
Trabajo Fin de Grado

Anexos

Plataforma integrada de pagos para la
Universidad de Zaragoza

Payments integrated platform for the Zaragoza University

Autor

Samuel Gascón Gascón

Director y ponente

Pascual Pérez Sánchez (director)
Responsable técnico de la unidad de Administración Electrónica de la Universidad de Zaragoza

Joaquín Ezpeleta Mateo (ponente)
Departamento de Informática e Ingeniería de Sistemas

Escuela de Ingeniería y Arquitectura
2018

1

Índice

Anexo 1 - Instalación del framework Slim...3

Anexo 2 – Base de datos..4

Anexo 3 - Integración de la base de datos con PDO.........................8

Anexo 4 - API REST...12

Anexo 5 - Carta de Pago...38

Anexo 6 – Instalación de las pasarelas de pago..............................39

Anexo 7 - AngularJS..41

Anexo 8 - Diagrama Gantt..47

Anexo 9 - Pruebas..49

2

Anexo 1 - Instalación del framework Slim
Para la instalación del framework Slim, se van a seguir los siguientes pasos:

- En primer lugar, en el servidor de Apache proporcionado por la administración electrónica de
la Universidad de Zaragoza, se va a ejecutar el comando composer create-project slim/slim-
skeleton pipuz. Con este comando se crea un proyecto llamado pipuz con la siguiente
distribución de carpetas para trabajar:

- logs: Para logs ante posibles errores o seguimientos. No se va a utilizar.

- public: Se encuentra el fichero index.php, que es el que levanta toda la API.

- src: Se pueden encontrar diferentes configuraciones. En esta aplicación, está implementado
el middleware en el que se valida que exista un token de autenticación y que este sea correcto
y no esté caducado.

- templates: No se va a usar, ya que sería la carpeta para dejar las plantillas de HTML, pero
únicamente se va a usar Slim para el API REST.

- vendor: Aquí se almacenarán todas las dependencias que se van a instalar con composer.

Ahora, se va a crear una nueva carpeta llamada app y dentro de esta otras tres nuevas
carpetas:

- route: Aquí irán los ficheros que se ejecutarán con las llamadas al API REST.

- model: Aquí irán los ficheros con los que se comunica la aplicación con la base de datos.

- lib: Aquí irán los ficheros database.php, en donde se creará la conexión con la base de datos
con el framework PDO, y el fichero reponse.php, que será la clase que gestiona las respuestas
de las llamadas a las bases de datos.

En está carpeta, también se creará el fichero app_loader.php que se utilizará para cargar todos
los ficheros de cada una de las tres carpetas que se han creado anteriormente.

3

Anexo 2 – Base de datos
Tablas en la base de datos

- pipuz_department: Departamentos de la universidad a los que pertenecen las tasas.
Atributos:

• department_id: identificador del departamento.

• name: nombre del departamento.

- pipuz_user: En esta tabla se definen los usuarios del sistema. Atributos:

• nip: identificador del usuario en la Universidad.

• name: nombre del usuario.

• surname: apellidos del usuario.

• dni: dni del usuario.

• mail: correo electrónico del usuario.

• admin: indica si es administrador (1) o no (0).

- pipuz_admin: En esta tabla se almacenan los diferentes usuarios que son administradores.
Atributos:

• nip: identificador del usuario que es administrador.

• derpartment: identificador del departamento del que el usuario es administrador.

• rol: el primer digito es siempre 1 y los siguientes indican con 1 ó 0 si tienen acceso a:

ver los pagos del departamento, crear una tasa, actualizar una tasa, crear usuarios,
crear un pago, actualizar pagos pagados con carta de pago y realizar acciones con
descuentos (crear, borrar o actualizar).

- pipuz_atrib_tasa: Tabla en la que se almacenan los atributos que puede tener una tasa.
Atributos:

• atrib_tasa_id: identificador del atributo.

• tipo: indica si es un atributo que siempre tiene el mismo valor (Único), puede ser un

valor de un lista definida (Selección) o puede ser cualquier cosa (Variable).

- pipuz_fijo: Tabla en la que se almacena el único valor que puede tener un atributo único.
Atributos:

• fijo_id: identificador del atributo que es único.

• value: valor que tiene el atributo único.

- pipuz_seleccion: Tabla en la que se almacenan todos los posibles valores que puede tener un
atributo de selección. Atributos:

• seleccion_id: identificador del atributo que es de selección.

• pos_value: posible valor que puede tener el atributo de selección.

4

- pipuz_atributo: Tabla que únicamente sirve de información, en la que se define el nombre con
el que aparecerá en la aplicación web un atributo. Atributos:

• atributo_id: identificador del atributo que aparece en la tabla de tasas y pagos.

• descripcion: nombre del atributo para que se muestren a los usuarios.

- pipuz_tasa: Esta tabla es la que representa las tasas disponibles para realizar pagos.
Atributos:

• tasa_id: identificador de la tasa que es un autoincremental.

• name: nombre de la tasa.

• prize: precio normal de la tasa.

• department: identificador del departamento al que pertenece la tasa.

• description: descripción de la tasa.

• expire: máximo de días en los que se debe de pagar la tasa después de crearla

• a_academico: identificador de un atributo que representa al año académico de una tasa.

• a_contable: identificador de un atributo que representa al año contable de una tasa.

• convocatoria: identificador de un atributo que representa a la convocatoria de una tasa.

• experimentalidad: identificador de un atributo que representa la experimentalidad de

una tasa.

• repeticion: identificador de un atributo que representa la repetición de una tasa.

- pipuz_discount: Tabla en la que se guardan los descuentos que se le pueden aplicar a los
pagos de una tasa en particular. Atributos:

• descuento_id: identificador del descuento de una tasa.

• name: nombre del descuento.

• porcentaje: porcentaje de descuento que se hace del precio de la tasa a la que se aplica

el descuento.

• tasa: identificador de la tasa a la que se aplica el descuento.

- pipuz_task: Representa los pagos de las tasas que realizan los usuarios del sistema. Atributos:

• referencia: identificador del pago que está definido por dos dígitos que pertenecen al

año (ej. 18), seis dígitos que pertenecen al NIP del usuario al que pertenece el pago (ej.
683537) y cuatro dígitos a un incremental por usuario y año (ej. 0001).

• task_id: cuatro dígitos que pertenecen a un incremental por usuario y año.

• user: identificador del usuario al que pertenece el pago.

• year_task: dos dígitos que pertenecen al año.

• tasa: identificador de la tasa que se va a pagar en el pago.

• prize: precio del pago creado.

• create_date: fecha en la que se crea el pago.

5

• state: el estado del pago con valor 0 cuando está por pagar, 1 como pagado, 2

cancelado y 3 caducado.

• payment: identificador de la forma de pago en el caso de que el estado esté a 1.

• pay_date: fecha en la que se ha realizado el pago.

• expire_date: fecha en la que el pago va a caducar.

• discount: identificador del descuento de la tasa para el pago.

• a_academico: valor del atributo del año académico.

• a_contable: valor del atributo del año contable.

• convocatoria: valor del atributo de la convocatoria.

• experimentalidad: valor del atributo de la experimentalidad.

• repeticion: valor del atributo de repetición.

- pipuz_payment: En esta tabla se almacenan las diferentes formas de pago que existen en el
sistema. Atributos:

• payment_id: identificador del método pago.

• type: tipo de pago que puede ser por Paypal, por TPV, al contado o por carta de pago.

6

7Figura 1: Esquema de la base de datos

Anexo 3 - Integración de la base de datos con PDO
La integración de la base de datos se ha realizado con el framework PDO de PHP. A través de
este framework, se van a realizar las llamadas desde el API REST a la base de datos MySQL.
Para la comunicación con la base de datos, se sigue el esquema de la figura 2, en donde se
tienen diferentes módulos, que realizan llamadas a un módulo común y este realiza la llamada
a la base de datos. Los diferentes módulos son: administración, departamento, formas de pago,
tasa, tareas y usuarios.

8

Figura 2: Esquema de la comunicación con la base de datos

Las diferentes llamadas de los diferentes módulos son las siguientes:

- admin_model:

• getTaskAdmin: Función que devuelve los pagos procedentes de un departamento en

particular.

• getTasasAdmin: Función que devuelve las tasas procedentes de un departamento en

particular.

• getDepartmentsAdmin: Función que devuelve los departamentos que son administrados

por un usuario en particular.

• getColumns: Función que devuelve el nombre de todas las columnas de la tabla de

tasas.

• addUnico: Función que crea un atributo único de una tasa. Primero crea el atributo en

pipuz_atrib_tasa, después crea el atributo y su valor en pipuz_fijo para finalmente
devolver el identificador del atributo creado.

• addVariable: Función que crea un atributo variable de una tasa. Primero crea el atributo

en pipuz_atrib_tasa para finalmente devolver el identificador del atributo creado.

• addSeleccion: Función que crea un atributo de selección de una tasa. Primero crea el

atributo en pipuz_atrib_tasa, después crea el atributo y sus posibles valores en
pipuz_seleccion para finalmente devolver el identificador del atributo creado.

• getAtrib: Función que devuelve el tipo de un atributo indicando el identificador.

• getFijo: Función que devuelve el valor fijo de un atributo fijo indicando el identificador.

• getSelection: Función que devuelve los posibles valores de un atributo de selección

indicando el identificador.

• getRoles: Función que devuelve los roles de administrador que tiene un usuario sobre

un departamento.

• addAtributos: Función que añade el identificador de un atributo a la tasa

correspondiente.

• createDiscount: Función en la que se crean descuentos, indicando la tasa, el nombre y

el porcentaje.

• getDescuentos: Función que devuelve los descuentos que tiene una tasa.

• updateDescuentos: Función que actualiza un descuento de una tasa.

• deleteDescuentos: Función que elimina un descuento de una tasa.

- department_model:

9

• getDepartments: Función que devuelve un departamento en particular indicando su

identificador o todos los departamentos.

- payment_model:

• getPayments: Función que devuelve todos los pagos disponibles en el sistema excepto

el pago por efectivo.

- tasa_model:

• createTasa: Función que crea una tasa, en donde hay que indicarle todos los parametros

necesarios: nombre (name), precio (prize), departamento (department), descripción
(description) y caducidad (expire). Además también se puede añadir diferentes
atributos (a_academico, a_contable, convocatoria, experimentalidad y repeticion).

• getTasa: Función que devuelve una tasa con todos sus campos indicando su

identificador.

• updateTasa: Función que actualiza una tasa indicando su identificador y los campos que

se quieren modificar.

