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Abbreviated title: AMS in intraplate shallow fault zones  

Abstract: Anisotropy of magnetic susceptibility (AMS) has been applied to the study of shallow fault zones, 

although interpretation of the results requires establishing clear relationships between petrofabric and 

magnetic features, magnetic behavior of fault rocks, and an extensive knowledge of P-T conditions. In this 

work, we demonstrate that magnetic methods can be applied to the study of heterogeneous fault zones, 

provided that a series of requisites are met. A major fault zone within the Iberian plate (Daroca thrust), 

showing transpressional movements during Cenozoic time was chosen for this purpose, because of the 

exceptional outcrops of fault gouge and microbreccia and its relevance within the context of the 

northeastern Iberian Plate. Magnetic fabrics were analysed and the results were compared with foliation 

and S-C structures measured within the fault zone. Clay mineral assemblages suggest maximum burial 

depths shallower than 2 km (<60-70°C) for fault rocks in the footwall of the Daroca thrust. The orientation 

of the AMS axes is consistent with mesostructural strain indicators: kmin parallels the mean pole to S, or it is 

intermediate between S and C poles; kmax is oriented at a high angle (nearly orthogonal in overall) to the 

transport direction, which can be explained from both deformational and mineralogical controls. Both 

magnetic fabrics and kinematic indicators are consistent with a reverse movement for most of the fault 

zone.  
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Keywords: Anisotropy of magnetic susceptibility, fault rock, transport direction, transpression, kinematic 

indicator. 

 

1. Introduction  

Defining the kinematics of major fault zones in intraplate areas is a significant issue because of its 

implications on the movement of crustal blocks and the formation of intra-plate mountain belts (e. 

g. Ziegler, 1989; Dyksterhuis, 2008; Kley and Voight, 2008). These zones of weakness are 

commonly long-lived structures involving the basement, and are linked to rifting and subsequent 

inversion processes (Gabrielsen et al., 1999; Scheck et al., 2002; Elías-Herrera and Ortega-

Gutiérrez, 2002; Otto, 2003; Scheck-Wenderoth and Lamarche, 2005; De Vicente et al., 2009, 

2011).  

In addition, because of the structural complexity of fault zones in intraplate areas (and of their 

kinematic indicators) at shallow crustal levels, a combination of techniques is a convenient 

approach for deciphering their kinematics. In this sense, anisotropy of magnetic susceptibility 

(AMS) has demonstrated to be a reliable method for unravelling the kinematic evolution of faults 

(Solum and van der Pluijm, 2009; Levi et al., 2014; Moreno et al., 2014; Pomella, 2014; Braun et 

al., 2015; Keskinva et al., 2016; Casas et al., 2017) due to the possibility of averaging datasets even 

where structures are not well developed at the outcrop scale.  

Nevertheless, some drawbacks to this approach do exist, since the relationship between 

magnetic fabrics and petrofabric of fault zones at shallow crustal levels can be ambiguous because 

of: 

1) The heterogeneity of the petrofabric itself, especially when cataclasis is the main 

deformation mechanism and foliations and/or lineations are discontinuous or interrupted along 

the fault zone (Billi and Storti, 2004). Combination of different mechanisms (semi-brittle to brittle) 

can result in different microstructures that, although kinematically consistent, overprint or modify 

the original fabric (Ben-Zion and Sammis, 2003; Faulkner et al., 2003). Moreover, movements 

along distinct transport directions during the evolution of fault zones strongly contribute to 

increase such heterogeneity.  
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2) Neoformation of different mineral phases (both para- and ferromagnetic) coeval to fault 

activity, and favoured by thermal/mechanical processes  (Chou et al., 2012a; 2012b; 2014). 

Sequential crystallization can result in the development of different subfabrics, which may or not 

coincide to each other depending on the particular kinematics of faults and the response of fault 

rocks to shear. Controls on the conditions of development of magnetic fabrics are therefore of 

major importance and can also give clues about the origin of these fabrics or remagnetization 

processes responsible for the change of magnetic properties of rocks. In this sense, understanding 

the kinematics of fault zones also involves knowing the thermal conditions and mechanical 

behaviour of fault rocks associated with thrusting, together with the depth of thrusting and the 

rocks provenance. Palaeothermal indicators from clay minerals have been proven useful for 

studying fault rocks and provide information on fluid circulation, water/rock ratio, frictional 

heating and depth of deformation (Vrolijk and Van der Pluijm, 1999; Schleicher et al., 2012; 

Balsamo et al., 2014, Smeraglia et al., 2016). 

In this paper we explore the applicability of AMS and palaeothermal indicators from clay 

minerals to study fault gouge and microbreccia, up to several tens of metres thick, along an intra-

plate fault zone (Daroca thrust, Aragonian Branch of the Iberian Chain). We intend to define the 

depth at which deformation occurred and to unravel its large-scale kinematics. The interest for 

this study is two-fold: i) from a methodological point of view, this is a significant contribution to 

establish relationships between magnetic properties and tectonic processes in fault rocks formed 

at shallow depths within the crust, which can be of interest in view of the possibility of wholesale 

application of magnetic techniques to other areas; ii) from the regional point of view, the 

definition of the tectonic regime during the Cenozoic in a representative area of the Iberian Chain 

can shed light on the evolution of the Iberian plate and the different mechanisms involved in fault 

re-activation and intra-plate deformation. Techniques used include structural analysis, X-ray 

diffraction, and a variety of magnetic methods, namely room-temperature and low-temperature 

AMS, thermomagnetic (k vs T) curves, and thermal and AF demagnetization of NRM to investigate 

the magnetic mineralogy. 

 

2. Geological Setting  
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The Iberian Range (Fig. 1A) is an intraplate mountain chain resulting from deformation during the 

Cenozoic, driven by convergence between Europe, Africa and Iberia (Alvaro et al., 1979; Casas and 

Faccenna, 2001; Capote et al., 2002; De Vicente, 2004; De Vicente et al., 2009). Conversely to 

other intra-plate uplifts in Iberia that mainly involve the Palaeozoic basement (De Vicente et al., 

2007; Fernández-Lozano et al., 2011), the Iberian Chain resulted from inversion of Mesozoic 

sedimentary basins (De Vicente, 2004), except for its central zone (Aragonian Branch) where a 

thick Palaeozoic sequence (up to 11 km, Cortés-Gracia and Casas-Sainz, 1996; Calvín-Ballester and 

Casas, 2014) was re-folded during the Cenozoic compression with a NW-SE trend. In this sector, 

two large, Palaeozoic-cored structural highs (amplitude 2 km, wavelength 25 km in average, Casas-

Sainz and Cortés-Gracia, 2002), separated by the Cenozoic Calatayud basin, define the structure of 

the chain (Fig. 1B). Crustal-scale strike-slip faults, probably inherited from the Late-Variscan 

fracturing episodes (Arthaud and Matte, 1975, 1977) can be recognized within the Aragonian 

Branch (De Vicente et al., 2011; Gutiérrez et al., 2012; Casas et al., 2017). They are roughly parallel 

to the Cenozoic structural trend (NW-SE) and cut across the Palaeogene and Neogene infill of 

intra-mountain sedimentary basins. One of these major faults is the Daroca thrust, which 

constitutes the southern boundary of the Calatayud basin (Colomer and Santanach, 1988). 

