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Abstract

This project consists of three chapters and we are going to summarize here the most important ideas.

There are many models for predicting the outcome of fooball matches, but we are going to build
two logistic models, one of them to predict the probability of the event “local team wins” and another
to predict the probability of the event “away team wins”. For that, we use simple predictor variables
such as the point difference between local team and away team or how the teams performed in the last
matches. In our first model, the probability ¢ of the event “local team wins” in a football match follows
the equation:

¢—0,340,173x,40,083xs

a= 1 + ¢—0.3+0,173%,+0,083x5

where X> is the predictor variable which represents the point difference divided by the logarithm of the
match day and X; is the predictor variable “local run” which summarizes the last results of the local
team. On the other hand, the probability ¥ of the event “away team wins” follows the equation:

o—1,04-0,187x,

V= 1 + e 1,04-0,187x,

where X is the same as before. Then we study the results using ROC curves and we confirm that these
methods predicts well the result of a football match.

Once we have two models to predict football results we want to use them for betting. In that aim,
we introduce a new betting strategy. First we review the classic Kelly’s criterion and we see that it”s
inappropiate because we lose all our money in a few bets. Then we design a dynamic programming
problem which decides, for each match day, how much money to bet in each match in order to maximize
the probability of reaching a money target. We program this problem in Java and apply it to a real life
situation, namely, the Santander Liga 2017 — 2018 where we obtain a benefit of 600 %.
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Capitulo 1

Introduccion

No cabe ninguna duda de que el ftitbol es el deporte mas popular y seguido del mundo, basta com-
probar cémo la gente estd pegada al televisor en sus casas, bares y restaurantes cuando se disputa un
partido importante. Para hacernos una idea de la popularidad de este deporte es suficiente ver, como
se explica en [12], que la final del mundial de 2014 tuvo alrededor de 1000 millones de espectadores,
comparado con la inauguracién de los Juegos Olimpicos en Londres 2012 con 900 millones o la final
de los playoffs de la NBA del 2017 con unos 20 millones. La idea de este deporte es muy sencilla, y
hoy en dia es casi imposible encontrar a alguien que no tenga una nocién bésica de cémo se practica. El
ganador de un partido es el equipo que mas goles marca en un periodo de 90 minutos dividido en dos
partes.

El fitbol comenzé en Inglaterra con partidos casi sin normas que se practicaban en cualquier sitio,
como plazas, calles... Pero ya en aquel entonces los ingleses mezclaron el deporte con la economia, en
el sentido de que la gente pagaba una cantidad de dinero por ver un partido de los equipos mas popu-
lares. Este deporte fue evolucionando hasta que entre 1850 y 1890 se introdujeron las reglas definitivas
que hoy en dia conocemos. Actualmente, el fiitbol mueve tanta cantidad de dinero que hay mucha gen-
te que lo considera un negocio, y otra que realmente hace un negocio de él mediante apuestas deportivas.

Las apuestas deportivas no son tan recientes como se cree, sino que surgieron hace més de 2000
afios en los Juegos Olimpicos que se disputaban en Grecia. Se hicieron mucho mas populares con las
carreras de caballos durante el siglo XIX, pero su gran expansién no fue hasta 1940 cuando aparecieron
las primeras casas de apuestas en Nevada (EEUU), permitiendo apostar a diferentes modalidades de-
portivas. El auge de las apuestas deportivas tuvo lugar en 1996 con Internet, ya que se lanzé Intertops,
la primera pagina que permitia apostar online. Gracias a este sistema, los usuarios pueden apostar desde
casa mientras estan viendo los eventos, tomando decisiones al momento y apostando de forma directa y
répida en segundos.

Desde su comienzo, la popularidad de las apuestas ha ido creciendo hasta tal punto que en el afio
2017, de acuerdo con [13], se movieron mds de 5000 millones de euros s6lo en Espafia. Por esta razén,
poder predecir el resultado de un partido de futbol mediante variables intuitivas y sencillas, es una idea
ambiciosa cuya finalidad busca obtener beneficio econdmico mediante su aplicacién a apuestas depor-
tivas.

Existen gran cantidad de portales web en los que los resultados de temporadas anteriores estan
accesibles, incluso se puede comprobar casi cualquier dato sobre los partidos ya disputados; desde el
resultado final, hasta la cantidad de jugadores lesionados que tenia un equipo antes de comenzar el par-
tido. Por tanto se puede aprovechar toda esta informacién almacenada para crear modelos que predigan
el resultado de un cierto partido, aunque ya existen varios modelos capaces de dar unas probabilidades
muy cercanas a la realidad si se dispone de los datos suficientes. Un modelo popular y que ha sido
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revisado varias veces es el de Maher (1982), en el que se intenta predecir el nimero de goles que cada
equipo anota mediante variables Poisson multivariantes.

Nuestro trabajo consta de dos partes diferenciadas. En primer lugar estudiaremos partidos de ftitbol
e intentaremos predecir sus resultados. En estos pueden darse tres resultados distintos: victoria local,
victoria visitante y empate, pero sélo modelaremos dos de los casos, el de victoria local y el de vic-
toria visitante. El estudio lo haremos mediante regresion logistica multiple con variables predictoras
sencillas. Ademads, queremos obtener modelos aplicables a cualquier competicién y que sean capaces
de predecir solamente por como estdn jugando en la competicion actual, sin tener en cuenta el “nombre”
de los equipos que disputan el partido.

Una vez que tengamos las probabilidades de nuestros modelos, la segunda parte consistird en buscar
una estrategia Optima para obtener el mayor beneficio posible en un caso real de apuestas. Para esta
parte del trabajo es necesario repasar el concepto bésico de cuota. La cuota es la cantidad ofrecida por
una casa de apuestas que multiplicard nuestra inversion en caso de acertar la apuesta. Como es légico,
la cuota nunca es mds pequefia que 1, y en el caso de que una casa de apuestas de una cuota muy alta
para un suceso es debido a que considera que tiene una probabilidad muy baja de ocurrir.

El objetivo es obtener beneficio apostando jornada a jornada de la temporada, por tanto tenemos
que disefiar una estrategia Optima que nos indique a qué apostar y qué cantidad. Para ello en primer
lugar repasaremos el criterio clasico de Kelly y veremos si lo podemos aplicar a nuestro problema, y en
segundo lugar disefiaremos un problema de programacion dindmica que nos maximice la probabilidad
de llegar a una cierta cantidad de dinero en un nimero determinado de jornadas. Dado que en nuestro
problema de programacién dindmica estocastica hacen falta una gran cantidad de variables y célculos,
disefiaremos en Java un programa que sea capaz de resolverlo computacionalmente.

La parte final del trabajo consistird en aplicar todos los resultados obtenidos a la temporada 2017-
2018 de la Liga Santander, comprobar si obtenemos beneficios y confirmar asi que nuestro modelo de
prediccién y la estrategia de apuestas seguida, son buenos y aplicables a la vida real.



Capitulo 2

Modelo de regresion logistica

2.1. Introduccion

Estamos interesados en encontrar un procedimiento para estimar la probabilidad o de que un equipo
(por ejemplo el local) obtenga la victoria. Desarrollaremos dos modelos, uno para obtener la probabili-
dad de victoria del equipo local y otro para la probabilidad de victoria del equipo visitante.

Vamos a considerar Y como la variable aleatoria victoria equipo local, que toma los valores:

= 1 si el equipo local gana.
= ( en cualquier otro caso (empata o pierde).

En contraposicién a los modelos de regresion vistos en la asignatura del grado, donde la variable
respuesta Y ha sido considerada como una variable continua y cuantitativa, en nuestra situacion la varia-
ble respuesta es cualitativa. Para resolver estas situaciones hay varios métodos distintos del de minimos
cuadrados. Primero repasemos el concepto de variable dicotomica.

Definicion 1. Una variable aleatoria X se dice dicotdmica si solo puede tomar dos valores, normalmente
representados con 1 como éxito y 0 como fracaso.

Por tanto, es claro que la variable Y mencionada anteriormente es dicotémica.

Estas situaciones donde la variable respuesta es dicotdmica son bastante comunes y ocurren con fre-
cuencia en aplicaciones estadisticas. Por ejemplo, si una persona tiene o no una determinada enferme-
dad, o si una empresa después de una determinada inversién permanece solvente o entra en bancarrota,
son casos en los que la variable respuesta puede ser codificada con los valores 0 y 1. Para predecir la
variable respuesta en situaciones de este estilo, se intentan modelar las probabilidades que toma Y para
uno de esos dos valores cuando conocemos las variables predcitoras. En nuestro caso nos centraremos
en obtener P(Y = 1).

El modelo de regresion lineal por minimos cuadrados presenta varias inconsistencias cuando la
variable respuesta es dicotémica. Vamos a ilustrar ésto considerando un problema de regresién lineal
simple en el que s6lo tenemos una variable predictora (los resultados obtenidos son vélidos también
para el caso de regresién mdltiple).

Vamos a denotar @ como la probabilidad de que Y = 1 cuando X = x. Si usamos el modelo estandar
de regresion lineal para precedir ¢, obtenemos lo siguiente:

a=PY=1|X=x)=Py+Pix+¢ 2.1)

Como o es una probabilidad debe tomar valores entre 0 y 1, pero es claro que la funcién lineal dada en
(2.1) puede tomar valores fuera del intervalo [0, 1], y por lo tanto este modelo no puede ser utilizado para
predecir probabilidades. Otra razén por la que el método ordinario de minimos cuadrados es inapropiado
es debido a que la variable respuesta Y es una variable aleatoria Bernoulli, y como consecuencia, su
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varianza depende de o, por lo que no se cumple la hipdtesis de varianza constante (homocedasticidad)
que es necesaria para realizar un ajuste de regresion lineal por minimos cuadrados.

Por esta razon, el anélisis de modelos de regresién con variable respuesta dicotémica es muy distinto
al de minimos cuadrados ordinarios.

