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Abstract

This project consists of three chapters and we are going to summarize here the most important ideas.

There are many models for predicting the outcome of fooball matches, but we are going to build
two logistic models, one of them to predict the probability of the event “local team wins” and another
to predict the probability of the event “away team wins”. For that, we use simple predictor variables
such as the point difference between local team and away team or how the teams performed in the last
matches. In our first model, the probability α of the event “local team wins” in a football match follows
the equation:

α =
e−0,3+0,173x2+0,083x5

1+ e−0,3+0,173x2+0,083x5

where X2 is the predictor variable which represents the point difference divided by the logarithm of the
match day and X5 is the predictor variable “local run” which summarizes the last results of the local
team. On the other hand, the probability γ of the event “away team wins” follows the equation:

γ =
e−1,04−0,187x2

1+ e−1,04−0,187x2

where X2 is the same as before. Then we study the results using ROC curves and we confirm that these
methods predicts well the result of a football match.

Once we have two models to predict football results we want to use them for betting. In that aim,
we introduce a new betting strategy. First we review the classic Kelly´s criterion and we see that it´s
inappropiate because we lose all our money in a few bets. Then we design a dynamic programming
problem which decides, for each match day, how much money to bet in each match in order to maximize
the probability of reaching a money target. We program this problem in Java and apply it to a real life
situation, namely, the Santander Liga 2017−2018 where we obtain a benefit of 600%.
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Capítulo 1

Introducción

No cabe ninguna duda de que el fútbol es el deporte más popular y seguido del mundo, basta com-
probar cómo la gente está pegada al televisor en sus casas, bares y restaurantes cuando se disputa un
partido importante. Para hacernos una idea de la popularidad de este deporte es suficiente ver, como
se explica en [12], que la final del mundial de 2014 tuvo alrededor de 1000 millones de espectadores,
comparado con la inauguración de los Juegos Olímpicos en Londres 2012 con 900 millones o la final
de los playoffs de la NBA del 2017 con unos 20 millones. La idea de este deporte es muy sencilla, y
hoy en día es casi imposible encontrar a alguien que no tenga una noción básica de cómo se practica. El
ganador de un partido es el equipo que más goles marca en un periodo de 90 minutos dividido en dos
partes.

El fútbol comenzó en Inglaterra con partidos casi sin normas que se practicaban en cualquier sitio,
como plazas, calles... Pero ya en aquel entonces los ingleses mezclaron el deporte con la economía, en
el sentido de que la gente pagaba una cantidad de dinero por ver un partido de los equipos más popu-
lares. Este deporte fue evolucionando hasta que entre 1850 y 1890 se introdujeron las reglas definitivas
que hoy en día conocemos. Actualmente, el fútbol mueve tanta cantidad de dinero que hay mucha gen-
te que lo considera un negocio, y otra que realmente hace un negocio de él mediante apuestas deportivas.

Las apuestas deportivas no son tan recientes como se cree, sino que surgieron hace más de 2000
años en los Juegos Olímpicos que se disputaban en Grecia. Se hicieron mucho más populares con las
carreras de caballos durante el siglo XIX, pero su gran expansión no fue hasta 1940 cuando aparecieron
las primeras casas de apuestas en Nevada (EEUU), permitiendo apostar a diferentes modalidades de-
portivas. El auge de las apuestas deportivas tuvo lugar en 1996 con Internet, ya que se lanzó Intertops,
la primera página que permitía apostar online. Gracias a este sistema, los usuarios pueden apostar desde
casa mientras están viendo los eventos, tomando decisiones al momento y apostando de forma directa y
rápida en segundos.

Desde su comienzo, la popularidad de las apuestas ha ido creciendo hasta tal punto que en el año
2017, de acuerdo con [13], se movieron más de 5000 millones de euros sólo en España. Por esta razón,
poder predecir el resultado de un partido de fútbol mediante variables intuitivas y sencillas, es una idea
ambiciosa cuya finalidad busca obtener beneficio económico mediante su aplicación a apuestas depor-
tivas.

Existen gran cantidad de portales web en los que los resultados de temporadas anteriores están
accesibles, incluso se puede comprobar casi cualquier dato sobre los partidos ya disputados; desde el
resultado final, hasta la cantidad de jugadores lesionados que tenía un equipo antes de comenzar el par-
tido. Por tanto se puede aprovechar toda esta información almacenada para crear modelos que predigan
el resultado de un cierto partido, aunque ya existen varios modelos capaces de dar unas probabilidades
muy cercanas a la realidad si se dispone de los datos suficientes. Un modelo popular y que ha sido
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2 Capítulo 1. Introducción

revisado varias veces es el de Maher (1982), en el que se intenta predecir el número de goles que cada
equipo anota mediante variables Poisson multivariantes.

Nuestro trabajo consta de dos partes diferenciadas. En primer lugar estudiaremos partidos de fútbol
e intentaremos predecir sus resultados. En estos pueden darse tres resultados distintos: victoria local,
victoria visitante y empate, pero sólo modelaremos dos de los casos, el de victoria local y el de vic-
toria visitante. El estudio lo haremos mediante regresión logística múltiple con variables predictoras
sencillas. Además, queremos obtener modelos aplicables a cualquier competición y que sean capaces
de predecir solamente por cómo están jugando en la competición actual, sin tener en cuenta el “nombre”
de los equipos que disputan el partido.

Una vez que tengamos las probabilidades de nuestros modelos, la segunda parte consistirá en buscar
una estrategia óptima para obtener el mayor beneficio posible en un caso real de apuestas. Para esta
parte del trabajo es necesario repasar el concepto básico de cuota. La cuota es la cantidad ofrecida por
una casa de apuestas que multiplicará nuestra inversión en caso de acertar la apuesta. Como es lógico,
la cuota nunca es más pequeña que 1, y en el caso de que una casa de apuestas de una cuota muy alta
para un suceso es debido a que considera que tiene una probabilidad muy baja de ocurrir.

El objetivo es obtener beneficio apostando jornada a jornada de la temporada, por tanto tenemos
que diseñar una estrategia óptima que nos indique a qué apostar y qué cantidad. Para ello en primer
lugar repasaremos el criterio clásico de Kelly y veremos si lo podemos aplicar a nuestro problema, y en
segundo lugar diseñaremos un problema de programación dinámica que nos maximice la probabilidad
de llegar a una cierta cantidad de dinero en un número determinado de jornadas. Dado que en nuestro
problema de programación dinámica estocástica hacen falta una gran cantidad de variables y cálculos,
diseñaremos en Java un programa que sea capaz de resolverlo computacionalmente.

La parte final del trabajo consistirá en aplicar todos los resultados obtenidos a la temporada 2017-
2018 de la Liga Santander, comprobar si obtenemos beneficios y confirmar así que nuestro modelo de
predicción y la estrategia de apuestas seguida, son buenos y aplicables a la vida real.



Capítulo 2

Modelo de regresión logística

2.1. Introducción

Estamos interesados en encontrar un procedimiento para estimar la probabilidad α de que un equipo
(por ejemplo el local) obtenga la victoria. Desarrollaremos dos modelos, uno para obtener la probabili-
dad de victoria del equipo local y otro para la probabilidad de victoria del equipo visitante.

Vamos a considerar Y como la variable aleatoria victoria equipo local, que toma los valores:

1 si el equipo local gana.

0 en cualquier otro caso (empata o pierde).

En contraposición a los modelos de regresión vistos en la asignatura del grado, donde la variable
respuesta Y ha sido considerada como una variable continua y cuantitativa, en nuestra situación la varia-
ble respuesta es cualitativa. Para resolver estas situaciones hay varios métodos distintos del de mínimos
cuadrados. Primero repasemos el concepto de variable dicotómica.

Definición 1. Una variable aleatoria X se dice dicotómica si solo puede tomar dos valores, normalmente
representados con 1 como éxito y 0 como fracaso.

Por tanto, es claro que la variable Y mencionada anteriormente es dicotómica.
Estas situaciones donde la variable respuesta es dicotómica son bastante comunes y ocurren con fre-

cuencia en aplicaciones estadísticas. Por ejemplo, si una persona tiene o no una determinada enferme-
dad, o si una empresa después de una determinada inversión permanece solvente o entra en bancarrota,
son casos en los que la variable respuesta puede ser codificada con los valores 0 y 1. Para predecir la
variable respuesta en situaciones de este estilo, se intentan modelar las probabilidades que toma Y para
uno de esos dos valores cuando conocemos las variables predcitoras. En nuestro caso nos centraremos
en obtener P(Y = 1).

El modelo de regresión lineal por mínimos cuadrados presenta varias inconsistencias cuando la
variable respuesta es dicotómica. Vamos a ilustrar ésto considerando un problema de regresión lineal
simple en el que sólo tenemos una variable predictora (los resultados obtenidos son válidos también
para el caso de regresión múltiple).

Vamos a denotar α como la probabilidad de que Y = 1 cuando X = x. Si usamos el modelo estándar
de regresión lineal para precedir α , obtenemos lo siguiente:

α = P(Y = 1|X = x) = β0 +β1x+ ε (2.1)

Como α es una probabilidad debe tomar valores entre 0 y 1, pero es claro que la función lineal dada en
(2.1) puede tomar valores fuera del intervalo [0,1], y por lo tanto este modelo no puede ser utilizado para
predecir probabilidades. Otra razón por la que el método ordinario de mínimos cuadrados es inapropiado
es debido a que la variable respuesta Y es una variable aleatoria Bernoulli, y como consecuencia, su
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4 Capítulo 2. Modelo de regresión logística

varianza depende de α , por lo que no se cumple la hipótesis de varianza constante (homocedasticidad)
que es necesaria para realizar un ajuste de regresión lineal por mínimos cuadrados.