 

3. Structure 

The Daroca thrust involves the Palaeozoic series (Lower Cambrian) typical of this sector of the 

Iberian Chain in its hanging-wall block, and the Miocene sequence of the Calatayud basin in its 

footwall block. The Cambrian sequence consists of dolostones and marls (Ribota Fm.), sandstones 

and mudstones (Huérmeda, Daroca, Valdemiedes and Murero Fms.; Carls, 1991). The syntectonic 

Middle Miocene series mainly consists of clastic sediments (conglomerates, sandstones and 

shales), deposited in alluvial fans sourced in the uplifted Aragonian Branch, which grade to 

limestones and gypsum towards the basin center (Villena et al., 1991). The uppermost units 

infilling the Calatayud basin are Upper Miocene to Lower Pliocene in age. Finally, Upper Pliocene-

Pleistocene conglomerates fill the Daroca Plio-Quaternary half-graben, subsequently developed in 

the southern block of the Daroca fault owing to its negative inversion during recent extensional 

deformation (Colomer, 1987; Gracia, 1992; Gutiérrez et al., 2008). 
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The Daroca thrust is an outstanding feature within the Aragonian Branch of the Iberian Chain, 

making a part of a NW-SE alignment of faults involving the Palaeozoic, the Mesozoic cover and the 

Cenozoic syn-tectonic deposits (Guimerà and Alvaro, 1990; Alvaro, 1991). The intense fracturing in 

the surroundings of this thrust strongly contrasts with the monotonous southwards dip (45° to 

55°S) of the rather undisturbed, 10-km-thick Palaeozoic sequence (Cambrian to Ordovician, Alvaro 

and Zamora, 2011) in its southern block (Fig. 2).  

The Daroca thrust extends along 40 km with an overall NW-SE direction parallel to the main 

trend of the Iberian Chain (Fig. 1B). It constitutes the southern margin of the Calatayud basin, 

essentially filled with Miocene deposits. At several sites along its trace, Palaeozoic rocks appear in 

mechanical contact with red clastic Middle Miocene deposits, while in other areas younger units 

(Middle-Upper Miocene in age) lap onto the thrust front. The occurrence of several en-échelon 

arranged segments have been related to a strike-slip, right-lateral component within the overall 

structure (Julivert, 1954; Colomer, 1987; Colomer and Santanach, 1988).  

In the surroundings of Daroca town, particularly good exposures show the main thrust surface 

making the boundary between Middle Miocene sediments (footwall) and Cambrian dolostones 

(hanging-wall) (Fig. 2A). Here, the thrust shows two clearly defined segments: (i) a main footwall 

ramp dipping 30° to 40°S, and (ii) a frontal footwall flat where the thrust surface dips shallowly (5-

10°) towards the north; such dip is probably due to gentle folding after thrust emplacement (Figs. 

2B, 2C). At the thrust front, the overturned limb of a recumbent fold defined by Cambrian 

dolostones lie onto the footwall flat of Middle Miocene conglomerates (Fig. 2D). The irregular 

morphology of the thrust front, the ramp-flat change within the homogeneous Miocene detrital 

sequence, and the presence of small extensional faults confined to the hanging-wall block are 

compatible with an epiglyptic origin (Mattauer, 1973). 

Well-developed microbreccia and fault gouge, with a total thickness between 0.25 and 40 m 

and including blocks composed of Palaeozoic rocks, crop out in the fault zone (Ansón et al., 2017). 

The thickest fault-rock band is linked to the thrust ramp, and its most conspicuous exposure is 

located south of Daroca, at the exit of a tunnel (La Mina) excavated in the XVIth century as a 

diversion channel for flood control (Figs. 2E, 2F). At this site, the main thrust plane is oriented 130, 

15 S (strike, dip, sense of dip). Broad banding determined by a succession of microbreccia, fault 

gouge and large fragments of Cambrian dolostones, as well as penetrative south-dipping cleavage, 

can be observed within the fault rocks (Ansón et al., 2017). A thin veneer of fault rocks also 
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appears at the frontal sector of the Daroca thrust, close to the contact between Palaeozoic 

dolostones and Miocene detrital deposits and affecting both lithological domains.  

The Daroca thrust is cut by a WNW-ESE striking, south dipping extensional fault that makes 

the contact between the Palaeozoic block and the Plio-Pleistocene infill of the Jiloca half-graben 

(Figs. 2A, 2B). This high-angle normal fault is exposed at La Mina site, where Miocene red clastic 

deposits occupy its hanging-wall block, overlain by Upper Pliocene conglomerates (Figs. 2E, 2F). 

Such Miocene deposits probably represent those that formerly lapped onto the thrust front 

(therefore located at a higher position), and were subsequently downthrown (a few hundreds of 

meters) into the Jiloca half-graben.  

 

4. Methods 

This work includes a total of 16 measuring sites located along the Daroca fault zone (Fig. 2A), 12 of 

which are focused on structural analysis , 4 were sampled for X-ray diffraction and 6 for magnetic 

analysis (Tables 1, 2 and 3). Fault rocks were analysed along two main sectors within the fault zone 

located close to the Daroca town, where fault rocks show good exposures, and samples from the 

different levels forming the fault damage zone could be collected. The southern sector is 

associated with a thick fault gouge (sites 1 to 5, 8 to 10 from the base to the top of the fault 

damage zone), while the northern sector is related to a thinner fault breccia (sites 11 and 12) and 

microbreccia (sites 13 to 16). Additionally, two sites were surveyed in Cenozoic units of the 

footwall (sites 6 and 7) of the southernmost fault zone. In all these sites, the geometry and 

orientation of structures at the meso- and micro-scale were determined from direct outcrop 

observations and measurements, as well as from polished and thin sections of oriented samples. 

 

4.1. Structural analysis 

A detailed structural analysis from the Daroca fault zone at meso and micro-scale was performed. 

The outcrop of fault rocks allows for a continuous sampling at different distances from the main 

fault surface to be done, especially in the hanging-wall block. Measurements of foliations and S-C-

like structures in 12 sites along the fault trace were carried out (Table 1). Most of them correspond 

to the fault gouge and brecciated Cambrian dolostones and marls of the hanging-wall; the 

remaining, more scattered data, come from Miocene clastics of the footwall block. 
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In order to establish the relationship between fault-related deformation and rock 

composition, a number of detailed litho-structural transects across the Daroca fault zone have 

been carried out (Figs. 3 and 4). A litho-structural classification of different units along those 

transects has been achieved using three parameters: 1) predominant lithology, 2) rock texture, 

and 3) tectonic structures. 

Directional analysis was performed, for each site and for the whole study area, on equal -area 

stereoplots using the Stereonet software (Allmendinger et al., 2013; Cardozo and Allmendinger, 

2013). In most cases, transport directions were inferred from S-C structures (line belonging to both 

the mean C plane and the movement plane, therefore orthogonal to the S/C intersection line). 

Locally, displacement vectors were inferred from direct measurement of fault striations.  

Microtectonic analysis including fabric characterization and interpretation of deformation 

mechanisms was carried out from 5 thin sections of microbreccia samples analysed under a 

polarizing microscope (Table 1).  

 

4.2. X-ray diffraction of fault rocks  

X-ray diffraction analyses were carried out with a Scintag X1 X-ray system (CuK radiation) at 40 

kV and 45 mA. Randomly-oriented whole-rock powders were run in the 2-70 °2θ interval with a 

step size of 0.05 °2θ and a counting time of 3 s per step in order to determine the whole-rock 

composition of fault rocks. Oriented air-dried and ethylene-glycol solvated samples of the <2 µm 

(equivalent spherical diameter) grain-size fraction were scanned from 1 to 48 °2θ and from 1 to 30 

°2θ respectively with a step size of 0.05 °2θ and a count time of 4 s per step. Either detrital and 

neoformed minerals in the <2 µm grain-size fraction were investigated in order to determine the 

maximum burial conditions the fault rocks underwent during thrusting. In particular, mixed layers 

illite-smectite (I–S) can be used as indicators of the thermal evolution of sedimentary successions 

(Aldega et al., 2007; 2014; Corrado et al., 2010; Izquierdo-Llavall et al., 2013), for evaluating the 

amount of denudation of the sedimentary and/or tectonic overburden, removed by erosion 

and/or tectonics (Aldega et al., 2011; 2017; Di Paolo et al., 2012, Caricchi et al., 2015; Schito et al., 

2017) and determining the depth at which deformation occurred in fold-and-thrust belts 

(Meneghini et al., 2012, Carlini et al., 2013, Carminati et al., 2013, 2016).  
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The illite content in mixed layers I-S was determined, according to Moore and Reynolds 

(1997), using the delta two-theta method after decomposing the composite peaks between 9-10 

°2θ and 16-17 °2θ. The I-S ordering type (Reichweite parameter, R; Jagodzinski, 1949) was 

determined by the position of the I001-S001 reflection between 5 and 8.5 °2θ (Moore and 

Reynolds 1997). Peaks in relative close position were selected for clay mineral quantitative 

analysis of the <2 µm grain-size fraction in order to minimize the angle-dependent intensity effect. 

