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Three-dimensional polarization states of random light can
be classified into regular and nonregular according to the
structure of the related 3 × 3 polarization matrix. Here we
show that any purely evanescent wave excited in total inter-
nal reflection of a partially polarized plane-wave field is
always in a nonregular polarization state. The degree of
nonregularity of such evanescent waves is also studied in
terms of a recently advanced measure. Nonregular evanes-
cent waves uncover new aspects of the polarimetric struc-
ture and dimensional character of electromagnetic near
fields, with potential applications in nanoscale surface
optics. © 2019 Optical Society of America

https://doi.org/10.1364/OL.44.000215

The rapid progress in nano-optics [1] and ever-growing interest
toward complex structured light [2] have witnessed the need for
a full three-dimensional (3D) treatment of polarization [3–10].
In particular, whereas for two-dimensional (2D) light, such as
directional beams, the polarization ellipse is restricted to a
plane, evanescent waves [11,12], optical surface fields [13,14],
and tightly focused light [15–17] encompass 3D polarization
states with the electric field fluctuating in three orthogonal di-
rections. The polarization states of such genuine 3D light fields
can be classified into regular and nonregular states according to
the nature of their characteristic decomposition [18]. A regular
state is an incoherent composition of a pure state, a 2D unpo-
larized state, and a 3D unpolarized state, while for a nonregular
state the intermediate component corresponds to a specific 3D
state: an equiprobable mixture of two mutually orthogonal pure
states with the electric-field ellipses lying in different planes in
space. Nonregular polarization states constitute a significant
and rich family of 3D light fields with potential applications
in near-field optics and high-numerical-aperture imaging
systems [19].

In this Letter, we examine the spectral polarimetric structure
of an evanescent field generated by a partially polarized plane
wave in total internal reflection at a lossless dielectric interface.
We especially establish that any stationary, partially polarized
evanescent wave is in a nonregular polarization state and thus
cannot be addressed by the standard 2D polarization formal-
ism. Although our focus is on evanescent waves, the analysis

also reveals that any partially polarized refracted wave is in a
regular polarization state. We investigate further the nonregu-
larity of 3D evanescent waves by utilizing a recently introduced
measure, the degree of nonregularity [19], and show that,
under certain circumstances, an evanescent wave is virtually
in a so-called perfect nonregular state of maximal polarimetric
nonregularity. Evanescent waves endowed with nonregular 3D
polarization states could be instrumental in surface light–matter
interactions and optical manipulations at subwavelength scales.

The polarization characteristics of a random stationary light
field are in the space–frequency domain completely described
by the 3 × 3 spectral polarization matrix [3,4,20]

Φ�r,ω� � hE��r,ω�ET�r,ω�i: (1)

The three-component column vector E�r,ω� is a monochro-
matic realization representing the electric field at point r
and (angular) frequency ω, while the angle brackets, asterisk,
and superscript T denote ensemble averaging, complex
conjugation, and matrix transpose, respectively. The polari-
zation matrix can always be expressed via the characteristic
decomposition [3,4]

Φ�r,ω� � I �P1Φ̂p � �P2 − P1�Φ̂m � �1 − P2�Φ̂u�, (2)

where I � λ1 � λ2 � λ3 is the intensity, with λ1 ≥ λ2 ≥ λ3 ≥ 0
being the eigenvalues of Φ�r,ω�, while

P1 � λ̂1 − λ̂2, P2 � 1 − 3λ̂3, �0 ≤ P1 ≤ P2 ≤ 1� (3)

are the indices of polarimetric purity [21–23], with λ̂j � λj∕I for
j ∈ f1, 2, 3g. Furthermore,

Φ̂p � U diag�1, 0, 0�U†, Φ̂m � 1

2
U diag�1, 1, 0�U†,

Φ̂u �
1

3
U diag�1, 1, 1�U† � 1

3
I, (4)

where U is the unitary matrix that diagonalizesΦ�r,ω�, I is the
3 × 3 identity matrix, and the dagger stands for conjugate trans-
pose. While the matrices Φ̂p and Φ̂u describe, respectively,
a fully polarized state and a completely unpolarized 3D state,
the physical interpretation of Φ̂m is more involved and moti-
vates the introduction of the notions of regular and nonregular
states of polarization [18].