• getTasas: Función que puede devolver todas las tasas en intervalos de 7 tasas o puede

devolver todas las tasas del departamento que se le indique.

• getDepartmentName: Función que devuelve el nombre del departamento indicando su

identificador.

• searchTasa: Función que devuelve las tasa que contengan en su nombre la cadena que

se le indique.

• getNumTasas: Función que devuelve en número total de tasas que existe en el sistema.

• getDesc: Función que devuelve los descuentos que tiene una tasa.

• getAtributoDesc: Función que devuelve el nombre que tienen los atributos de tasas.

- task_model:

• createTask: Función que crea un pago, en donde hay que indicarle todos los parametros

necesarios: usuario (user), tasa, precio (prize), fecha de creación (create_date), estado
del pago (state), caducidad del pago (expire_date) y año (year_task). Además también
se tienen que añadir los atributos atributos que contenga la tasa (a_academico,
a_contable, convocatoria, experimentalidad o repeticion).

• getUserTask: Función que devuelve todas los pagos de un usuario y teniendo la opción

de ponerle filtros de los diferentes campos de la tabla task.

• getTask: Función que devuelve un pago en particular indicando el usuario, el año y el

identificador por usuario y año.

10

• getBestTask: Función que devuelve las 4 tasas que más se han utilizado en el sistema

por todos los usuarios.

• payTask: Función que actualiza un pago a pagado.

• cancelarTask: Función que actualiza un pago a cancelado.

• comprobarCaducado: Comprueba la fecha de caducidad de todos los pagos de un

usuario y, en el caso de que sea menor que la fecha actual, actualiza el pago a
caducado.

- user_model:

• createUser: Función que crea un usuario, en donde hay que indicarle todos los

parametros necesarios: NIP de la Universidad (nip), nombre (name), apellidos
(surname), dni y correo electrónico (mail). El parametro de admin será siempre 0,
porque el usuario no será administrador.

• getUser: Dado el NIP de la Universidad de un usuario, devuelve todos los datos del

usuario.

11

Anexo 4 - API REST
Aqui se muestran todas las llamadas al API REST y se indica un breve descripción, los
parámetros de entrada a la llamada y las posibles respuestas.

Las llamadas al módulo de login:

Tipo de llamada Post

Nombre de la llamada /api/loginUser

Parámetros

userid (no nulo) NIP del usuario de la Universidad

password (no nulo) Contraseña administrativa del usuario de la
Universidad

Descripción

Esta llamada se utiliza para iniciar sesión en el sistema. Al dar un usuario y contraseña, que
debe de ser el NIP de la Universidad y la contraseña administrativa, cifrado todo por TLS, se
devolverá un token de autenticación. Este token deberá de ser enviado en cada llamada
posterior que se realice y mediante un middleware se comprobará a qué usuario pertenece y
si no tiene caducidad. Si el token no existe o no es válido, no se podrán realizar algunas
llamadas (la mayoría). Para comprobar que el usuario y la contraseña son correctas, se realiza
una comprobación contra el LDAP de la Universidad y se comprobará que el usuario esté
registrado en el sistema.

Respuestas

Autenticación correcta

code Será el número 2.

token Token de autenticación del usuario que deberá
aparecer en todas las cabeceras de las
llamadas posteriores.

admin Indica 1 si el usuario es administrador y 0 si
no lo es.

El usuario no existe en el sistema pero si en la universidad

code Será el número 0.

nip Identificador de la universidad del usuario.

name Nombre del usuario en el sistema de la
universidad.

lastname Apellidos del usuario en el sistema de la
universidad.

nif Número de identificación fiscal del usuario.

Error

12

code 1

value Indica cual es el error, desde que ha escrito
mal la contraseña, a que se ha dejado algún
campo por rellenar en la petición.

Tipo de llamada Post

Nombre de la llamada /api/newUser

Parametros

userid (no nulo) NIP del usuario de la Universidad

password (no nulo) Contraseña administrativa del usuario de la
Universidad

name (no nulo) Nombre del usuario

lastname (no nulo) Apellidos del usuario

dni (no nulo) DNI del usuario

mail (no nulo) Correo electrónico del usuario

Descripción

Para registrar un usuario en el sistema se hace uso de esta llamada. El usuario que desee
registrarse, deberá indicar su NIP de la Universidad, su contraseña administrativa, nombre,
apellidos, DNI y correo electrónico. La comprobación del NIP, contraseña administrativa y DNI
se realizará también contra el LDAP de la Universidad. Al realizarse siempre la comprobación
del usuario y contraseña contra el LDAP, no será necesario almacenar la contraseña en la
base de datos, pero si el usuario, para tener un control de sus pagos.

Respuestas

Registro correcto

code Será el número 0.

token Token de autenticación del usuario que deberá
aparecer en todas las cabeceras de las
llamadas posteriores.

admin Será un 0 ya que de primeras un usuario no se
registra como administrador.

Error

code Será el número 1.

value Indica cual es el error como que ha escrito mal
la contraseña o el usuario, que el usuario ya
está registrado en el sistema o que se ha
dejado algún campo por rellenar en la
petición.

13

Llamadas del módulo de usuario:

Tipo de llamada Get

Nombre de la llamada /api/getUser

Descripción

Llamada que se utiliza para devolver el nombre del usuario del sistema. No necesita ningún
parámetro ya que coge el identificador del usuario del token de autenticación.

Respuestas

Llamada correcta

code Será el número 0.

user Nombre del usuario.

Error

error Es necesario autenticarse.

Tipo de llamada Post

Nombre de la llamada /api/createTask

Parametros

tasa (no nulo) Identificador de la tasa.

atributos (array) atributo Nombre del atributo.

tipo Tipo del atributo que puede ser: fijo,
variable o selección.

valor Valor del atributo.

Descripción

Llamada para crear un pago. A esta llamada es necesario indicar la tasa que el usuario desea
pagar y los atributos de la tasa en caso de que existan. En la base de datos se almacenará el
identificador de la tasa, que será un autoincremental por usuario y año, el usuario, que se
cogerá del token de autenticación, el año en dos dígitos, el identificador de la tasa, el precio,
la fecha de creación, el estado en el que se encuentra el pago, la forma de pago que en el
este momento no existirá, la fecha de caducidad del pago, si se le aplica algún descuento, los
diferentes atributos que tenga y por último la referencia que está formado por el año, el
identificador de usuario y el identificador de la tasa.

Respuestas

Tarea correcta

code Será el número 0.

message Tarea creada correctamente.

Error

code Será el número 1.

14

message Mensaje del error.

Tipo de llamada Get

Nombre de la llamada /api/allDepartments

Parámetros

id Null o identificador de un departamento

Descripción

Llamada que devuelve o todos los departamentos o uno en concreto.

Respuesta

(array) department_id Identificador del
departamento de la
universidad.

name Nombre del
departamento de la
universidad.

Tipo de llamada Get

Nombre de la llamada /api/allTasas

Parámetros

department Null o identificador de un departamento

num Null o número de paginación que quieres
mostrar, mostrando 7 tasas por paginación.
Se usa para la paginación de la pantalla
principal.

Descripción

Llamada que devuelve las tasas, indicando si quieres las tasas de algún departamento en
particular.

Respuesta

(array) tasa_id Identificador del
departamento de la
universidad.

name Nombre del
departamento de la
universidad.

department Departamento al que
pertenece la tasa.

description Descripción de la tasa.

expire Número de días en los

15

que caduca la tasa
una vez se cree el
pago.

prize Precio que tiene la
tasa.

atributos (array) atributo Nombre
del
atributo.

tipo Tipo del
atributo:
Único,
Selección
o Variable.

value(tipo
es único)

Valor fijo
del
atributo.

value(tipo
es
selección)
(array)

Posible
valor del
atributo.

Tipo de llamada Get

Nombre de la llamada /api/getTasa

Parámetros

tasa_id Identificador de la tasa que se quiere mostrar.

Descripción

Llamada que devuelve todos los datos(nombre, descripción, precio, departamento,
atributos...) de una tasa en particular indicando su identificador.

Respuesta

Existe la tasa indicada

code Será el número 0.

tasa tasa_id Identificador de la
tasa de la universidad.

name Nombre de la tasa de
la universidad.

department Departamento al que
pertenece la tasa.

description Descripción de la tasa.

expire Número de días en los

16

que caduca la tasa
una vez se cree el
pago.

prize Precio que tiene la
tasa.

atributos (array) atributo Nombre
del
atributo.

tipo Tipo del
atributo:
Único,
Selección
o Variable.

value(tipo
es único)

Valor fijo
del
atributo.

value(tipo
es
selección)
(array)

Posible
valor del
atributo.

Error

code Será el número 1.

message Mensaje de error, que indica que ha insertado
ningún parametro o que la tasa indicada no
existe.

Tipo de llamada Get

Nombre de la llamada /api/numTasas

Descripción

Llamada que devuelve el número de tasas del sistema.

Respuesta

(number) Número de tasas que existe en el sistema

17

Tipo de llamada Get

Nombre de la llamada /api/AllPayments

Descripción

Llamada que devuelve todas las posibles formas de pago que existen en el sistema.

Respuesta

(array) payment_id Identificador del
método pago.

type Tipo de pago que
puede ser por Paypal,
por TPV, al contado o
por carta de pago.

Tipo de llamada Get

Nombre de la llamada /api/task

Parámetros

task_id Los dos primeros dígitos son el año en el que
se creó el pago y luego el identificador del
pago por año y usuario.

Descripción

Devuelve un pago del usuario que realiza la llamada. El usuario lo coge del token de
autenticación mientras que el pago se le indica con dos primeros dígitos del año en el que se
creó el pago y el identificador del pago por año y usuario.

Respuesta

code Será el número 0.

task(array) referencia Identificador del pago,
compuesto por el año
(4 dígitos), el nip del
usuario (6 dígitos) y el
identificador del pago
por usuario y año (3
dígitos).

name Nombre de la tasa del
pago.

department Departamento al que
pertenece la tasa del
pago.

description Descripción de la tasa.

prize Precio del pago.

18

state Estado actual del
pago.

tasa Identificador de la
tasa del pago.

task_id Identificador del pago
por usuario y año.

expire_date Fecha de caducidad
de la tasa.

create_date Fecha en la que se ha
creado la tasa.

atributos(array) column Descripción del
atributo

value Valor del atributo

Error

code Será el número 1.

message No existe el pago indicado.