Composite peaks were decomposed using Pearson VII functions and the WINXRD Scintag 

associated program. Integrated peak areas were transformed into mineral concentration by using 

mineral intensity factors as a calibration constant (for a review, see Moore and Reynolds 1997). 

 

4.3. Magnetic techniques 

Sampling to apply magnetic techniques was carried out in 6 sites across the fault gouge and 

microbreccia (Table 1) using an electrical, water-cooled drill. Sites consist of 8 to 16 in situ drilled 

cores, so that a total of 67 cylindrical standard specimens (2.5 cm in diameter, 2.1 cm in height) 

were obtained. In addition, 122 cubic standard specimens (2.1 x 2.1 cm) were cut from two hand 

blocks extracted from two of the sites (2 and 9) and considered for AMS analysis.  

AMS measurements were done with a KLY-3S susceptibility meter (AGICO, Czech Republic) in 

the Magnetic Fabrics Laboratory of the University of Zaragoza. For each specimen, the bulk 

susceptibility and the orientation of the maximum (kmax), intermediate (kint) and minimum (kmin) 

axes of the magnetic ellipsoid were obtained. The shape of this ellipsoid and the degree of 

magnetic fabric development were defined by two parameters: (1) the corrected degree of 

anisotropy, P', that provides a first indication of rock deformation and preferred mineral 

orientation, and (2) the shape parameter, T, varying between 0≥T≥-1 (prolate ellipsoids) and 0≤T≤1 

(oblate ellipsoids). P' and T parameters are defined as (Jelinek, 1981): 

, 

 

P ' = exp 2 m1 - mm( )2 + m2 -mm( )2 + m3 -mm( )2é
ë

ù
û

  

T =
2m 2 - m1 - m3

m1 - m 3
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where μ1, μ2 and μ3 represent ln(kmax), ln(kint) and ln(kmin), respectively, and μm = (μ1 + μ2 + 

μ3)/3. Mean site values were computed using Jelinek statistics (Jelinek, 1978) by means of the 

Anisoft 4.2 program (Chadima and Jelinek, 2009).  

To define mineral carriers of magnetic susceptibility, thermomagnetic susceptibility curves (k-

T curves) were performed in 6 selected samples, one per site (Table 1). The shape of these curves 

(ranging between 40 and 700°C) provides a first approximation to the magnetic behaviour and 

mineralogy of magnetic susceptibility carriers: hyperbolic susceptibility decay at the initial part of 

the curves points to the presence of paramagnetic minerals whereas sharp susceptibility decays 

are related to ferromagnetic phases. The specific ferromagnetic minerals can be identified through 

their Curie or Néel temperatures that define the transition from ferromagnetic s.l. to 

paramagnetic behaviours. Curves were obtained on powdered samples (45-55 mg) using a KLY-3S 

Kappabrigde combined with a CS-3 furnace (AGICO Inc., Czech Republic). Heating rates were of 12-

13°C/min and measurements were performed in Ar atmosphere to avoid mineral oxidation during 

heating. Raw data were corrected for the empty furnace and processed using Cureval 8.0 

(Chadima and Hrouda, 2009).  

To better characterize the ferromagnetic minerals present in the microbreccia , a total of 36 

specimens were subjected to thermal (and occasionally AF) demagnetization of the NRM using an 

AC furnace (model TD48) at the Palaeomagnetism Laboratory of the University of Burgos. 

Magnetization was measured with a 2-G cryogenic magnetometer and susceptibility was 

monitored during thermal demagnetization using a Bartington MS2 dual frequency susceptibility 

meter. Temperature steps ranged between 10 and 50°C, up to a maximun of 680°C, based on the 

behaviour of pilot samples. 

Magnetic fabric results were complemented with low temperature AMS measurements (LT-

AMS). These experiments enhance the magnetic susceptibility of paramagnetic minerals as 

determined by the Curie-Weiss law (k = C/(T-Tc)) where k is the paramagnetic susceptibility, C is 

the Curie constant, T is the absolute temperature and Tc is the Curie temperature (Ritcher and Van 

der Plujim, 1994; Dunlop and Özdemir, 1997; Parés and Van der Pluijm, 2002). Assuming purely 

paramagnetic phases with a paramagnetic Curie temperature around 0 K, the expected magnetic 

susceptibility at low temperature (77K) is approximately 3.8 times higher than at room 

temperature (as the ratio of temperatures: 292/77, Hirt and Gehring, 1991; Ritcher and Van der 

Pluijm, 1994; Lüneburg et al., 1999). Low temperature magnetic fabrics were measured on 12 
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standard specimens (from sites 8 and 16) using the KLY-3S Kappabridge susceptometer. Sites were 

selected depending on their location (site 8 in the southern sector and site 16 in the northern 

sector), and depending on the orientation and shape of their magnetic ellipsoid at room 

temperature (oblate in site 8 and prolate in site 16). Samples were first submerged in liquid 

nitrogen (-195°C/77K) for 30-40 minutes before measurements and cooled down again for 10 

minutes between each of the three spinner positions required by the KLY-3S Kappabrigde (as in 

Oliva-Urcia et al., 2010).  

 

5. Results 

5.1. Meso- and microstructural deformation: kinematic analysis  

Deformation structures within the fault gouge and microbreccia at meso- and micro-scale indicate 

a brittle-ductile behavior during deformation. They are distributed across a shear zone a few 

centimeters to several meters thick, mainly in the gouge and breccia resulting from the hanging -

wall block deformation at the main ramp, although also Middle Miocene clastic rocks of the 

footwall block underwent internal shear deformation expressed as small -scale structures.  

A pervasive S foliation oblique to the thrust plane occurs in every outcrop, becoming more 

penetrative as approaching the thrust surface (Figs. 3B, 3C). S-C-like structures develop within 

lutite and microbreccia horizons (Figs. 3B, 3C). The angle between S and C planes shows a wide 

range, usually between 17° and 40°, revealing strong heterogeneity of shear strain. No consistent 

relationship has been noticed between that angle and factors such as composition or thickness of 

the shear band. Some of the surveyed outcrops show imbricated sigmoidal horses evincing the 

contribution of brittle deformation to the total shear (Figs. 3A, 3B, 3C).  

The most intensively surveyed sector includes the thick fault rock band associated with the 

thrust ramp South of Daroca town as well as Miocene rocks close to it (sites 1 to 10 in Fig. 2A, 

Table 1). Multiple S and C planes were measured at six sites: four of them are located within the 

fault rocks of the hanging-wall block where the involved materials are predominantly 

microbreccias (sites 2, 3, 4 and 9 in Fig. 4); the other two belong to Middle Miocene rocks, either of 

the footwall block (site 6) or from the downthrown block of the extensional fault (likely 

representing those that formerly lapped onto the thrust front, as explained below; site 7). Both S 

and C planes mostly strike NW-SE, the C planes always dipping shallower than the S ones, 
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therefore indicating reverse shear with transport direction broadly oriented within the NE 

quadrant (see the corresponding stereoplots in Fig. 4). Nevertheless, certain variability is found 

within the data set, so that distinct local transport directions towards E (sites 3 and 6), NE (sites 2 

and 9) and N (site 7) can be inferred. Fault striations directly measured on the main thrust plane in 

site 2 also record transport direction towards N and NNE.   

Sites 11 and 12 are located at the upper part of the thrust ramp, in the northwestern sector 

(Fig. 2A). Materials involved in site 12 are microbreccia and foliated lutite close to the Cambrian-

Miocene boundary, within a 1,2-m-thick fault rock band (see litho-structural transect in Fig. 3E). 