2.2. Modelo logit

En la mayoria de las situaciones donde la variable respuesta es dicotémica, la relacion entre la
probabilidad « y la variable predictora X parece una curva con forma de S, como se puede apreciar en
la Figura 2.1, conocida como S-Shaped curve.

1 ,,,,,,,,,,,,,,,,,,,,,,,,,,

Figura 2.1: S-Shaped curve

Vemos que inicialmente la probabilidad ¢ aumenta lentamente a medida que se incrementa X, pos-
teriormente este incremento es mayor, y finalmente se estabiliza; pero no va mds alld de 1, lo que
intuitivamente tiene sentido ya que estamos hablando de probabilidades.

La forma de la S-Curve puede ser reproducida si modelizamos las probabilidades de la siguiente
forma:

e.BOJ’_ﬂlx
1 + ePotPix
Esto es lo que conocemos como modelo de regresién logistica, aunque cabe destacar que hay otras
formas de modelizar las probabilidades que también reproducen la S-Curve.

El modelo logistico puede ser genaralizado directamente a la situacién en la que tenemos varias
variables predictoras, en cuyo caso la probabilidad o viene dada por:

a=PY=1X=x)= 2.2)

ePotBrxi+Brxat..+Bpxy
o 1+ e50+ﬁ1x1+ﬁzxz+---+l3pxp

(XZP(YZ]‘X]ZX],...,XI,:XP> (2.3)

La ecuacién (2.3) es llamada funcion de regresion logistica. Como se puede apreciar, estamos ante una
funcién no lineal de pardmetros f3; Vi = 0,..., p, sin embargo, puede ser linealizada por medio de lo
que se conoce como transformacion logistica. En este caso, en lugar de trabajar directamente con o, se
trabaja con un valor transformado de .

En primer lugar, si & es la probabilidad de que un evento ocurra, la proporcién 1%; se conoce como
la proporcién de probabilidades, odds ratio (cociente de probabilidades), para dicho evento. Como

1
XP) - 1 T eﬁ0+,31x1+ﬁ2x2+...+[3pxp

l—a=PY =0[X; =x1,...,X, =
Se tiene que
o
1—o
Tomando logaritmos en ambos lados, obtenemos

— eﬁ0+ﬁ1xl +Bzxz+...+ﬁpxp

g(x1,...,xp) =log (1306) = Bo+ Bixi + Boxa+ ...+ Bpx, 2.4)
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El logaritmo del odds ratio se conoce como logit. Por la ecuacién (2.4) puede verse que la transfor-
macién logit produce una funcién lineal de parametros 3; Vi = 0, ..., p. Notar también que el rango de

(04
valores de & en (2.3) estd entre 0 y 1, lo que implica que el rango de valores de log (106) estd entre

—oo y oo, por lo que es més apropiado para el ajuste de regresion lineal.

2.2.1. Obtencion de los estimadores

En cuanto a la obtencién de los estimadores el método usado es el de maxima verosimilitud, donde
las estimaciones son calculadas numéricamente usando métodos iterativos. Por lo tanto, al contrario que
en el método de minimos cuadrados, no existe una expresioén analitica sencilla para los estimadores de
los pardmetros asi que no nos centraremos en los aspectos computacionales de como se obtienen.

2.3. Presentacion de los modelos

Una vez explicado el modelo de regresion logistica vamos a aplicarlo a nuestro problema, en el que
queremos predecir la variable dicotémica Y victoria equipo local a partir de varias variables predictoras
(regresoras). Cabe destacar que queremos disefiar un modelo que nos pueda predecir si gana un equipo
0 no sin importarnos la competicién en la que juegue, ni el “nombre” de los equipos que disputen el
partido, simplemente por como estan jugando en el campeonato. Ademads, parece 16gico que al tratarse
de partidos de fiitbol entre equipos de una misma clasificacion, se tenga en cuenta variables como la
posicién en la tabla del equipo local, la posicién en la tabla del equipo visitante, en que jornada del
campeonato nos encontramos y alguna variable que nos informe de la forma fisica de cada equipo en
el momento del partido. Por estos motivos, hemos decidido ensayar un modelo de regresion logistica
multiple con las variables que se indican a continuacidn:

= X; representa la diferencia de puntos entre el equipo local y el visitante dividido por el niimero de
la jornada en la que se disputa el partido (DPJornada).

= X, representa la diferencia de puntos entre el equipo local y el visitante dividido por el logar-
timo del nimero de la jornada en la que se disputa el partido (DPLogJornada) (mas adelante
explicaremos el porqué de la eleccidn de esta variable).

= Xj representa lo que interpretaremos como racha del equipo que juega como local (RLI).
= X4 representa la que interpretaremos como racha del equipo que juega como visitante (RV/).
= X5 representa una definicion alternativa de racha del equipo que juega como local (RL2).

= X representa una definicidn alternativa de racha del equipo que juega como visitante (RV2).

Vamos a explicar brevemente lo que hemos entendido por racha. La racha de un equipo es el estado
de forma en el que se encuentra en el momento de disputar un partido, coloquialmente hablando se dice
lo “fuerte” que esta un equipo, y como es 1dgico, un equipo estd en mejor estado de forma (estd mas
fuerte) conforme va ganando partidos consecutivos.

Por poner un ejemplo sencillo, imaginémonos que el equipo A lleva 3 partidos seguidos ganando y
se encuentra décimo en la tabla y que por otro lado tenemos el equipo B que lleva 2 partidos seguidos
perdiendo aunque se encuentra cuarto en la tabla. En este caso si sdlo se tuviera en cuenta la posicién de
cada equipo en la tabla, parece 16gico dar una probabilidad mayor de vencer al equipo B, pero la realidad
no es asi, ya que el equipo A estd mucho mas “fuerte” y puede llevarse perfectamente el partido.

Dicho esto, hemos creado la variable “racha” (variables RLI y RV1) para cada equipo de la siguiente
forma:

» Es una variable cuyo rango estd en [1,5].
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= Todos los equipos empiezan la temporada con una racha de 1.

= Si un equipo gana, entonces su racha aumentara en 1 en la jornada siguiente hasta alcanzar la
racha maxima (5), la cual no puede aumentar mds aunque el equipo gane.

= Siun equipo empata, entonces su racha de la jornada siguiente permanecera igual.

= Si un equipo pierde, entonces se “rompe” su racha, y por lo tanto en la jornada siguiente tendrd
valor de 1.

Alternativamente hemos definido las variables RL2 y RV2 de forma andloga con la tnica diferencia
de que cuando un equipo pierde, su racha disminuye en 1 en lugar de volver a 1. Destacar que estas defi-
niciones del concepto de racha son de nuestra invencién y podria ser definido de muchas otras maneras
diferentes.

A continuacién veamos cémo hemos llegado a la eleccidn de la variable DPLogJornada; en primer
lugar, es obvio que para predecir Y va a influir tanto la diferencia de puntos entre ambos equipos, co-
mo la jornada en la que se dispute el partido ya que, dependiendo de la jornada en la que estemos, la
diferencia de puntos puede ser mds o menos significativa. Pongamos también un sencillo ejemplo; una
diferencia de 8 puntos entre el equipo local y el visitante en la jornada 4 es mucho mads significativa que
una diferencia de 8 puntos en la jornada 34 (lo que querra decir que son dos equipos muy cerca en la cla-
sificacién y que apenas hay diferencia entre ellos). Por lo tanto, queremos que en las primeras jornadas
una diferencia de puntos pequefia sea bastante significativa, y conforme vaya aumentando el nimero de
la jornada, una diferencia de puntos pequefia sea menos importante. Si hacemos solamente el cociente
como en la variable DPJornada nos encontraremos con el problema de que la jornada tendrd mucho
mas peso que la diferencia de puntos debido a que crece més rdpido y eso tampoco es conveniente, pero
si le introducimos el logaritmo (variable DPLogJornada), ya crece mas despacio y se ajusta mejor a lo
que queremos.

2.3.1. Creacion y resultados del modelo victoria local

Para realizar el modelo, hemos creado e introducido en R una base de datos con todos los par-
tidos de la primera divisién de Liga Espafiola desde la temporada 2013 — 2014 hasta la temporada
2016 — 2017, lo que hacen un total de 1520 partidos. De estos partidos, hemos quitado aquellos en los
que Jornada < 5, debido a que al principio todos los equipos empiezan con los mismos puntos y con la
misma racha, y también aquellos en los que Jornada > 35, ya que al final de temporada muchos equipos
bajan su nivel debido a que aunque ganen o pierdan tienen asegurada una cierta posicién en la tabla. As{
pues, parece aconsejable eliminarlos de la base de datos ya que en ambos casos son muy dificiles de
predecir y obtendriamos datos andmalos. Para cada uno de los partidos restantes, hemos comprobado los
puntos que llevaba cada equipo en la clasificacién antes de comenzar éste, y hemos calculado la racha de
cada uno en funcién del resultado de la jornada anterior. Posteriormente validaremos tanto este mode-
lo como el de victoria visitante con esta base de datos y con los resultados de la temporada 2017 —2018.