Tipo de llamada Get

Nombre de la llamada /api/history

Parámetros

option Puede tener 4 valores: ‘null’ muestra todos los
pagos de un usuario, 0 muestra los pagos por
pagar, 1 muestra los pagados, 2 muestra los
caducados y 3 los cancelados

Descripción

Esta llamada devuelve los pagos de un usuario pudiendo indicar el estado de los pagos que
vas a recibir: por pagar, pagados, cancelados o caducados. También muestra el número de
pagos que hay en cada estado.

Respuesta

code Será el número 0.

task tasa_id Identificador del
departamento de la
universidad.

name Nombre del
departamento de la
universidad.

19

department Departamento al que
pertenece la tasa.

description Descripción de la tasa.

expire Número de días en los
que caduca la tasa
una vez se cree el
pago.

prize Precio que tiene la
tasa.

atributos(array) column Descripción del
atributo

value Valor del atributo.

Error

code Será el número 1.

message No existe el estado indicado

Tipo de llamada Get

Nombre de la llamada /api/bestTask

Descripción

Llamada que devuelve las cuatro tasas más populares del sistema, es decir, las tasas que más
veces se han creado.

Respuesta

(array) tasa_id Identificador de la
tasa.

name Nombre de la tasa.

Tipo de llamada Get

Nombre de la llamada /api/searchTasa

Parámetros

tasa Cadena que debe pertenecer al nombre de
alguna tasa.

Descripción

Se le pasa como parámetro una cadena y devuelve las tasas que tengan dicha cadena en su
nombre.

Respuesta

(array) tasa_id Identificador del
departamento de la

20

universidad.

name Nombre del
departamento de la
universidad.

department Departamento al que
pertenece la tasa.

description Descripción de la tasa.

expire Número de días en los
que caduca la tasa
una vez se cree el
pago.

prize Precio que tiene la
tasa.

a_academico Valor del atributo del
año académico

a_contable Valor del atributo del
año contable.

convocatoria Valor del atributo de la
convocatoria.

experimentalidad Valor del atributo de la
experimentalidad.

repeticion Valor del atributo de
repetición.

Tipo de llamada Get

Nombre de la llamada /api/getCarta

Parámetros

task_id Los dos primeros dígitos son el año en el que
se creó el pago y luego el identificador del
pago por año y usuario.

Descripción

Llamada que devuelve una carta de pago en PDF que contendrá los datos del usuario y los
datos del pago que se desea realizar junto un código de barras y un código QR, para así,
poder ir al banco a realizar el pago.

Respuesta

(PDF) PDF que contendrá los datos del usuario y los
datos del pago que se desea realizar junto un
código de barras y un código QR, para así,
poder ir al banco a realizar el pago.

21

Tipo de llamada Post

Nombre de la llamada /api/payPaypal

Parámetros

task_id Los dos primeros dígitos son el año en el que
se creó el pago y luego el identificador del
pago por año y usuario.

Descripción

Esta llamada devuelve un link en el que se podrá realizar un pago mediante la plataforma
Paypal.

Respuesta

Correcto

code Será el número 0.

link Link para realizar el pago en Paypal.

Error de Paypal

code Será el número 1.

error Descripción del error de Paypal.

Error del usuario

code Será el número 2.

error El pago no existe o ya se ha realizado.

Tipo de llamada Update

Nombre de la llamada /api/paypalGood

Parámetros

payment_id Identificador del pago en Paypal.

PayerID Identificador del pagador en Paypal.

Descripción

Llamada en la que se comprueba que el pago se ha realizado correctamente sin sufrir ninguna
modificación, se ejecuta el pago en paypal y se actualiza el estado del pago a pagado en la
base de datos del sistema.

Respuesta

Correcto

code Será el número 0.

description El pago se ha realizado correctamente.

22

task Los dos primeros dígitos son el año en el que
se creó el pago y luego el identificador del
pago por año y usuario.

Error de la base de datos

code Será el número 1.

description No se ha completado el pago.

Error del pago

code Será el número 2.

error El pago no existe o ya se ha realizado.

Tipo de llamada Get

Nombre de la llamada /api/tpvData

Parámetros

task_id Los dos primeros dígitos son el año en el que
se creó el pago y luego el identificador del
pago por año y usuario.

Descripción

Llamada que devuelve los datos necesarios para poder realizar el pago mediante el TPV.

Respuesta

Correcto

code Será el número 0.

path Link para realizar el pago en el TPV de Ceca.

config MerchantID

AcquirerBIN

TerminalID

TipoMoneda

Exponente

Cifrado

Pago_soportado

Idioma

Num_operacion

Importe

URL_OK

URL_NOK

Descripcion

Firma

Error

23

code Será el número 1.

error El pago no existe o ya se ha realizado.

Tipo de llamada Update

Nombre de la llamada /api/tpvGood

Parámetros

Num_operacion Los dos primeros dígitos son el año en el que
se creó el pago y luego el identificador del
pago por año y usuario.

Importe Total del importe del pago multiplicado por
100.

Referencia

Num_aut

BIN

FinalPAN

Descripción

Llamada en la que se comprueba que el pago se ha realizado correctamente sin sufrir ninguna
modificación se actualiza el estado del pago a pagado en la base de datos del sistema y se
devuelve la confirmación al TPV para realizar la ejecución del pago.

Respuesta

Correcto

(cadena) $*$OKY$*$

Error del sistema

code Será el número 1.

description No se ha completado el pago.

Error del usuario

code Será el número 2.

description El pago no existe o ya se ha realizado.

24

Tipo de llamada Update

Nombre de la llamada /api/cancelTask

Parámetros

task Los dos primeros dígitos son el año en el que
se creó el pago y luego el identificador del
pago por año y usuario.

Descripción

Llamada para cancelar el pago de un usuario.

Respuesta

Correcto

code Será el número 0.

message Pago cancelado.

Error

code Será el número 1.

description El pago no existe o ya se ha realizado.

Tipo de llamada Get

Nombre de la llamada /api/isPay

Parámetros

task_id Los dos primeros dígitos son el año en el que
se creó el pago y luego el identificador del
pago por año y usuario.

Descripción

Llamada que se realiza para comprobar si un pago se ha realizado correctamente.

Respuesta

Correcto

code Será el número 0.

task Identificador del pago.

Error

code Será el número 1.

description El pago no se ha realizado correctamente.

25

Tipo de llamada Get

Nombre de la llamada /api/getDescuento

Parámetros

tasa_id Identificador de la tasa de la que se quiere
conocer el descuento.

Descripción

Llamada que se realiza para ver los descuentos que tiene una tasa.

Respuesta

Correcto

code Será el número 0.

Descuentos (array) descuento_id Identificador del
descuento.

name Nombre del
descuento.

porcentaje Porcentaje que se
descuenta del precio
de la tasa.

tasa Identificador de la
tasa.

Error

code Será el número 1.

description Es necesario insertar todos los parámetros.

26

Llamadas al modulo de administración:

Tipo de llamada Get

Nombre de la llamada /api/getAdminDepartments

Descripción

Llamada que devuelve los departamentos que un usuario tiene acceso al módulo de
administración y los roles que tiene en dicho departamento.

Respuesta

Correcto

department (array) name Nombre del
departamento del que
el usuario es
administrador.

department_id Identificador del
departamento del que
el usuario es
administrador.

rol Rol en cadena (ej.
111101011) con el
primer dígito de
control que tiene el
usuario en el
departamento.

Roles (array) Rol en array (ej.
[1,1,1,1,0,1,0,1,1])
con el primer dígito de
control que tiene el
usuario en el
departamento.

rol (array) Rol en array (ej. [1,1,1,0,1,0,1,1]) que tiene el
usuario.

27

Tipo de llamada Get

Nombre de la llamada /api/getAdminTasks

Parámetros

department Identificador del departamento.

order Cadena que indica campo de ordenacion +
ASC/DESC (ASC indica orden ascendente y
DESC indica orden descendente).

filtro Cadena en donde se busca en el nombre,
descripción o usuario de la tasa si existe
alguna coincidencia.

Descripción

Llamada que devuelve todos los pagos realizados en un departamento, con la posibilidad de
ordenar por un campo en específico y de filtrar por nombre. La llamada solo se podrá realizar
si el usuario es administrador de ese departamento y tiene el rol correspondiente.

Respuesta

Correcto

(array) referencia Identificador del pago.

task_id Identificador del pago
por usuario y año.

user Usuario al que
pertenece el pago.

year_task Año en el que se ha
creado el pago (2
dígitos).

tasa Identificador de la
tasa.

prize Precio que tiene la
tasa.

create_date Fecha en la que se ha
creado el pago

state Estado actual del
pago.

payment Forma de pago que se
ha realizado.

pay_date Fecha en la que se ha
realizado el pago.

expire_date Fecha en la que
caduca la tarea.

28

discount Descuento que se
aplica al pago.

a_academico Valor del atributo del
año académico

a_contable Valor del atributo del
año contable.

convocatoria Valor del atributo de la
convocatoria.

experimentalidad Valor del atributo de la
experimentalidad.

repeticion Valor del atributo de
repetición.

estado Estado del pago:
Pagado, Cancelado,
Caducado, Sin pagar.

Tipo de llamada Get

Nombre de la llamada /api/getAdminTasas

Parámetros

department Identificador del departamento.

Descripción

Devuelve todas las tasas con todos los datos de un departamento. La llamada solo se podrá
realizar si el usuario es administrador de ese departamento y tiene el rol correspondiente.

Respuesta

Correcto

(array) tasa_id Identificador de la
tasa.

name Nombre del
departamento de la
universidad.

department Departamento al que
pertenece la tasa.

description Descripción de la tasa.

expire Número de días en los
que caduca la tasa
una vez se cree el

29

pago.

prize Precio de la tasa.

a_academico identificador de un
atributo que
representa al año
académico

a_contable identificador de un
atributo que
representa al año
contable.

convocatoria identificador de un
atributo que
representa a la
convocatoria.

experimentalidad identificador de un
atributo que
representa a la
experimentalidad.

repeticion Identificador de un
atributo que
representa a la
repetición.

Tipo de llamada Post

Nombre de la llamada /api/createTasa

Parámetros

name Nombre del departamento de la universidad.

department Departamento al que pertenece la tasa.

description Descripción de la tasa.

expire Número de días en los que caduca la tasa una
vez se cree el pago.

prize Precio que tiene la tasa.

options atributo Nombre del atributo.

tipo Tipo del atributo:
Único, Selección o
Variable.

value(tipo es único) Valor fijo del atributo.

value(tipo es Posible valor del

30

selección) (array) atributo.