Site 11 corresponds to a thin slice of Cambrian shales within the hanging-wall block, bounded by 

the main thrust surface and a minor one above it. Both sites show S-C structures, indicating 

transport directions towards NE and E, respectively. Several fault striations were also measured in 

site 12 and two orientation maxima can be distinguished: the first maximum closely fits the NE -

striking movement plane obtained from S-C structures, while the second one indicates a transport 

direction towards N and NNE (parallel to that observed in site 2).  

Sites 14, 15 and 16 are located at the frontal footwall flat, in the northeastern sector (Figs. 2A 

and 3B, 3C). Data sites 14 and 15 are very close to each other and correspond to the first litho-

structural transect represented in Fig. 3A, while site 16 is located in the second transect of Fig. 3A, 

some 5 m east of the former one. Both transects show up to 2-m-thick fault rock band (breccia, 

microbreccia and fault gouge), whose protoliths are Cambrian dolostones. A decrease of fragments 

size as approaching the main thrust surface can be broadly recognized along both transects. 

Independently of their size, rock fragments are strongly angular and show a preferred orientation 

that defines a penetrative foliation S. This foliation is accompanied by discrete C planes and, in site 

16, also by sigmoid, decimeter-scale bodies of competent carbonate embedded within a micro-

breccia matrix (Fig. 3A, close view in the second transect). Analysis of S-C relationships indicates a 

transport direction towards NNE in site 14, and close to E in sites 15 and 16 (see stereoplots in Fig. 

3A). The sigmoid bodies have been interpreted as ‘horses’ making small-scale duplexes genetically 

related and kinematically consistent with the thrust movement. No fault striation has been 

observed in this sector of the thrust surface.  

In summary, shear strain associated to thrusting within the Daroca fault zone appears as highly 

heterogeneous. Style and intensity of deformation strongly varies on a few meters along the fault 
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zone, and on a few centimeters or decimeters across the fault rock. Transport directions display a 

high variability, although almost of them are comprised within the NE quadrant.  

Finally, we should refer to a set of extensional structures that overprint the contractive ones in 

some of the surveyed outcrops. First, meter-scale extensional shear bands occur at site 4, 

consistently striking NNW-SSE and dipping westwards (see corresponding stereoplot in Fig. 4). 

These bands locally show decimeter-scale spacing and internal foliation almost parallel to them, 

revealing a significant ductile component of deformation. In some cases, extensional bands sharply 

cut the thrust-related foliation (see hand specimen illustrated in Fig. 10A). But extensional shear 

seems also to be distributed at a metric scale in some zones, inducing reorientation of the previous 

S foliation. This could explain the systematic change in orientation of S surfaces between sites 2, 9, 

3 and 4: as approaching the extensional shear bands at site 4, the strike of S planes progressively 

veers from NW-SE to NNW-SSE and N-S.  

Other young extensional structures overprinting the reverse Daroca fault zone are brittle 

metre- to kilometre-scale faults. The largest one is the normal fault that makes the contact 

between the Palaeozoic rocks of the Daroca hanging-wall block and the Plio-Pleistocene materials 

of the Jiloca half-graben (Figs. 2A and 2B). The rest are metre- to decametre-scale ruptures 

observed and measured in Middle Miocene clastic rocks (sites 7 and 15), in Palaeozoic dolostones 

(sites 4 and 11), as well as in other neighbouring exposures as the one illustrated in Fig. 5A. All of 

these faults and fractures strike NNW-SSE in average (Fig. 5B). 

 

5.2. Mineralogy of fault rocks and palaeothermal constraints 

Fault rocks were mainly collected from the hanging-wall and footwall fault rocks associated with 

the thrust ramp South of Daroca town (in sites 1, 3 and 9). The former rocks are foliated clay-rich 

lithologies (samples HD1a, HD6a) or cataclasites (sample HD3c) that bound dolostone lithons, the 

latter are gouges (samples HD1b, HD1d, HD1f) and cataclasites (sample HD1c) derived from 

comminution of middle Miocene clastic rocks. Only sample HD11a is from microbreccias located at 

the frontal footwall flat (in site 13), which show strongly angular clasts and a preferred orientation 

defining a penetrative foliation (Table 2).  

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

 13 

Whole rock composition of fault rocks at the hanging-wall of the Daroca thrust ramp consists 

mainly of phyllosilicates (75-82%), quartz (10-15%) and carbonate minerals (5-10%, calcite and 

dolomite). Hematite and gypsum occur as minor phases with contents that do not exceed 2% 

(Table 2). The <2 µm grain-size fraction shows an illite-rich composition (57-73%) and subordinate 

amounts of chlorite (11-36%) and mixed layers I-S (7-8%). Kaolinite was observed only in sample 

HD6a. Mixed illite-smectite layers are random ordered structures (R0) with low amounts of non-

expandable layers (10%). 

Fault rocks from the footwall are characterized by high amounts of phyllosilicate minerals (65-

84%) followed by quartz (9-19%), calcite (2-25%) and very low contents of dolomite (1%). 

Hematite occurs with contents between 1% and 3% and traces amounts of goethite were 

occasionally observed (Tab. 1). X-ray patterns of the <2 μm grain size fraction show a mineralogical 

composition made up of illite (51-58%), chlorite (5-38%), kaolinite (5-30%) and mixed layers I-S (7-

15%) that display R0 stacking order and an illite content between 10 and 20% (Table 2). 

Sample HD11a (site 13) shows a mineralogical assemblage constituted by phyllosilicate 

minerals, quartz and low amounts of dolomite and calcite (Table 2). Among phyllosilicate minerals, 

illite (58%), kaolinite (19%), chlorite (12%) and mixed layers I-S (11%) are the main components of 

the <2 µm grain-size fraction. Mixed layers I-S display random ordered structures with an illite 

content of 10%. 

The occurrence of highly expandable mixed layer I-S in both hanging-wall and footwall rocks 

indicate very shallow burial depths in early diagenetic conditions suggesting that deformation took 

place at depths lower than 2 km and at temperature of about 60-70°C consistent with the 

beginning of smectite-to-illite transition (Hoffman and Hower, 1979; Środoń, 1999). No evidence 

of fluid circulation within the fault zone, which could have induced mineralogical changes itself, 

has been found.  

 

5.3. Magnetic mineralogy 

AMS analysis of fault rocks in the Daroca area shows bulk magnetic susceptibility varying between 

131x10-6 SI and 352x10-6 SI (Fig. 6B) with an average value of 226x10-6 SI.  
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Thermomagnetic (k-T) curves are analysed by means of the method of Hrouda et al. (1997). 

They are characterized by a hyperbolic decay of magnetic susceptibility at their initial part (40 to 

300°C) in all cases, indicating that paramagnetic minerals (probably phyllosilicates) are carriers of 

the magnetic susceptibility (Fig. 7A). Curves from samples HD2-9a and HD3-3 (sites 2 and 3) are 

very similar to curve of sample HD10-3 (site 16), where other magnetic mineralogies cannot be 

recognized (Fig. 7A). In the other three analysed samples, the presence of ferromagnetic minerals 

can be recognized by sudden susceptibility drops around 675°C that is the Néel temperature of 

hematite (samples HD1, HD6-6 and HD9-12, Fig. 7A). In one of the samples, the curve shows a 

small increase and subsequent drop in magnetic susceptibility during heating around 280°C and 

320°C respectively, that can be related to the local presence of iron sulphides (sample HD1, Fig. 

7A). In all samples, curves are non-reversible, the cooling curve showing a conspicuous increase in 

susceptibility around 620°C and much higher susceptibilities in general, indicating the creation of 

new ferromagnetic phases at high temperatures. 

Results of the thermal demagnetization of the natural remanent magnetization (NRM) indicate 

that the main ferromagnetic contributor to the NRM is a phase whose maximum unblocking 

temperature is near 670°C, probably hematite (Fig. 7B), accordingly to the results of 

thermomagnetic curves and whole rock composition of the fault rocks. Besides, AF 

demagnetizations were ineffective, as expected when a hard coercive carrier like hematite is 

present. 

 

5.4. AMS results 

Magnetic ellipsoids in the Daroca fault zone are dominantly oblate (1≥T≥0), although triaxial 

magnetic fabrics (T≈0) are measured in site 2, and prolate magnetic fabrics in site 16 (Table 3, Fig. 