Dado que tenemos un nimero elevado de variables predictoras y algunas muy parecidas, hemos
realizado el modelo de regresion logistica paso a paso con criterio AIC. El criterio AIC es una medida
estadistica que proporciona un modelo con las variables mds significativas, en el que se pierda la menor
cantidad de informacién posible (para ver las ordenes ejecutadas para llegar al modelo, consultar el
script en el anexo). Los resultados obtenidos son los siguientes:
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Coefficients:
Estimate 5td. Error z wvalus Pr(>|z]|)
(Intercept) -0.300%0 0.13214 -2.277 0.0228 ®
RL2 0.08345 0.04525 1.844 0.0651 .
DFLogJornada 0.17287 0.01689% 10,233 <2e-1lg ®**
Signif. codes: QO "®*®%' 0,001 '**' Q.01 '*" Q.05 *." Q0,1 " "1

(Dispersion parameter for kinomial family taken to be 1)

Hull deviance: 1772.3 on 127% degrees of freedom
Residual deviance: 1562.3 on 1277 degrees of freedom
ATC: 1568.3

Humber of Fisher Scoring iterations: 3

Por tanto el modelo de victoria local cuenta con variables predictoras DPLogJornada y RL2. Es
bastante destacable el hecho de que ninguna de las variables que definen la racha visitante sean signi-
ficativas a la hora de predecir si un equipo local gana o no, ya que el modelo sélo sefiala interesante el
estado de racha del equipo local y la diferencia de puntos segtn en la jornada en la que se esté a la hora
de predecir. La estimacién de los pardmetros es:

= fo=—0,301
» 5,=0,173
» fB5=0,083

Estos coeficientes determinan que si aumentamos en una unidad la variable DPLogJornada o la
variable RL2, el odds ratio se incrementa en ¢%173 6 ¢0983 respectivamente.
Asi pues, la probabilidad & de que en un determinado partido, gane el equipo local, viene dada por:

6_0’301+0’ 173x2+0,083x5

a=PY =1Xp =x2,Xs =x5) = 1+ ¢ 030150, 1733, 10,083x5

Luego haciendo la transformacion logistica mencionada anteriormente tenemos que:

o
log <1a> = —0,30140,173x, 4+ 0,083x5

Viendo la salida por pantalla de R, se aprecia claramente que la variable més significativa y por tanto
mas importante a la hora de predecir es DPLogJornada (es la que tiene un p-valor més pequefio). La
relacién entre esta variable y la probabilidad « viene dada por la Figura 2.2.

Como se aprecia, la Figura 2.2 también tiene una forma de S-Curve, luego parece haber sido apro-
piada la eleccién de un modelo de regresion logistica para predecir la victoria del equipo local en un
determinado partido de ftitbol. Posteriormente validaremos mas el modelo.

2.3.2. Creacion y resultados del modelo vicforia visitante

Para la creacion de este modelo hemos seguido el mismo procedimiento que en el anterior, un
modelo de regresion logistica paso a paso con criterio AIC sobre la misma base de datos. Al realizar el
modelo paso a paso, R nos intuia como mejor modelo uno con DPLogJornada, DPJornaday RVI como
variables predictoras, pero no podemos aceptarlo como bueno dado que las variables DPLogJornada
y DPJornada estin muy correladas (coeficiente de correlacion de Pearson de 0,95). Esta situacién
llamada multicolinealidad aproximada, implica que las varianzas de los estimadores, y por lo tanto las
predicciones, sean grandes e imprecisas. Para solventar este problema hemos planteado las siguientes
alternativas:
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Alpha

DPLogJornada

Figura 2.2: Relaciéon o y DPLogJornada

1. Desarrollar un modelo de regresién logistica paso a paso pero sin la variable DPJornada en la
base de datos. R nos ofrece un modelo sélo con DPLogJornada como variable predictora.

2. Desarrollar otro modelo de regresion logistica paso a paso, pero esta vez quitando la variable
DPLogJornada de la base de datos. En este caso R nos ofrece un modelo con RVI y DPJornada
como variables predictoras.

Analizando los dos modelos nos hemos decantado por el primero, ya que en el segundo la variable
predcitora RVI tiene un p—valor de 0,11, muy elevado como para considerarla variable significativa.
Un resumen del modelo final es el siguiente(ordenes en el anexo):

Coefficients:
Esztimate Std. Error z wvalue Pri>|z]|)
(Intercept) -1.03578 0.06968 -14.87 <2e-1lg &%
DPLogJornada -0.18659 0.01566 -11.92 <2e-1lg #*w%
Signif. codes: O '#%%' Q_QQ1 "#*' Q.Q1 '*#' Q.05 ',* Q.1 * " 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 1550.0 on 1
Residual deviance: 1372.3 on 1
ATC: 1376.3

S degrees of freedom
8 degrees of freedom

Number of Fisher Scoring iterations: 4

Es interesante ver que para predecir la victoria del equipo visitante sélo es necesario saber los puntos
que tienen cada equipo en la jornada correspondiente y no importa ningiin tipo de racha. Los estimadores
de los parametros son:

» fo=—1,036
» f=-0,187

Por lo tanto, cada vez que aumentamos en una unidad la variable DPLogJornada, el odds ratio se
incrementa en ¢~*!87_ Es muy interesante ver que el coeficiente ﬁz es practicamente igual que en el mo-
delo victoria local pero cambiado de signo. Esto es debido a que una diferencia de puntos positiva entre
el local y el visitante influye positivamente a la hora de predecir la victoria local pero negativamente
cuando se predice la victoria visitante.
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Luego la probabilidad y de que en un determinado partido, gane el equipo visitante, viene dada por:

o—1:036-0,187x,

y=PY =1[Xs=x)= 1t ¢ 1.036-0,187%,

Realizando la trasnformacion logistica para linealizar, obtenemos lo siguiente:

log <1Zy) — _1,036—0,187x,

De esta manera ya tenemos los dos modelos para predecir la probabilidad de que en un cierto
partido de fitbol, gane el equipo local o gane el equipo visitante a partir de unas variables predictoras
muy intuitivas y sencillas de obtener.

2.4. Validacion de los modelos

Para comprobar si los resultados que dan nuestros modelos son aceptables vamos a realizar varias
pruebas sobre los datos con los que los hemos creado (de la jornada 4 a la jornada 35 por las razones
mencionadas anteriormente). En primer lugar, vamos a contabilizar las veces que da como suceso mds
probable la victoria local contrastdndolo con los datos de dichas temporadas. Los resultados para el
modelo victoria local, considerando que el modelo predice éxito cuando & > 0,5 son los siguientes:

’ Prediccion | Resultado ‘ Victoria local ‘ No victoria local ‘

Victoria local 370(66,1%) | 190(33,1%)
No victoria local 244(33,9%) | 476(66,1%)

Cuadro 2.1: Tabla que representa la prediccién del modelo victoria local con el resultado que se dio en
cada partido con sus respectivos porcentajes por filas.

Los resultados son favorables al modelo ya que de 1280 resultados se aciertan 846, lo que supone
un 66,1 %. Veamos también el mismo contraste pero con el modelo victoria visitante considerando que
el modelo predice éxito cuando y > 0, 5.

Prediccion | Resultado ‘ Victoria visitante ‘ No victoria visitante ‘

Victoria visitante 93(59,6 %) 63(40,4 %)
No victoria visitante 283(25,2%) 841(74,8%)

Cuadro 2.2: Tabla que representa la prediccidon del modelo victoria visitante con el resultado que se dio
en cada partido con sus respectivos porcentajes por filas.

En este caso los resultados también son favorables al modelo ya que acierta 934 de 320 resultados,
lo que supone un 72,96 %. Mirando a una posible aplicacién del modelo al mundo de las apuestas, cabe
resaltar que no nos interesa tanto si el equipo va a ganar o no, si no que queremos estimar las proba-
bilidades de forma que sean lo mds cercanas a la realidad posible, para compararlas con las cuotas y
decidir si merece la pena apostar. Por ejemplo, en algunas situaciones merece mas la pena apostar a un
equipo con probabilidad de victoria de 0,4 pero con cuota de 21€ , que a un equipo con probabilidad
de victoria de 0,8 pero con cuota de 1,08€.

A simple vista los resultados parecen aceptables, para comprobar si finalmente lo son vamos a
realizar lo que se conoce como curva ROC. La curva ROC es una herramienta estadistica utilizada
en el andlisis de la bondad de modelos con variable respuesta de cardcter dicotdmico. La curva ROC
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representa las medidas de sensibilidad y especificidad, por tanto veamos previamente qué son estos dos
conceptos en el ambito de partidos de fiitbol (centrdndonos sélo en la victoria local ya que es andlogo
para la victoria visitante).

= [lamamos sensibilidad a la probabilidad de, dado un partido en el que gana el local, el modelo
prediga que gana el local. También esto se conoce como razén de verdaderos positivos.

= [lamamos especificidad a la probabilidad de, dado un partido en el que no gana el equipo local,
el modelo prediga que no gana el equipo local. También esto se conoce como razon de verdaderos
negativos.

Notar que tanto la sensibilidad como la especificidad depende de un pardmetro ¢ que es el punto de
corte a partir del cudl se predice que el equipo local gana. Para calcularlas, es necesario tener en cuenta
los siguientes conceptos:

» Denotamos V¥ a los verdaderos positivos, es decir, a los partidos en los que gana el local y el
modelo predice que gana el local (es decir, si p > «).

= Denotamos V% a los verdaderos negativo, es decir, a los partidos en los que pierde el local y el
modelo predice que pierde el local (es decir, si p < o ).

» Llamamos falsos positivos F* a los partidos en los que pierde el local y el modelo predice que
gana (p = Q).

= Llamamos falsos negativos F* a los partidos en los que gana el local y el modelo predice que no
gana (p < Q).

Con esta notacion, la sensibilidad S* es

SOC — V'g
VO FC
y la especificidad E* es
«_ Y
VO +FY

La curva ROC representa 1 — especificidad frente a la sensibilidad para cada posible valor «.
Para comprobar la bondad de un modelo a partir de la curva ROC generada se utiliza habitualmente el
drea bajo la curva (AUC), y si se da que AUC > 0,7, entonces el modelo tiene un valor de diagndstico
aceptable. Las curvas ROC obtenidas de los modelos victoria local y victoria visitante son las siguientes:
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Figura 2.3: Curvas ROC de ambos modelos

Como vemos los valores del AUC estdn en torno a 0,7 y por lo tanto los modelos se consideran
adecuados. Veamos ahora las mismas comprobaciones pero sobre la temporada 2017 — 2018. Andlo-
gamente, podemos validar los modelos aplicdndolos a la temporada 2017 — 2018; la comparativa de
lo que predicen los modelos victoria local y victoria visitante con lo que sucede en realidad se puede
comprobar en los Cuadros 2.3 y 2.4 respectivamente.