Descripción

Llamada que crea una tasa de un departamento indicando todos sus datos y atributos si los
tiene. La llamada solo se podrá realizar si el usuario es administrador de ese departamento y
tiene el rol correspondiente.

Respuesta

Correcto

code Será el número 0.

message Tasa creada correctamente.

tasa Identificador de la tasa creada.

Error

code Será el número 1.

message Mensaje del error

Tipo de llamada Get

Nombre de la llamada /api/showAtrib

Parámetros

tasa_id Identificador de la tasa

Descripción

Muestra todos los atributos que tiene una tasa y sus características. La llamada solo se podrá
realizar si el usuario es administrador de ese departamento y tiene el rol correspondiente.

Respuesta

Correcto

code Será el número 0.

fijos prize Precio de la tasa.

description Descripción de la tasa.

expire Días de caducidad de
la tasa desde su
creación.

atributos opt Nombre del atributo.

valor value 0,1 ó 2

31

dependien
do si es
variable,
único o de
selección.

desc Tipo de
atributo:
Variable,
Único o
Selección

value Valor del atributo en
caso de ser fijo

selections (array) num Número
del posible
valor de la
selección

sel Posible
valor de la
selección.

num Número de atributo de
la tasa.

numSel Número total de
posibles valores en
caso de Selección.

Error de parámetros

code Será el número 1.

message Es necesario insertar todos los parámetros
obligatorios.

Error de permisos

code Será el número 2.

message No tiene permisos para realizar esta acción.

Tipo de llamada Update

Nombre de la llamada /api/updateTasa

Parámetros

id Identificador de la tasa.

atributos (array) opt Tipo de atributo.

valor desc Tipo de
valor:

32

Único,
Selección,
Variable.

value (valor Único) Valor en caso de que
el atributo sea fijo

selections (valor
Selección)

sel Posible
valor de la
selección.

updates (array) opt Tipo de atributo.

valor 0,1 ó 2 dependiendo si
es variable, único o de
selección.

value (valor Único) Valor en caso de que
el atributo sea fijo

selections (valor
Selección)

sel Posible
valor de la
selección.

Descripción

Actualiza los datos de un tasa, pudiendo modificar los atributos y añadir nuevos. La llamada
solo se podrá realizar si el usuario es administrador de ese departamento y tiene el rol
correspondiente.

Respuesta

Correcto

(cadena) Modificado -tasa_id-

Error

code Será el número 1.

message Mensaje del error

33

Tipo de llamada Post

Nombre de la llamada /api/createDescuento

Parámetros

discount (array) name Nombre del
descuento.

porcentaje Porcentaje de
descuento.

department Identificador del departamento de la tasa.

tasa Identificador de la tasa.

Descripción

Crear un descuento para una tasa en particular, indicando el nombre y el porcentaje de
descuento. La llamada solo se podrá realizar si el usuario es administrador de ese
departamento y tiene el rol correspondiente.

Respuesta

Correcto

code Será el número 0.

message Descuento creado correctamente.

Error

code Será el número 1.

message Mensaje del error

Tipo de llamada Update

Nombre de la llamada /api/updateDescuento

Parámetros

updateDiscount (array) descuento_id Identificador del
descuento.

porcentaje Nuevo porcentaje de
descuento.

Descripción

Modifica el porcentaje de un descuento en una tasa. La llamada solo se podrá realizar si el
usuario es administrador de ese departamento y tiene el rol correspondiente.

Respuesta

Correcto

34

code Será el número 0.

message Actualización con éxito.

Error

code Será el número 1.

message No ha actualizado ningún descuento.

Tipo de llamada Delete

Nombre de la llamada /api/deleteDescuento

Parámetros

deleteDiscount (array) descuento_id Identificador del
descuento.

Descripción

Elimina los descuentos que se le pasen por parámetro.

Respuesta

Correcto

code Será el número 0.

message Descuentos borrados correctamente

Error

code Será el número 1.

message No ha borrado ningún descuento.

Tipo de llamada Get

Nombre de la llamada /api/getColumns

Parámetros

nip NIP del usuario en la Universidad.

Descripción

Dado un NIP, devuelve el nombre y apellidos de un usuario. La llamada solo se podrá realizar
si el usuario es administrador y tiene el rol correspondiente.

Respuesta

Existe el usuario

code Será el número 1.

35

name Nombre del usuario.

surname Apellidos del usuario.

No existe el usuario

code Será el número 0.

Tipo de llamada Post

Nombre de la llamada /api/createAdminTask

Parámetros

user NIP del usuario en la Universidad.

tasa Identificador de la tasa.

paid 0 si el usuario lo pagará en su sistema y 1 si el
usuario lo paga al contado.

Descripción

Crea un pago para un usuario. Se puede indicar si el pago es al contado o no. La llamada solo
se podrá realizar si el usuario es administrador del departamento de la tasa en la que crea el
pago y tiene el rol correspondiente.

Respuesta

Existe el usuario

code Será el número 0.

message Mensaje de operación correcta.

Error

code Será el número 1.

message Mensaje de error.

36

Tipo de llamada Update

Nombre de la llamada /api/payWithLetter

Parámetros

tasks user NIP del usuario en la
Universidad.

task_id Identificador de la
tasa.

date Fecha en la que se ha
realizado el pago.

Descripción

Llamada que se utiliza para actualizar los pagos que se han realizado por carta de pago en el
banco. La llamada solo se podrá realizar si el usuario es administrador de ese departamento y
tiene el rol correspondiente.

Respuesta

Todo realizado correctamente

code Será el número 0.

message Se han actualizado todos los pagos.

errors Será un array vacío.

Error

code Será el número 1.

message Mensaje de error.

errors (array) task_id Pago que ha tenido el
error.

user Usuario que ha tenido
el error.

message Mensaje de error.

Faltan datos

code Será el número 2.

message Inserte todos los datos.

37

Anexo 5 - Carta de Pago
Para la creación de las cartas de pago, hay que tener en cuenta tres aspectos importantes para
su implementación: código de barras, código QR y generar un archivo PDF a través de un texto
en HTML.

Código de barras

Para poder realizar la generación del código de barras, hay que seguir los siguientes pasos:

- Instalar la librería Php Barcode Generator con el comando composer require picqer\php-
barcode-generator.

- En el archivo PHP en el que se vaya a generar el código (será user.php), indicar que se va a
utilizar dicha librería con el comando use \Picqer\Barcode.

- Por último, para la generación del código, se realiza la llamada getBarcode(parametros).

Código de QR

Para poder realizar la generación del código QR, hay que seguir los siguientes pasos:

- Descargar la librería PHP QR Code.

- Dejar la carpeta descargada en la carpeta donde permanecen los archivos PHP donde están
las llamadas al API REST (app/app/route).

- En el archivo PHP en el que se vaya a generar el código (será user.php), se importa el archivo
qrlib.php, que está en la carpeta que se ha descargado.

- Por último, para la generación del código, se realiza la llamada Qrcode::image(parametros).

Generación de archivo PDF

Para poder generar el archivo PDF, hay que seguir los siguientes pasos:

- Descargar la librería Dompdf.

- Dejar la carpeta descargada en la carpeta donde permanecen los archivos PHP donde están
las llamadas al API REST (app/app/route).

- En el archivo PHP en el que se vaya a generar el código (será user.php), se importa el archivo
autoload.inc.php, que está en la carpeta que se ha descargado.

- A continuación, se debe de escribir el PDF que queremos generar en formato HTML.

- Por último, se llama a la función loadHtml(html), para carga el HTML que se ha escrito, y la
función render(), para generar el PDF.

38

Anexo 6 – Instalación de las pasarelas de pago

Instalación del TPV de CECA
Para la instalación del TPV de CECA en el sistema, se van a seguir los siguientes pasos:

- Lo primero será tener una cuenta en CECA. Como la Administración Electrónica de la
Universidad de Zaragoza ya tiene una, se va a utilizar esa cuenta.

- A continuación se accederá a la consola del TPV en la página
https://comercios.ceca.es/pruebas. El desarrollo se va a hacer en el entorno de pruebas. Se
accederá a la configuración y se establecera la URL de confirmación del pago a
https://nuez.unizar.es/~pipuz/app.php/api/tpvGood, que será la dirección en la que se confirma
el pago en el API REST. También se indicará que se requerirá la respuesta OK.

- Para hacer funcionar el TPV en el sistema, será necesario tener la librería del TPV de CECA
que se instalará con el comando composer require ceca/tpv.

- A continuación, habrá que modificar el fichero de configuración config.php. Este fichero estará
en la ruta /vendor/ceca/tpv. El fichero tiene un array con los siguientes elementos:
Environment, MerchantID, AcquireBIN, TerminalID, ClaveCifrado, TipoMoneda, Exponente,
Cifrado, Idioma y Pago_Soportado.

- La manera que tendrá el usuario al TPV, será a través de un formulario HTML. Cuando el
usuario quiera pagar por TPV, se generará una llamada GET al API REST con la ruta
/api/tpvData que dará como resultado un el formulario HTML.

- Una vez dados los datos al TPV de CECA, este enviará una llamada al API REST a la ruta
api/tpvGood, en donde se comprobará que el pago es correcto y se devolverá al TPV una
confirmación con la cadena $*$OKY$*$.

Instalación del TPV de Paypal

Para la instalacion de Paypal en el sistema se van a seguir los siguientes pasos:

- Lo primero será tener una cuenta personal en Paypal. Una vez creada la cuenta, se deberá de
acceder a Sandbox, y que se va a realizar el desarrollo en un entorno de prueba, y crear una
cuenta personal y una cuenta business.

- Una vez creada la cuenta business, se deberá de crear una aplicación, indicando el nombre de
la aplicación y la cuenta business. Una vez creada, se habrán creado dos claves: Client ID y
Secret. Habrá que guardarlas para utilizarlas posteriormente.

- A continuación, habrá que instalar la librería de Paypal en PHP en nuestro API REST con el
comando composer require paypal/rest-api-sdk-php:*.

- Una vez realizados todos los pasos anteriores, ya se pueden implementar los pagos con
Paypal en el API REST. Para poder acceder a la aplicación creada, habrá que utilizar la clase
ApiContext de la librería de Paypal. Para acceder, será necesario utilizar las dos claves
generadas anteriormente. Para crear el pago, habrá que indicar el método de pago (paypal), el
total de la transacción, la moneda (euro), y una descripción, que en la aplicación será el
identificador de la tasa por pagar, el nombre de la tasa y el identificador del pago en el

39

https://comercios.ceca.es/pruebas
https://nuez.unizar.es/~pipuz/app.php/api/tpvGood

sistema. A continuación, se indicará la direccióne a la que hay que redirigir al usuario en caso
de haber efectuado el pago correcto (que será https://nuez.unizar.es/~pipuz/paypalGood) y el
pago incorrecto (que será https://nuez.unizar.es/~pipuz/paypalBad). Por último, se devolverá al
usuario el link de Paypal para efectuar el pago.