When Φ̂m is a real matrix, it represents unpolarized 2D
light, i.e., light whose electric field evolves fully randomly in
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a fixed plane. In this case (and in the special case P1 � P2 for
which Φ̂m is absent in the characteristic decomposition), the
polarization state Φ�r,ω� is called regular, only met when
the smallest eigenvalue 0 ≤ m̂3 ≤ 1∕4 of Re�Φ̂m� is zero
[18]. If Φ̂m is instead a complex matrix, it corresponds to
an equiprobable mixture of two mutually orthogonal states
whose electric-field ellipses lie in different planes [18], whereby
Φ̂m does not represent unpolarized 2D light but genuine 3D
light. The polarization state Φ�r,ω� of such a light field, en-
countered when 0 < m̂3 ≤ 1∕4, is said to be nonregular. The
maximum value m̂3 � 1∕4 is saturated when the middle com-
ponent Φ̂m is in a perfect nonregular state, namely, a state which
is an equiprobable mixture of a circularly polarized state and a
mutually orthogonal linearly polarized state [19]. The nonre-
gularity of the full state Φ�r,ω� can be characterized quanti-
tatively by means of the degree of nonregularity [19]

PN � 4�P2 − P1�m̂3, (5)

with the minimum PN � 0 always, and only, taking place for
regular states, while values in the range 0 < PN ≤ 1 are signa-
tures of nonregularity. The maximum PN � 1 is reached
merely for maximally nonregular states with P1 � 0, P2 � 1,
and m̂3 � 1∕4. Thus, PN � 1 corresponds exclusively to 3D
polarization states satisfying Φ�r,ω� � IΦ̂m and m̂3 � 1∕4,
implying that all maximally nonregular states are perfect
nonregular states.

Let us next consider a stationary light beam, represented as
a monochromatic realization of a homogeneous plane wave,
incident onto a planar interface (z � 0) between two uniform
dielectric media (Fig. 1). Both medium 1 (z < 0) and medium
2 (z > 0), having (ω-dependent) refractive indices n1 and n2,
respectively, are lossless, and the xz plane is chosen to coincide
with the plane of incidence. The incoming wave, carrying both

an s-polarized and a p-polarized part, hits the boundary at the
angle of incidence θ. The electric field of the transmitted wave
in medium 2 then reads, in Cartesian coordinates, as [9,11,12]

E�r,ω� � 1

χ

0
B@

−γtpEp

χt sE s

sin θtpEp

1
CAeik1�sin θx�γz�, (6)

where Es and Ep are, respectively, the (ω-dependent) complex
field amplitudes of the s- and p-polarized components of the
incident beam in medium 1. Moreover, the (ω-dependent)
quantities χ and γ are defined as

χ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2θ� jγj2

p
, γ � 1

ñ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − �ñ sin θ�2

p
, (7)

with the ratio ñ � n1∕n2, the Fresnel transmission coefficients
t s and tp for the two polarizations are given by

t s �
2 cos θ

cos θ� γ
, tp �

2ñ2 cos θχ
cos θ� ñ2γ

, (8)

and k1 is the (ω-dependent) wave number in medium 1. For
ñ > 1 and θ > θc, where θc � arcsin ñ−1 is the critical
angle, γ is imaginary, amounting to an evanescent wave.
Otherwise γ is real, corresponding to a refracted wave.

The spectral polarization matrix for the transmitted field is
now obtained from Eqs. (1) and (6), viz.,

Φ�r,ω� � 1

χ2

0
BB@

jγj2wp −γ�χ ffiffiffiffiffiffiffiffiffiffiwswp
p jμje−iφ −γ� sin θwp

−γχ ffiffiffiffiffiffiffiffiffiffiwswp
p jμjeiφ χ2ws sin θχ ffiffiffiffiffiffiffiffiffiffiwswp

p jμjeiφ
−γ sin θwp sin θχ ffiffiffiffiffiffiffiffiffiffiwswp

p jμje−iφ sin2 θwp

1
CCA, (9)

where wν � jtνj2hjEνj2ie−2k1γ 0 0z is proportional to the energy
density of the ν ∈ fs, pg polarized part of the transmitted wave
at height z, with the double prime denoting the imaginary part.
Furthermore, μ � hE�

s Epi∕�hjEsj2ihjEpj2i�1∕2 is the correla-
tion coefficient between the s- and p-polarized constituents
of the incident light, while φ � arg�μ� − arg�t s� � arg�tp� is
a phase. When γ 0 0 � 0 (refracted wave), Φ�r,ω� is position
independent. We recall that the polarization-state class is
determined by the middle component Φ̂m in the characteristic
decomposition (2), which in turn is specified by the diagonal-
izing unitary matrix U. Thus, to ascertain under which circum-
stances the transmitted wave is regular/nonregular, we search
for the eigenvalues and eigenvectors of Φ�r,ω� in Eq. (9)
and construct the respective unitary matrix.

