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HIGHLIGHTS 

- Permeation of CO2,H2,H2O mixtures through a zeolite A membrane was studied 

- Effects of temperature, partial pressures, total pressure were examined 

- Experimental results provide insight towards the development of a membrane reactor 

- Good water selectivity, with low H2 and CO2 flux was seen in many cases 

- Surprising high water partial pressure in permeate, caused by a temperature gradient 

 

Abstract 

The permeation of a mixture containing H2, CO2 and water through a zeolite membrane 

was studied under several operating conditions. The aim was to obtain insight on the feasibility 

of using such membrane in a zeolite membrane reactor for CO2 hydrogenation to methanol.  

The effects of total pressure (100-270 kPa), water partial pressure (10-18 kPa) and 

temperature (160-260ºC) were studied. Promising water-permanent gas separation factors 

were obtained up to 240ºC. A surprisingly high water partial pressure was found in the 

permeate in some cases, which is explained by the radial temperature gradient in the 

experimental system.  The good capability of this zeolite A membrane to selectively separate 

water vapor makes it a promising material for its use in a zeolite membrane reactor.  
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1. Introduction 
Membrane reactors are a key tool for process intensification because they allow 

integrating a catalytic reaction and the separation of products in a single unit [1][2]. In addition, 

higher conversion and lower reaction temperature can be reached by applying membrane 

reactors. Among the different kinds of membrane available for their use in membrane 

reactors, zeolite membranes provide quite special properties: a) good chemical and physical 

stability, b) possibility to tailor the pore size and c) feasibility of changing the chemical 

composition of the zeolite, thus selecting the desired interaction of the zeolite surface with the 

chemical compounds. An example of the last point is the variation from hydrophilic zeolites 

(like zeolite A) to hydrophobic (e.g. silicalite) by varying the Si/Al ratio in the framework.  

Zeolite membranes have attracted the interest of many groups since they were first described 

[3] and even more since they were applied industrially [4]. The interested reader can find 

several reviews on zeolite membranes and their application in membrane reactors 

[5][6][7][8][9][10] [11][12][13][14]. Under certain conditions, water or other compounds 

formed via reaction condense or adsorb in the pores of the zeolite, preventing other 

compounds permeating through the membrane. Application of zeolite membranes in a 

membrane reactor by removing water from a reaction media containing permanent gases has 

been examined with Fischer-Tropsch synthesis of hydrocarbons [15][16], in the synthesis of 

methanol or dimethyl-ether (DME) from synthesis gas (i.e. a mixture of CO, CO2 and H2)[17,18] 

and in other chemical productions.  

Methanol is one of the most important basic chemicals, with a large production 

worldwide and could be the intermediate step in several Gas-to-Liquids technologies, such as 

methanol-to-olefins (MTO), or methanol-to-gasoline (MTG). By considering the reactions for 

methanol synthesis 

CO + 2 H2  CH3OH    (1) 

CO2+ 3 H2  CH3OH + H2O   (2) 

it is quite obvious that removing the methanol or the water formed in the reaction, the 

achievable conversion can be increased (Le Chatelier’s principle). Equilibrium conversion is low 

at low pressures, for example at 0.5 MPa and 220ºC the methanol yield for CO2 hydrogenation 

would be lower than 1%. This explains why methanol synthesis is industrially carried at high 

pressure (5-10 MPa) as a way to achieve higher conversion, and even so the typical conversion 

per pass is often quite low (10-15%). Therefore, if the conversion can be increased by 

removing the reaction products would be advantageous, both because it would allow lower 

operation pressures and because it would provide a lower flowrate in the recirculation loop. 

The use of a membrane reactor was firstly tested experimentally by Struis et al. [19][20], using 

a Nafion membrane. Although they were able to increase the conversion beyond that 

achievable with a conventional reactor, the maximum operating temperature allowed by 

Nafion was 200ºC. This temperature is significantly lower than the mean reaction temperature 

in industrial methanol synthesis (c.a. 250ºC) and therefore the spatial time was too high. The 

use of a zeolite membrane reactor was suggested by Menéndez et al. [21] and Gomez et al. 