- Una vez efectuado el pago por parte del usuario en la página de Paypal, hará falta una
confirmación desde el sistema. Para ello se volverá a acceder a la aplicación como se ha hecho
anteriormente, se validará que el pago que se ha hecho es correcto, y se dará una
confirmación a Paypal de la ejecución del pago.

40

https://nuez.unizar.es/~pipuz/paypalBad
https://nuez.unizar.es/~pipuz/paypalGood

Anexo 7 - AngularJS
Para la interacción del API REST con la interfaz web, se va a utilizar el framework de JavaScript,
AngularJS.

El API de AngularJS se basará en crear un módulo maestro y diferentes controladores para los
diferentes módulos de la aplicación web. Los diferentes controladores son: AdminController,
HomeController, LoginController y TaskController.

En primer lugar, se va a crear el módulo maestro llamado master. En el módulo se van a
configurar a que html se accederá según la ruta a la que se dirija el usuario, se va a permitir
html5 y se va a configurar un interceptor, que meta siempre el token de autorización en la
cabecera de las llamadas HTTP. Por último, se crearan unas funciones que serán accesibles
desde cualquier sitio que pertenezca al módulo maestro, que son:

- closeSesion: Borra el token de autorización y redirige al usuario a la pantalla principal.

- searchTasa: Realiza una llamada HTTP al API REST a la ruta /api/searchTasa/ para que busque
una tasa cuyo nombre contenga la cadena que se le pasa por parametro.

- createTaskClicked: Asigna a una variable la tasa que se le pasa por parametro y redirige a la
pantalla de crear una tasa.

- getUser: Realiza una llamada HTTP al API REST a la ruta /api/getUser para que busque al
usuario propietario del token de autorización y mostrar su nombre y apellidos.

A continuación se van a explicar los diferentes controladores que se han nombrado
anteriormente.

En primer lugar está el controlador AdminController, que es el encargado de realizar las
funciones para los usuarios administradores. Las diferentes funciones de este controlador son:

- loadAdminDepartments: Realiza una llamada HTTP al API REST a la ruta
/api/getAdminDepartments para conocer los departamentos de los que el usuario es
administrador. También se comprueba los roles que tiene el usuario y finalmente se realiza una
llamada HTTP al API REST a la ruta /api/getAdminTasks pasándole como parámetro el primer
departamento devuelto para conocer los pagos de dicho departamento.

- loadAdminTasks: Realiza una llamada HTTP al API REST a la ruta /api/getAdminTasks
pasándole como parámetro un departamento para que devuelvo los pagos de ese
departamento.

- changeDepartment: Cambia el departamento para el rol Crear Tasa.

- changeDepartment2: Cambia el departamento para el rol Actualizar Tasa.

- order: Realiza una llamada HTTP al API REST a la ruta /api/getAdminTasks indicandole el orden
en el que quieres que se muestren los diferentes pagos de un departamento.

- filtro: Realiza una llamada HTTP al API REST a la ruta /api/getAdminTasks indicandole una
cadena que quieres que aparezca en el usuario del pago, descripción o nombre de la tasa del
pago de un departamento.

- changeValue: Cambia la pestaña que aparece en el módulo de administración. En caso de que
la pestaña sea Actualizar Tasa, Generar recibo, Pagar al contado o Descuento, realiza una

41

llamada HTTP al API REST a la ruta /api/getAdminTasks pasándole como parámetro un
departamento para que devuelva los pagos de ese departamento. En caso de que sea Crear
Tasa, realiza una llamada HTTP al API REST a la ruta /api/getColumns para cargar el nombre de
los atributos que tienen las tasas.

- loadAdminTasasRec: Cambia el departamento para el rol Generar Recibo y realiza una
llamada HTTP al API REST a la ruta /api/getAdminTasks pasándole como parámetro el
departamento que se ha elegido en la pestaña Generar Recibo.

- loadAdminTasas: Cambia el departamento para el rol Pagar al contado y realiza una llamada
HTTP al API REST a la ruta /api/getAdminTasks pasándole como parámetro el departamento que
se ha elegido en la pestaña Pagar al contado.

- newTasa: Realiza una llamada HTTP al API REST a la ruta /api/createTasa pasándole como
parámetros los campos necesarios de una tasa: nombre, descripción, precio, caducidad,
departamento y los diferentes atributos que pueda tener.

- updateTasa: Realiza una llamada HTTP al API REST a la ruta /api/updateTasa pasándole como
parámetros los cambios realizados sobre los atributos, los nuevos atributos de la tasa, los
campos que cambian de la tasa y el identificador de la tasa.

- newTask: Realiza una llamada HTTP al API REST a la ruta /api/createAdminTask para crear un
pago, indicando el usuario del pago, el identificador de la tasa y que el estado del pago sea sin
pagar, para así generar el recibo.

- newPay: Realiza una llamada HTTP al API REST a la ruta /api/createAdminTask para crear un
pago, indicando el usuario del pago, el identificador de la tasa y que el estado del pago sea
pagado, ya que se realiza el pago al contado.

- addOption: Añade un nuevo registro en un array para los atributos en la creación de una tasa.
Los parametros del array serán: nombre del atributo (opt), de que tipo es el valor del atributo
(si es fijo, variable o de selección) (valor), valor del atributo en caso de ser fijo (value), array
con los posibles valores en caso de ser un atributo de selección (selections), posición del
registro en el array (num) y el número de posibles valores que tiene en caso de ser un atributo
de selección (numSel). Este registro estará vacío pero se indicará su posición en el array.

- deleteOption: Elimina un registro del array de atributos para la creación de una tasa indicando
la posición del registro en el array.

- addSelection: Añade un nuevo registro al parámetro selections del array de atributos para la
creación de una tasa indicando el número de su posición. El parámetro selections es un array
con los siguientes parámetros: posición del registro en el array selections (num) y posible valor
(sel). La posición se coge del parámetro del array de atributos numSel.

- deleteSelection: Elimina un registro del parámetro selections del array de atributos para la
creación de una tasa, indicando la posición registro en el array y en el parametro selections.

- addUpdateOp: Añade un nuevo registro en un array para los atributos en la actualización de
una tasa. Los parametros del array serán: nombre del atributo (opt), de que tipo es el valor del
atributo (si es fijo, variable o de selección) (valor), valor del atributo en caso de ser fijo (value),
array con los posibles valores en caso de ser un atributo de selección (selections), posición del
registro en el array (num) y el número de posibles valores que tiene en caso de ser un atributo
de selección (numSel). Este registro estará vacío pero se indicará su posición en el array.

- deleteUpdateOp: Elimina un registro del array de atributos para la actualización de una tasa
indicando la posición del registro en el array.

42

-deleteAtrib: Elimina un registro del array de atributos ya existentes en la actualización de una
tasa indicando la posición del registro en el array.

- addUpdateSel: Añade un nuevo registro al parámetro selections del array de atributos para la
actualización de una tasa indicando el número de su posición. El parámetro selections es un
array con los siguientes parámetros: posición del registro en el array selections (num) y posible
valor (sel). La posición se coge del parámetro del array de atributos numSel.

- addAtribSel: Añade un nuevo registro al parámetro selections del array de atributos ya
existentes en la actualización de una tasa indicando el número de su posición. El parámetro
selections es un array con los siguientes parámetros: posición del registro en el array
selections (num) y posible valor (sel). La posición se coge del parámetro del array de atributos
numSel.

- deleteUpdateSel: Elimina un registro del parámetro selections del array de atributos para la
actualización de una tasa, indicando la posición registro en el array y en el parametro
selections.

- deleteAtribSel: Elimina un registro del parámetro selections del array de atributos ya
existentes en la actualización de una tasa, indicando la posición registro en el array y en el
parametro selections.

- getUser: Realiza una llamada HTTP al API REST a la ruta /api/getuUser pasándole como
parámetro el DNI de un usuario y muestra el nombre y apellidos de dicho usuario.

- addPay: Añade un nuevo registro en un array para los pagos que se han realizado con carta
de pagos en el banco. Los parametros del array serán: identificador del pago (task_id),
departamento de la tasa (department), DNI del usuario que ha realizado el pago (user), fecha
en la que se realizó el pago (date) y posición del registro en el array (num). Este registro estará
vacío pero se indicará su posición en el array.

- deletePay: Elimina un registro del array para los pagos que se han realizado con carta de
pagos en el banco, indicando la posición registro en el array.

- payDepartment: Cambia el departamento para el rol Actualizar Carta de Pago.

- updatePays: Realiza una llamada HTTP al API REST a la ruta /api/payWithLetter, pasando como
parámetro el array utilizado en las funciones addPay y deletePay, y actualiza a pagados los
pagos de ese array.

- showAtrib: Realiza una llamada HTTP al API REST a la ruta /api/showAtrib, pasando como
parámetro el identificador de la tasa que se va a actualizar, devolviendo los valores de la tasa y
sus atributos. A continuación, realiza una llamada HTTP al API REST a la ruta /api/getColumns
para cargar el nombre de los atributos que tienen las tasas.

- addDiscount: Añade un nuevo registro en un array para la creación de descuentos. Los
parametros del array serán: nombre (name), porcentaje (porcentaje) y posición del registro en
el array (num). Este registro estará vacío pero se indicará su posición en el array.

- deleteAddDiscount: Elimina un registro del array para la creación de descuentos, indicando la
posición registro en el array.

- createDiscount: Realiza una llamada HTTP al API REST a la ruta /api/createDescuento,
pasando como parámetro el array utilizado en las funciones addDiscount y deleteDiscount, el
departamento de los pagos y el identificador de la tasa, para que se cree en dicha tasa los
descuentos indicados.

43

- descuento: Cambia el valor de la acción que se realizará sobre descuento: 0 será crear, 1
actualizar y 2 borrar.

- desc: Realiza una llamada HTTP al API REST a la ruta /api/getDescuento, pasando como
parámetro una tasa, y devuelve los descuentos que tiene dicha tasa.

- newUpDesc: Añade a un array para la actualización de los descuentos, el nuevo porcentaje
del descuento, indicando el identificador del descuento en el indice del array.