Por esta razón, el análisis de modelos de regresión con variable respuesta dicotómica es muy distinto
al de mínimos cuadrados ordinarios.

2.2. Modelo logit

En la mayoría de las situaciones donde la variable respuesta es dicotómica, la relación entre la
probabilidad α y la variable predictora X parece una curva con forma de S, como se puede apreciar en
la Figura 2.1, conocida como S-Shaped curve.

1

Figura 2.1: S-Shaped curve

Vemos que inicialmente la probabilidad α aumenta lentamente a medida que se incrementa X , pos-
teriormente este incremento es mayor, y finalmente se estabiliza; pero no va más allá de 1, lo que
intuitivamente tiene sentido ya que estamos hablando de probabilidades.

La forma de la S-Curve puede ser reproducida si modelizamos las probabilidades de la siguiente
forma:

α = P(Y = 1|X = x) =
eβ0+β1x

1+ eβ0+β1x (2.2)

Esto es lo que conocemos como modelo de regresión logística, aunque cabe destacar que hay otras
formas de modelizar las probabilidades que también reproducen la S-Curve.

El modelo logistico puede ser genaralizado directamente a la situación en la que tenemos varias
variables predictoras, en cuyo caso la probabilidad α viene dada por:

α = P(Y = 1|X1 = x1, . . . ,Xp = xp) =
eβ0+β1x1+β2x2+...+βpxp

1+ eβ0+β1x1+β2x2+...+βpxp
(2.3)

La ecuación (2.3) es llamada función de regresión logística. Como se puede apreciar, estamos ante una
función no lineal de parámetros βi ∀i = 0, . . . , p, sin embargo, puede ser linealizada por medio de lo
que se conoce como transformación logistica. En este caso, en lugar de trabajar directamente con α , se
trabaja con un valor transformado de α .

En primer lugar, si α es la probabilidad de que un evento ocurra, la proporción α

1−α
se conoce como

la proporción de probabilidades, odds ratio (cociente de probabilidades), para dicho evento. Como

1−α = P(Y = 0|X1 = x1, . . . ,Xp = xp) =
1

1+ eβ0+β1x1+β2x2+...+βpxp

Se tiene que
α

1−α
= eβ0+β1x1+β2x2+...+βpxp

Tomando logaritmos en ambos lados, obtenemos

g(x1, . . . ,xp) = log
(

α

1−α

)
= β0 +β1x1 +β2x2 + . . .+βpxp (2.4)
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El logaritmo del odds ratio se conoce como logit. Por la ecuación (2.4) puede verse que la transfor-
mación logit produce una función lineal de parámetros βi ∀i = 0, . . . , p. Notar también que el rango de

valores de α en (2.3) está entre 0 y 1, lo que implica que el rango de valores de log
(

α

1−α

)
está entre

−∞ y ∞, por lo que es más apropiado para el ajuste de regresión lineal.

2.2.1. Obtención de los estimadores

En cuanto a la obtención de los estimadores el método usado es el de máxima verosimilitud, donde
las estimaciones son calculadas numéricamente usando métodos iterativos. Por lo tanto, al contrario que
en el método de mínimos cuadrados, no existe una expresión analítica sencilla para los estimadores de
los parámetros así que no nos centraremos en los aspectos computacionales de como se obtienen.

2.3. Presentación de los modelos

Una vez explicado el modelo de regresión logística vamos a aplicarlo a nuestro problema, en el que
queremos predecir la variable dicotómica Y victoria equipo local a partir de varias variables predictoras
(regresoras). Cabe destacar que queremos diseñar un modelo que nos pueda predecir si gana un equipo
o no sin importarnos la competición en la que juegue, ni el “nombre” de los equipos que disputen el
partido, simplemente por cómo están jugando en el campeonato. Además, parece lógico que al tratarse
de partidos de fútbol entre equipos de una misma clasificación, se tenga en cuenta variables como la
posición en la tabla del equipo local, la posición en la tabla del equipo visitante, en que jornada del
campeonato nos encontramos y alguna variable que nos informe de la forma física de cada equipo en
el momento del partido. Por estos motivos, hemos decidido ensayar un modelo de regresión logística
múltiple con las variables que se indican a continuación:

X1 representa la diferencia de puntos entre el equipo local y el visitante dividido por el número de
la jornada en la que se disputa el partido (DPJornada).

X2 representa la diferencia de puntos entre el equipo local y el visitante dividido por el logar-
timo del número de la jornada en la que se disputa el partido (DPLogJornada) (más adelante
explicaremos el porqué de la elección de esta variable).

X3 representa lo que interpretaremos como racha del equipo que juega como local (RL1).

X4 representa la que interpretaremos como racha del equipo que juega como visitante (RV1).

X5 representa una definición alternativa de racha del equipo que juega como local (RL2).

X6 representa una definición alternativa de racha del equipo que juega como visitante (RV2).

Vamos a explicar brevemente lo que hemos entendido por racha. La racha de un equipo es el estado
de forma en el que se encuentra en el momento de disputar un partido, coloquialmente hablando se dice
lo “fuerte” que está un equipo, y como es lógico, un equipo está en mejor estado de forma (está más
fuerte) conforme va ganando partidos consecutivos.

Por poner un ejemplo sencillo, imaginémonos que el equipo A lleva 3 partidos seguidos ganando y
se encuentra décimo en la tabla y que por otro lado tenemos el equipo B que lleva 2 partidos seguidos
perdiendo aunque se encuentra cuarto en la tabla. En este caso si sólo se tuviera en cuenta la posición de
cada equipo en la tabla, parece lógico dar una probabilidad mayor de vencer al equipo B, pero la realidad
no es así, ya que el equipo A está mucho más “fuerte” y puede llevarse perfectamente el partido.

Dicho esto, hemos creado la variable “racha” (variables RL1 y RV1) para cada equipo de la siguiente
forma:

Es una variable cuyo rango está en [1,5].
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Todos los equipos empiezan la temporada con una racha de 1.

Si un equipo gana, entonces su racha aumentará en 1 en la jornada siguiente hasta alcanzar la
racha máxima (5), la cual no puede aumentar más aunque el equipo gane.

Si un equipo empata, entonces su racha de la jornada siguiente permanecerá igual.

Si un equipo pierde, entonces se “rompe” su racha, y por lo tanto en la jornada siguiente tendrá
valor de 1.

Alternativamente hemos definido las variables RL2 y RV2 de forma análoga con la única diferencia
de que cuando un equipo pierde, su racha disminuye en 1 en lugar de volver a 1. Destacar que estas defi-
niciones del concepto de racha son de nuestra invención y podría ser definido de muchas otras maneras
diferentes.

A continuación veamos cómo hemos llegado a la elección de la variable DPLogJornada; en primer
lugar, es obvio que para predecir Y va a influir tanto la diferencia de puntos entre ambos equipos, co-
mo la jornada en la que se dispute el partido ya que, dependiendo de la jornada en la que estemos, la
diferencia de puntos puede ser más o menos significativa. Pongamos también un sencillo ejemplo; una
diferencia de 8 puntos entre el equipo local y el visitante en la jornada 4 es mucho más significativa que
una diferencia de 8 puntos en la jornada 34 (lo que querrá decir que son dos equipos muy cerca en la cla-
sificación y que apenas hay diferencia entre ellos). Por lo tanto, queremos que en las primeras jornadas
una diferencia de puntos pequeña sea bastante significativa, y conforme vaya aumentando el número de
la jornada, una diferencia de puntos pequeña sea menos importante. Si hacemos solamente el cociente
como en la variable DPJornada nos encontraremos con el problema de que la jornada tendrá mucho
mas peso que la diferencia de puntos debido a que crece más rápido y eso tampoco es conveniente, pero
si le introducimos el logaritmo (variable DPLogJornada), ya crece más despacio y se ajusta mejor a lo
que queremos.

2.3.1. Creación y resultados del modelo victoria local

Para realizar el modelo, hemos creado e introducido en R una base de datos con todos los par-
tidos de la primera división de Liga Española desde la temporada 2013− 2014 hasta la temporada
2016−2017, lo que hacen un total de 1520 partidos. De estos partidos, hemos quitado aquellos en los
que Jornada < 5, debido a que al principio todos los equipos empiezan con los mismos puntos y con la
misma racha, y también aquellos en los que Jornada > 35, ya que al final de temporada muchos equipos
bajan su nivel debido a que aunque ganen o pierdan tienen asegurada una cierta posición en la tabla. Así
pues, parece aconsejable eliminarlos de la base de datos ya que en ambos casos son muy difíciles de
predecir y obtendríamos datos anómalos. Para cada uno de los partidos restantes, hemos comprobado los
puntos que llevaba cada equipo en la clasificación antes de comenzar éste, y hemos calculado la racha de
cada uno en función del resultado de la jornada anterior. Posteriormente validaremos tanto este mode-
lo como el de victoria visitante con esta base de datos y con los resultados de la temporada 2017−2018.

Dado que tenemos un número elevado de variables predictoras y algunas muy parecidas, hemos
realizado el modelo de regresión logística paso a paso con criterio AIC. El criterio AIC es una medida
estadística que proporciona un modelo con las variables más significativas, en el que se pierda la menor
cantidad de información posible (para ver las ordenes ejecutadas para llegar al modelo, consultar el
script en el anexo). Los resultados obtenidos son los siguientes:
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Por tanto el modelo de victoria local cuenta con variables predictoras DPLogJornada y RL2. Es
bastante destacable el hecho de que ninguna de las variables que definen la racha visitante sean signi-
ficativas a la hora de predecir si un equipo local gana o no, ya que el modelo sólo señala interesante el
estado de racha del equipo local y la diferencia de puntos según en la jornada en la que se esté a la hora
de predecir. La estimación de los parámetros es:

β̂0 =−0,301

β̂2 = 0,173

β̂5 = 0,083

Estos coeficientes determinan que si aumentamos en una unidad la variable DPLogJornada o la
variable RL2, el odds ratio se incrementa en e0,173 ó e0,083 respectivamente.

