017 42,107 0,0044 | 72,4312 0,0071 | 1245943 | o0,0098 | 214,3237
0,0019 | 43,5589 | 0,0046 | 74,9289 0,0073 | 128,8906 0,01 221,7141
0,002 45,0609 | 0,0047 | 77,5126 0,0074 | 133,3351
0,0022 | 466148 | 0,0049 | 80,1855 0,0076 | 137,9329
0,0024 | 48,2222 | 0,0051 | 82,9505 0,0078 | 142,6892
Figura 9.2: Tabella con i valori ottenuti in Matlab
i r "
Titulo del grafico
250
yw = 20 00
y = 28,996 >
1=0,5999 _#
200 '
»
L
- &
150 "
¥
o
Poad
100
."."' .‘".‘
. il
5 .
50 -
I
0 0,002 0,004 0,006 0,008 0,01 0,012

Figura 9.3: Esponenziale all’uscita del circuito Phase shift con Matlab
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Questo risultato dovrebbe coincidere con il valore ottenuto nelle simula-
zioni in PSpice come risultato di un ritardo di gruppo nel circuito. L’espo-
nenziale ottenuto con PSpice utilizzando come amplificatore un VCVS e un
guadagno di 30, R=10 k e C=6,8 n:

Titulo del grafico

[ TT R T
nm & oo
L,

.

[
[

[

0, 0E+D0 5,00E-03 ,D0E-02 1,50E-02 2,00E-02 2,50E-02 3,00E-02

Figura 9.4: Esponenziale all’uscita del circuito Phase shift con PSpice

I risultati ottenuti con Matlab e le simulazioni in PSpice ideali non sono
equale. La esponeziale ottenuta con Matlab ¢ 29.996exp 200.78t e con PSpice
VCVS 14.621exp38.044t.
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Lo stesso, ma per un filtro RC del primo ordine. Il ritardo de grupo per
questo circuito con R=1 k, C=1 nF e A=1.1 & lexp(-6) con una frequenza

di oscillazione wo=0 rad/s.

Figura 9.5: Circuito RC
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Titulo del grafico
1,20E+10

y = 0,0105g33%
1,00E+10 R*=0,9917

g, 0DE+09
5,00E+09
4 DOE+09 -

2,00E+09

rs
0,00E+00 PSS

0,00E+00 5, 00E-05 1,00E-04 1,50E-04 2,00E-04 2,50E-04
Figura 9.6: Esponenziale all’uscita del circuito RC con matalb

Titulo del grafico
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i

1 y=1 1%
0.8 RE=1
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0,2

il

o 0, 000001 0, 000002 0, 000003 0, 000004 0,0000:05 0, 000006

Figura 9.7: Esponenziale all’uscita del circuito RC con PSpice

In conclusione, possiamo assicurare che esiste un ritardo di gruppo ma
che questo non coincide per la funzione dell’anello aperto con la derivata
dell’argomento rispetto alla derivata della frequenza.
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Conclusioni

Il criterio di Barkhausen e stato studiato come criterio che ci permette di
costruire circuiti elettronici che oscillano per una certa frequenza, modellan-
done I'ampiezza, attraverso il guadagno e la sua frequenza attraverso una
rete di feedback e pil volte usando una fonte esterna fornire un impulso per
controllare lo stato iniziale.

Come abbiamo detto prima, le condizioni necessarie per far oscillare un
sistema o un circuito sono il feedback e linstabilita. per quest’ultima
ragione una delle condizioni in base alle quali il criterio di Barkhausen non
puo essere considerato come una singola condizione per 'oscillazione.

Pertanto, alla condizione del criterio di Barkhausen per l'oscillazione
degli oscillatori, dobbiamo aggiungere la condizione di instabilita nella pro-
gettazione degli oscillatori, cioe che il criterio di Nyquist circonda il punto
critico -1.