- updateDiscount: Realiza una llamada HTTP al API REST a la ruta /api/createDescuento,
pasando como parámetro el array utilizado en la funciones newUpDesc, para que se modifique
el porcentaje de los descuentos.

- addDeleteDiscount: Indica en el registro que pertenece al descuento que se le pasa como
parámetro en un array de los descuentos de una tasa, que a de ser borrado.

- deleteDiscount: Realiza una llamada HTTP al API REST a la ruta /api/deleteDescuento,
pasando como parámetro el array utilizado en la funcion addDeleteDiscount, para que se
eliminen los descuentos indicados.

También está el controlador HomeController, que es el encargado de realizar las funciones para
la página principal. Las diferentes funciones de este controlador son:

- goToLogin: Redirige a la página de inicio de sesión.

- loadNum: Realiza una llamada HTTP al API REST a la ruta /api/numTasas, para devolver el
número de tasas que tiene el sistema.

- loadedAllTasks: Realiza una llamada HTTP al API REST a la ruta /api/bestTasks, para devolver
las cuatro tasas más utilizadas del sistema.

- loadTasas: Realiza una llamada HTTP al API REST a la ruta /api/allTasas, pasándole por
parámetro “null” para indicar que no se quiere un departamento específico, y un número que
indicará la página que se quiere mostrar, siendo cada página de 7 tasas. Es decir, 1 mostrará
las tasas de la 1 a la 7, 2 de la 8 a la 14 y así sucesivamente.

Otro controlador es LoginController, que es el encargado de realizar las funciones para el inicio
de sesión. Las diferentes funciones de este controlador son:

- loginClicked: Realiza una llamada HTTP al API REST a la ruta /api/loginUser, pasándole como
parámetros el NIP de la universidad y la contraseña administrativa, para iniciar sesión en el
sistema. En caso de estar en el sistema, el token devuelto por el API REST se guarda en una
variable local, para pasarla por la cabecera en todas las futuras llamadas y redirige a la
pantalla principal. En caso de pertenecer a la universidad pero no estar registrado en este
sistema, redirige a la página de registro, indicando automáticamente el NIP, nombre, apellidos
y NIF del usuario. En caso contrario, devuelve un mensaje de error.

- signupClicked: Realiza una llamada HTTP al API REST a la ruta /api/newUser, pasándole como
parámetros el NIF, el NIP de la universidad, nombre, apellidos, correo electrónico y la
contraseña administrativa, para registrarse en el sistema. En caso de estar el usuario
registrado en la universidad, el usuario se registrará en el sistema y el token devuelto por el
API REST se guarda en una variable local, para pasarla por la cabecera en todas las futuras
llamadas y redirige a la pantalla principal. En caso contrario, se devolverá un mensaje de error.

44

Por último, esta el controlador TaskController, que será el encargado de realizar las funciones
correspondientes a los pagos de los usuarios. Las diferentes funciones de este controlador son:

- goMyTasks: Redirige a la página donde se muestran los pagos del usuario.

- loadDepartments: Realiza una llamada HTTP al API REST a la ruta /api/allDepartments,
pasándole como parámetro “null” para indicar que devuelva todos los departamentos y no uno
específico.

- loadTasas: Realiza una llamada HTTP al API REST a la ruta /api/allTasas, pasándole como
parámetro null para indicar que no se quiere un departamento específico y “null” para que
devuelva todos las tasas.

- loadTasa: Realiza una llamada HTTP al API REST a la ruta /api/getTasa, para que devuelva la
tasa que se le especifica al pasar por parámetro su identificador.

- selectTasa: Selecciona un tasa para ser creada.

- loadPayments: Realiza una llamada HTTP al API REST a la ruta /api/allPayments, para que
devuelva las formas de pago que tiene el sistema.

- buscaTasa: Realiza una llamada como en loadTasas, pero existe la posibilildad de pasarle por
parámetro un departamento específico.

- addVariable: Función para añadir un registro a un array para los atributos. Cada registro tiene
los siguientes parámetros: nombre del atributo (atributo), el tipo que será “variable”, y el valor
del atributo (valor). En primer lugar, se comprobará que el atributo no esté ya en el array. Si
está el valor se modificará y si no está se añadirá un registro nuevo.

- addSelection: Función para añadir un registro a un array para los atributos. Cada registro
tiene los siguientes parámetros: nombre del atributo (atributo), el tipo que será “seleccion”, y
el valor del atributo (valor). En primer lugar, se comprobará que el atributo no esté ya en el
array. Si está el valor se modificará y si no está se añadirá un registro nuevo.

- createTaskClicked: Realiza una llamada HTTP al API REST a la ruta /api/createTask pasándole
como parámetro el identificador de una tasa y el array utilizado en addVariable y addSelection,
para crear el pago de la tasa y redirigir a la página de pago.

- loadNewTask: Realiza una llamada HTTP al API REST a la ruta /api/task para devolver el pago
que se le especifica al pasar por parámetro su identificador.

- loadedMyTasks: Realiza una llamada HTTP al API REST a la ruta /api/history indicando “null” o
un número del 0 al 3, para que muestre, o todos los pagos de un usuario, o los pagos de un
usuario con el estado al que pertence el número que se le pasa (mirar el atributo state de
pipuz_task en el Modelo)

- payClicked: Redirige a la página del pago que se le pasa por parámetro.

-getCartaPago: Realiza una llamada HTTP al API REST a la ruta /api/GetCarta para devolver el
pdf de la carta de pago para el pago que se le especifica al pasar por parámetro su
identificador.

- payPaypal: Realiza una llamada HTTP al API REST a la ruta /api/payPaypal para redirigir al link
en Paypal del pago que se le especifica al pasar por parámetro su identificador.

45

- paypalGood: Realiza una llamada HTTP al API REST a la ruta /api/paypalGood para verificar
que el pago que se ha realizado en Paypal ha sido correcto y actualizar la base de datos
poniendo el pago como pagado.

- paypalBad: Realiza una llamada HTTP al API REST a la ruta /api/paypalBad que devuelve un
mensaje indicando que ha fallado el pago en Paypal.

- loadTPV: Realiza una llamada HTTP al API REST a la ruta /api/tpvData para devolver un
formulario de tipo hidden, que tendrá toda la configuración necesaria para que el navegador se
redirija al TPV de Ceca.

- tpvGood: Realiza una llamada HTTP al API REST a la ruta /api/isPay para verificar que el pago
que se ha realizado en TPV ha sido correcto y actualizar la base de datos poniendo el pago
como pagado.

- cancelTask: Realiza una llamada HTTP al API REST a la ruta /api/cancelTask para actualizar el
estado a cancelado del pago que se le especifica al pasar por parámetro su identificador.

46

Anexo 8 - Diagrama Gantt

47

Requisito Tarea Septiembre Octubre Noviembre Diciembre Enero Febrero Marzo
6-12 13-19 20-26 27-3 4-11 16-24 25-30 2-7 8-14 15-21 22-28 29-5 7-19 20-2 3-9 10-16 17-23 24-30 7-13 14-19 20-26 27-3

Creación de API REST
Instalación de composer.
Instalación de SLIM.
Creación de carpetas del proyecto.
Prueba de “Hello World”.

Creación de Base de datos
Tabla de usuario de prueba.
Creación de modelo de prueba con PDO.
Prueba de llamada desde API REST.

Crear módulo.

Usuarios
Crear tabla en base de datos de usuario.

Crear controlador Angular de login.

Instalar librería Firebase para crear token.

Ver tasas

Creación de tasas de prueba.

Crear peticiones para ver tasas

Creación del módulo principal
De AngularJS

Crear llamada de prueba desde
AngularJS al controlador.
Crear HTML con llamada de prueba a
AngularJS

Crear modelo de usuario con métodos de
creación de usuario.
Crear petición en API REST para
crear usuario.
Crear interfaz web para la creación de
usuario.

Crear método en controlador Angular para
la interacción entre la interfaz y el API
REST.
Crear método de seleccionar usuario en
modelo de usuario.
Crear peticion en API REST para
logueo
Crear interfaz web para la logueo de
usuario.
Crear metodo en controlador Angular para
la interacción entre la interfaz y el API
REST.

Añadir a peticion de logueo la
creación de token.
Añadir a metodo del controlador de
Angular de logueo que recoja el token y
lo almacene en localStorage
Añadir a modulo principal angular un
interceptor que recoja el token de
localStorage y lo meta en la cabecera
HTTP.
Creación de middleware que desencripte
el token en el API REST.

Creación de la tabla tasas en la base de
Datos.

Crear modelo de tasas con métodos de
seleccionar tasas.

Crear interfaces web para ver tasas: ver
todas las tasas (página principal) o
Selección de tasas por departamento
Crear método en controlador Angular para
la interacción entre la interfaz y el API
REST

48

Requisito Tarea Septiembre Octubre Noviembre Diciembre Enero Febrero Marzo
6-12 13-19 20-26 27-3 4-11 16-24 25-30 2-7 8-14 15-21 22-28 29-5 7-19 20-2 3-9 10-16 17-23 24-30 7-13 14-19 20-26 27-3

Crear pagos
Creación de tabla task en base de datos.

Pagar tasas
Configurar consola del TPV de CECA
Instalar librería del TPV de CECA

Crear cuenta y configuración en Paypal
Instalar librería de Paypal

Administración

Crear modelo de administración.

Seguridad

Pruebas

Crear modelo de task con método para
controlar pagos.
Crear petición en API REST para
crear los pagos que sólo la podrán
ejecutar los usuarios registrados.
Crear petición en API REST para
mostrar los pagos del usuario.
Crear método en controlador Angular para
la interacción entre la interfaz y el API
REST
Modificar las interfaces que mostraban
tasas para poder crear pagos.
Crear interfaces web para mostrar los
pagos de un usuario (todos los pagos o
uno en concreto)

Crear peticiones en API REST para
gestionar el TPV

Crear peticiones en API REST para
gestionar los pagos con Paypal
Crear petición en API REST para la
descarga de pdf de carta de pago
Modificar interfaz de pago para aplicar
Los pagos con TPV, Paypal y Carta de
pagos.
Crear método en controlador Angular para
la interacción entre la interfaz y el API
REST

Crear tabla en base de datos de
administración.

Crear petición en API REST para mostrar
todos los pagos de un departamento
Crear petición en API REST para la
creación de tasas
Crear petición en API REST para la
actualización de tasas.
Crear petición en API REST para la
creación de usuarios.
Crear petición en API REST para la
creación de pagos a usuarios.
Crear petición en API REST para la
actualización del estado de los pagos.
Crear peticiones en API REST para la
creación, actualización y borrado de
descuentos.