Así pues, la probabilidad α de que en un determinado partido, gane el equipo local, viene dada por:

α = P(Y = 1|X2 = x2,X5 = x5) =
e−0,301+0,173x2+0,083x5

1+ e−0,301+0,173x2+0,083x5

Luego haciendo la transformación logística mencionada anteriormente tenemos que:

log
(

α

1−α

)
=−0,301+0,173x2 +0,083x5

Viendo la salida por pantalla de R, se aprecia claramente que la variable más significativa y por tanto
mas importante a la hora de predecir es DPLogJornada (es la que tiene un ρ-valor más pequeño). La
relación entre esta variable y la probabilidad α viene dada por la Figura 2.2.

Como se aprecia, la Figura 2.2 también tiene una forma de S-Curve, luego parece haber sido apro-
piada la elección de un modelo de regresión logística para predecir la victoria del equipo local en un
determinado partido de fútbol. Posteriormente validaremos más el modelo.

2.3.2. Creación y resultados del modelo victoria visitante

Para la creación de este modelo hemos seguido el mismo procedimiento que en el anterior, un
modelo de regresión logística paso a paso con criterio AIC sobre la misma base de datos. Al realizar el
modelo paso a paso, R nos intuía como mejor modelo uno con DPLogJornada, DPJornada y RV1 como
variables predictoras, pero no podemos aceptarlo como bueno dado que las variables DPLogJornada
y DPJornada están muy correladas (coeficiente de correlación de Pearson de 0,95). Esta situación
llamada multicolinealidad aproximada, implica que las varianzas de los estimadores, y por lo tanto las
predicciones, sean grandes e imprecisas. Para solventar este problema hemos planteado las siguientes
alternativas:
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Figura 2.2: Relación α y DPLogJornada

1. Desarrollar un modelo de regresión logística paso a paso pero sin la variable DPJornada en la
base de datos. R nos ofrece un modelo sólo con DPLogJornada como variable predictora.

2. Desarrollar otro modelo de regresión logistica paso a paso, pero esta vez quitando la variable
DPLogJornada de la base de datos. En este caso R nos ofrece un modelo con RV1 y DPJornada
como variables predictoras.

Analizando los dos modelos nos hemos decantado por el primero, ya que en el segundo la variable
predcitora RV1 tiene un ρ−valor de 0,11, muy elevado como para considerarla variable significativa.
Un resumen del modelo final es el siguiente(ordenes en el anexo):

Es interesante ver que para predecir la victoria del equipo visitante sólo es necesario saber los puntos
que tienen cada equipo en la jornada correspondiente y no importa ningún tipo de racha. Los estimadores
de los parámetros son:

β̂0 =−1,036

β̂2 =−0,187

Por lo tanto, cada vez que aumentamos en una unidad la variable DPLogJornada, el odds ratio se
incrementa en e−0,187. Es muy interesante ver que el coeficiente β̂2 es prácticamente igual que en el mo-
delo victoria local pero cambiado de signo. Esto es debido a que una diferencia de puntos positiva entre
el local y el visitante influye positivamente a la hora de predecir la victoria local pero negativamente
cuando se predice la victoria visitante.
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Luego la probabilidad γ de que en un determinado partido, gane el equipo visitante, viene dada por:

γ = P(Y = 1|X2 = x2) =
e−1,036−0,187x2

1+ e−1,036−0,187x2

Realizando la trasnformación logistica para linealizar, obtenemos lo siguiente:

log
(

γ

1− γ

)
=−1,036−0,187x2

De esta manera ya tenemos los dos modelos para predecir la probabilidad de que en un cierto
partido de fútbol, gane el equipo local o gane el equipo visitante a partir de unas variables predictoras
muy intuitivas y sencillas de obtener.

2.4. Validación de los modelos

Para comprobar si los resultados que dan nuestros modelos son aceptables vamos a realizar varias
pruebas sobre los datos con los que los hemos creado (de la jornada 4 a la jornada 35 por las razones
mencionadas anteriormente). En primer lugar, vamos a contabilizar las veces que da como suceso más
probable la victoria local contrastándolo con los datos de dichas temporadas. Los resultados para el
modelo victoria local, considerando que el modelo predice éxito cuando α > 0,5 son los siguientes:

Predicción | Resultado Victoria local No victoria local
Victoria local 370(66,1%) 190(33,1%)

No victoria local 244(33,9%) 476(66,1%)

Cuadro 2.1: Tabla que representa la predicción del modelo victoria local con el resultado que se dio en
cada partido con sus respectivos porcentajes por filas.

Los resultados son favorables al modelo ya que de 1280 resultados se aciertan 846, lo que supone
un 66,1%. Veamos también el mismo contraste pero con el modelo victoria visitante considerando que
el modelo predice éxito cuando γ > 0,5.

Predicción | Resultado Victoria visitante No victoria visitante
Victoria visitante 93(59,6%) 63(40,4%)

No victoria visitante 283(25,2%) 841(74,8%)

Cuadro 2.2: Tabla que representa la predicción del modelo victoria visitante con el resultado que se dio
en cada partido con sus respectivos porcentajes por filas.

En este caso los resultados también son favorables al modelo ya que acierta 934 de 320 resultados,
lo que supone un 72,96%. Mirando a una posible aplicación del modelo al mundo de las apuestas, cabe
resaltar que no nos interesa tanto si el equipo va a ganar o no, si no que queremos estimar las proba-
bilidades de forma que sean lo más cercanas a la realidad posible, para compararlas con las cuotas y
decidir si merece la pena apostar. Por ejemplo, en algunas situaciones merece más la pena apostar a un
equipo con probabilidad de victoria de 0,4 pero con cuota de 21e , que a un equipo con probabilidad
de victoria de 0,8 pero con cuota de 1,08e.

A simple vista los resultados parecen aceptables, para comprobar si finalmente lo son vamos a
realizar lo que se conoce como curva ROC. La curva ROC es una herramienta estadística utilizada
en el análisis de la bondad de modelos con variable respuesta de carácter dicotómico. La curva ROC
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representa las medidas de sensibilidad y especificidad, por tanto veamos previamente qué son estos dos
conceptos en el ámbito de partidos de fútbol (centrándonos sólo en la victoria local ya que es análogo
para la victoria visitante).

Llamamos sensibilidad a la probabilidad de, dado un partido en el que gana el local, el modelo
prediga que gana el local. También esto se conoce como razón de verdaderos positivos.

Llamamos especificidad a la probabilidad de, dado un partido en el que no gana el equipo local,
el modelo prediga que no gana el equipo local. También esto se conoce como razón de verdaderos
negativos.

Notar que tanto la sensibilidad como la especificidad depende de un parámetro α que es el punto de
corte a partir del cuál se predice que el equipo local gana. Para calcularlas, es necesario tener en cuenta
los siguientes conceptos:

Denotamos V α
+ a los verdaderos positivos, es decir, a los partidos en los que gana el local y el

modelo predice que gana el local (es decir, si p > α).

Denotamos V α
− a los verdaderos negativo, es decir, a los partidos en los que pierde el local y el

modelo predice que pierde el local (es decir, si p < α ).

Llamamos falsos positivos Fα
+ a los partidos en los que pierde el local y el modelo predice que

gana (p > α).

Llamamos falsos negativos Fα
− a los partidos en los que gana el local y el modelo predice que no

gana (p < α).

Con esta notación, la sensibilidad Sα es

Sα =
V α
+

V α
+ +Fα

−

y la especificidad Eα es

Eα =
V α
−

V α
− +Fα

+

La curva ROC representa 1− especi f icidad frente a la sensibilidad para cada posible valor α .
Para comprobar la bondad de un modelo a partir de la curva ROC generada se utiliza habitualmente el
área bajo la curva (AUC), y si se da que AUC > 0,7, entonces el modelo tiene un valor de diagnóstico
aceptable. Las curvas ROC obtenidas de los modelos victoria local y victoria visitante son las siguientes:



Predicción de resultados de partidos de fútbol - Sergio Sabroso Lasa 11

(a) Victoria local (b) Victoria visitante

Figura 2.3: Curvas ROC de ambos modelos

Como vemos los valores del AUC están en torno a 0,7 y por lo tanto los modelos se consideran
adecuados. Veamos ahora las mismas comprobaciones pero sobre la temporada 2017− 2018. Análo-
gamente, podemos validar los modelos aplicándolos a la temporada 2017− 2018; la comparativa de
lo que predicen los modelos victoria local y victoria visitante con lo que sucede en realidad se puede
comprobar en los Cuadros 2.3 y 2.4 respectivamente.

Predicción | Resultado Victoria local No victoria local
Victoria local 89(63,1%) 52(36,9%)

No victoria local 64(35,8%) 115(64,2%)

Cuadro 2.3: Tabla que representa la predicción del modelo victoria local con el resultado que se dio en
cada partido con sus respectivos porcentajes por filas en la temporada 2017−2018.

Predicción | Resultado Victoria visitante No victoria visitante
Victoria visitante 20(52,6%) 18(47,4%)

No victoria visitante 74(26,2%) 208(73,8%)

Cuadro 2.4: Tabla que representa la predicción del modelo victoria visitante con el resultado que se dio
en cada partido con sus respectivos porcentajes por filas en la temporada 2017−2018.