[22] shown experimentally that it was possible to selectively remove water and methanol from 



  

a mixture of gases using a zeolite membrane. Piera et al. [23] showed the separation of 

alcohols from permanent gases. Sawamura et al. [24] showed the separation of steam from 

gas mixtures using a mordenite membrane. Gallucci et al. [25] proven experimentally that it 

was possible to achieve a higher conversion during methanol synthesis using a zeolite 

membrane reactor than with the traditional reactor, and the possibilities of such a reactor 

have studied by means of a mathematical model [26]. However, the former researchers 

recognized that there was a lack of experimental results describing the variation of separation 

factor with the operating conditions in a zeolite membrane.  

Another potential application of a membrane reactor is dimethyl ether (DME) 

production. DME is a promising fuel, which can be employed both in explosion and 

compression (Diesel) engines. Although DME can be obtained from methanol, it is 

advantageous to obtain it directly from synthesis gas. By converting methanol to DME in the 

reactor, the achievable conversion is increased.  

The synthesis of dimethyl-ether (DME) from syngas, described by 

2 CO + 4 H2  CH3OCH3 + H2O   (3) 

2 CO2 + 6 H2  CH3OCH3 + 3H2O   (4) 

is another case of equilibrium-limited reaction, where the removal of water from the reaction 

environment can provide an increase in conversion with respect to the conventional reactor. 

Diban et al. [17,18] suggested from  a mathematical model that a membrane reactor with a 

membrane with suitable water-permanent gas separation factors could provide significant 

advantages. The mathematical model assumed water/permanent gases separation factor 

based on previous results, but it is obvious that a clear relationship between selectivity and 

operating conditions for this kind of separations has not been achieved. 

The objective of this work is to experimentally study the separation of water-

permanent gas mixtures under conditions that can be relevant for methanol or DME, e.g. 

methanol synthesis from CO2 and H2. 

 

2. Experimental system 
2.1. Zeolite membrane synthesis 

Zeolite A membranes were prepared on the outer surface of porous α-alumina tubes 

(NikkatoCo, o.d. 12 mm, i.d. 9 mm, length 100 mm, pore size 1.25 μm) by a secondary growth 

method. Supports were immersed in a synthesis mixture having molar ratio of 1 SiO2 : 0.5 Al2O3 

: 1 NaO : 75H2O=1:0.5:1:75 after applying seed crystals, heated at 100 ºC for 4 hours. XRD and 

SEM analyses showed a formation of zeolite A membrane on the support. The zeolite 

membrane was tested in the pervaporation of a mixture water-methanol, yielding a separation 

factor over 10000. Nitrogen permeation for this membrane was 1.54·10-9 mol.m-2.s-1.Pa-1 at a 

mean pressure of 0.2 MPa and room temperature and rose to 3.38·10-9 mol.m-2.s-1.Pa-1 at the 

same pressure and 160ºC. This large increase in permeation corresponds to what is named as 

activated diffusion, and is a characteristic of flow in very small pores.  



  

 

 

2.2 Permeation tests 

Figure 1 shows a schematic diagram of the experimental setup. Gas feeds were 

delivered by mass flowmeters (Brooks). Water with a regulated flow rate by an HPLC pump 

was fed to a stainless steel tube, that was submerged in a sand bath, with a nitrogen stream to 

achieve a smoother flow. The mixture of water and gas (after adding CO2 and H2) was fed to 

the inner part of a zeolite membrane sealed in a stainless steel module. Ar was fed to the 

external side of the membrane as sweep gas. The stainless steel module with the zeolite 

membrane was located in an electrical furnace, whose temperature was controlled by a 

thermocouple inserted in the center of the membrane tube. Viton o-rings were used below 

180ºC to seal the membrane to the module, while gaskets made with a mixture of silicone 

grease and graphite powder were used at higher temperature. Two valves at the exit of 

permeate and retentate allowed controlling the pressure at both sides of the membrane. Both 

permeate and retentate streams were cooled in an ice-salt bath and the condensed product 

was weighted. The resulting gases were analyzed by gas chromatography and their flow was 

measured with a bubble meter. 

The separation factor, according to the IUPAC rules [27], is defined from the ratio of 

concentrations of two compounds in permeate and retentate.  