Configurar servidor para utilizar protocolo
HTTPS con TLS.

Anexo 9 - Pruebas

Pruebas del API REST

Las pruebas del API REST se han realizado con la herramienta Postman, indicando los datos a
probar en un archivo CSV.

Los datos del archivo CSV para cada llamada del API REST han sido los siguientes:

/api/loginUser

userid password loginCode

683537 Mi contraseña administrativa 2

683537 Mi contraseña administrativa 2

683537 Mi contraseña administrativa 2

151397 Mi contraseña administrativa 2

683537 Aasasa (Contraseña falsa) 1

616586 (usuario que no está
en el sistema)

Su contraseña administrativa 0

Llamada api/loginUser, donde se inserta el id del usuario y la contraseña administrativa. En los
cuatro primeros casos el usuario y contraseña son correctos, con lo que la respuesta será 2. En
el quinto caso la contraseña es falsa, por lo que la respuesta será 1. Por último, como el usuario
y la contraseña son verdaderos pero no existe dicho usuario en el sistema de PIPUZ, la
respuesta será 0.

/api/createTask

tasaCreateTask createTaskCode

2 0

90 1

asda 1

1

- -

- -

Llamada api/createTask, donde se inserta el id de la tasa. En el primer caso, al existir la tasa 2,
el valor devuelto es 0. En el segundo y tercero, al no existir, devolverá 1. En el cuarto, al ser
vacío, devolverá 1 también.

49

/api/getUser

getUserCode

1

1

1

1

0

0

Llamada api/getUser, para determinar si existe el usuario que ha iniciado sesión en la llamada
api/loginUser. Por ello el valor devuelto en los cuatro primeros es 1 y en los dos últimos es 0.

/api/allDepartments

allDepartmentDepart allDepartmentCode numDepartments

null 1 2

5 1 1

89 0 0

Asd4 0 0

- - -

- - -

Llamada api/allDepartments, indicando el identificador del departamento. Si se escribe null,
devuelve todo los departamentos (actualmente hay dos) y el código será 1. Si se escribe 5 (hay
un departamente con identificador 5) devolverá el código 1 y el número de departamentos será
1. En los demás casos, no existen dichos identificadores con lo que devolverá el código 0 y de
número de departamentos 0.

/api/allTasas

allTasaDepart allTasasNum numTasas

5 null 7

null 1 7

69 2 0

As Asd 0

- - -

- - -

Llamada api/allTasas, indicando el identificador del departamento de las tasas y el número de
paginación de las tasas que se quieren mostrar (cada página de tasas contiene 7 tasas). En el

50

primer caso, se selecciona el departamento 5 con número null, y por lo tanto cogerá las 7 tasas
que hay en el departamento 5 (en este caso sólo hay 7 tasas). En el segundo caso no se
selecciona ningún departamento al escribir null y se escoge la página 1, con lo cuál el número
de tasas será 7. En los demás casos el número de departamentos no existe con lo cúal el
número de tasas será 0.

/api/getTasa

getTasaTasa getTasaCode

82 1

5 0

Sdas 1

1

- -

- -

En la llamada api/getTasa, sólo recibirá respuesta positiva (código 0) en el segundo caso (tasa
5) ya que las demás tasas no existen.

/api/task

taskid taskCode

181 0

18692 1

Asd 1

1

- -

- -

En la llamada api/task, sólo recibirá respuesta positiva (código 0) en el primer caso (pago 181)
ya que las demás pagos no existen.

/api/history

history historyCode

0 0

6 1

Asd 1

1

- -

- -

En la llamada api/history, sólo recibirá respuesta positiva (código 0) en el primer caso (valor de
option 0) ya que los demás valores no son posibles (únicamente 0, 1, 2 y 3)

51

/api/cancelTask

cancelTaskCode

0

1

1

1

-

-

En la llamada api/cancelTask, sólo recibirá respuesta positiva (código 0) en el primer caso ya
que en la llamada anterior api/createTask, únicamente se ha creado el primer caso.

/api/getAdminDepartments

numAdminDepartments

1

1

1

-

-

-

En la llamada api/getAdminDepartments, sólo recibirán respuesta los tres primeros casos, ya
que los usuarios son administradores.

/api/getAdminTasks

departmentAdminTas
ks

orderAdminTasks filtroAdminTasks numAdminTasks

5 name asc null 1

6 null null 0

5 asdf asdfl 0

- - - -

- - - -

- - - -

52

En la llamada api/getAdminTask, sólo recibirá respuesta positiva (código 1) en el primer caso ya
que se escriben correctamente todos los parámetros.

/api/createTasa

departmentCreateTasa nameCreateTasa descriptionCreateTasa prizeCreateTasa

5 Curso de fútbol Curso de fútbol 50

5 Curso de
baloncesto

Curso de baloncesto

asd 52asd

- - - -

- - - -

- - - -

expireCreateTasa valor1CreateTasa opt1CreateTasa value1CreateTasa

7 1 a_academico 2017/2018

7 1

siete 2 asd

- - - -

- - - -

- - - -

valor2CreateTasa opt2CreateTasa sel21CreateTasa sel22CreateTasa

2 a_contable 2017 2018

a_contable 2018

123

- - - -

- - - -

- - - -

valor3CreateTasa opt3CreateTasa codeCreateTasa

0 experimentalidad 1

a_academico 0

0

- - -

- - -

- - -

En la llamada api/createTasa, sólo recibirá respuesta positiva (código 1) en el primer caso ya
que se escriben correctamente todos los parámetros.

/api/updateTasa

descriptionUpdateTasa prizeUpdateTasa expireUpdateTasa valor1UpdateTasa

Curso de fútbol 40 7 Único

Curso de baloncesto 1

53

asd

- - - -

- - - -

- - - -

opt1UpdateTasa value1UpdateTasa valor2UpdateTasa opt2UpdateTasa

a_academico 2017/2018 Selección experimentalidad

56sad asda25

2017/2018 5

- - - -

- - - -

- - - -

sel21UpdateTasa sel22UpdateTasa valor3UpdateTasa opt3UpdateTasa

Sí No Variable a_contable

aasda62

256

- - - -

- - - -

- - - -

optUp1 valorUp1 valueUp1 optUp2

convocatoria 1 Única repetición

asd55a41 23

23 asd45a

- - - -

- - - -

- - - -

valorUp2 selUp21 selUp22 codeUpdateTasa

2 Sí No 0

1

25 1

- - - -

- - - -

- - - -

En la llamada api/updateTasa, sólo recibirá respuesta positiva (código 1) en el primer caso ya
que se escriben correctamente todos los parámetros.

/api/createDescuento

createDescuentoName1 createDescuentoPorcentaje1 createDescuentoName2

Familia numerosa 25 Discapacidad

54

29 Curso de baloncesto

2018

- - -

- - -

- - -

createDescuentoPorcentaje2 createDescuentoDepartment createDescuentoTasa

50 7 4

Discapacidad 20 389

asd asd

- - -

- - -

- - -

createDescuentoCode

0

1

1

-

-

-

En la llamada api/createDescuento, sólo recibirá respuesta positiva (código 1) en el primer caso
ya que se escriben correctamente todos los parámetros.

/api/updateDescuento

updateDescuentoPorcentaje1 updateDescuentoPorcentaje2 updateDescuentoCode

30 60 0

25 35 1

asd 1

- - -

- - -

- - -

En la llamada api/updateDescuento, sólo recibirá respuesta positiva (código 1) en el primer
caso ya que se escriben correctamente todos los parámetros y en el segundo caso, aunque
estén bien escritos, no existe el descuento, ya que no se ha creado en la llamada anterior.

/api/deleteDescuento

deleteDescuentoCode

0

55

1

1

-

-

-

En la llamada api/deleteDescuento, sólo recibirá respuesta positiva (código 0) en el primer caso
ya que en los demás no se ha creado el descuento en la llamada api/createDescuento.

Pruebas de la interfaz

Creación de usuario Resultado esperado Resultado obtenido

Crear usuario existente. Mensaje de que usuario ya
está creado en el sistema.

Mensaje de que usuario ya
está creado en el sistema.

Crear usuario existente en la
universidad con datos
consistentes de la
universidad.

Usuario creado con sesión
iniciada.

Usuario creado con sesión
iniciada.

Crear usuario existente en la
universidad con datos
diferentes a los de la
universidad.

Mensaje indicando que los
datos son erróneos.

Mensaje indicando que los
datos son erróneos.

Crear usuario no existente en
la universidad.

Mensaje indicando que el
usuario no existe en la
universidad con enlace para
crearlo.

Mensaje indicando que el
usuario no existe en la
universidad con enlace para
crearlo.

Inicio de sesión Resultado esperado Resultado obtenido

Usuario existente en el
sistema y contraseña
administrativa de la
universidad.

Inicio de sesión correcto y se
redirige a la pantalla principal.

Inicio de sesión correcto y se
redirige a la pantalla principal.

Usuario existente en el
sistema y contraseña
administrativa de la
universidad errónea.

Mensaje de contraseña
errónea.

Mensaje de contraseña
errónea.

Usuario no existente en el
sistema pero sí en la
universidad y con contraseña
administrativa.

Redirección a la página de
creación de usuario, con los
datos de la universidad
escritos en los campos
correspondientes.

Redirección a la página de
creación de usuario, con los
datos de la universidad
escritos en los campos
correspondientes.

56

Usuario no existente en el
sistema pero sí en la
universidad y con contraseña
administrativa errónea.

Mensaje de contraseña
errónea.

Mensaje de contraseña
errónea.

Usuario no existente en el
sistema y en la universidad.

Mensaje indicando que el
usuario no existe en la
universidad con enlace para
crearlo.

Mensaje indicando que el
usuario no existe en la
universidad con enlace para
crearlo.

Buscar tasa Resultado esperado Resultado obtenido

Escribir texto que no coincide
con ninguna tasa.

No se muestra ningún
resultado.

No se muestra ningún
resultado.

Escribir texto que coincide con
alguna tasa.

Se muestran los resultados
que coinciden.

Se muestran los resultados
que coinciden.

Seleccionar una tasa Resultado esperado Resultado obtenido

El usuario ha iniciado sesión. Redirección a la página de
crear pago de la tasa
seleccionada.

Redirección a la página de
crear pago de la tasa
seleccionada.

El usuario no ha iniciado
sesión.

Redirección a la página de
inicio de sesión.

Redirección a la página de
inicio de sesión.

Crear un pago Resultado esperado Resultado obtenido

Se insertan todos los atributos
de la tasa.