The eigenvalues are found from the characteristic equation

jΦ�r,ω� − λIj � 0, (10)

which together with Eq. (9) results in

λ1 �
1

2
�ws � wp��1� P1�, λ2 �

1

2
�ws � wp��1 − P1�,

λ3 � 0, (11)

where the polarimetric purity index P1 explicitly reads

Fig. 1. Generation of a nonregular 3D evanescent wave via total
internal reflection at a planar interface (z � 0) between two lossless
dielectric media with refractive indices n1 (z < 0) and n2 (z > 0).
The stationary and partially polarized incident beam impinges the sur-
face at the angle of incidence θ.
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P1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4

�1 − jμj2�wswp

�ws � wp�2

s
: (12)

The polarimetric purity index in Eq. (12) is closely related to
the electromagnetic degree of coherence of an evanescent wave
[11]. We especially notice that λ3 � 0 and thus P2 � 1,
regardless of whether the transmitted wave is evanescent or
refracted, owing to incident plane-wave illumination [24], so
the last component in the characteristic decomposition (2)
automatically vanishes. In addition, since a fully polarized in-
cident beam with hjEsj2i � 0 (leading to ws � 0), hjEpj2i � 0
(leading to wp � 0), or jμj � 1 results in a fully polarized
transmitted wave (P1 � 1 and λ2 � 0) for which the middle
term in Eq. (2) also vanishes, we henceforth assume that
hjEsj2i > 0, hjEpj2i > 0, and jμj < 1. These requirements,
together with ñ > 1 and θ > θc, lead to a partially polarized,
genuine 3D evanescent wave [9].

We next determine the three (orthonormal) eigenvectors û1,
û2, and û3 from the eigenequation

Φ�r,ω�ûj � λjûj, j ∈ f1, 2, 3g: (13)

For λ3 � 0 we obtain from Eqs. (9) and (13)

û3 �
1

χ

 
sin θ
0
γ

!
, (14)

with the normalization jû3j � 1, and observe that û3 is exactly
the unit-modulus wave vector of the transmitted wave
[9,11,12]. In the case of λ1 and λ2, given by Eq. (11), we first
define the real-valued, positive, and dimensionless quantities

l 1 �
1

2
�1� w̃��1� P1�, l2 �

1

2
�1� w̃��1 − P1�, (15)

with the ratio w̃ � ws∕wp. Then, on utilizing the normalizations
jû1j � jû2j � 1 and the relation w̃jμj2 � �l1 − 1��1 − l 2�,
Eqs. (9), (13), and (15) yield after straightforward algebra

û1 �
c
χ

0
BB@

−γ�
ffiffiffiffiffiffiffiffiffiffiffi
1 − l 2

p
χeiφ

ffiffiffiffiffiffiffiffiffiffiffi
l1 − 1

p
sin θ

ffiffiffiffiffiffiffiffiffiffiffi
1 − l 2

p
1
CCA, û2 �

c
χ

0
BB@

γ�
ffiffiffiffiffiffiffiffiffiffiffi
l 1 − 1

p
χeiφ

ffiffiffiffiffiffiffiffiffiffiffi
1 − l2

p
− sin θ

ffiffiffiffiffiffiffiffiffiffiffi
l 1 − 1

p
1
CCA,

(16)

where c � 1∕�l 1 − l 2�1∕2.
From the orthonormal eigenvectors û1, û2, and û3 in

Eqs. (14) and (16) we now construct the unitary matrix

U � 1

χ

0
BB@

−cγ�
ffiffiffiffiffiffiffiffiffiffiffi
1 − l 2

p
cγ�

ffiffiffiffiffiffiffiffiffiffiffi
l 1 − 1

p
sin θ

cχeiφ
ffiffiffiffiffiffiffiffiffiffiffi
l1 − 1

p
cχeiφ

ffiffiffiffiffiffiffiffiffiffiffi
1 − l2

p
0

c sin θ
ffiffiffiffiffiffiffiffiffiffiffi
1 − l 2

p
−c sin θ

ffiffiffiffiffiffiffiffiffiffiffi
l 1 − 1

p
γ

1
CCA, (17)

and on combining Eqs. (4) and (17) we eventually end up with

Φ̂m � 1

2χ2

0
B@

jγj2 0 −γ� sin θ

0 χ2 0

−γ sin θ 0 sin2 θ

1
CA: (18)

We recall that γ is imaginary (real) for an evanescent (refracted)
wave, in which case Φ̂m above is complex (real) and corresponds
to a nonregular (regular) polarization state. This discovery is the
main result of this Letter.