     (5) 

Repeated experiments showed an experimental error in separation factor around 5%. 

Figure 1. Scheme of the experimental system. The membrane module is located inside the 

oven.   

 

 

 



  

 

3. Experimental results 
3.1. Effect of temperature and partial pressure of water 

A series of experiments were performed by varying the temperature between 160 and 

260ºC and the partial pressure of water between 10 and 18 kPa. These values of partial 

pressure of water would be similar to those obtained in the hydrogenation of CO2 at 220ºC and 

0.5 MPa. Other experimental conditions are given in Table 1.  

Table 1. Flow rates in the feed to the permeate side (sweep gas) and the feed side, in gas-

water vapor separation experiments. 

 Permeate side Feed side 

Ar N2 CO2 H2 H2O 

Flow rate 
cm3 (STP).min-1 

10 55 50 120 25-50 

 

Figure 2 reports the variation of water flux as a function of temperature. Results 

obtained with three different water partial pressures in the feed are shown. Water flux 

increased with the partial pressure of water in the feed, which is quite in accordance with 

expectations. The variation of water flux with temperature follows the trend already observed 

in the permeation of other compounds that can be adsorbed [28]: a) at low temperature the 

flux increased with temperature up to a maximum, b) after the maximum the flux decreased 

with temperature, and c) eventually the flux increased again with temperature. The first two 

parts agree with a mechanism of diffusion of adsorbed molecules, in which the permeation 

depends on two factors: diffusivity and concentration of adsorbed molecule. At low 

temperature the rise of temperature increases diffusivity of the adsorbed molecule, and thus 

resulted in the flux increase. After the maximum, the decrease in concentration of adsorbed 

molecules becomes so large that the product of both factors decreases. Finally, when the 

temperature is large enough the flux is mainly in gas phase (activated flow) and rises again 

with temperature.  
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Figure 2. Effect of temperature and water partial pressure in the feed on the water flux 

through the membrane. Parameter: partial pressure of water in the feed. Lines are only 

for eye aid. 

 

The effect of the operating conditions (temperature and partial pressure of water in the 

feed) on the separation factor (water/H2 and water/CO2) is shown in Figure 3. As a reference, 

the simulations of a membrane reactor in [21] employed a SF (CH3OH/H2) of 20.  As 

temperature increases, a maximum in separation factor is achieved. At temperatures over 

240ºC, the separation factor becomes too low, probably around the limit to be useful in a 

membrane reactor. The decrease of separation around this temperature agrees with the 

experimental results by Gallucci et al. [25] who found that above 240ºC the membrane reactor 

was not able to outperform the traditional reactor. The effect of water partial pressure on the 

separation factors is small in the range of operating conditions studied in this work, compared 

with the effect of temperature. 
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 Figure 3. Effect of temperature on the separation factor. Total pressure at both sides 101 kPa. 

Top: SF (H2O/CO2), bottom: SF (H2O/H2). Lines are drawn as eye aid.  



  

 

 

 

3.2. Effect of pressure drop through the membrane 

In this section two experiments are compared: a first one in which the total pressure at 

both sides of the membrane was the same (101 kPa) and a second experiment in which the 

pressure of the feed was higher (240 kPa) than in the permeate side (101 kPa). The separation 

factor is shown in Figure 4. The negative effect of a different total pressure is quite evident, 

which is clearly explained by the existence of some defects, in which a non-selective flow 

appears when the pressure at both sides is different. These defects are probably inter-

crystalline pores. The flow through these defects is very low when the total pressure is the 

same at both sides, but is evidenced by the increase in flux of permanent gases in the presence 

of a total pressure gradient. As an example, in the experiment shown in Figure 4, the hydrogen 

flux increased by a factor of 3.5. From the point of view of the application of this kind of 

membranes in a membrane reactor, this result would limit the operation to a situation where 

the pressure at both sides was the same, using some kind of sweep gas in the permeate side.  

 

Figure 4. Comparison of the separation factor with the same or a different pressure at both 

sides of the membrane. T= 160ºC. Water molar fraction in the feed= 0.18. 