Prediccion | Resultado ‘ Victoria local ‘ No victoria local ‘

Victoria local 89(63,1%) | 52(36,9%)
No victoria local 64(35,8%) 115(64,2%)

Cuadro 2.3: Tabla que representa la prediccion del modelo victoria local con el resultado que se dio en
cada partido con sus respectivos porcentajes por filas en la temporada 2017 —2018.

Prediccion | Resultado ‘ Victoria visitante ‘ No victoria visitante ‘

Victoria visitante 20(52,6%) 18(47,4 %)
No victoria visitante | 74(26,2 %) 208(73,8 %)

Cuadro 2.4: Tabla que representa la prediccion del modelo victoria visitante con el resultado que se dio
en cada partido con sus respectivos porcentajes por filas en la temporada 2017 —2018.

En esta temporada, los resultados también son favorables a los modelos, ya que el modelo victoria
local acierta 204 de 320 lo que supone un 63,75 % y el modelo victoria visitante acierta 228 de 320 re-
sultados lo que supone un 71,25 %. Comprobamos también la bondad de los modelos en esta temporada
mediante las curvas ROC:
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Figura 2.4: Curvas ROC de ambos modelos en la temporada 2017 — 2018

Los valores del AUC estdn ligeramente por debajo de los de la Figura 2.3, lo que es 16gico ya que
los datos de la temporada 2017 — 2018 no se han usado para el ajuste. En cualquier caso se encuentran
muy cercanos a 0,7 lo que puede interpretarse como aceptable.



Capitulo 3

Determinacion de una estrategia optima
de apuesta

3.1. Introduccion

Una vez obtenidos los modelos que predicen resultados de fiitbol, el objetivo final es usarlos para
obtener beneficio econémico en las casas de apuestas. A diferencia de muchos otros modelos en los
que se apuesta siempre una cantidad fija, permitiremos apostar una cantidad de dinero variable en cada
partido para maximizar la ganancia. Para ello, hemos pensado en varias alternativas; en primer lugar
repasaremos el clasico Criterio de Kelly y veremos si es adecuado para nuestros modelos, y posterior-
mente desarrollaremos un problema de programacion dindmica que nos maximice la probabilidad de
conseguir una cantidad de dinero en un cierto nimero de jornadas. Esta segunda opcién parece a priori
bastante adecuada dado que el desarrollo de un problema de programacion dindmica se basa en una
toma de decisiones secuencial, luego se ajusta bastante a la idea de ir apostando a varios partidos en
cada una de las jornadas de la temporada.

3.2. Criterio de Kelly

El criterio de Kelly, como se indica en [7], es un procedimiento probabilistico cuyo objetivo es
maximizar la esperanza del beneficio cuando se apuesta en un juego favorable. Por “juego favorable”
entendemos aquel en el que existe una estrategia de apuesta tal que P(1im X,, = +o) > 0, donde X,

n—soo

es el capital después de n repeticiones del juego. Veamos la idea del criterio de Kelly con un sencillo
ejemplo:

Imaginemos un juego contra alguien infinitamente rico en el que se intenta adivinar como caerd una
moneda después de un lanzamiento. Suponemos que la moneda tiene probabilidad de cara p > 1/2y
vamos a apostar siempre cara. En el caso de que ganemos, el beneficio obtenido serd el apostado y en
el caso de que perdamos, la pérdida es igual a la cantidad apostada. Al comienzo del juego, nuestro
capital inicial es de Xj y el principal problema se basa en elegir qué cantidad B; apostamos en la i-ésima
repeticion. Un criterio cldsico es el de elegir B; para cada i de manera que el valor esperado E (X, ) sea
maximo después de n repeticiones. Tomando 7 = 1 si el k-€simo resultado es cara y T = —1 si es cruz,
entonces Xy = X;_| + Ty By parak = 1,2,3,... y por lo tanto se sigue que X,, = Xo + Y.;_; TiBx. Se tiene

n n

E(X)) =Xo+ ) E(TiBi) =Xo+ ), (p—q)E(B), cong=1-p (3.1)

k=1 k=1
Como p — g > 0, el juego tiene una esperanza positiva, luego en lugar de maximizar E(X,) vamos a
maximizar E(By) en cada repeticién. Asi pues, para maximizar la esperanza de la ganancia debemos
apostar todo nuestro capital en cada repeticion: inicialmente By = Xp, si ganamos, B, = 2Xy y asi su-
cesivamente. Sin embargo, la probabilidad de arruinarnos apostando de esta manera viene dada por

13
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1—p',yconl/2< p<1sedaque ,}grolo (1 —p™) =1, por lo que la ruina es segura, asi que apostar para
maximizar la ganancia no es una buena estrategia.

Por otro lado, si apostamos con el objetivo de minimizar la probabilidad de ruina (entendemos ruina
cuando X; = 0 para algun k), llegamos a la conclusion de que tenemos que apostar lo minimo posible
en cada repeticion. Sin embargo, ésta tampoco es una buena estrategia ya que estamos minimizando
simultdneamente la esperanza de la ganancia media.

Una estrategia intermedia que esté entre maximizar E(X,) (asegurando la ruina) y minimizar la
probabilidad de ruina (minimizando también E(X,,)) fue propuesta por J.L. Kelly.

En el juego de la moneda antes mencionado, donde la probabilidad de ganar y el beneficio son
siempre iguales, parece intuitivo que la estrategia “Optima” es apostar siempre la misma fraccién f de
nuestra fortuna. Por consiguiente, si apostamos de forma que B; = fX;_;, donde 0 < f < 1, estaremos
siempre apostando el mismo porcentaje de nuestro capital (lo que se conoce como fraccion fija). Es facil
ver que de esta manera, si denotamos por S al nimero de veces que ganamos el juego y por F al nimero
de veces que perdemos, se sigue que X, = Xo(1+ £)5(1 — f)F', donde S+ F = n, y si ademds tomamos
0 < f < 1, se tiene que P(X, = 0) = 0, luego nunca se alcanzari el estado de ruina.

Dado que

o/ _x

la cantidad

X, 14" F
log [Xo] = Elog(l +f)+ ;log(l —f)

mide el coeficiente exponencial del incremento de la fortuna por cada jugada. Kelly propone maximizar
la funcién G(f), donde

1/n
aan{mﬁxﬂ }=E{?@u+ﬂ+?%u—ﬁ}=m%u+ﬁ+w%u—ﬁ

Por tanto

P 9  prP—q—f

G(f)=-L -~ 0
I+f 1=f (A+/)01-f)
con f = p —q. Ademds como se tiene que
2
—f"+2f(p—q)—1
¢'()=""1 <0
D=y
se sigue que G'(f) es mondétona y estrictamente decreciente en [0, 1). Ademds, dado que G'(0) =p—g >
0, fll’I{l G'(f) = —eo y por continuidad de G'(f), G(f) tiene un Gnico maximo en f* = p — g, como se

puede apreciar en la Figura 3.1. Es decir, el criterio de Kelly propone apostar la fracciéon p—qg=2p—1
en cada jugada. La explicacion de por qué Kelly eligié maximizar la funcién G(f) puede encontrarse
detalladamente con demostraciones en [9].

El criterio de Kelly puede ser extendido con facilidad a juegos dénde no siempre tenemos la misma
cuota. Sea b = cuota — 1 y suponiendo que en cada repeticion la probabilidad de ganares p >0y
bp — g > 0, entonces el juego sigue siendo favorable y el procedimiento descrito anteriormente puede
ser también usado para maximizar

G(f)=E {log Eﬁﬂ } =plog(1+bf)+qlog(1—f)
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Figura 3.1: Griéfica de la funcién G(f) en el intervalo [0, 1] con p =0,8.

y con los mismos argumentos se llega a que el tnico mdximo se alcanza en f* = (bp — q)/b. Esto es, el
criterio de Kelly sigue apostar la fraccién (bp — g)/b cuando el juego es favorable.

El gran problema que tiene el criterio de Kelly es que parte del supuesto de que el depdsito inicial
sea infinitamente divisible y esto en la practica no se cumple.

Veamos que pasa si aplicamos el criterio de Kelly a nuestros modelos en la temporada 2017 — 2018.
Para ello hemos calculado la cantidad E(beneficio) y, en el partido donde esta cantidad sea mds alta
(y positiva), hemos apostado la parte entera de la fraccién (bp — q)/b = (cp —1)/(c — 1) de nuestro
capital, siendo p y ¢ la probabilidad de victoria y su cuota respectivamente. Empezando con 10€ en la
Jjornada 4 la estrategia segin el criterio de Kelly es (denotando por B a nuestro capital):

= En el partido S.D. Eibar - C.D. Leganés (1-0), la E(beneficio) del S.D. Eibar es de 0,7 y la del
C.D. Leganés es de 1,38, luego apostamos al C.D. Leganés (p = 0,34 y ¢ = 3,8) la fraccién
f =0,134 de nuestro capital, es decir, [10-0,134| = |1,34| = 1€ y lo perdemos. Luego B = 9.

= En el partido Getafe C.F. - F.C. Barcelona (1-2) de la jornada 4, razonando de la misma manera,
nos dice apostar al Getafe C.F. (p = 0,32 y ¢ = 11,6) la fraccién f = 0,25 de nuestro capital,
luego le apostamos |9-0,25| = |2,25] = 2€ y los perdemos, es decir, B = 7€.

= En el partido Levante U.D. - Valencia C.F. (1-1), nos dice apostar al Levante U.D. (p = 0,46 y
¢ = 3,15) la fraccion f = 0,22 de nuestro capital, es decir, 1€ y lo perdemos, por tanto B = 6.