En esta temporada, los resultados también son favorables a los modelos, ya que el modelo victoria
local acierta 204 de 320 lo que supone un 63,75% y el modelo victoria visitante acierta 228 de 320 re-
sultados lo que supone un 71,25%. Comprobamos también la bondad de los modelos en esta temporada
mediante las curvas ROC:
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(a) Victoria local (b) Victoria visitante

Figura 2.4: Curvas ROC de ambos modelos en la temporada 2017−2018

Los valores del AUC están ligeramente por debajo de los de la Figura 2.3, lo que es lógico ya que
los datos de la temporada 2017−2018 no se han usado para el ajuste. En cualquier caso se encuentran
muy cercanos a 0,7 lo que puede interpretarse como aceptable.



Capítulo 3

Determinación de una estrategia óptima
de apuesta

3.1. Introducción

Una vez obtenidos los modelos que predicen resultados de fútbol, el objetivo final es usarlos para
obtener beneficio económico en las casas de apuestas. A diferencia de muchos otros modelos en los
que se apuesta siempre una cantidad fija, permitiremos apostar una cantidad de dinero variable en cada
partido para maximizar la ganancia. Para ello, hemos pensado en varias alternativas; en primer lugar
repasaremos el clásico Criterio de Kelly y veremos si es adecuado para nuestros modelos, y posterior-
mente desarrollaremos un problema de programación dinámica que nos maximice la probabilidad de
conseguir una cantidad de dinero en un cierto número de jornadas. Esta segunda opción parece a priori
bastante adecuada dado que el desarrollo de un problema de programación dinámica se basa en una
toma de decisiones secuencial, luego se ajusta bastante a la idea de ir apostando a varios partidos en
cada una de las jornadas de la temporada.

3.2. Criterio de Kelly

El criterio de Kelly, como se indica en [7], es un procedimiento probabilístico cuyo objetivo es
maximizar la esperanza del beneficio cuando se apuesta en un juego favorable. Por “juego favorable”
entendemos aquel en el que existe una estrategia de apuesta tal que P( lı́m

n→∞
Xn = +∞) > 0, donde Xn

es el capital después de n repeticiones del juego. Veamos la idea del criterio de Kelly con un sencillo
ejemplo:

Imaginemos un juego contra alguien infinitamente rico en el que se intenta adivinar cómo caerá una
moneda después de un lanzamiento. Suponemos que la moneda tiene probabilidad de cara p > 1/2 y
vamos a apostar siempre cara. En el caso de que ganemos, el beneficio obtenido será el apostado y en
el caso de que perdamos, la pérdida es igual a la cantidad apostada. Al comienzo del juego, nuestro
capital inicial es de X0 y el principal problema se basa en elegir qué cantidad Bi apostamos en la i-ésima
repetición. Un criterio clásico es el de elegir Bi para cada i de manera que el valor esperado E(Xn) sea
máximo después de n repeticiones. Tomando Tk = 1 si el k-ésimo resultado es cara y Tk =−1 si es cruz,
entonces Xk = Xk−1 +TkBk para k = 1,2,3, . . . y por lo tanto se sigue que Xn = X0 +∑

n
k=1 TkBk. Se tiene

E(Xn) = X0 +
n

∑
k=1

E(TkBk) = X0 +
n

∑
k=1

(p−q)E(Bk), con q = 1− p (3.1)

Como p− q > 0, el juego tiene una esperanza positiva, luego en lugar de maximizar E(Xn) vamos a
maximizar E(Bk) en cada repetición. Así pues, para maximizar la esperanza de la ganancia debemos
apostar todo nuestro capital en cada repetición: inicialmente B1 = X0, si ganamos, B2 = 2X0 y así su-
cesivamente. Sin embargo, la probabilidad de arruinarnos apostando de esta manera viene dada por

13
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1− pn, y con 1/2 < p < 1 se da que lı́m
n→∞

(1− pn) = 1, por lo que la ruina es segura, así que apostar para
maximizar la ganancia no es una buena estrategia.

Por otro lado, si apostamos con el objetivo de minimizar la probabilidad de ruina (entendemos ruina
cuando Xk = 0 para algún k), llegamos a la conclusión de que tenemos que apostar lo mínimo posible
en cada repetición. Sin embargo, ésta tampoco es una buena estrategia ya que estamos minimizando
simultáneamente la esperanza de la ganancia media.

Una estrategia intermedia que esté entre maximizar E(Xn) (asegurando la ruina) y minimizar la
probabilidad de ruina (minimizando también E(Xn)) fue propuesta por J.L. Kelly.

En el juego de la moneda antes mencionado, donde la probabilidad de ganar y el beneficio son
siempre iguales, parece intuitivo que la estrategia “óptima” es apostar siempre la misma fracción f de
nuestra fortuna. Por consiguiente, si apostamos de forma que Bi = f Xi−1, donde 0 6 f 6 1, estaremos
siempre apostando el mismo porcentaje de nuestro capital (lo que se conoce como fracción fija). Es fácil
ver que de esta manera, si denotamos por S al número de veces que ganamos el juego y por F al número
de veces que perdemos, se sigue que Xn = X0(1+ f )S(1− f )F , donde S+F = n, y si además tomamos
0 < f < 1, se tiene que P(Xn = 0) = 0, luego nunca se alcanzará el estado de ruina.

Dado que

en log[Xn/X0]
1/n

= Xn/X0

la cantidad

log
[

Xn

X0

]1/n

=
S
n

log(1+ f )+
F
n

log(1− f )

mide el coeficiente exponencial del incremento de la fortuna por cada jugada. Kelly propone maximizar
la función G( f ), donde

G( f ) = E

{
log
[

Xn

X0

]1/n
}

= E
{

S
n

log(1+ f )+
F
n

log(1− f )
}
= p log(1+ f )+q log(1− f )

Por tanto

G′( f ) =
p

1+ f
− q

1− f
=

p−q− f
(1+ f )(1− f )

= 0

con f = p−q. Además como se tiene que

G′′( f ) =
− f 2 +2 f (p−q)−1

(1− f 2)2 < 0

se sigue que G′( f ) es monótona y estrictamente decreciente en [0,1). Además, dado que G′(0)= p−q>
0, lı́m

f→1−
G′( f ) = −∞ y por continuidad de G′( f ), G( f ) tiene un único máximo en f ∗ = p−q, como se

puede apreciar en la Figura 3.1. Es decir, el criterio de Kelly propone apostar la fracción p−q = 2p−1
en cada jugada. La explicación de por qué Kelly eligió maximizar la función G( f ) puede encontrarse
detalladamente con demostraciones en [9].

El criterio de Kelly puede ser extendido con facilidad a juegos dónde no siempre tenemos la misma
cuota. Sea b = cuota− 1 y suponiendo que en cada repetición la probabilidad de ganar es p > 0 y
bp− q > 0, entonces el juego sigue siendo favorable y el procedimiento descrito anteriormente puede
ser también usado para maximizar

G( f ) = E
{

log
[

Xn

X0

]}
= p log(1+b f )+q log(1− f )
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f1

G( f )

0 f ∗

Figura 3.1: Gráfica de la función G( f ) en el intervalo [0,1] con p = 0,8.

y con los mismos argumentos se llega a que el único máximo se alcanza en f ∗ = (bp−q)/b. Esto es, el
criterio de Kelly sigue apostar la fracción (bp−q)/b cuando el juego es favorable.

El gran problema que tiene el criterio de Kelly es que parte del supuesto de que el depósito inicial
sea infinitamente divisible y esto en la práctica no se cumple.

Veamos que pasa si aplicamos el criterio de Kelly a nuestros modelos en la temporada 2017−2018.
Para ello hemos calculado la cantidad E(bene f icio) y, en el partido donde esta cantidad sea más alta
(y positiva), hemos apostado la parte entera de la fracción (bp− q)/b = (cp− 1)/(c− 1) de nuestro
capital, siendo p y c la probabilidad de victoria y su cuota respectivamente. Empezando con 10e en la
jornada 4 la estrategia según el criterio de Kelly es (denotando por B a nuestro capital):

En el partido S.D. Eibar - C.D. Leganés (1-0), la E(bene f icio) del S.D. Eibar es de 0,7 y la del
C.D. Leganés es de 1,38, luego apostamos al C.D. Leganés (p = 0,34 y c = 3,8) la fracción
f = 0,134 de nuestro capital, es decir, b10 ·0,134c= b1,34c= 1e y lo perdemos. Luego B = 9.

En el partido Getafe C.F. - F.C. Barcelona (1-2) de la jornada 4, razonando de la misma manera,
nos dice apostar al Getafe C.F. (p = 0,32 y c = 11,6) la fracción f = 0,25 de nuestro capital,
luego le apostamos b9 ·0,25c= b2,25c= 2e y los perdemos, es decir, B = 7e.

En el partido Levante U.D. - Valencia C.F. (1-1), nos dice apostar al Levante U.D. (p = 0,46 y
c = 3,15) la fracción f = 0,22 de nuestro capital, es decir, 1e y lo perdemos, por tanto B = 6.

En el partido Real Sociedad - Real Madrid C.F. (1-3), apostamos a la Real Sociedad (p = 0,610 y
c = 4,75 la fracción f = 0,5 de nuestro dinero, es decir, 3e que los perdemos y por consiguiente
B = 3

En el partido Girona - Sevilla F.C. (0-1), nos dice apostar al Girona (p = 0,36 y c = 3,25) la
fracción f = 0,06 de nuestro capital, es decir, 0,2e pero cómo la apuesta mínima de la casa de
apuestas es de 1e lo apostamos y lo perdemos, por tanto B = 2.