Pago creado y redirección a la
página para pagar o cancelar
el pago.

Pago creado y redirección a la
página para pagar o cancelar
el pago.

Falta algún atributo de la tasa. Mensaje de que faltan campos
por rellenar.

Mensaje de que faltan campos
por rellenar.

Ver un pago Resultado esperado Resultado obtenido

Ver un pago por realizar. Redirección a la página para
pagar o cancelar el pago.

Redirección a la página para
pagar o cancelar el pago.

Ver un pago realizado. Redirección a la página que
muestra el pago y su estado.

Redirección a la página que
muestra el pago y su estado.

Ver un pago caducado. Redirección a la página que
muestra el pago y su estado.

Redirección a la página que
muestra el pago y su estado.

Ver un pago cancelado. Redirección a la página que
muestra el pago y su estado.

Redirección a la página que
muestra el pago y su estado.

57

Pagar un pago Resultado esperado Resultado obtenido

Elegir forma de pago TPV. Redirección a la consola del
TPV.

Redirección a la consola del
TPV.

Elegir forma de pago PayPal. Redirección a la página de
PayPal.

Redirección a la página de
PayPal.

Elegir forma de pago Carta de
Pago.

Descarga de documento PDF
con la carta de pago.

Descarga de documento PDF
con la carta de pago.

Pago en TPV Resultado esperado Resultado obtenido

Escribir correctamente datos
de la tarjeta.

Pago realizado con éxito. Pago realizado con éxito.

Escribir incorrectamente datos
de la tarjeta.

Pago no realizado. Pago no realizado.

Pago en PayPal Resultado esperado Resultado obtenido

Iniciar sesión en PayPal
correctamente y pulsar en
continuar.

Pago realizado con éxito. Pago realizado con éxito.

Iniciar sesión en PayPal
incorrectamente.

Pago no realizado. Pago no realizado.

Cancelar un pago Resultado esperado Resultado obtenido

Dar botón cancelar pago. Pago cancelado. Pago cancelado.

Cerrar sesión Resultado esperado Resultado obtenido

Dar botón de cerrar sesión. El usuario se queda sin la
sesión iniciada y redirección a
la pantalla principal.

El usuario se queda sin la
sesión iniciada y redirección a
la pantalla principal.

Acceder a módulo de
administración

Resultado esperado Resultado obtenido

Dar botón de Administración
(sólo aparece en caso de que
seas administrador).

Acceso al módulo de
administración.

Acceso al módulo de
administración.

Acceder a la URL
https://nuez.unizar.es/~pipuz/
admin siendo administrador.

Acceso al módulo de
administración.

Acceso al módulo de
administración.

Acceder a la URL Cierre de sesión y redirección Cierre de sesión y redirección

58

https://nuez.unizar.es/~pipuz/admin
https://nuez.unizar.es/~pipuz/admin

https://nuez.unizar.es/~pipuz/
admin sin ser administrador.

a página de inicio de sesión. a página de inicio de sesión.

Buscar pago desde
administración

Resultado esperado Resultado obtenido

Escribir texto que no coincide
con ningún nombre,
descripción o usuario.

No se muestra ningún
resultado.

No se muestra ningún
resultado.

Escribir texto que coincide
con algún nombre, descripción
o usuario.

Se muestran los resultados
que coinciden.

Se muestran los resultados
que coinciden.

Crear tasa Resultado esperado Resultado obtenido

Crear tasa escribiendo todos
los campos.

Tasa creada correctamente. Tasa creada correctamente.

Crear tasa dejando algún
campo en blanco.

Mensaje de que faltan campos
por rellenar.

Mensaje de que faltan campos
por rellenar.

Crear tasa añadiendo un
atributo sin nombre del
atributo.

Mensaje de que faltan campos
por rellenar.

Mensaje de que faltan campos
por rellenar.

Crear una tasa añadiendo un
atributo único sin valor del
atributo.

Mensaje de que faltan campos
por rellenar.

Mensaje de que faltan campos
por rellenar.

Crear una tasa añadiendo un
atributo de selección sin
posibles valor del atributo.

Mensaje de que faltan campos
por rellenar.

Mensaje de que faltan campos
por rellenar.

Crear una tasa añadiendo un
atributo de selección con un
posible valor del atributo en
blanco.

Mensaje de que faltan campos
por rellenar.

Mensaje de que faltan campos
por rellenar.

Crear una tasa añadiendo dos
atributos que tengan el mismo
nombre.*

No se tiene que volver a
mostrar el mismo nombre.

Se crea el último atributo que
se ha creado.

Crear una tasa con todos los
campos y con los atributos
bien formados.

Tasa creada correctamente. Tasa creada correctamente.

* Se ha corregido el error

59

https://nuez.unizar.es/~pipuz/admin
https://nuez.unizar.es/~pipuz/admin

Actualizar tasa Resultado esperado Resultado obtenido

Actualizar tasa dejando
escritos todos los campos.

Tasa actualizada
correctamente.

Tasa actualizada
correctamente.

Actualizar tasa dejando algún
campo en blanco.

Mensaje de que faltan campos
por rellenar.

Mensaje de que faltan campos
por rellenar.

Actualizar tasa dejando un
atributo sin nombre del
atributo.

Mensaje de que faltan campos
por rellenar.

Mensaje de que faltan campos
por rellenar.

Actualizar una tasa dejando
un atributo único sin valor del
atributo.

Mensaje de que faltan campos
por rellenar.

Mensaje de que faltan campos
por rellenar.

Actualizar una tasa dejando
un atributo de selección sin
posibles valor del atributo.

Mensaje de que faltan campos
por rellenar.

Mensaje de que faltan campos
por rellenar.

Actualizar una tasa dejando
un atributo de selección con
un posible valor del atributo
en blanco.

Mensaje de que faltan campos
por rellenar.

Mensaje de que faltan campos
por rellenar.

Actualizar una tasa dejando
dos atributos que tengan el
mismo nombre.*

No se tiene que volver a
mostrar el mismo nombre.

Se crea el último atributo que
se ha creado.

Actualizar una tasa con todos
los campos y con los atributos
bien formados.

Tasa actualizada
correctamente.

Tasa actualizada
correctamente.

* Se ha corregido el error.

Crear un usuario Resultado esperado Resultado obtenido

Escribir todos los campos
correctamente y coincidiendo
con los datos de la
universidad.

Usuario creado correctamente
y envío de correo al email
indicado.

Usuario creado correctamente
y envío de correo al email
indicado.

Escribir todos los campos
correctamente y que no
coincidan con los datos de la
universidad.

Mensaje de que algún campo
no es correcto.

Mensaje de que algún campo
no es correcto.

Dejarse algún campo por
rellenar.

Mensaje de que faltan campos
por rellenar.

Mensaje de que faltan campos
por rellenar.

Generar recibo Resultado esperado Resultado obtenido

Escribir usuario que esta
registrado en el sistema.

Pago creado correctamente,
con envío de correo al email
del usuario.

Pago creado correctamente,
con envío de correo al email
del usuario.

Escribir usuario que no esta
registrado en el sistema.

No deja crear el pago. No deja crear el pago.

Se insertan todos los atributos
de la tasa.

Pago creado correctamente,
con envío de correo al email
del usuario.

Pago creado correctamente,
con envío de correo al email
del usuario.

Falta algún atributo de la tasa. Mensaje de que faltan campos
por rellenar.

Mensaje de que faltan campos
por rellenar.

60

No escribir usuario. No deja crear el pago. No deja crear el pago.

Crear pago al contado Resultado esperado Resultado obtenido

Escribir usuario que esta
registrado en el sistema.

Pago creado correctamente,
con envío de correo al email
del usuario.

Pago creado correctamente,
con envío de correo al email
del usuario.

Escribir usuario que no esta
registrado en el sistema.

No deja crear el pago. No deja crear el pago.

Se insertan todos los atributos
de la tasa.

Pago creado correctamente,
con envío de correo al email
del usuario.

Pago creado correctamente,
con envío de correo al email
del usuario.

Falta algún atributo de la tasa. Mensaje de que faltan campos
por rellenar.

Mensaje de que faltan campos
por rellenar.

No escribir usuario. No deja crear el pago. No deja crear el pago.

Actualizar Carta de pago Resultado esperado Resultado obtenido

Escribir usuario que esta
registrado en el sistema.

Pago actualizado. Pago actualizado.

Escribir usuario que no esta
registrado en el sistema.

Mensaje de error. Mensaje de error.

No escribir usuario. Mensaje de que faltan campos
por rellenar.

Mensaje de que faltan campos
por rellenar.

Escribir una fecha de pago en
formato dd-mm-yyyy

Pago actualizado. Pago actualizado.

Escribir una fecha de pago sin
formato dd-mm-yyyy

Mensaje de error. Mensaje de error.

No escribir fecha de pago. Mensaje de que faltan campos
por rellenar.

Mensaje de que faltan campos
por rellenar.

Escribir un identificador del
pago correcto.

Pago actualizado. Pago actualizado.

Escribir un identificador del
pago que no existe.

Mensaje de error. Mensaje de error.

Escribir un identificador del
pago que no esté en estado
por pagar.

Mensaje de error. Mensaje de error.

No escribir identificador del Mensaje de que faltan campos Mensaje de que faltan campos

61

pago. por rellenar. por rellenar.

Crear descuento Resultado esperado Resultado obtenido

Crear un descuento con
nombre y porcentaje correcto.

Descuento creado
correctamente.

Descuento creado
correctamente.

Crear un descuento sin
nombre.

Mensaje de que faltan campos
por rellenar.

Mensaje de que faltan campos
por rellenar.

Crear un descuento sin
porcentaje.

Mensaje de que faltan campos
por rellenar.

Mensaje de que faltan campos
por rellenar.

Crear un descuento con
porcentaje incorrecto (número
negativo o mayor que 100 o
letras).

Mensaje de error. Mensaje de error.

Actualizar descuento Resultado esperado Resultado obtenido

Dejar un porcentaje en
blanco.

Mensaje de que faltan campos
por rellenar.

Mensaje de que faltan campos
por rellenar.

Dejar un porcentaje incorrecto
(número negativo o mayor
que 100 o letras).

Mensaje de error. Mensaje de error.

Dejar correctamente los
porcentajes.

Porcentaje actualizado
correctamente.

Porcentaje actualizado
correctamente.

Borrar un descuento Resultado esperado Resultado obtenido

Dar botón rojo de borrar y
pulsar sobre Borrar.

Descuento borrado. Descuento borrado.

62