= En el partido Real Sociedad - Real Madrid C.F. (1-3), apostamos a la Real Sociedad (p =0,610y
¢ =4,75 la fraccion f = 0,5 de nuestro dinero, es decir, 3€ que los perdemos y por consiguiente
B=3

= En el partido Girona - Sevilla F.C. (0-1), nos dice apostar al Girona (p = 0,36 y ¢ = 3,25) la
fraccién f = 0,06 de nuestro capital, es decir, 0,2€ pero cémo la apuesta minima de la casa de
apuestas es de 1€ lo apostamos y lo perdemos, por tanto B = 2.

= En el partido C.D. Alavés - Villarreal C.F. (0-3), apostamos al C.D. Alavés (p =0,36y c=3,01)
la fraccién 0,05 de nuestro capital, y por el mismo razonamiento apostamos 1€ y lo perdemos,
por lo tanto B = 1.

= Pasamos a la jornada 5 y nos aconseja apostar la fracciéon f = 0,11 al S.D. Eibar (p = 0,15y
¢ = 21 partido F.C. Barcelona - S.D. Eibar (6-1), es decir, apostamos 1€ y lo perdemos, por tanto
B=0.

En consecuencia, como hemos comprobado en la jornada 5 ya hemos alcanzado la ruina, luego
criterio de Kelly no es conveniente para nuestro problema. De hecho, este criterio ha sido criticado por
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varios autores, [11], y se recomienda como regla general, apostar menos de lo que dice el criterio para
evitar una ruina temprana.

3.3. Programacion dinamica

La programacién dindmica proporciona un procedimiento para determinar la combinacion de deci-
siones que maximiza el beneficio total o minimiza el costo total en problemas en los que ha de tomarse
un conjunto de decisiones secuencialmente. La programacion dindmica trata el problema, que puede
contener un gran nimero de variables interrelacionadas, como si estuviera formado por una sucesion
de problemas, cada uno de los cuales tuviera s6lo unas pocas variables. Puede aplicarse a problemas
cuya representaciéon matemdtica inicial es bastante diferente y no existe un planteamiento matemaético.
Pueden ser deterministas o estocasticos (nuestro problema serd de caracter estocastico).

Las caracteristicas generales de un problema de programacién dindmica son las siguientes:

= El problema puede ser dividido en efapas, de manera que se ha de tomar una decisién en cada
etapa.

= Cada etapa tiene asociada un cierto nimero de estados. Llamamos estado a toda la informacion
que se precisa en cualquier etapa para poder tomar una decisién 6ptima.

= Ladecision elegida en cualquier etapa describe cémo se transforma el estado en la etapa actual en
el estado en la etapa siguiente. En el caso de programacion dindmica estocastica, el estado actual
y la decisién tomada determinan la distribucién de probabilidad del estado en la etapa siguiente.

= Principio de optimalidad. Dado el estado actual, la decisién 6ptima para cada una de las res-
tantes etapas no depende de los estados en los que se ha estado previamente o de las decisiones
previamente tomadas.

Resumiendo, el planteamiento de un problema de programacion dindmica se basa en un sistema
que evoluciona a lo largo de un cierto ndmero de etapas, en cada una de las cuales, el sistema estd
descrito por un conjunto de pardmetros denominados estados. En cada etapa, independientemente del
estado en el que se encuentre el sistema, debe de tomarse una decision, y para tomar esta decisién, no
es relevante la historia pasada del sistema (lo que hemos mencionado como principio de optimalidad).
Cuando se toma una decision, se obtiene un pago (beneficio o costo) que depende del estado en el que
estaba el sistema y de la decisién tomada. El propdsito del problema es optimizar alguna funcién del
estado inicial y de las decisiones subsiguientes. La notacion empleada es la siguiente:

= N denota el nimero de etapas.

= x;, k=0,...,N —1 denota el estado en la etapa k, que recoge toda la informacién que se precisa
en cada etapa para tomar la decisién 6ptima. El estado al comienzo del problema es xg.

» dy, k=0,...,N —1 denota la variable decisién. Se ha de seleccionar en la etapa k sabiendo que
el estado del sistema es x;. El conjunto de decisiones posibles del sistema dependerd, en general,
del estado del sistema. Se denota por Dy (xy).

= wg, k=0,...,N —1 denota la distribuciéon de probabilidad. Representa el pardmetro aleatorio
que afecta la transicidn entre estados y los pagos generados. Las variables wy son independientes
aunque su distribucién puede depender de x; y di.

» Ecuacion de transferencia, xx1 = fi(xk,dx,wi), k =0,...,N — 1. Indica como se transforma el
estado actual x; por efecto de la decision dj y de la componente aleatoria wy, en el estado en la
etapa siguiente Xz 1.
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» gi(xg,di,wi), k=0,...,N — 1 denota el pago en una etapa. Indica el beneficio o costo que el
sistema genera en una etapa por estar en el estado actual x; , tomar la decision dj y por el efecto
de Wg.

» gy (xy) denota el pago terminal. Indica el pago al terminar el proceso.
= Ji, k=0,...,N denota la funcién objetivo que queremos maximizar o minimizar.

= J*(x9) denota el valor 6ptimo de la funcién objetivo, que como es obvio, depende del estado
inicial del sistema.

» d;(x;) denota la decision 6ptima que ha de tomarse en cada etapa, k = 0,...,N — 1, para cada uno
de los estados x; en los que puede estar el sistema en dicha etapa.

El objetivo final de un problema de programacién dinamica estocastico es maximizar (o minimizar)
el valor esperado de la suma de los pagos generados en cada etapa y por finalizar el proceso. Es decir,
maximizar o minimizar la cantidad:

N—-1

max  Eyg v S VG + Y gk di wi)
{do;.-.dn-1} k=0

La manera utilizada para resolver este problema, es el siguiente algoritmo:
» Paso 1: Hacer k =Ny Jy(xy) = gn(xn).

= Paso 2: Hacer k = k — 1, y para cada estado, determinar

Ji(xx) = méax E,, {gr(oxk, di, wi) + Jirt [ fe (X, di, wie) |}
deD(xk)

= Paso 3: si k = 0 detener el algoritmo, en otro caso ir al Paso 2.

Teorema 3.1. En todo problema de programacion dindmica se tiene que J*(xo) = Jo(xo), es decir, el
valor dptimo de la funcion objetivo se obtiene en el tiltimo paso del algoritmo.

Una demostracion extendida de esta teorema puede encontrarse en [4]. Por lo tanto, resolviendo el
algoritmo anterior obtenemos la solucién a un problema de programacién dindmica.

3.4. Planteamiento del problema

Una vez explicados los conceptos bdsicos, la notacion y el algoritmo empleado en la programacion
dindmica, vamos a utilizarlos en nuestro problema. Queremos resaltar que parece muy adecuada la ele-
ccidén de la programacién dindmica para nuestro caso ya que queremos disefiar una estrategia Optima
que nos diga a qué equipos apostar y qué cantidad en cada jornada, es decir, tenemos que tomar una serie
de decisiones secuencialmente y es precisamente en lo que se basa este tipo de problemas. Como nues-
tros modelos s6lo predicen resultados de la jornada 4 a la jornada 35, sélo apostaremos en estas jornadas.

El planteamiento principal del problema es el siguiente: Dada una cantidad inicial B; queremos
maximizar la probabilidad de acabar con una cierta cantidad final By al cabo de N jornadas apostando
a un nimero determinado de partidos. En nuestro caso, vamos a tomar B; = 10 € y By = 13 € pero
en lugar de realizar un sélo problema para obtener B, que empiece en la jornada 4 y termine en la 35,
vamos a dividirlo en subproblemas de 4 en 4 jornadas, con el objetivo de conseguir By en cada uno
de ellos. Para lograrlo, tenemos la opcién de apostar a la victoria local y a la visitante de 4 partidos
diferentes en cada una de las jornadas. Cabe destacar que:

= Si conseguimos nuestro objetivo antes de finalizar las 4 jornadas correspondientes, empezamos
un nuevo problema.
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= Como tenemos dos modelos diferentes para predecir la victoria local y la victoria visitante, con-
sideramos cada partido como si fueran dos independientes por si la estrategia 6ptima es apostar
tanto al local como al visitante. Ademds, a la hora de pensar en los distintos casos posibles y cal-
cular sus respectivas probabilidades, cuando no gana el local no tiene por que ganar el visitante y
viceversa, por consiguiente es mds cémodo interpretarlos cémo partidos diferentes (pensando en
la posterior programacién en Java)

= Utilizamos cantidades pequefias de dinero para no incrementar el coste computacional, pero el
programa que disefiaremos es perfectamente aplicable a cantidades més elevadas. Por el mismo
razonamiento hemos elegido apostar en cada jornada a cuatro partidos elegidos al azar en lugar
de todos los de la jornada.

Ademas:

= N =4. Cada una de las etapas identifica a una jornada diferente.

= x; denota el dinero disponible al comienzo de la etapa k. Es obvio que si en algiin momento x; =0
terminamos el problema sin cumplir nuestro objetivo y si x; = 13 dejamos de apostar por que ya
se consigue lo que queremos.

» xo=B;=10

] d,i denota al dinero apostado en el partido i correspondiente a la etapa k, con i = 1,2,...,8 y
k=1,....4.

] wf{ denota el factor aleatorio que determina el resultado del partido i, con i =1,2,...,8 y k =
1,...,4.

] c}; denota la cuota de victoria del partido i correspondiente a la etapa k, con i = 1,2,...,8 y
k=1,...,4. Las cuotas las hemos obtenido mediante una media aritmética de las principales
casas de apuestas del mundo, tanto fisicas cémo de caracter online.