En el partido C.D. Alavés - Villarreal C.F. (0-3), apostamos al C.D. Alavés (p = 0,36 y c = 3,01)
la fracción 0,05 de nuestro capital, y por el mismo razonamiento apostamos 1e y lo perdemos,
por lo tanto B = 1.

Pasamos a la jornada 5 y nos aconseja apostar la fracción f = 0,11 al S.D. Eibar (p = 0,15 y
c = 21 partido F.C. Barcelona - S.D. Eibar (6-1), es decir, apostamos 1e y lo perdemos, por tanto
B = 0.

En consecuencia, como hemos comprobado en la jornada 5 ya hemos alcanzado la ruina, luego
criterio de Kelly no es conveniente para nuestro problema. De hecho, este criterio ha sido criticado por
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varios autores, [11], y se recomienda como regla general, apostar menos de lo que dice el criterio para
evitar una ruina temprana.

3.3. Programación dinámica

La programación dinámica proporciona un procedimiento para determinar la combinación de deci-
siones que maximiza el beneficio total o minimiza el costo total en problemas en los que ha de tomarse
un conjunto de decisiones secuencialmente. La programación dinámica trata el problema, que puede
contener un gran número de variables interrelacionadas, como si estuviera formado por una sucesión
de problemas, cada uno de los cuales tuviera sólo unas pocas variables. Puede aplicarse a problemas
cuya representación matemática inicial es bastante diferente y no existe un planteamiento matemático.
Pueden ser deterministas o estocásticos (nuestro problema será de carácter estocástico).

Las características generales de un problema de programación dinámica son las siguientes:

El problema puede ser dividido en etapas, de manera que se ha de tomar una decisión en cada
etapa.

Cada etapa tiene asociada un cierto número de estados. Llamamos estado a toda la información
que se precisa en cualquier etapa para poder tomar una decisión óptima.

La decisión elegida en cualquier etapa describe cómo se transforma el estado en la etapa actual en
el estado en la etapa siguiente. En el caso de programación dinámica estocástica, el estado actual
y la decisión tomada determinan la distribución de probabilidad del estado en la etapa siguiente.

Principio de optimalidad. Dado el estado actual, la decisión óptima para cada una de las res-
tantes etapas no depende de los estados en los que se ha estado previamente o de las decisiones
previamente tomadas.

Resumiendo, el planteamiento de un problema de programación dinámica se basa en un sistema
que evoluciona a lo largo de un cierto número de etapas, en cada una de las cuales, el sistema está
descrito por un conjunto de parámetros denominados estados. En cada etapa, independientemente del
estado en el que se encuentre el sistema, debe de tomarse una decisión, y para tomar esta decisión, no
es relevante la historia pasada del sistema (lo que hemos mencionado como principio de optimalidad).
Cuando se toma una decisión, se obtiene un pago (beneficio o costo) que depende del estado en el que
estaba el sistema y de la decisión tomada. El propósito del problema es optimizar alguna función del
estado inicial y de las decisiones subsiguientes. La notación empleada es la siguiente:

N denota el número de etapas.

xk, k = 0, . . . ,N−1 denota el estado en la etapa k, que recoge toda la información que se precisa
en cada etapa para tomar la decisión óptima. El estado al comienzo del problema es x0.

dk, k = 0, . . . ,N−1 denota la variable decisión. Se ha de seleccionar en la etapa k sabiendo que
el estado del sistema es xk. El conjunto de decisiones posibles del sistema dependerá, en general,
del estado del sistema. Se denota por Dk(xk).

wk, k = 0, . . . ,N − 1 denota la distribución de probabilidad. Representa el parámetro aleatorio
que afecta la transición entre estados y los pagos generados. Las variables wk son independientes
aunque su distribución puede depender de xk y dk.

Ecuación de transferencia, xk+1 = fk(xk,dk,wk), k = 0, . . . ,N− 1. Indica como se transforma el
estado actual xk por efecto de la decisión dk y de la componente aleatoria wk, en el estado en la
etapa siguiente xk+1.
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gk(xk,dk,wk), k = 0, . . . ,N − 1 denota el pago en una etapa. Indica el beneficio o costo que el
sistema genera en una etapa por estar en el estado actual xk , tomar la decisión dk y por el efecto
de wk.

gN(xN) denota el pago terminal. Indica el pago al terminar el proceso.

Jk, k = 0, . . . ,N denota la función objetivo que queremos maximizar o minimizar.

J?(x0) denota el valor óptimo de la función objetivo, que como es obvio, depende del estado
inicial del sistema.

d?
k (xk) denota la decisión óptima que ha de tomarse en cada etapa, k = 0, . . . ,N−1, para cada uno

de los estados xk en los que puede estar el sistema en dicha etapa.

El objetivo final de un problema de programación dinámica estocástico es maximizar (o minimizar)
el valor esperado de la suma de los pagos generados en cada etapa y por finalizar el proceso. Es decir,
maximizar o minimizar la cantidad:

máx
{d0,...,dN−1}

Ew0,...,wN−1

{
gN(xN)+

N−1

∑
k=0

gk(xk,dk,wk)

}
La manera utilizada para resolver este problema, es el siguiente algoritmo:

Paso 1: Hacer k = N y JN(xN) = gN(xN).

Paso 2: Hacer k = k−1, y para cada estado, determinar

Jk(xk) = máx
dk∈D(xk)

Ewk {gk(xk,dk,wk)+ Jk+1[ fk(xk,dk,wk)]}

Paso 3: si k = 0 detener el algoritmo, en otro caso ir al Paso 2.

Teorema 3.1. En todo problema de programación dinámica se tiene que J?(x0) = J0(x0), es decir, el
valor óptimo de la función objetivo se obtiene en el último paso del algoritmo.

Una demostración extendida de esta teorema puede encontrarse en [4]. Por lo tanto, resolviendo el
algoritmo anterior obtenemos la solución a un problema de programación dinámica.

3.4. Planteamiento del problema

Una vez explicados los conceptos básicos, la notación y el algoritmo empleado en la programación
dinámica, vamos a utilizarlos en nuestro problema. Queremos resaltar que parece muy adecuada la ele-
cción de la programación dinámica para nuestro caso ya que queremos diseñar una estrategia óptima
que nos diga a qué equipos apostar y qué cantidad en cada jornada, es decir, tenemos que tomar una serie
de decisiones secuencialmente y es precisamente en lo que se basa este tipo de problemas. Como nues-
tros modelos sólo predicen resultados de la jornada 4 a la jornada 35, sólo apostaremos en estas jornadas.

El planteamiento principal del problema es el siguiente: Dada una cantidad inicial Bi queremos
maximizar la probabilidad de acabar con una cierta cantidad final B f al cabo de N jornadas apostando
a un número determinado de partidos. En nuestro caso, vamos a tomar Bi = 10 e y B f = 13 e pero
en lugar de realizar un sólo problema para obtener B f , que empiece en la jornada 4 y termine en la 35,
vamos a dividirlo en subproblemas de 4 en 4 jornadas, con el objetivo de conseguir B f en cada uno
de ellos. Para lograrlo, tenemos la opción de apostar a la victoria local y a la visitante de 4 partidos
diferentes en cada una de las jornadas. Cabe destacar que:

Si conseguimos nuestro objetivo antes de finalizar las 4 jornadas correspondientes, empezamos
un nuevo problema.



18 Capítulo 3. Determinación de una estrategia óptima de apuesta

Como tenemos dos modelos diferentes para predecir la victoria local y la victoria visitante, con-
sideramos cada partido como si fueran dos independientes por si la estrategia óptima es apostar
tanto al local como al visitante. Además, a la hora de pensar en los distintos casos posibles y cal-
cular sus respectivas probabilidades, cuando no gana el local no tiene por que ganar el visitante y
viceversa, por consiguiente es más cómodo interpretarlos cómo partidos diferentes (pensando en
la posterior programación en Java)

Utilizamos cantidades pequeñas de dinero para no incrementar el coste computacional, pero el
programa que diseñaremos es perfectamente aplicable a cantidades más elevadas. Por el mismo
razonamiento hemos elegido apostar en cada jornada a cuatro partidos elegidos al azar en lugar
de todos los de la jornada.

Además:

N = 4. Cada una de las etapas identifica a una jornada diferente.

xk denota el dinero disponible al comienzo de la etapa k. Es obvio que si en algún momento xk = 0
terminamos el problema sin cumplir nuestro objetivo y si xk > 13 dejamos de apostar por que ya
se consigue lo que queremos.

x0 = Bi = 10

di
k denota al dinero apostado en el partido i correspondiente a la etapa k, con i = 1,2, . . . ,8 y

k = 1, . . . ,4.

wi
k denota el factor aleatorio que determina el resultado del partido i, con i = 1,2, . . . ,8 y k =

1, . . . ,4.

ci
k denota la cuota de victoria del partido i correspondiente a la etapa k, con i = 1,2, . . . ,8 y

k = 1, . . . ,4. Las cuotas las hemos obtenido mediante una media aritmética de las principales
casas de apuestas del mundo, tanto físicas cómo de carácter online.