6C). The corrected anisotropy degree ranges between 1.031 and 1.079 (Table 3): fault 

microbreccias show the lowest P' values, whereas intermediate and higher anisotropy degree 

values were defined for the fault gouge. Considering the whole dataset (Fig. 6A), and despite a 

significant dispersion, kmax axes are nearly horizontal having a dominant NW-SE-trend, while kmin 

axes are scattered in a NE-SW-striking, nearly vertical girdle with an intermediate NE-plunging 

maximum. In general terms, magnetic lineation is nearly parallel to the strike of the Daroca fault 

while magnetic foliation strikes parallel to the fault although displaying variable dips.  
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When looking at the site-scale, the orientation of the magnetic ellipsoid varies along and 

across the fault zone (Table 4, Fig. 8). Near the contact with the footwall, the Daroca thrust strikes 

N130°E and dips shallowly (15°) to the South. Magnetic foliation in the fault rocks sampled in this 

domain is nearly horizontal (sites 1 and 3), or it strikes parallel to the Daroca thrust with 

intermediate dips (site 2). Magnetic lineations are usually defined from well clustered kmax axes and 

show a constant horizontal, NNW-SSE to NW-SE trending orientation (Fig. 8). Site 9 displays 

strongly scattered kmax axes, but also provides a NW-SE mean. It was initially sampled according to 

a standard procedure, collecting 8 cores from which a total of 8 samples were analysed, with an 

inconsistent result probably due to the coarse grain size of the microbreccia. Only from a minimum 

number of 66 cubic samples obtained from a hand specimen, acceptable averages both for 

magnetic lineation and foliation could be obtained. This suggests an influence of the number of 

analysed samples on the definition of the AMS axes, particularly in cases of unfavourable texture.  

In the northern fault zone (footwall flat) the magnetic foliation strikes NE-SW, but the 

magnetic lineation preserves its dominant attitude: it is nearly horizontal and trends NW-SE (site 

16, Fig. 8).  

AMS at low temperature enhances the contribution of paramagnetic minerals, and 

comparison with AMS at room temperature allows determining the presence of subfabrics. In the 

two sites measured at LT, the LT/RT ratios between magnetic susceptibilities are 1.86 (site 8) and 

3.03 (site 16). Ratios lower than 3.8 and above 1 indicate that both paramagnetic and 

ferromagnetic minerals behave as carriers of the AMS. The contribution of paramagnetic phases is 

probably higher in site 16 (where the higher LT/RT ratio was obtained) than in site 8, where 

haematite is present, as indicated by the drop at 680°C in the thermomagnetic curve (Fig. 7A). The 

orientation of the magnetic ellipsoid at low temperature overlaps AMS at room temperature 

(Table 5, Fig. 9), indicating that the paramagnetic contribution dominates RT-AMS in both sites or, 

alternatively, paramagnetic and ferromagnetic contributions have the same fabric.  

 

6. Interpretation and discussion 

In this section we analyse the representativity of data and the meaning of AMS axes orientations 

in relation to foliations and transport directions within fault zones. According to the above-
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exposed results, the kinematics of the Daroca thrust and its relationships with the overall structure 

of the area will be discussed. 

 

6.1. Relationship between AMS and deformation: reliability of AMS as a kinematic 

indicator 

Several elements must be taken into account when considering the relationships between tectonic 

and magnetic fabrics: (i) magnetic mineralogy, (ii) grain size relative to the AMS sample size, (iii) 

representativeness of the structural elements measured in the field, (iv) superposition of different 

tectonic stages and v) strain partitioning at different scales.  

These relationships have been explored by using three different approaches. The first one was 

a detailed AMS analysis of a decimetre-scale specimen collected in site 2 (Fig. 10). Within it, the 

compressional foliation S is cut by a steeply-dipping shear band (ESB in Fig. 10A) related to Pliocene 

extensional deformation. At a microscopic scale, the compressional fabric is expressed by (i) 

undulate, discontinuous solution surfaces, and (ii) angulose, heterogeneously sized and roughly 

oriented fault-rock fragments (Fig. 10B). These textural features suggest that pressure-solution and 

cataclastic flow are the prevailing deformation mechanisms. C planes are virtually absent in both 

the hand sample and thin sections, although they could be observed as meso-scale surfaces in the 

nearest outcrop. A total of 68 specimens were measured for AMS determination, thus intensifying 

subsampling with respect to the standard procedure, as made for site 9. The results indicate that 

the magnetic foliation is parallel to the foliation observed in the sample (Fig. 10C and D). This 

includes both the compressional foliation dipping about 40°S and the more discontinuous, 

extensional foliation. The magnetic lineation is nearly horizontal and parallel to the intersection 

line between S and C planes, and therefore orthogonal to the transport direction.  

Our second approach was a site-by-site comparison of the AMS and the structural markers in 

other data sites where both types of information are available (sites 2, 3, 9 and 16). In all cases, the 

magnetic lineation approaches the average intersection line between meso-scale S and C planes 

(see the corresponding stereoplots in Fig. 8 compared with those in Figs. 3A and 4), i.e. the same 

orientation pattern described for sample HD2. Concerning the relationship between the magnetic 

foliation and the meso-scale S foliation, it is not fully consistent: both are nearly parallel to each 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

 17 

other in sites 2, while they are oblique in site 3 and 9 (similar NW-SE strike but opposite sense of 

dip), and the magnetic foliation roughly parallels the average C plane in site 16. 

Finally, the third approach considers the whole mesostructural and AMS datasets, which can 

be graphically compared by means of synthetic stereoplots (Fig. 11). In spite of their strong 

variability, the relationships previously described in individual sites are corroborated by the overall 

data. Nevertheless, such relationships appear as slightly different depending on the procedure 

used for averaging the orientation of the AMS vectors: either as vectors kmaxM, kintM and kminM of 

the mean AMS tensor obtained from the ensemble of 189 analysed specimens (Fig. 11A), or as a 

mean orientation of the local vectors (kmaxL, kintL and kminL) obtained at the six AMS sites (Fig. 11B). 

After comparing with the synthetic stereoplot of mean poles to S and C planes , obtained from the 

site means (Fig. 11C), it can be seen that: (i) the magnetic foliation averaged from the overall data 

(kminM axis parallel to the mean S pole) closely parallels the mean S foliation; (ii) the magnetic 

foliation defined as the mean orientation of local vectors kmaxL, kintL and kminL shows an 

intermediate orientation between the mean S and C planes (Fig. 11D); (iii) the magnetic lineation 

(kmax) runs at high angle to the transport direction (therefore close to the S-C intersection line) in 

every case (Fig. 11E). 

From the previous partial observations the following general relationships are inferred: 

(1) The magnetic foliation shows a double tendency to parallelize either the meso-scale S 

foliation, or the C planes (Fig. 11D). This suggests that shear planes also contribute to the attitude 

of magnetic foliation, because of either re-orientation of phylosillicates or concentration of 

preferentially oriented ferro-magnetic minerals (mostly hematite). Magnetic foliation at an 

intermediate position between S and C planes has been described in other fault zones, both under 

extensional and compressional regimes (Aranguren et al., 1996; Casas et al., 2017).  

(2) The magnetic lineation makes a high angle to the transport direction. Overall considered, 

the most representative transport direction (towards NE to NNE, consistent with the movement 

plane M obtained from the whole S-C data, Fig. 11C, and so with the macrostructural trend) is 

nearly orthogonal to the magnetic lineation (kmaxM and kmaxL in Fig. 11E). It is true that other 

transport directions towards E and N are recorded in structural data. The reality of such multiple 

movements is evinced in site 12 by superposition of two slickenlines distinctly oriented indicating 

successive transport towards NNE and N (Fig. 3). In spite of such kinematic heterogeneity, 
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comparing site-by-site four cases in which both AMS and thrust kinematics have been established 

(sites 2, 3, 9, 16), the angles between transport direction and the corresponding kmax axis are 

consistently high, in the range of 53° to 82° (Fig. 11E). Such relationships can be explained from 

both deformational and mineralogical controls. Where the magnetic lineation is mainly defined by 

paramagnetic carriers, it evolves from parallelism to the S-C intersection line during earlier 

deformational stages (i.e. linked to low finite shear strain, which would be our case) to parallelism 

to the transport direction in advanced stages (Parés et al., 1999; Pueyo et al., 2010). Where the 

magnetic lineation relates to ferromagnetic carriers, it generally parallels the transport direction 

(Casas et al., 2017; Oliva et al., 2009). In our case, the low ferromagnetic contribution to 

susceptibility can explain why the magnetic lineation has remained orthogonal or makes a high 

angle to the transport direction.  