Con esta notacion, la ecuacion de transporte viene dada por:

d’ ’ si w};es ganar
dl si wyes perder

Xyl = ka X, i W) —xk+z
i=1

Para poder resolver este tipo de problemas estocdsticos en los que se quiere maximizar una proba-
bilidad, es necesario definir los pagos generados en cada etapa como g (xx,d;,w;) =0conk=1,2,3y
Vi, y el pago terminal como

1 sixg>13
g4(x4) - { O Si X4 < 13 (32)

Por otro lado, como el objetivo de un problema genérico de estas caracteristicas es

max{P(Xy > Cy)} = maxE[£]

considerando & una variable aleatoria tal que

5_ 1 SiXN>Cf
10 siXy < Cy

se tiene que

8k, di,wi) + 84 (xa)] = Efga(xa)]  (3.3)

Mw

P(xs > 13) =1 Plxy > 13]+ 0 Pxy < 13] = E[§] = E|
k

1
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y de aqui, por el teorema mencionado se sigue que para resolver cada uno de los problemas hay que
calcular

J7(x0) = max E{ga(x4)}

para lo que es necesario ir recorriendo el algoritmo mencionado en la Seccién 3.2. Notar que aunque
normalmente en programacién dindmica basta con una resolucién del problema para que nos dé las so-
luciones de todas las etapas, en nuestro caso no es asi, ya que tenemos que resolver tantos problemas de
programacién dindmica como etapas (N = 4); es decir, el primer problema lo resolvemos para N = 4,
luego resolvemos un segundo problema con N = 3, luego N = 2 y finalmente N = 1. La razén de esto
es que son necesarias las cuotas y las probabilidades de todas las jornadas, pero como es natural, s6lo
tenemos las probabilidades y las cuotas de la jornada en la que se estd. Para solventar este problema,
hemos programado la primera jornada con las probabilidades y las cuotas reales, pero para las demds he-
mos utilizado probabilidades y cuotas ficticias. Estos datos ficticios pueden ponerse a nuestra invencion,
pero para hacer el problema mds real hemos utilizado cinco cuantiles de las probabilidades predichas
por nuestro modelo victoria local de la temporada 2017-2018, ya que es de la tnica temporada de la
que teniamos las cuotas. Para no tener problemas, evitamos el mdximo y el minimo, y de esta manera
los cuantiles elegidos son:

= p1=qo05 = 0,183 correspondiente al partido Médlaga C.F. - Real Sociedad de la jornada 34 cuya
cuota local es de 4,48.

= P2 = qo275 = 0,358 correspondiente al partido S.D. Eibar - At. de Madrid de la jornada 19 cuya
cuota local es de 3,9.

» p3 = qos50 = 0,472 correspondiente al partido C.D. Alavés - U.D Las Palmas de la jornada 15
cuya cuota local es de 2,2.

» p4 = qo725 = 0,611 correspondiente al partido At. de Madrid - Valencia C.F. de la jornada 22
cuya cuota local es de 1,49

= ps = qoos = 0,818 correspondiente al partido Valencia C.F - R.C.D Espanyol de la jornada 31
cuya cuota local es de 1,456.

Notar que son 5 partidos en lugar de 4 que tenemos en la primera etapa y que s6lo introducimos
las cuotas y las probabilidades de ganar el local en lugar de poner también las de visitante, pero por el
hecho de ser partidos ficticios el programa no considera si son probabilidades y cuotas de ganar el local
o el visitante, ni tampoco el hecho de que sean 5 partidos (podian ser mds o menos).

Debido a que tenemos cada partido como si fueran dos independientes, la cantidad de combinaciones
de resultados que pueden darse es en torno a 28, ademds también tenemos que calcular todas las posibles
decisiones, por ejemplo, si x; = 10, las maneras distintas de apostar a 8 partidos (en realidad 9, por que
hay un noveno partido que es “no apostar”), son las combinaciones con repeticion de 10€ a repartir
tomados de 9 en 9, es decir, el nimero combinatorio 18 sobre 9 que es igual 48620. Por esta razén,
hemos disefiado un programa en Java que haga esto por nosotros y cuyo cédigo se puede encontrar
explicado con detalle en el anexo.

3.4.1. Aspectos importantes sobre la programacion en Java

Hemos realizado un programa en Java en el que a partir de unos datos que nos pide por teclado;
nuestro capital inicial, el capital que se quiere conseguir, el nimero de etapas para conseguir dicho ob-
jetivo, el nimero de partidos (no es necesario duplicar cada uno de ellos ya que lo hace el programa
automadticamente), las probabilidades de ganar el local y el visitante de cada uno de esos partidos (intro-
duciremos las que dan nuestros modelos) y las cuotas gana local y gana visitante de cada uno de estos
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partidos, el programa nos escribe por pantalla la estrategia éptima que habria que seguir para alcanzar el
objetivo en cada una de las etapas y la probabilidad que tenemos de alcanzarlo. Destacar que el cédigo
del programa no estéd sacado de ninguna fuente y es de creacion propia.

En relacion a cudles son las cantidades a apostar, el programa nos permitird apostar de 1 en 1 en el
intervalo [0, x;] siendo k la jornada actual y de 5 en 5 en el intervalo [25,x;] siempre y cuando x; < xy
en cuyo caso el programa nos dird que la solucién éptima es no apostar (como es obvio). Recordar que
en nuestro caso xy = 13 y por tanto nunca se da la segunda opcién aunque esté programada.

El funcionamiento central del programa se basa en calcular la funcién J en cada una de las etapas
de la siguiente manera:

= Para la etapa N hemos definido una funcién que hace exactamente lo explicado en (3.2).

» Para las etapas comprendidas en [2,N — 1] calcula la funcién J para cada uno de los estados
posibles utilizando las probabilidades y cuotas ficticias de la siguiente manera: Fijado un estado,
calcula todas las combinaciones de apuestas y para cada una de esas combinaciones, analiza
todos los posibles resultados (mediante c6digo binario) que pueden darse, obteniendo la ecuacién
de transporte correspondiente. Mediante la funcién J de la etapa anterior y la probabilidad de que
ocurran justamente esos resultados, el programa se queda con la decisién que maximiza el valor
esperado, que por lo visto en (3.3) coincide la posibilidad de alcanzar el objetivo.

= Para la primera etapa hace exactamente lo mismo pero con las cuotas y las probabilidades intro-
ducidas por teclado.

El tiempo de ejecucion del programa en un ASUS F540S con CPU Intel Dual-Core es de 6 minutos
y 33 segundos.

3.5. Aplicacion del programa y resultados obtenidos

Cémo ya tenemos unos modelos que nos predicen probabilidades y un programa que nos asegura
una estrategia 6ptima para conseguir beneficios, lo 16gico es aplicarlo a la vida real. Para ello vamos a ir
ejecutando el programa disefiado en Java jornada a jornada de la temporada 2017-2018 y observar cud-
les son los beneficios obtenidos. Es importante notar que en la aplicacién del programa no se ha usado
conocimiento previo de los resultados de la temporada 2017 — 2018, y por tanto puede considerarse una
simulacién real, en el sentido de que se podrian haber hecho estas apuestas a lo largo de la temporada
(es cierto que hemos usado los partidos de la temporada para obtener los cuantiles de las cuotas ya que
son las Unicas que teniamos, sin embargo para la temporada 2018 — 2019 pueden usarse los mismos
cuantiles y aplicar este procedimiento sin ningtin conocimiento adicional de la temporada). Denotamos
nuestro capital desde el comienzo de la simulacién con B, y vamos a llamar fases a cada uno de los
subproblemas de 4 jornadas.

Fase 1:

= Comenzamos en la jornada 4 con xy = 10, y el objetivo xy = 13 en las préximas 4 jornadas
(incluyendo ésta). Elegimos cuatro partidos al azar de la jornada, calculamos las probabilidades
gana local y gana visitante con nuestros modelos y los introducimos en el programa con sus
respectivas cuotas. Una vez ejecutado, el programa nos dice que la decisién 6ptima es apostar 1€
a la victoria del Getafe C.F. (p = 0,319, ¢ = 11,6) en el partido Getafe C.F. - F.C. Barcelona (1-2),
luego perdemos lo apostado y asi B = 9. En esta jornada, la probabilidad de alcanzar el objetivo
es de 0, 88.

= Pasamos a la jornada 5, pero como en la anterior hemos perdido dinero ahora empezamos con
xo =9 con el objetivo de conseguir xy = 13 en las proximas 2 jornadas. El programa nos da
como decisién éptima no apostar a nada, de manera que pasamos a la jornada siguiente. Ahora,
la probabilidad de alcanzar el objetivo es de 0, 82.
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» Enlajornada 6 con xo =9y xy = 13, nos da como solucién éptima con probabilidad de alcanzar
el objetivo de 0,65, apostar 6€ a la victoria del R.C. Celta de Vigo (p; = 0,224, ¢; = 3,25) en
el partido S.D Eibar - R.C. Celta de Vigo (0-2) y 3€ a la victoria del Sevilla C.F. (p, = 0,304,
¢y = 5,875) en el partido At. de Madrid - Sevilla C.F (2-0). Asi pues, aunque pierde el Sevilla
C.F. gana el Celta, luego se tiene que B =6-3,25 = 19,5 y c6mo ya hemos llegado al objetivo,
terminamos la fase.

Veamos ahora la Fase 2:

= Comenzamos la nueva fase empezando en la jornada 7 con xo = 10 y buscando el mismo objetivo
que antes en 4 jornadas. Procediendo de la misma manera, el programa nos da cémo decision
Optima apostar 1€ a la victoria del C.D. Leganés (p = 0,38, ¢ = 6,5) en el partido C.D Leganés
- At. de Madrid (0-0), luego perdemos y B =9.

= Pasamos a la jornada 8 con xo = 9 con el mismo objetivo pero con una jornada menos para
apostar. La decisién 6ptima es no apostar a nada.

» Enlajornada 9 da como solucién éptima apostar 9€ a la victoria del Betis (p = 0,676, ¢ = 1,57)
en el partido Betis - Alavés (2 —0), luego B=9-1,57 = 14,3 y c6mo se cumple el objetivo
terminamos la fase.