Con esta notación, la ecuación de transporte viene dada por:

xk+1 =
8

∑
i=1

fk(xk,di
k,w

i
k) = xk +

8

∑
i=1

{
di

kci
k si wi

kes ganar
−di

k si wi
kes perder

Para poder resolver este tipo de problemas estocásticos en los que se quiere maximizar una proba-
bilidad, es necesario definir los pagos generados en cada etapa cómo gk(xk,di

k,w
i
k) = 0 con k = 1,2,3 y

∀i, y el pago terminal cómo

g4(x4) =

{
1 si x4 > 13
0 si x4 < 13

(3.2)

Por otro lado, como el objetivo de un problema genérico de estas características es

máx{P(XN >C f )}= máxE[ξ ]

considerando ξ una variable aleatoria tal que

ξ =

{
1 si XN >C f

0 si XN <C f

se tiene que

P(x4 > 13) = 1 P[x4 > 13]+0 P[x4 < 13] = E[ξ ] = E[
3

∑
k=1

gk(xk,di
k,w

i
k)+g4(x4)] = E[g4(x4)] (3.3)
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y de aquí, por el teorema mencionado se sigue que para resolver cada uno de los problemas hay que
calcular

J?(x0) = máx
dk∈D

E {g4(x4)}

para lo que es necesario ir recorriendo el algoritmo mencionado en la Sección 3.2. Notar que aunque
normalmente en programación dinámica basta con una resolución del problema para que nos dé las so-
luciones de todas las etapas, en nuestro caso no es así, ya que tenemos que resolver tantos problemas de
programación dinámica como etapas (N = 4); es decir, el primer problema lo resolvemos para N = 4,
luego resolvemos un segundo problema con N = 3, luego N = 2 y finalmente N = 1. La razón de esto
es que son necesarias las cuotas y las probabilidades de todas las jornadas, pero como es natural, sólo
tenemos las probabilidades y las cuotas de la jornada en la que se está. Para solventar este problema,
hemos programado la primera jornada con las probabilidades y las cuotas reales, pero para las demás he-
mos utilizado probabilidades y cuotas ficticias. Estos datos ficticios pueden ponerse a nuestra invención,
pero para hacer el problema más real hemos utilizado cinco cuantiles de las probabilidades predichas
por nuestro modelo victoria local de la temporada 2017-2018, ya que es de la única temporada de la
que teníamos las cuotas. Para no tener problemas, evitamos el máximo y el mínimo, y de esta manera
los cuantiles elegidos son:

p1 = q0,05 = 0,183 correspondiente al partido Málaga C.F. - Real Sociedad de la jornada 34 cuya
cuota local es de 4,48.

p2 = q0,275 = 0,358 correspondiente al partido S.D. Eibar - At. de Madrid de la jornada 19 cuya
cuota local es de 3,9.

p3 = q0,50 = 0,472 correspondiente al partido C.D. Alavés - U.D Las Palmas de la jornada 15
cuya cuota local es de 2,2.

p4 = q0,725 = 0,611 correspondiente al partido At. de Madrid - Valencia C.F. de la jornada 22
cuya cuota local es de 1,49

p5 = q0,95 = 0,818 correspondiente al partido Valencia C.F - R.C.D Espanyol de la jornada 31
cuya cuota local es de 1,456.

Notar que son 5 partidos en lugar de 4 que tenemos en la primera etapa y que sólo introducimos
las cuotas y las probabilidades de ganar el local en lugar de poner también las de visitante, pero por el
hecho de ser partidos ficticios el programa no considera si son probabilidades y cuotas de ganar el local
o el visitante, ni tampoco el hecho de que sean 5 partidos (podían ser más o menos).

Debido a que tenemos cada partido como si fueran dos independientes, la cantidad de combinaciones
de resultados que pueden darse es en torno a 28, además también tenemos que calcular todas las posibles
decisiones, por ejemplo, si xk = 10, las maneras distintas de apostar a 8 partidos (en realidad 9, por que
hay un noveno partido que es “no apostar”), son las combinaciones con repetición de 10e a repartir
tomados de 9 en 9, es decir, el número combinatorio 18 sobre 9 que es igual 48620. Por esta razón,
hemos diseñado un programa en Java que haga esto por nosotros y cuyo código se puede encontrar
explicado con detalle en el anexo.

3.4.1. Aspectos importantes sobre la programación en Java

Hemos realizado un programa en Java en el que a partir de unos datos que nos pide por teclado;
nuestro capital inicial, el capital que se quiere conseguir, el número de etapas para conseguir dicho ob-
jetivo, el número de partidos (no es necesario duplicar cada uno de ellos ya que lo hace el programa
automáticamente), las probabilidades de ganar el local y el visitante de cada uno de esos partidos (intro-
duciremos las que dan nuestros modelos) y las cuotas gana local y gana visitante de cada uno de estos
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partidos, el programa nos escribe por pantalla la estrategia óptima que habría que seguir para alcanzar el
objetivo en cada una de las etapas y la probabilidad que tenemos de alcanzarlo. Destacar que el código
del programa no está sacado de ninguna fuente y es de creación propia.

En relación a cuáles son las cantidades a apostar, el programa nos permitirá apostar de 1 en 1 en el
intervalo [0,xk] siendo k la jornada actual y de 5 en 5 en el intervalo [25,xk] siempre y cuando xk < xN

en cuyo caso el programa nos dirá que la solución óptima es no apostar (como es obvio). Recordar que
en nuestro caso xN = 13 y por tanto nunca se da la segunda opción aunque esté programada.

El funcionamiento central del programa se basa en calcular la función J en cada una de las etapas
de la siguiente manera:

Para la etapa N hemos definido una función que hace exactamente lo explicado en (3.2).

Para las etapas comprendidas en [2,N − 1] calcula la función J para cada uno de los estados
posibles utilizando las probabilidades y cuotas ficticias de la siguiente manera: Fijado un estado,
calcula todas las combinaciones de apuestas y para cada una de esas combinaciones, analiza
todos los posibles resultados (mediante código binario) que pueden darse, obteniendo la ecuación
de transporte correspondiente. Mediante la función J de la etapa anterior y la probabilidad de que
ocurran justamente esos resultados, el programa se queda con la decisión que maximiza el valor
esperado, que por lo visto en (3.3) coincide la posibilidad de alcanzar el objetivo.

Para la primera etapa hace exactamente lo mismo pero con las cuotas y las probabilidades intro-
ducidas por teclado.

El tiempo de ejecución del programa en un ASUS F540S con CPU Intel Dual-Core es de 6 minutos
y 33 segundos.

3.5. Aplicación del programa y resultados obtenidos

Cómo ya tenemos unos modelos que nos predicen probabilidades y un programa que nos asegura
una estrategia óptima para conseguir beneficios, lo lógico es aplicarlo a la vida real. Para ello vamos a ir
ejecutando el programa diseñado en Java jornada a jornada de la temporada 2017-2018 y observar cuá-
les son los beneficios obtenidos. Es importante notar que en la aplicación del programa no se ha usado
conocimiento previo de los resultados de la temporada 2017−2018, y por tanto puede considerarse una
simulación real, en el sentido de que se podrían haber hecho estas apuestas a lo largo de la temporada
(es cierto que hemos usado los partidos de la temporada para obtener los cuantiles de las cuotas ya que
son las únicas que teníamos, sin embargo para la temporada 2018− 2019 pueden usarse los mismos
cuantiles y aplicar este procedimiento sin ningún conocimiento adicional de la temporada). Denotamos
nuestro capital desde el comienzo de la simulación con B, y vamos a llamar fases a cada uno de los
subproblemas de 4 jornadas.

Fase 1:

Comenzamos en la jornada 4 con x0 = 10, y el objetivo xN = 13 en las próximas 4 jornadas
(incluyendo ésta). Elegimos cuatro partidos al azar de la jornada, calculamos las probabilidades
gana local y gana visitante con nuestros modelos y los introducimos en el programa con sus
respectivas cuotas. Una vez ejecutado, el programa nos dice que la decisión óptima es apostar 1e
a la victoria del Getafe C.F. (p= 0,319, c= 11,6) en el partido Getafe C.F. - F.C. Barcelona (1-2),
luego perdemos lo apostado y así B = 9. En esta jornada, la probabilidad de alcanzar el objetivo
es de 0,88.

Pasamos a la jornada 5, pero como en la anterior hemos perdido dinero ahora empezamos con
x0 = 9 con el objetivo de conseguir xN = 13 en las próximas 2 jornadas. El programa nos da
como decisión óptima no apostar a nada, de manera que pasamos a la jornada siguiente. Ahora,
la probabilidad de alcanzar el objetivo es de 0,82.
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En la jornada 6 con x0 = 9 y xN = 13, nos da como solución óptima con probabilidad de alcanzar
el objetivo de 0,65, apostar 6e a la victoria del R.C. Celta de Vigo (p1 = 0,224, c1 = 3,25) en
el partido S.D Eibar - R.C. Celta de Vigo (0-2) y 3e a la victoria del Sevilla C.F. (p2 = 0,304,
c2 = 5,875) en el partido At. de Madrid - Sevilla C.F (2-0). Así pues, aunque pierde el Sevilla
C.F. gana el Celta, luego se tiene que B = 6 · 3,25 = 19,5 y cómo ya hemos llegado al objetivo,
terminamos la fase.

Veamos ahora la Fase 2:

Comenzamos la nueva fase empezando en la jornada 7 con x0 = 10 y buscando el mismo objetivo
que antes en 4 jornadas. Procediendo de la misma manera, el programa nos da cómo decisión
óptima apostar 1e a la victoria del C.D. Leganés (p = 0,38, c = 6,5) en el partido C.D Leganés
- At. de Madrid (0-0), luego perdemos y B = 9.

Pasamos a la jornada 8 con x0 = 9 con el mismo objetivo pero con una jornada menos para
apostar. La decisión óptima es no apostar a nada.

En la jornada 9 da como solución óptima apostar 9e a la victoria del Betis (p = 0,676, c = 1,57)
en el partido Betis - Alavés (2− 0), luego B = 9 · 1,57 = 14,3 y cómo se cumple el objetivo
terminamos la fase.