 

6.2. Kinematics of the Daroca thrust from structural, palaeothermal and magnetic 

data 

Based on the above-exposed interpretations of the results coming from the different techniques, 

we can propose a kinematic interpretation of the Daroca thrust. As an average, a NE-directed 

reverse movement and a shallow depth for deformation can be inferred. However, different 

transport directions coexist, as inferred both from AMS analysis and kinematic indicators, and a 

strongly heterogeneous deformation has been noticed across the studied fault rock bodies. Are 

these variations along the fault zone a result of random heterogeneity of strain or do they rather 

respond to actually changing movements during the compressional stage and/or strain partitioning 

within the fault zone? To evaluate a satisfying hypothesis several issues should be considered and 

discussed:  

1) The coexistence of different transport directions, either sequential (successive tectonic 

episodes) or simultaneous (strain partitioning). From the overall kinematic data, two prevailing 

transport directions have been inferred, towards NNE and E, respectively. The interpretation of 

sequential movements is consistent with the notion of the Daroca thrust as an inherited Late-

Variscan fault, although in this case it would be difficult to differentiate between Permian or 

Mesozoic movements and its displacement during the Cenozoic. Furthermore, the mineralogy of 

the fault zone and the derived paleothermal estimates rather point to a shallow (hence late, 
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Cenozoic) origin for the fault zone. The coincidence between transport directions recorded in the 

Aragonian deposits and the damaged fault zone also supports the notion of a thrust mainly active 

during the Cenozoic time. Temporal heterogeneity of Alpine compressional stress fields (Capote et 

al., 2002; Liesa and Simón, 2009), therefore acting at different angles with respect to the inherited 

thrust surface, probably gave rise to distinct, successive transport directions. Such scenario has 

been accurately reported in other thrust sheets within the Iberian Chain (Utrillas thrust, Simón and 

Liesa, 2011). Also, strain partitioning can be invoked for explaining the kinematic variability 

noticed within the rock fault band, in the light of the transpressional model commonly applied to 

the overall NW-SE trending structures in the central Iberian Chain (Casas et al., 1998; De Vicente et 

al., 2009) and, specifically, to the Daroca fault zone (existence of E-W striking, en-échelon 

segments: Colomer, 1987; Colomer and Santanach, 1988). According to that model, simultaneous 

movements with different vectors on the ramp and the flat zones of the thrust, as well as on the 

deep, master fault are feasible, as a result of partitioning of the overall transpressiona l 

deformation into strike-slip and reverse slip components (Elías-Herrera and Ortega-Gutiérrez, 

2002; Sarkarinejad and Azizi, 2008; Sarkarinejad et al., 2008; McCaffrey, 2009). Furthermore, the 

epiglyptic character of the thrust could also favour the existence of variable transport directions 

on the frontal flat controlled by topographic slope. 

The kinematic evolution of the Daroca fault zone could be even more complex if we take into 

account the possibility of a further compressional stress field oriented close to E-W (the so called 

Altomira compression in regional models of Cenozoic stress evolution: Muñoz and De Vicente, 

1998; Simón and Liesa, 2011). It is recorded in Lower-Middle Miocene materials of the Mijares and 

southern Teruel basins (Simón and Paricio, 1988), and it could also explain the eastwards transport 

directions here reported for the Daroca thrust. If such E-W remote compression was active during 

the Early-Middle Miocene, the Daroca fault zone could undergo a hypothetic sinistral movement 

in addition to the dominant dextral one.  

2) The existence of post-Miocene extensional shear zones has contributed to deflect the main 

compressional S foliation. Extensional meso-scale faults are consistently oriented NNW-SSE, 

parallel to the younger shear bands (Figs. 5 and 10). Moreover, they are also parallel to the 

regional trend of the most recent extensional structures in the whole central-eastern Iberian Chain, 

and orthogonal to the dominant trend (ENE-WSW) of σ3 trajectories representing the Plio-

Pleistocene extensional stress field (Simón-Gómez, 1989; Arlegui et al., 2005). Therefore, we 

attribute all the described extensional structures to the late Neogene extensional tectonics that 
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gave rise to negative inversion of the Daroca fault zone. If the hypothesis of reorientation of the 

compressional S foliation by those NNW-SSE trending extensional structures was true, we should 

consider critically the reliability of the kinematical results obtained from sites in which the S planes 

strike close to NNW-SSE. Maybe the nearly eastwards transport directions obtained from those S-C 

data sets do not represent the true original directions, and these should be interpreted as being 

closer to NE or NNE.  

3) Finally, we should critically evaluate the representativeness of the available data. The 

necessarily discontinuous sampling, the limited outcropping areas and the poor accessibility to the 

exposures make difficult a statistically representative sampling (which is intrinsic to many 

geological works indeed). In our case, the subsequent sampling of hand specimens in areas where 

magnetic fabrics or petrofabrics were poorly defined has allowed for a better characterization of 

both foliations and lineations.  

In summary, there are several feasible explanations for the variability of orientation of fabrics 

in the Daroca thrust, some of them related to intrinsic factors (grain size of fault rock, high number 

of discontinuities, etc.) and others to extrinsic factors (mainly variations  in strain intensity and 

shortening direction).  

 

6.3. The origin of the Daroca thrust: geometrical constraints  

We have described (Section 3) the structure of the Palaeozoic sequence south of the Calatayud 

basin as a large-scale monocline dipping 45° to 55°S. According to the geometric reconstruction 

(Fig. 12A), the Daroca thrust is probably parallel to the average bedding within the Cambrian 

series. The occurrence of Lower Triassic materials dipping 15°S and overthrust by Cambrian units 

along a bedding-parallel rupture surface can be observed in several points along the Palaeozoic 

monocline (e.g. Manchones-Murero area; Gabaldón, 1983). This gives a clue about a possible 

mechanism for the formation of the Daroca thrust through re-activation of flexural-slip folds 

(Alonso, 1987; Casas et al., 2000). An increase in dip of 15° (from 30° to 45°S; Fig. 12B) of a 1750 m 

thick sequence (Lower Cambrian) could explain the observed structure of the Daroca thrust. The 

accommodation space created by the thrust displacement allowed for more than 500 m of 

sediments to be accumulated in this sector of the Calatayud basin, and the tip of the thrusting 

sheet could be folded depending on the uplift/sedimentation ratio. It is important to note that this 

model only accounts for the vertical displacement of the Daroca thrust. Horizontal displacements 
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resulting from the obliquity of the shortening direction with respect to the initial strike of the 

Palaeozoic series could also be added, thus defining a transpressional setting for the Daroca 

thrust.  

The other end-member model for the origin of the Daroca thrust would be a nearly-vertical, 

NW-SE striking Late-Variscan fault (Alvaro et al., 1979) cutting across the whole Palaeozoic series 

and undergoing transpressional deformation during the Alpine Orogeny (Fig. 12C). In this case the 

formation of the Daroca thrust would be related to a positive, asymmetric flower structure, 

vertical at depth (rooted in that Late-Variscan fault) and nearly horizontal in its surface expression; 

some of the cataclasis of the Cambrian dolostones would be then probably related to strike-slip 

Permian faulting. Both models account for the epiglyptic displacement of the thrust front and 

involve horizontal tilting of the frontal segment of the hanging-wall. 