Hasta ahora parece que el programa se comporta igual en todas las fases; apuesta 1€ en la primera
jornada a un equipo con poca probabilidad de ganar pero con una cuota alta y lo pierde, la segunda
jornada no apuesta y en la tercera lo hace de manera que consigue el objetivo. No vamos a detallar aqui
jornada a jornada qué nos ofrece como estrategia éptima, pero hay un gran nimero de fases en los que
la estrategia es diferente. Por ejemplo repasemos la fase 7. Empezamos en la jornada 22 con el capital
inicial y objetivo de siempre. La decision 6ptima dada es que apostemos 2€ a la victoria del Girona
(p =10,522, c =2,5) en el partido Girona - Athletic Club (2-0), luego B = 13 y por lo tanto finalizamos
la fase. También hay fases en las que la decision 6ptima es distribuir bastante mas nuestro dinero, algo
muy interesante ya que no es una idea que se le puede ocurrir a cualquiera con facilidad. Sucede algo
asi en la fase 13:

= Empezamos en la jornada 32, en la que nos dice apostar 4€ al At. de Madrid (p; = 0,871,
c1 = 1,25) en el partido At. de Madrid - Levante U.D. (3-0) y 2€ a la victoria del Athletic Club
(p2 = 0,679, c; = 1,6) en el partido Athletic Club - R.C. Deportivo (2-3), luego ganamos la
primera apuesta y perdemos la segunda, B=4+4-1,25=09.

= En la jornada 33 nos dice no apostar a nada.

= En la jornada 34 da como estrategia optima apostar 5€ al C.D. Alavés (p; = 0,466, c; = 2,29)
en el partido U.D. Las Palmas - C.D. Alavés (0-4). Por consiguiente B=2+5-2,29 =13,45y
finalizamos la fase.

En la Figura 3.2 se puede apreciar cémo va evolucionando nuestro capital jornada a jornada de la
temporada. Al finalizar la temporada, nuestro capital es de 58,96€ de tal manera que el beneficio es de
48,96€ por tanto los resultados son excelentes ya que sixtiplicamos nuestro capital inicial.

Como vemos, no en todas las jornadas se gana, y hay un momento de la temporada, en torno a la
jornada 20 en la que se encadena una mala racha. Esto sucede en la fase 6, en la que:

= En la jornada 19 nos dice apostar 2€ al Valencia C.F (p = 0,573, ¢ = 2,28) en el partido R.C.
Deportivo - Valencia C.F. (1-2) asi que ganamos y B=8+2-2,28 = 12,56.

» En la jornada 20 perdemos dinero por que nos aconseja apostar 3€ al At. de Madrid (p = 0,738,
¢ =1,32) en el partido At. de Madrid - Girona (1-1) y asi B =9, 56.
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Beneficio Temporada 17-18

60 1 -

50 4 r

40 1 ~

Dinero

30 4 -

20 ~

T T
10 20 30

Jornada

Figura 3.2: Beneficio obtenido durante la temporada 2017-2018 empezando con 10€

= Enlajornada 21 volvemos a perder dinero ya que nos aconseja apostar 3€ al Levante (p; = 0,286,
c¢1 = 4) en el partido R.C Deportivo - Levante U.D. (2-2), 4€ al Girona (p, = 0,471, ¢; = 3,05)
en el partido Mdlaga C.F - Girona (0-0) y 1€ a la U.D. Las Palmas (p3 = 0,056, ¢c3 = 17,08) en
el partido At. de Madrid - U.D. Las Palmas (3-0). Por tanto perdemos en las tres apuestas y asi
B=1,56.

En total, obtenemos una pérdida de casi 9€ .

Este es el principal problema de optar por la programacién dindmica, ya que aunque nos ponemos
en cada fase un objetivo bastante alcanzable, arriesga todo lo que tiene para conseguirlo y asf la etapa
que pierde, pierde casi todo. Aunque los resultados son muy buenos, todavia se puede conseguir mas
beneficio; por ejemplo, si fijamos como objetivo xy = 14 en cada fase con xy = 10, obtenemos un
beneficio de 59,69€ , por lo tanto incrementamos nuestra fortuna en un 600 %. Una comparativa entre
el beneficio obtenido con xy = 13 y xy = 14 puede verse en la Figura 3.3. Cabe destacar que no por
aumentar el objetivo en todas las fases se consigue mas beneficio, ya que para conseguirlo la estrategia
a seguir es més arriesgada y se puede perder varias veces todo el dinero.

3.5.1. Alternativas y mejoras

Podriamos haber planteado algunos conceptos del problema de programacién dindmica de manera
alternativa. Algunos son las siguientes:

= Para las cuotas y probabilidades ficticias, en lugar de tomar los cuantiles de las probabilidades
predichas por nuestros modelos, podemos usar las mismas que introducimos por teclado para
todas las jornadas de la fase.

= Dado que la programacion dindmica nos da en cada etapa la probabilidad de conseguir el objetivo,
una manera de mejorar y obtener posiblemente mejor beneficio es poner un objetivo variable en
cada una de las fases segin las probabilidades que obtenemos por pantalla cuando ejecutamos el
programa. Es decir, buscar el maximo xy tal que la probabilidad de obtenerlo sea mayor que una
fijada.
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Figura 3.3: Beneficio obtenido durante la temporada 2017-2018 empezando con 10€ con diferentes
objetivos por cada fase. En azul xy = 13 y en rosa xy = 14.

3.6. Conclusiones finales

= Podemos utilizar modelos estadisticos para predecir los resultados de fiitbol de cualquier compe-
ticién s6lo viendo cémo estdn jugando en los Gltimos partidos y mirando su posicién en la tabla.
Aunque nuestros modelos no son mejores respecto a las predicciones de las casas de apuestas,
son suficientemente buenos para obtener beneficio econémico, como hemos comprobado.

= La programacion dindmica se adapta a la perfeccién a un problema real de apuestas de partidos
de futbol, dando altos beneficios.

= Fl problema de intentar predecir un resultado de fitbol y el problema de programacién dindmi-
ca para disefar la estrategia 6ptima de apuesta son totalmente independientes. Hay modelos de
prediccién ya estudiados en la literatura que dan resultados mds cercanos a la realidad que los
nuestros y que se pueden usar con el programa de programacién dindmica que hemos disefiado.






Apéndice A

Codigo R

BDLigaEsp <-
readXL("C:/Users/sabro/Desktop/Carrera/TFG/Base de datos 2013-2018.x1sx",
rownames=FALSE, header=TRUE, na="", sheet="Hoja3", stringsAsFactors=TRUE)

% MODELO PARA PREDECIR VICTORIA LOCAL

BDLigaEsp <- subset(BDLigaEsp, subset=Jornada>3)

BDLigaEsp <- subset(BDLigaEsp, subset=Jornada<36)

BDLigaEsp$DPJornada <- with(BDLigaEsp, DP/ Jornada)

BDLigaEsp$DPLogJornada <- with(BDLigaEsp, DP/ log(Jornada))

modelol <- glm(VL ~ RL1 + RV1 + RL2 + RV2 + DPJornada + DPLogJornada,
data = BDLigaEsp, family = "binomial")

modeloAIC <- stepwise(modelol, direction = ’backward/forward’ , criterion = ’AIC’)

%Para la curva ROC
BDLigaEsp<- within(BDLigaEsp, {
fitted.modeloAIC <- fitted(modeloAIC)
b
names (BDLigaEsp) [c(19)] <- c("PrediccionVL")
library (pROC)
rocVL<- roc(BDLigaEsp$VL, BDLigaEsp$PrediccionVL)
auc (rocVL)

plot(rocVL, col="red", print.auc=TRUE)

Y%Area under the curve: 0.722

25
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%MODELO PARA PREDECIR VICTORIA VISITANTE

modelo2 <- glm(VV ~ RL1 + RV1 + RL2 + RV2 + DPJornada + DPLogJornada,
data = BDLigaEsp, family = "binomial")

modeloAIC2 <- stepwise(modelo2, direction = ’backward/forward’ , criterion = ’AIC’)
modelo3 <- glm(VV ~ RL1 + RV1 + RL2 + RV2 + DPLogJornada,

data = BDLigaEsp, family = "binomial")

modeloAIC3 <- stepwise(modelo3, direction = ’backward/forward’ , criterion = ’AIC’)

%Para la curva ROC

BDLigaEsp<- within(BDLigaEsp, {
fitted.modeloAIC3 <- fitted(modeloAIC3)

b

names (BDLigaEsp) [c(20)] <- c("PrediccionVV")

rocVV<- roc(BDLigaEsp$VV, BDLigaEsp$PrediccionVV)

auc(rocVV)

plot(rocVV, col="red", print.auc=TRUE)

%Area bajo la curva: 0.7194



Apéndice B
Codigo Java

package tfg;

import java.util.Arrays;
import java.util.Scanner;

public class TFG {

//probgen es un vector de reales que representa la probabilidad de ganar el
//equipo local en el partido i pero obtenidos de forma genérica
//0btenidos por los cuaniles de mis predicciones.
static double[] probgen = {0.1830564, 0.3576748, 0.4719785,
0.6114536, 0.8183193};

//cuotgen es un vector de reales que representa la cuota que ofrece la casa
//de apuestas por que gane el local en el partido i de forma genérica
//También son obtenidos a partir de la funcién de distribucién.

static double[] cuotgen = {4.48, 3.9, 2.2, 1.49, 1.456};

//Probprim es un vector de reales que representa la probabilidad de victoria
// de cada equipo en el partido i en la jornada en la que estamos.
static double[] probprim;

//cuotprim es un vector de reales que representa la cuota por ganar
// de cada equipo en el partido i en la jornada en la que estamos.
static double[] cuotprim;

// ci es un entero que representa la cantidad de dinero inicial.
static int ci;

//dec es un real que representa la cantidad decimal
//del dinero inicial.
static double dec;

//cf es un entero que representa la cantidad de dinero al
//qué se quiere llegar.
static int cf;

// m es un entero que representa el nimero de partidos.