Hasta ahora parece que el programa se comporta igual en todas las fases; apuesta 1e en la primera
jornada a un equipo con poca probabilidad de ganar pero con una cuota alta y lo pierde, la segunda
jornada no apuesta y en la tercera lo hace de manera que consigue el objetivo. No vamos a detallar aquí
jornada a jornada qué nos ofrece como estrategia óptima, pero hay un gran número de fases en los que
la estrategia es diferente. Por ejemplo repasemos la fase 7. Empezamos en la jornada 22 con el capital
inicial y objetivo de siempre. La decisión óptima dada es que apostemos 2e a la victoria del Girona
(p = 0,522, c = 2,5) en el partido Girona - Athletic Club (2-0), luego B = 13 y por lo tanto finalizamos
la fase. También hay fases en las que la decisión óptima es distribuir bastante más nuestro dinero, algo
muy interesante ya que no es una idea que se le puede ocurrir a cualquiera con facilidad. Sucede algo
así en la fase 13:

Empezamos en la jornada 32, en la que nos dice apostar 4e al At. de Madrid (p1 = 0,871,
c1 = 1,25) en el partido At. de Madrid - Levante U.D. (3-0) y 2e a la victoria del Athletic Club
(p2 = 0,679, c2 = 1,6) en el partido Athletic Club - R.C. Deportivo (2-3), luego ganamos la
primera apuesta y perdemos la segunda, B = 4+4 ·1,25 = 9.

En la jornada 33 nos dice no apostar a nada.

En la jornada 34 da como estrategia óptima apostar 5e al C.D. Alavés (p1 = 0,466, c1 = 2,29)
en el partido U.D. Las Palmas - C.D. Alavés (0-4). Por consiguiente B = 2+ 5 · 2,29 = 13,45 y
finalizamos la fase.

En la Figura 3.2 se puede apreciar cómo va evolucionando nuestro capital jornada a jornada de la
temporada. Al finalizar la temporada, nuestro capital es de 58,96e de tal manera que el beneficio es de
48,96e por tanto los resultados son excelentes ya que sixtiplicamos nuestro capital inicial.

Como vemos, no en todas las jornadas se gana, y hay un momento de la temporada, en torno a la
jornada 20 en la que se encadena una mala racha. Esto sucede en la fase 6, en la que:

En la jornada 19 nos dice apostar 2e al Valencia C.F (p = 0,573, c = 2,28) en el partido R.C.
Deportivo - Valencia C.F. (1-2) así que ganamos y B = 8+2 ·2,28 = 12,56.

En la jornada 20 perdemos dinero por que nos aconseja apostar 3e al At. de Madrid (p = 0,738,
c = 1,32) en el partido At. de Madrid - Girona (1-1) y así B = 9,56.
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Figura 3.2: Beneficio obtenido durante la temporada 2017-2018 empezando con 10e

En la jornada 21 volvemos a perder dinero ya que nos aconseja apostar 3e al Levante (p1 = 0,286,
c1 = 4) en el partido R.C Deportivo - Levante U.D. (2-2), 4e al Girona (p2 = 0,471, c2 = 3,05)
en el partido Málaga C.F - Girona (0-0) y 1e a la U.D. Las Palmas (p3 = 0,056, c3 = 17,08) en
el partido At. de Madrid - U.D. Las Palmas (3-0). Por tanto perdemos en las tres apuestas y así
B = 1,56.

En total, obtenemos una pérdida de casi 9e .
Este es el principal problema de optar por la programación dinámica, ya que aunque nos ponemos

en cada fase un objetivo bastante alcanzable, arriesga todo lo que tiene para conseguirlo y así la etapa
que pierde, pierde casi todo. Aunque los resultados son muy buenos, todavía se puede conseguir más
beneficio; por ejemplo, si fijamos como objetivo xN = 14 en cada fase con x0 = 10, obtenemos un
beneficio de 59,69e , por lo tanto incrementamos nuestra fortuna en un 600%. Una comparativa entre
el beneficio obtenido con xN = 13 y xN = 14 puede verse en la Figura 3.3. Cabe destacar que no por
aumentar el objetivo en todas las fases se consigue más beneficio, ya que para conseguirlo la estrategia
a seguir es más arriesgada y se puede perder varias veces todo el dinero.

3.5.1. Alternativas y mejoras

Podríamos haber planteado algunos conceptos del problema de programación dinámica de manera
alternativa. Algunos son las siguientes:

Para las cuotas y probabilidades ficticias, en lugar de tomar los cuantiles de las probabilidades
predichas por nuestros modelos, podemos usar las mismas que introducimos por teclado para
todas las jornadas de la fase.

Dado que la programación dinámica nos da en cada etapa la probabilidad de conseguir el objetivo,
una manera de mejorar y obtener posiblemente mejor beneficio es poner un objetivo variable en
cada una de las fases según las probabilidades que obtenemos por pantalla cuando ejecutamos el
programa. Es decir, buscar el máximo xN tal que la probabilidad de obtenerlo sea mayor que una
fijada.
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Figura 3.3: Beneficio obtenido durante la temporada 2017-2018 empezando con 10e con diferentes
objetivos por cada fase. En azul xN = 13 y en rosa xN = 14.

3.6. Conclusiones finales

Podemos utilizar modelos estadísticos para predecir los resultados de fútbol de cualquier compe-
tición sólo viendo cómo están jugando en los últimos partidos y mirando su posición en la tabla.
Aunque nuestros modelos no son mejores respecto a las predicciones de las casas de apuestas,
son suficientemente buenos para obtener beneficio económico, como hemos comprobado.

La programación dinámica se adapta a la perfección a un problema real de apuestas de partidos
de fútbol, dando altos beneficios.

El problema de intentar predecir un resultado de fútbol y el problema de programación dinámi-
ca para diseñar la estrategia óptima de apuesta son totalmente independientes. Hay modelos de
predicción ya estudiados en la literatura que dan resultados más cercanos a la realidad que los
nuestros y que se pueden usar con el programa de programación dinámica que hemos diseñado.





Apéndice A

Código R

BDLigaEsp <-

readXL("C:/Users/sabro/Desktop/Carrera/TFG/Base de datos 2013-2018.xlsx",

rownames=FALSE, header=TRUE, na="", sheet="Hoja3", stringsAsFactors=TRUE)

% MODELO PARA PREDECIR VICTORIA LOCAL

BDLigaEsp <- subset(BDLigaEsp, subset=Jornada>3)

BDLigaEsp <- subset(BDLigaEsp, subset=Jornada<36)

BDLigaEsp$DPJornada <- with(BDLigaEsp, DP/ Jornada)

BDLigaEsp$DPLogJornada <- with(BDLigaEsp, DP/ log(Jornada))

modelo1 <- glm(VL ~ RL1 + RV1 + RL2 + RV2 + DPJornada + DPLogJornada,

data = BDLigaEsp, family = "binomial")

modeloAIC <- stepwise(modelo1, direction = ’backward/forward’ , criterion = ’AIC’)

%Para la curva ROC

BDLigaEsp<- within(BDLigaEsp, {

fitted.modeloAIC <- fitted(modeloAIC)

})

names(BDLigaEsp)[c(19)] <- c("PrediccionVL")

library(pROC)

rocVL<- roc(BDLigaEsp$VL, BDLigaEsp$PrediccionVL)

auc(rocVL)

plot(rocVL, col="red", print.auc=TRUE)

%Area under the curve: 0.722
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%MODELO PARA PREDECIR VICTORIA VISITANTE

modelo2 <- glm(VV ~ RL1 + RV1 + RL2 + RV2 + DPJornada + DPLogJornada,

data = BDLigaEsp, family = "binomial")

modeloAIC2 <- stepwise(modelo2, direction = ’backward/forward’ , criterion = ’AIC’)

modelo3 <- glm(VV ~ RL1 + RV1 + RL2 + RV2 + DPLogJornada,

data = BDLigaEsp, family = "binomial")

modeloAIC3 <- stepwise(modelo3, direction = ’backward/forward’ , criterion = ’AIC’)

%Para la curva ROC

BDLigaEsp<- within(BDLigaEsp, {

fitted.modeloAIC3 <- fitted(modeloAIC3)

})

names(BDLigaEsp)[c(20)] <- c("PrediccionVV")

rocVV<- roc(BDLigaEsp$VV, BDLigaEsp$PrediccionVV)

auc(rocVV)

plot(rocVV, col="red", print.auc=TRUE)

%Área bajo la curva: 0.7194



Apéndice B

Código Java

package tfg;

import java.util.Arrays;

import java.util.Scanner;

public class TFG {

//probgen es un vector de reales que representa la probabilidad de ganar el

//equipo local en el partido i pero obtenidos de forma genérica

//Obtenidos por los cuaniles de mis predicciones.

static double[] probgen = {0.1830564, 0.3576748, 0.4719785,

0.6114536, 0.8183193};

//cuotgen es un vector de reales que representa la cuota que ofrece la casa

//de apuestas por que gane el local en el partido i de forma genérica

//También son obtenidos a partir de la función de distribución.

static double[] cuotgen = {4.48, 3.9, 2.2, 1.49, 1.456};

//Probprim es un vector de reales que representa la probabilidad de victoria

// de cada equipo en el partido i en la jornada en la que estamos.

static double[] probprim;

//cuotprim es un vector de reales que representa la cuota por ganar

// de cada equipo en el partido i en la jornada en la que estamos.

static double[] cuotprim;

// ci es un entero que representa la cantidad de dinero inicial.

static int ci;

//dec es un real que representa la cantidad decimal

//del dinero inicial.

static double dec;

//cf es un entero que representa la cantidad de dinero al

//qué se quiere llegar.

static int cf;

// m es un entero que representa el número de partidos.

27
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static int m;

// n es un entero que representa el número de etapas.