In either of the described models, additional, late folding could involve the whole structure, 

resulting in the forelandwards dip of both the thrust front and the Miocene materials of the 

footwall block (see the last stages in Fig. 12B and C). 

 

7. Conclusions 

The Daroca thrust and its fault damage zone offer an invaluable natural laboratory for testing the 

applicability of magnetic methods to the analysis of fault zones  in intraplate settings.  

The results indicate that robust means can be obtained provided that the density of sampling sites 

is in correspondence with the heterogeneity and grain size of the fault rock. The minimum number 

of samples necessary to determine a reliable solution increases as the grain size of the 

microbreccia increases. The possibility of averaging the magnetic lineation over a large number of 

samples is an added value for the application of AMS to the study of fault rocks for regional or 

general evaluations. This applies even when orientation of structures cannot be clearly determined 

from outcrop observations.  

Regarding the correspondence between AMS and structural indicators, the attitude of the 

dominant magnetic foliation is either parallel to the compressional foliation (S planes) or at an 

intermediate orientation between S and C planes. The magnetic lineation is parallel to the 

intersection lineation between S and C planes and therefore perpendicular to the transport 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

 22 

direction. Variability in orientation of the magnetic fabric reveals the heterogeneity of the fault 

zone associated with the Daroca thrust, probably resulting from strain partitioning and sequential 

movements.  

The Daroca thrust can be characterized as a reverse fault having a minimum throw of 500 m during 

the Early-Middle Miocene and developed at shallow depths. The change in geometry of the fault 

zone (from footwall ramp to footwall flat) is recorded by differences in thickness of the damage 

zone. Younger normal displacements (Neogene in age) contribute to the deflection of the 

contractive S fabric of fault rocks and to the development of new shear zones. 

The results obtained in this work have relevant implications, especially regarding the utility of AMS 

for studying fault rocks. AMS can therefore be added to classical structural analysis and 

crystallographic orientations (e.g. Woodcock and Rickards, 2003; Toy et al., 2008) to search strain 

geometry and kinematics. Interpretations of fault kinematics and driving mechanisms of intra-

plate deformation, including fault reactivation under transpression/transtension mechanisms (e.g. 

Hippolyte, 2002; van Hinsbergen et al., 2015; Giamboni et al., 2004), or active, potentially 

seismogenic faults (Lavenu and Cembrano, 1999; Cunningham, 2005; Pedrera et al., 2013) can in 

this way benefit from analysis of magnetic anisotropy.  
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Table captions 

Table 1. Location of sites and type of measured data (European Datum ED50 for geographic coordinates). D. 

T. D. NRM: Thermal demagnetization of the Natural Remnant Magnetization. 

Table 2. X-ray diffraction mineralogical assemblages of fault rocks. Acronyms: Qtz = quartz; Cal = calcite; Dol 

= dolomite; Phy = phyllosilicates; Gy = Gypsum; Hem = Hematite; Go= goethite; Kln = kaolinite; Chl = 

chlorite; I-S = mixed layer illite-smectite; I = illite; R = stacking order; %I in I-S = illite content in mixed layer 

illite-smectite; tr stands for traces (<1%); HW = hanging-wall; FW= footwall. 
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Table 3. Site-mean AMS parameters. N: number of specimens analysed at each site; Km: magnitude of the 

magnetic susceptibility (in 10-6 SI); P’: corrected anisotropy degree; T: shape parameter; St. dev.: standard 

deviation. 

Table 4. Site-mean AMS directional data. kmax, kint, kmin: orientation of mean principal susceptibility axes 

(T/P: trend/plunge) considering Jelinek statistics (Jelinek, 1978); Conf. angles: confidence angles. 

Table 5. Site-mean AMS directional and scalar data for sites analysed at room and low temperatures. N: 

number of analysed samples; kmax, kint, kmin: orientation of principal axes (T/P: trend/plunge) considering 

Jelinek statistics; Conf. ang.: confidence angles; Km: magnitude of the magnetic susceptibility (in 10-6 SI); 

Km-LT/Km-RT: ratio between magnetic susceptibility at low temperature and at room temperature; P’: 

corrected anisotropy degree; T: shape parameter. 

 

Figure captions 

Figure 1. A) Location of the studied zone within the eastern part of the Iberian Plate. B) The Daroca thrust 

within the Iberian Chain (Aragonian Branch). 

Figure 2. A) Geological map of the Daroca thrust with the location of studied sites and stereoplot (equal 

area projection, lower hemisphere) of some related-reverse surfaces. B) Cross section of the Daroca thrust 

(marked in Fig. 2A). C) Panoramic view of the northwestern part of the Daroca thrust. D) Close -up view of 

the frontal footwall flat of the thrust. E, F) Photograph and geological sketch showing the southernmost 

part of the Daroca thrust (sites 1 to 10) where the maximum thickness of the fault breccia and gouge is 

preserved. 

Figure 3. Photographs, structural data and litho-structural transects of several sites of the northwestern 

part of the Daroca thrust. Stereoplots have been made with R. W. Allmendinger´s Stereonet program 

(Allmendinger et al., 2013; Cardozo and Allmendinger, 2013). A) Close-up photographs, structural data and 

litho-structural transects in sites 14, 15 and 16. Notice the S-C structures and the sigmoidal bodies 

developed from the brecciated hanging-wall Cambrian dolostones. In site 14, the footwall Aragonian 

conglomerates exhibit a scarce brecciated texture. B, C) Photograph (marked in Fig. 2D) and geological 

sketch of the frontal area of the Daroca thrust. The location of two litho-structural transects is shown. D) 

Structural data in the Cambrian dolostones in site 11. E) Close-up photographs, structural data and litho-

structural transect of site 12. 

Figure 4. Photographs, structural data and litho-structural transect from the southerneast part of the 

Daroca thrust. The location of different studied sites along the synthetic transect are indicated. Stereoplots 
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have been made with R. W. Allmendinger´s Stereonet program (Allmendinger et al., 2013; Cardozo and 

Allmendinger 2013). Symbols for stereoplots and legend of the litho-structural transects as in Fig. 3. 

Figure 5. A) Geological sketch of site 7 showing the main extensional structures affecting the hanging-wall 

Aragonian conglomerates. B) Synthetic stereoplot (equal area projection, lower hemisphere) of extensional 

faults of the Aragonian materials throughout the study area. 

Figure 6. A) Equal area projection of AMS directional data for the total of measured samples (lower 

hemisphere projection, mean vectors and confidence ellipses considering Jelinek statistics). B) Corrected 

anisotropy degree (P') versus bulk magnetic susceptibility (Km) for the total measured samples. C) Shape 

parameter (T) versus the corrected anisotropy degree (P') for the total measured samples.  

Figure 7. A) Temperature dependent magnetic susceptibility (k-T) curves for samples from sites 1, 8, 9 and 

16 (samples HD1, HD9-12, HD6-6 and HD10-3). In red: heating curve, in blue: cooling curve, in green: 

hyperbolic adjustment to paramagnetic behaviour (Hrouda et al., 1997). B) Thermal demagnetization of the 

NRM for samples from sites 1, 8 and 9 (samples HD1-8, HD9-2 and HD6-4).  

Figure 8. Equal area projection of AMS directional data and mean of structural data for each measured site 

(lower hemisphere projection, mean vectors and confidence ellipses considering Jelinek statistics). 

Figure 9. A) Equal area projection of AMS directional data at room temperature (black symbols) and AMS 

directional data at low temperature (grey symbols). Lower hemisphere projection, mean vectors and 

confidence ellipses considering Jelinek statistics. B) Diagrams of magnetic susceptibility at room 

temperature (Km-RT) versus magnetic susceptibility at low temperature (Km-LT). 

Figure 10. Comparison between tectonic and magnetic fabrics in an intensively analysed hand specimen 

(HD2, site 2). (A) Section of the specimen; S: main foliation; ESB: extensional shear band. (B) Detail view of 

tectonic fabric in thin section; cf: cataclastic fragment. (C) Stereoplot of structural elements: S and C planes, 

and extensional shear band (ESB). (D) Stereoplot of AMS axes (mean vectors considering Jelinek statistic).   