3.3. Influence of total pressure 

If the operation pressure was increased, but keeping the same pressure at both sides of 

the membrane, an increase in water flow was observed (Figure 5), but with some decrease in 

the separation factor (Figure 6). The flow increase can be explained by the higher driving force 

(i.e. difference in partial pressure at both sides of the membrane). The decrease in separation 

factor suggests that the increase in the flow of permanent gases is larger than the increase in 

the flow of water. This can be explained because the driving force for water permeation is not 

increasing according to the large water partial pressure in the feed, at least in these 

experimental conditions. As we will show later, the water partial pressure in the permeate 



  

achieved a quite large value under some of the operating conditions employed in this work, 

which limits the water permeation.  

 

Figure 5. Effect of total pressure on water flow. T= 240ºC. Molar fraction of water in the 

feed=0.18. 

 

 

Figure 6. Effect of total pressure on the separation factors. T= 240ºC. Water molar fraction in 

the feed=0.18. 

 

3.4. On the surprisingly high water partial pressure in permeate 

By comparing the water partial pressure in permeate and in retentate (Table 2), a 

surprising result was seen in these experiments: It was higher in the permeate than in the 

retentate. This result is opposed to the general assumption that a gas is transported from the 

side where it is at higher concentration (or partial pressure) towards the side where it is at 

lower concentration (or partial pressure). An explanation to this surprising behavior can be 



  

given by considering that the driving force for water permeation is not the gradient of water 

partial pressure in the gas phase, but the gradient of adsorbed water concentration in the 

membrane. This consideration, together with the difference in temperature at both sides of 

the membrane (resulting from the fact that the membrane module is heated by an external 

furnace), explains this counterintuitive result. The experimental temperature difference 

between the internal and the external side was measured, and it was c.a. 30ºC. As shown in 

Figure 7, the variation in adsorbed water concentration in a zeolite with such a difference of 

temperature can be quite large. It is possible that the adsorbed concentration of water in the 

permeate side (green-dotted line) was lower than in the retentate (red-solid line), although 

the water partial pressure followed the opposite order.  

Table 2. Partial pressure of water in permeate and in retentate 

T in retentate 
side (ºC) 

P H2O feed 
(kPa) 

P H2O retentate 
 (kPa) 

P H2O permeate 
(kPa) 

160 18 18 24 

160 13 13 18 

160 10 9 18 

180 18 18 29 

180 13 13 21 

180 10 9 21 

200 10 10 22 

200 18 18 28 

200 13 13 23 

220 18 18 29 

220 13 12 21 

220 10 9 17 

240 10 9 14 

240 18 17 23 

240 13 13 21 

260 18 17 30 

260 13 13 20 

260 10 10 13 

3 4 5 6 7 8 9 1010 20 30 40 50

0.1

0.15

0.2

0.25

0.3

 (perm)

P
w
 (ret)


(

m
o

l 
H

2
O

/1
0

0
 g

)

P (kPa)

250ºC

300ºC

P
w
 (perm)

 (ret)

 



  

Figure 7. Illustration of the effect of different temperatures in permeate and retentate sides. 

Adsorption equilibrium data taken from [29] 

4. Conclusions 
The effect of temperature and water partial pressure on the water flux and the 

SF(H2O/CO2) and SF (H2O/H2) has been measured. These results provide the foundation for a 

better design of a membrane reactor for CO2 hydrogenation to methanol. Good separation 

factors were obtained, although a decrease was observed when the temperature was raised 

over 240ºC.  

In a practical operation, the blocking of pores for the transport of hydrogen or carbon 

dioxide requires a minimum partial pressure of water. It could be possible to add some water 

to the feed, but this would decrease the yield at the equilibrium. A better alternative, to be 

explored in future work, is to have in first place a conventional reactor and in second place a 

membrane reactor. This would provide enough water content in the feed to the zeolite 

membrane reactor. 

The use of the same pressure at both sides of the membrane, and thus the use of a 

sweep gas, is needed to keep good separation factors.  

As surprising result was that under the employed operating conditions the water partial 

pressure in permeate was higher than in retentate. This was explained by a temperature 

gradient in the experimental system, in such a way that the temperature in the permeate side 

was higher than in the retentate side. This result suggests that water flux can be improved by 

applying a temperature gradient, with higher temperature at the permeate side. 
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