One observes that the matrix Φ̂m in Eq. (18) of the trans-
mitted wave is independent of the polarization state of the
incident field. Nonetheless, the weight of Φ̂m in the corre-
sponding characteristic decomposition, namely, Φ�r,ω� �
I �P1Φ̂p � �1 − P1�Φ̂m�, does depend on the polarization of
the excitation light via the polarimetric purity index P1 given
by Eq. (12). This property is similar in spirit to the case with
propagating 2D beam fields [3]. We remark that since also the
first term Φ̂p is fully specified by the unitary matrix U in
Eq. (17), the whole characteristic decomposition of Φ�r,ω� in
Eq. (9) for the transmitted wave can be explicitly determined.

We further find that Φ̂m in Eq. (18) can be decomposed
into an s-polarized part and a p-polarized part, i.e.,

Φ̂m � 1

2
�ŝ�ŝT � p̂�p̂T�, (19)

by employing the orthonormal polarization vectors [11,12]

ŝ �
 
0
1
0

!
, p̂ � 1

χ

 −γ
0

sin θ

!
: (20)

Therefore, when the transmitted wave is evanescent (refracted),
the matrix Φ̂m in Eq. (18) can be interpreted as an equiprob-
able mixture of a linear s-polarized state in the y direction and
an elliptical (linear) p-polarized state in the xz plane.

Motivated by the above finding, we further investigate how
nonregular an evanescent wave can be, and for this we employ
the degree of nonregularity PN in Eq. (5). Because the smallest
eigenvalue of Re�Φ̂m� in Eq. (18) is m̂3 � �1∕2��jγj∕χ�2, and
since P2 � 1 according to Eqs. (3) and (11), one finds that

PN � 2�1 − P1�
jγj2
χ2

: (21)

From Eqs. (7), (12), and (21) we then obtain that the funda-
mental upper limit for PN that an evanescent wave can attain is

max�PN � � 1 −
1

2�ñ sin θ�2 − 1 , (22)

which is reached when the incident light possesses the
properties

jμj � 0,
hjEsj2i
hjEpj2i

� jtpj2
jt sj2

: (23)

In this case, P1 � 0, whereupon the full polarization matrix in
Eq. (9) is directly proportional to the middle term in Eq. (18).
Figure 2 shows the θ-dependent behavior of max�PN � in
Eq. (22) for different values of ñ. We observe that when θ
and ñ become large, then max�PN � of the evanescent wave also
becomes large. For a high refractive index contrast boundary,
such as GaP and air with ñ ≈ 4 in the optical regime [25],
Eq. (22) shows that the degree of nonregularity may be as
high as PN ≈ 0.97, virtually corresponding to a perfect non-
regular state. In such a scenario, the evanescent wave is in
an equiprobable mixture of a linear s-polarized state and an al-
most circular p-polarized state. For a typical SiO2–air interface,
on the other hand, the maximum is around PN ≈ 0.71.

In summary, we have explored the spectral polarization of
random 3D evanescent waves at a lossless dielectric boundary.
In particular, we showed that any partially polarized evanescent
wave excited by a stationary and homogeneous plane-wave field
via total internal reflection is in a nonregular polarization state.
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The analysis also revealed that any partially polarized refracted
wave is in a regular polarization state. In addition, by employ-
ing a recently established measure, the degree of nonregularity,
we demonstrated that for a sufficiently high refractive index
contrast surface and for a large incidence angle of the excitation
beam the evanescent wave is effectively in a perfect nonregular
state. Such unconventional, nonregular 3D evanescent waves
provide novel insights into the polarimetric structure of
electromagnetic near fields and could be exploited in surface
nanophotonics.
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2.75 (dashed green curve), ñ � 2.00 (dashed-dotted orange curve),
and ñ � 1.25 (dotted red curve).
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