Figure 11. Synthetic stereoplots considering the whole mesostructural and AMS datasets: A) mean AMS 

tensor (kmaxM, kintM and kminM) obtained from the whole of 189 analysed specimens (Jelinek statistics, Jelinek, 

1978); B) mean AMS tensor (local tensor, kmaxL, kintL and kminL) obtained from the six AMS site means (Fisher 

statistics, Fisher, 1953); C) mean Fisher vector of poles to S and C planes, obtained from the site means 

(Fisher statistics, Fisher, 1953), and inferred transport directions; D) superposition of kminM and kminL, and the 

means of poles to S and C planes; E) superposition of kmax site means, the inferred transport directions, and 

kmaxM and kmaxL. 
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Figure 12. Sketches showing interpretative models for the macrostructure of the Daroca thrust considering: 

A) Reactivation of Variscan flexural-slip folds. B) Tightening of a previous fault-bend fold. C) Positive flower 

structure associated with strike-slip faulting.  
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Table 1. Sites  

 

Sector Site Latitude 

 

Longitude Structural  

data 

Thin 

section 

X-ray AMS k-T 

curves 

T. D. 

NRM 

 

 

S 

O 

U 

T 

H 

E 

R 

N 

 

1 N41°6’35.5” W1°24’28.1”   X (5 samples) X X X 

2 N41°6’35.4” W1°24’28.1” X X (2)  X X X 

3 N41°6’35.1” W1°24’28.1” X  X X X X 

4 N41°6’35.3” W1°24’28.5” X      

5 N41°6'36.6 N1°24'28.0"  X     

6 N41°6'34.0" W1°24'28.5" X      

7 N41°6'32.0" W1°24'29.4" X      

8 N41°6’37.8” W1°24’28.9”    X X X 

9 N41°6’39.1” W1°24’31.0” X X X X X X 

10 N41°6’39.0” W1°24’32.0” X      

N 

O 

R 

T 

H 

E 

R 

N 

11 N41°7'5.3" W1°24'52.8" X      

12 N41°7’3.5” W1°24’52.0” X      

13 N41°7’43.8” W1°24’47.3”  X X    

14 N41°7’0.3” W1°24’37.0” X      

15 N41°7’0.3” W1°24’37.0” X      

16 N41°7’0.3” W1°24’37.0” X   X X X 

 

Table 1. Location of sites and type of measured data (European Datum ED50 for geographic coordinates). T. D. NRM: 

Thermal demagnetization of the Natural Remnant Magnetization. 
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Table 2. X-ray diffraction mineralogical assemblages of fault rocks 

 

Site Sample Rock Type 
whole-rock composition (%wt.)  

<2µm grain-size fraction 

(%wt.) 
R 

%I in 

I-S 

Qtz Cal Dol Phy Gy Hem Go  I I-S Kln Chl   

1 HD1a foliated lutite (HW) 10 - 6 82 - 2 -  73 8 - 19 0 10 

3 HD3c cataclasite (HW) 15 5 - 78 2 - -  57 7 - 36 0 10 

9 HD6a foliated lutite (HW) 15 10 tr 75 - - -  70 7 12 11 0 10 

1 HD1b gouge (FW) 9 25 1 65 - - tr  51 11 - 38 0 15 

1 HD1c cataclasite (FW) 19 - - 78 - 3 tr  58 7 30 5 0 10 

1 HD1d gouge (FW) 12 3 1 84 - tr tr  55 12 5 28 0 15 

1 HD1f gouge (FW) 17 - - 82 - 1 -  56 15 10 18 0 20 

13 HD11a microbreccia (FW) 18 2 5 75 - - -  58 12 19 11 0 10 

 

 

Table 2. X-ray diffraction mineralogical assemblages of fault rocks. Acronyms: Qtz = quartz; Cal = calcite; Dol = dolomite; Phy = phyllosil icates; Gy = Gypsum; Hem = 

Hematite; Go= goethite; Kln = kaolinite; Chl = chlorite; I-S = mixed layer i l l ite-smectite; I = i l l ite; R = stacking order; %I in I -S = i l l ite content in mixed layer i l l ite-smectite; tr 

stands for traces (<1%); HW = hanging-wall; FW= footwall. 
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Table 3. Site-mean AMS parameters  

 

Site N Unit Km 

(10
-6

 SI) 

St. dev. 

(10
-6

 SI) 

P' St. dev. T St. dev. 

1 12 Fault gouge (bottom) 275 38 1.042 0.012 0.240 0.526 

2 68 Fault gouge (bottom) 215 30 1.079 0.027 0.060 0.280 

3 11 Fault gouge (bottom) 221 33 1.054 0.020 0.345 0.246 

8 12 Fault gouge (middle) 282 54 1.065 0.013 0.322 0.236 

9 74 Fault gouge (roof) 217 40 1.041 0.022 0.250 0.374 

16 12 Fault microbreccia 238 31 1.031 0.010 -0.109 0.432 

 

Table 3. Site-mean AMS parameters. N: number of specimens analysed at each site; Km: magnitude of the magnetic 

susceptibil ity (in 10
-6

 SI); P’: corrected anisotropy degree; T: shape parameter; St. dev.: standard deviation. 
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Table 4. Site-mean AMS directional data 

 

Site kmax  

(T/P)(º) 

Conf. 

angles (º) 
kint  

(T/P) (º) 

Conf. angles 

(º) 
kmin  

(T/P) (º) 

Conf. 

angles (º) 
Structural data  

(Strike/Dip) (º) 

1 262/23 32/15 360/17 32/28 123/61 28/13 130,15S; thrust plane 

2 284/23 29/10 173/40 29/16 035/41 17/10 132,43S; S plane 

119,21S; C plane 

3 343/5 23/15 074/12 21/17 230/77 23/16 158,54W; S plane 

161,31W; C plane 

8 150/4 14/10 246/52 14/9 57/37 10/9 120,20S; S plane 

9 129/14 35/23 220/5 43/33 329/75 42/24 155,58W; S plane 

128,33S; C plane 

16 325/17 15/7 056/3 16/11 155/72 13/7 175,43W; S plane 

032,5W; thrust plane 

 

Table 4. Site-mean AMS directional data. kmax, kint, kmin: orientation of mean principal susceptibil ity axes  (T/P: 

trend/plunge) considering Jelinek statistics (Jelinek, 1978); Conf. angles: confidence angles. 
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Table 5. Site-mean AMS directional and scalar data for sites analyzed at room and low temperatures  

 

Site N Kmax 

(T/P) (º) 

Conf. 

ang. (º) 
Kint 

(T/P) (º) 

Conf. 

ang. (º) 
Kmin 

(T/P) (º) 

Conf. 

ang. (º) 
Km 

10-6 SI  

Km-LT/ 

Km-RT 
P' T 

8-RT 6 149/08 17/10 249/48 17/6 053/40 11/6 290 1.90 1.073  0.355 

8-LT 6 149/08 15/9 250/51 14/6 053/38 11/5 551 1.024  0.268 

16-RT 6 317/19 15/9 050/8 16/10 163/69 14/8 255 3.01 1.030 -0.051 

16-LT 6 316/22 13/9 049/8 13/12 158/67 14/9 768 1.047 -0.107 

 

Table 5. Site-mean AMS directional and scalar data for sites analysed at room and low temperatures. N: number of 

analysed samples; kmax, kint, kmin: orientation of principal  susceptibil ity axes (T/P: trend/plunge) considering Jelinek 

statistics; Conf. ang.: confidence angles; Km: magnitude of the magnetic susceptibil ity (in 10
-6

 SI); Km-LT/Km-RT: ratio 

between magnetic susceptibil ity at low temperature and at room temperature; P’: corrected anisotropy degree; T: 

shape parameter. 

  

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

 38 

Highlights 

 

- AMS applied to study of faults rocks at shallow crustal levels 

- Magnetic ellipsoids axes compared to kinematic indicators on faults 

- Contribution to fault kinematics and driving mechanisms of intraplate deformation 

- Contribution to Cenozoic intraplate deformation in North Iberia 
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