//(En este caso, de jornadas)

static int n;

// matriz es una matriz que contiene en cada fila las probabilidades

// de ganar y de perder de un equipo equipo de la jornada en la que estamos.

static double[][] matriz;

//matrizgen es cómo la anterior pero para los partidos ficticios.

static double[][] matrizgen;

public static void main(String[] args) {

//INTRODUCCION DE DATOS POR TECLADO

Scanner sc = new Scanner(System.in);

System.out.println("Introduce el depósito

inicial (parte entera): ");

ci = sc.nextInt();

System.out.println("La parte decimal de la cantidad inicial: ");

dec = sc.nextDouble();

System.out.println("Introduce el depósito que se quiere obtener: ");

cf = sc.nextInt();

System.out.println("Introduce el número de partidos: ");

m = sc.nextInt();

System.out.println("Introudce el número de etapas: ");

n = sc.nextInt();

//GENERACIÓN DE MATRICES DE PROBABILIDADES (Útiles para cálculos)

matriz = new double[2 * m][2];

//Para poder apostar al local y al visitante

for (int j = 0; j < m; j++) {

System.out.println("Introduce la probabilidad de ganar el "

+ "local del partido " + (j + 1)

+ " de esta jornada: (con coma)");

matriz[j][0] = sc.nextDouble();

matriz[j][1] = 1.00000 - matriz[j][0];

}

for (int j = 0; j < m; j++) {

System.out.println("Introduce la probabilidad de "

+ "ganar el visitante del partido " + (j + 1)

+ " de esta jornada: (con coma)");

matriz[j + m][0] = sc.nextDouble();

matriz[j + m][1] = 1.0 - matriz[j + m][0];

}

matrizgen = new double[5][2];
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for (int j = 0; j < matrizgen.length; j++) {

matrizgen[j][0] = probgen[j];

matrizgen[j][1] = 1.0 - matrizgen[j][0];

}

cuotprim = new double[2 * m];

for (int j = 0; j < m; j++) {

System.out.println("Introduce la cuota gana "

+ "local del partido " + (j + 1)

+ " de esta jornada: (con coma)");

cuotprim[j] = sc.nextDouble();

}

for (int j = 0; j < m; j++) {

System.out.println("Introduce la cuota "

+ "gana visitante del partido " + (j + 1)

+ " de esta jornada: (con coma)");

cuotprim[j + m] = sc.nextDouble();

}

System.out.println();

//LLAMADA AL PROGRAMA

dinamica(n);

}

//FUNCIONES AUXILIARES

//La función dinámica a partir del número de etapas, se encarga de llamar

//a cada una de las funciones que me resuelven cada una de las etapas,

// devolviendo la probabilidad que hay de alcanzar el objetivo en cada una

// de ellas.

public static double dinamica(int n) {

System.out.println("------------Etapa " + n + " ------------");

double[] j = ultimaEtapa(cf);

System.out.println(Arrays.toString(j));

for (int i = n - 1; i > 1; i--) {

System.out.println("------------Etapa " + i + " ------------");

j = etapa(j, cuotgen, matrizgen, 0.0);

System.out.println(Arrays.toString(etapa(j, cuotgen, matrizgen, 0.0)));

}

System.out.println("------------Etapa " + 1 + " ------------");

double res = primeraEtapa(j);

System.out.println("La máxima probabilidad de acabar con "

+ "" + cf + " es " + res);

return res;

}

//La funcion etapa, a partir de un vector de double J que representa

// los valores que puede tomar dicha función, otro vector de
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// double c que representa a las cuotas, y una matriz mp

// que representa las probabilidades, me devuelve

// el vector J al hacer una etapa en un problema de programación dinámica.

public static double[] etapa(double[] j, double[] c, double[][] mp, double decimal) {

double[] jnext = new double[j.length];

for (int h = 0; h < jnext.length; h++) {

jnext[h] = j[h];

}

int[] x = estados(cf);

int ind = 0;

int[] vaux2 = new int[mp.length];

for (int i = 0; i < x.length; i++) {

double res = 0;

int[] decisiones = auxiliar(x[i]);

int max = maximo(decisiones);

CombRep cr = new CombRep(decisiones.length, mp.length);

int[] vaux = new int[mp.length];

do {

for (int h = 0; h < vaux.length; h++) {

vaux[h] = decisiones[cr.getPos(h)];

}

if (suma(vaux) <= max) {

double aux2 = 0;

int tam = (int) Math.pow(2, mp.length);

for (int k = 0; k < tam; k++) {

int b[] = binarioN(k, mp.length);

int z = transporte(x[i], vaux, b, c, mp.length, decimal);

aux2 = aux2 + jj(j, z) * probs(b, mp);

}

if (aux2 > res) {

res = aux2;

for (int q = 0; q < vaux2.length; q++) {

vaux2[q] = vaux[q];

}

}

}

} while (cr.next());

System.out.println("La decisión tomada para " + ind + " es: ");

System.out.println(Arrays.toString(vaux2));

jnext[ind] = res;

ind++;

}

return jnext;

}

// La función auxiliar me genera un vector de enteros que serán las posibles
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// cantidades a apostar dado un capital n.

public static int[] auxiliar(int n) {

if (n <= 25) {

int[] aux = new int[n + 1];

for (int i = 0; i < aux.length; i++) {

aux[i] = i;

}

return aux;

} else {

int[] aux = new int[26 + ((n - 25) / 5)];

for (int i = 0; i < 26; i++) {

aux[i] = i;

}

for (int i = 26; i < aux.length; i++) {

aux[i] = aux[i - 1] + 5;

}

System.out.println((int) ((n - 25) / 5));

return aux;

}

}

// La función primeraEtapa hace lo mismo que la función etapa pero con las

// probabilidades y cuotas introducidas por teclado.

public static double primeraEtapa(double[] j) {

double jnext[] = etapa(j, cuotprim, matriz, dec);

System.out.println(Arrays.toString(jnext));

return jnext[ci];

}

// La función ultimaEtapa me realiza la última etapa de un problema de

// programación dinámica en los que se maximiza probabilidades. Si el estado

// x_{N} es mayor o igual que el objetivo devuelve 1 y 0 en otro caso.

public static double[] ultimaEtapa(int cf) {

double[] j = new double[cf + 1];

for (int i = 0; i < j.length; i++) {

if (i < cf) {

j[i] = 0;

} else {

j[i] = 1;

}

}

return j;

}

// La función transporte representa la ecuación de transporte tal y como la

// hemos definido en el planteamiento del problema

public static int transporte(int x, int[] d, int[] p,

double[] c, int numpart, double decimal) {

double aux = x + decimal;
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for (int i = 0; i < numpart; i++) {

if (p[i] == 0) {

aux = (aux - d[i]) + d[i] * c[i];

}

if (p[i] == 1) {

aux = aux - d[i];

}

}

return (int) aux;

}

// La función jj me representa la función de la función J de un problema de

// programación dinámica incluyendo el hecho de que deje de apostar cuando se

// alcanza el objetivo.

public static double jj(double[] j, int i) {

if (i >= j.length) {

return 1.0;

}

if (i <= 0) {

return 0;

}

return j[i];

}

// La función binarioN me devuelve un array que es la representación en binario

// en n bits de un numero que le pasamos como argumento.

public static int[] binarioN(int numero, int n) {

StringBuilder ala = new StringBuilder();

String numerobinario = "";

numerobinario = numerobinario + (numero % 2) + " ";

numero = numero / 2;

while (numero >= 2) {

numerobinario = numerobinario + (numero % 2) + " ";

numero = numero / 2;

}

numerobinario = numerobinario + numero;

StringBuilder cadena = ala.append(numerobinario);

cadena = ala.reverse();

String[] aux = cadena.toString().split(" ");

int[] res = new int[n];

int vax1 = res.length - aux.length;

for (int i = 0; i < vax1; i++) {

res[i] = 0;

}

for (int i = vax1; i < res.length; i++) {
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res[i] = Integer.parseInt(aux[i - vax1]);

}

return res;

}

// La función máximo me devuelve el máximo de un vector de enteros.

public static int maximo(int[] v) {

int max = 0;

for (int i = 0; i < v.length; i++) {

if (max < v[i]) {

max = v[i];

}

}

return max;

}

// La función suma me devuelve la suma de todas las componentes de un vector.

public static int suma(int[] v) {

int res = 0;

for (int i = 0; i < v.length; i++) {

res = res + v[i];

}

return res;

}

// La funcion estados dado un entero cf, genera el array [0, 1, ..., cf]

public static int[] estados(int cf) {

int[] x = new int[cf + 1];

for (int i = 0; i < x.length; i++) {

x[i] = i;

}

return x;

}

// La función probs me devuelve la probabilidad de que se de un suceso, dada

// una combinación de resultados y una matriz con las probabilidades de cada

// uno de esos resultados.

public static double probs(int[] bin, double[][] mp) {

double res = 1;

for (int i = 0; i < mp.length; i++) {

if (bin[i] == 0) {

res = res * mp[i][0];

}

if (bin[i] == 1) {

res = res * mp[i][1];

}

}

return res;

}
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}

//La clase CombRep genera a partir de un vector de posibles cantidades apostar,

//todas las posibles maneras de repartir nuestro dinero a cada partido.

//Para ello es necesario hacerlo con un vector de indices que posteriormente

// se redirigirá

public class CombRep {

private int[] comb;

private int limite;

public CombRep(int n, int m) {

comb = new int[m];

this.limite = n - 1;

}

public boolean next() {

int i = comb.length - 1;

while (i >= 0 && comb[i] == limite) {

i--;

}

if (i < 0) {

return false;

}

comb[i]++;

for (int j = i + 1; j < comb.length; j++) {

comb[j] = 0;

}

return true;

}

public int getPos(int i) {

return comb[i];

}

}
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