Il diagramma di bode ha una pendenza negativa e uno sfasamento di
0° alla frequenza di taglio, cosi come una rete di feedback che produce uno
sfasamento di -180° quando la retroazione ¢ negativa. Come conseguenza di
quest’ultimo -180° + 180° (a causa del feedback negativo) = 0°. Se, d’altra
parte, la rete B introduce uno sfasamento di -180° e la retroazione & positiva,
I'uscita sara fuori fase e, di conseguenza, non si verificheranno oscillazioni.

Dal criterio di stabilita (criterio Nyquist semplificato), se la retroazione
& negativa, lo sfasamento deve essere inferiore a 180° per la frequenza di
crossover con 0 dB, in modo che il sistema sia instabile.

Inoltre, idealmente, quando si costruiscono gli oscillatori, non intendiamo
fornire al circuito ulteriori mezzi per controllare lo stato iniziale e ogni cir-
cuito ¢ sempre soggetto a disturbi e rumore. Ecco perché il suo stato iniziale
incontrollato (rumore e perturbazioni degli elementi del circuito) rendera il
suo stato stazionario imprevedibile. Pertanto, vi & 'impossibilita di poter
posizionare esattamente i poli sull’asse immaginario jw, a causa delle tolle-
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ranze non nulle dei componenti del circuito, sempre presenti, che contengono
componenti a tutte le frequenze.

Quindi sorge la necessita di un’ulteriore condizione, nota come condi-
zione di partenza o condizione di start-up condition, per cui |[A-B|>1, in
modo che i poli si trovino inizialmente nel semipiano destro. A causa del-
la retroazione, il segnale di uscita verra amplificato indefinitamente fino a
quando ’amplificatore si saturazione o fino a quando un circuito ausiliario
raggiunge quello per la frequenza di oscillazione A-B=1. Da allora ’ampiez-
za dell’oscillazione viene mantenuta (il sistema diverge). In questo modo, i
poli inizialmente posizionati nella meta destra del piano s, in conseguenza
dell’aumento dell’ampiezza del segnale e della diminuzione del guadagno, si
sposteranno alla posizione jw di steady state.

Sebbene in generale il funzionamento dell’oscillatore sia non lineare, la
condizione di partenza puo essere studiata con un modello lineare dell’am-
plificatore perché funziona con segnali molto piccoli.

Infine, & necessario prestare particolare attenzione, in quanto la frequen-
za di oscillazione dal criterio di Barkhausen viene calcolata dalla rete di
feedback. Dai risultati ottenuti teoricamente e in laboratorio, possiamo
concludere che la frequenza della rete di retroazione non coincide con la
frequenza ottenuta da la funzione di trasferimento dell’anello aperto |A-B|
= 1, e man mano che il guadagno aumenta questa frequenza aumentera o
diminuira (filtro passo-basso e filtro passo-alto usato como rete di feedback
rispettivamente)

Pertanto, la frequenza di oscillazione dipende dal guadagno del circuito
e quindi dalla sua funzione di trasferimento in anello chiuso, a causa del
feedback.

Quest’ultimo non dovrebbe essere corretto poiché in un oscillatore 1’usci-
ta e ingresso sono uguali e quindi 1'uscita del circuito dovrebbe dipendere
solo dal guadagno dell’anello aperto T(jw)=A(jw)-B(jw).Ma se consideriamo
che un circuito dell’oscillatore puo essere simile a un circuito con retroazione,
dove xi e xo sono i segnali di ingresso e di uscita, e xf e xe rispe-ttivamente
i segnali di retroazione e di errore. E il comportamento del circuito puo es-
sere previsto conoscendo il modulo |A-B| e la fase ¢ del guadagno del loop,
eccetto per il calcolo della sua frequenza di oscillazione.

Per quanto riguarda il ritardo di gruppo, studi precedenti indicano che

questo coincide con la derivata dell’argomento dell’annello aperto rispetto
alla derivata della frequenza di oscillazione, omega. Tuttavia, sia in teoria
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che nella pratica questo non e vero. Il ritardo del gruppo non dipende solo
dalla frequenza di oscillazione, dipende anche dal guadagno.
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