27
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static int m;

// n es un entero que representa el nimero de etapas.
//(En este caso, de jornadas)
static int n;

// matriz es una matriz que contiene en cada fila las probabilidades
// de ganar y de perder de un equipo equipo de la jornada en la que estamos.
static double[][] matriz;

//matrizgen es cémo la anterior pero para los partidos ficticios.
static double[] [] matrizgen;

public static void main(String[] args) {

//INTRODUCCION DE DATOS POR TECLADO

Scanner sc = new Scanner(System.in);
System.out.println("Introduce el depésito

inicial (parte entera): ");

ci = sc.nextInt();

System.out.println("La parte decimal de la cantidad inicial: ");
dec = sc.nextDouble();

System.out.println("Introduce el depésito que se quiere obtener: ");
cf = sc.nextInt();

System.out.println("Introduce el nimero de partidos: ")

m = sc.nextInt();

System.out.println("Introudce el nuimero de etapas: ");

n = sc.nextInt();

//GENERACION DE MATRICES DE PROBABILIDADES (Utiles para cdlculos)
matriz = new double[2 * m][2];
//Para poder apostar al local y al visitante
for (int j = 0; j < m; j++) {
System.out.println("Introduce la probabilidad de ganar el "
+ "local del partido " + (j + 1)
+ " de esta jornada: (con coma)");
matriz[j] [0] = sc.nextDouble();
matriz[j] [1] 1.00000 - matriz[j][0];

for (int j = 0; j < m; j++) {
System.out.println("Introduce la probabilidad de "
+ "ganar el visitante del partido " + (j + 1)
+ " de esta jornada: (con coma)");
matriz[j + m] [0] = sc.nextDouble();
matriz[j + m][1] 1.0 - matriz[j + m][0];

matrizgen = new double[5] [2];
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for (int j = 0; j < matrizgen.length; j++) {
matrizgen[j] [0] = probgenl[jl;
matrizgen[jl[1] = 1.0 - matrizgen[j][0];

cuotprim = new double[2 * m];
for (int j = 0; j < m; j++) {
System.out.println("Introduce la cuota gana "
+ "local del partido " + (j + 1)
+ " de esta jornada: (con coma)");
cuotprim[j] = sc.nextDouble();

for (int j = 0; j < m; j++) {
System.out.println("Introduce la cuota "
+ "gana visitante del partido " + (j + 1)
+ " de esta jornada: (con coma)");
cuotprim[j + m] = sc.nextDouble();

System.out.println();

//LLAMADA AL PROGRAMA
dinamica(n) ;

//FUNCIONES AUXILIARES

//La funcién dindmica a partir del nuimero de etapas, se encarga de llamar
//a cada una de las funciones que me resuelven cada una de las etapas,

// devolviendo la probabilidad que hay de alcanzar el objetivo en cada una

// de ellas.
public static double dinamica(int n) {
System.out.println("------------ Etapa " + n + " ———————————- ")

double[] j = ultimaEtapa(cf);
System.out.println(Arrays.toString(j));
for (int i =n - 1; i > 1; i--) {
System.out.println("------—---—- Etapa " + i + " ——————————— ")
j = etapa(j, cuotgen, matrizgen, 0.0);
System.out.println(Arrays.toString(etapa(j, cuotgen, matrizgen, 0.0)));
}
System.out.println("----——-----—- Etapa " + 1 + " ——————————— ")
double res = primeraEtapa(j);
System.out.println("La maxima probabilidad de acabar con "
+ "" + cf + " es " + res);

return res;

//La funcion etapa, a partir de un vector de double J que representa
// los valores que puede tomar dicha funcién, otro vector de
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// double c que representa a las cuotas, y una matriz mp
// que representa las probabilidades, me devuelve
// el vector J al hacer una etapa en un problema de programacién dindmica.
public static double[] etapa(double[] j, double[] c, double[][] mp, double decimal) {
double[] jnext = new double[j.length];
for (int h = 0; h < jnext.length; h++) {
jnext[h] = j[h]l;
}
int[] x = estados(cf);
int ind = O;
int[] vaux2 = new int[mp.length];
for (int i = 0; i < x.length; i++) {
double res = 0;
int[] decisiones = auxiliar(x[i]);
int max = maximo(decisiones);
CombRep cr = new CombRep(decisiones.length, mp.length);
int[] vaux = new int[mp.length];

do {

for (int h = 0; h < vaux.length; h++) {
vaux[h] = decisiones[cr.getPos(h)];
}
if (suma(vaux) <= max) {
double aux2 = 0;
int tam = (int) Math.pow(2, mp.length);
for (int k = 0; k < tam; k++) {
int b[] = binarioN(k, mp.length);
int z = transporte(x[i], vaux, b, c, mp.length, decimal);
aux2 = aux2 + jj(j, z) * probs(b, mp);
}
if (aux2 > res) {
res = aux2;
for (int q = 0; q < vaux2.length; g++) {
vaux2[q] = vauxl[ql;

3

}
} while (cr.next());
System.out.println("La decisién tomada para " + ind + " es: ");
System.out.println(Arrays.toString(vaux2)) ;
jnext[ind] = res;

ind++;

}

return jnext;

// La funcién auxiliar me genera un vector de enteros que seran las posibles
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// cantidades a apostar dado un capital n.
public static int[] auxiliar(int n) {
if (n <= 25) {
int[] aux = new int[n + 1];
for (int i = 0; i < aux.length; i++) {
aux[i] = i;

return aux;

} else {
int[] aux = new int[26 + ((n - 25) / 5)];
for (dnt i = 0; i < 26; i++) {

aux[i] = 1i;

}

for (int i = 26; i < aux.length; i++) {
aux[i] = aux[i - 1] + 5;

}

System.out.println((int) ((n - 25) / 5));
return aux;

// La funcién primeraEtapa hace lo mismo que la funcién etapa pero con las
// probabilidades y cuotas introducidas por teclado.
public static double primeraEtapa(double[] j) {
double jnext[] = etapa(j, cuotprim, matriz, dec);
System.out.println(Arrays.toString(jnext));
return jnextl[ci];

// La funcién ultimaEtapa me realiza la tGltima etapa de un problema de
// programacién dindmica en los que se maximiza probabilidades. Si el estado
// x_{N} es mayor o igual que el objetivo devuelve 1 y O en otro caso.
public static double[] ultimaEtapa(int cf) {
double[] j = new double[cf + 1];
for (int i = 0; i < j.length; i++) {
if (4 < cf) {

j[il = 0;
} else {
jlil = 1;
}
}
return j;

// La funcién transporte representa la ecuacién de transporte tal y como la
// hemos definido en el planteamiento del problema
public static int transporte(int x, int[] d, int[] p,
double[] c, int numpart, double decimal) {
double aux = x + decimal;
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for (int i = 0; i < numpart; i++) {
if (plil == 0) {
aux = (aux - d[i]) + d[i] * c[i];
}
if (pli] == 1) {
aux = aux - d[i];

}

return (int) aux;

// La funcién jj me representa la funcién de la funcién J de un problema de
// programacién dindmica incluyendo el hecho de que deje de apostar cuando se
// alcanza el objetivo.
public static double jj(double[] j, int i) {
if (i >= j.length) {
return 1.0;

}

if (1 <= 0) {
return O;

}

return j[i];

// La funcién binarioN me devuelve un array que es la representacién en binario
// en n bits de un numero que le pasamos como argumento.
public static int[] binarioN(int numero, int n) {
StringBuilder ala = new StringBuilder();
String numerobinario = "";

numerobinario = numerobinario + (numero % 2) + " ";
numero = numero / 2;
while (numero >= 2) {

numerobinario = numerobinario + (numero % 2) + " ";
numero = numero / 2;

numerobinario = numerobinario + numero;

StringBuilder cadena = ala.append(numerobinario);
cadena = ala.reverse();
String[] aux = cadena.toString().split(" ");
int[] res = new int[n];
int vaxl = res.length - aux.length;
for (dnt 1 = 0; i < vaxl; i++) {

res[i] 0;

}

for (int i

vaxl; i < res.length; i++) {
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res[i] = Integer.parselnt(aux[i - vaxl]);

return res;

// La funcién maximo me devuelve el maximo de un vector de enteros.
public static int maximo(int[] v) {
int max = O;
for (int i = 0; i < v.length; i++) {
if (max < v[i]) {
max = v[i];

¥

return max;

// La funcién suma me devuelve la suma de todas las componentes de un vector.
public static int suma(int[] v) {
int res = 0;
for (int i = 0; i < v.length; i++) {
res = res + v[i];

}
return res;
}
// La funcion estados dado un entero cf, genera el array [0, 1, ..., cf]

public static int[] estados(int cf) {
int[] x = new int[cf + 1];
for (int i = 0; i < x.length; i++) {
x[i] = 1i;
}

return X;

// La funcién probs me devuelve la probabilidad de que se de un suceso, dada
// una combinacién de resultados y una matriz con las probabilidades de cada
// uno de esos resultados.
public static double probs(int[] bin, double[][] mp) {
double res = 1;
for (int i = 0; i < mp.length; i++) {
if (binf[i] == 0) {
res = res * mp[i] [0];
+
if (bin[i] == 1) {
res = res * mpl[i] [1];

return res;
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//La clase CombRep genera a partir de un vector de posibles cantidades apostar,
//todas las posibles maneras de repartir nuestro dinero a cada partido.

//Para ello es necesario hacerlo con un vector de indices que posteriormente
// se redirigira

public class CombRep {

private int[] comb;
private int limite;

public CombRep(int n, int m) {
comb = new int[m];
this.limite = n - 1;

public boolean next() {
int i = comb.length - 1;
while (i >= 0 && comb[i] == limite) {

i--;

}

if (1 <0) {
return false;

}

comb[i]++;

for (int j = i + 1; j < comb.length; j++) {
comb[j] = 0;

}

return true;

public int getPos(int i) {
return combl[i];

}
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