
Accepted Manuscript

The effect of pore-former morphology on the electrochemical performance of solid
oxide fuel cells under combined fuel cell and electrolysis modes

Miguel A. Laguna-Bercero, Amir R. Hanifi, Lucile Menand, Navjot K. Sandhu, Neil E.
Anderson, Thomas H. Etsell, Partha Sarkar

PII: S0013-4686(18)30337-2

DOI: 10.1016/j.electacta.2018.02.055

Reference: EA 31250

To appear in: Electrochimica Acta

Received Date: 8 November 2017

Revised Date: 9 February 2018

Accepted Date: 10 February 2018

Please cite this article as: M.A. Laguna-Bercero, A.R. Hanifi, L. Menand, N.K. Sandhu, N.E. Anderson,
T.H. Etsell, P. Sarkar, The effect of pore-former morphology on the electrochemical performance of
solid oxide fuel cells under combined fuel cell and electrolysis modes, Electrochimica Acta (2018), doi:
10.1016/j.electacta.2018.02.055.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to
our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and all
legal disclaimers that apply to the journal pertain.

https://doi.org/10.1016/j.electacta.2018.02.055


M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

1 
 

The Effect of Pore-former Morphology on the Electrochemical Performance of Solid Oxide 

Fuel Cells under Combined Fuel Cell and Electrolysis Modes 

Miguel A. Laguna-Bercero1*, Amir R. Hanifi2, Lucile Menand3, Navjot K. Sandhu2, Neil E. 

Anderson2, Thomas H. Etsell2, and Partha Sarkar4 

1Instituto de Ciencia de Materiales de Aragón (ICMA), CSIC- Universidad de Zaragoza, 

C/ Pedro Cerbuna 12, E-50009, Zaragoza, Spain  

2Department of Chemical & Materials Engineering, University of Alberta, Edmonton, Alberta 

T6G 1H9, Canada 

3 Institut Universitaire de Technologie de Bordeaux (IUT), Université Bordeaux, 15 rue Naudet - 

CS 10207, 33 175 Gradignan Cedex, France 

4InnoTech Alberta, Edmonton, Alberta. T6N 1E4, Canada 

*Corresponding author’s e-mail: malaguna@unizar.es 

Abstract 

The effect of the pore-former used in the Ni-YSZ fuel electrode on the electrochemical 

performance of solid oxide cells is studied. Three cells with the configuration of Ni-

YSZ/YSZ/Nd2NiO4+δ-YSZ were fabricated with different pore-formers, such as graphite, PMMA 

(polymethyl methacrylate) or an equal mixture of both, which were added to the Ni-YSZ support 

during the fabrication process. The results show that the Ni-YSZ support containing graphite 

leads to a more porous support and formation of coarser pores in the vicinity of the electrolyte. 

This leads to a reduction in the triple phase boundary (TPB) length with a corresponding increase 

of activation polarization and, as a consequence, the overall cell performance decreases in both 
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fuel cell and electrolysis modes. The cell having PMMA delivered the highest performance 

under both operation modes (818 and -713 mAcm-2 were obtained in SOFC and SOEC modes at 

800 ºC), due to finer pores next to the electrolyte. The cell having the mixture of both pore-

formers delivered intermediate results. All the cells show similar concentration polarization 

values meaning that even the least porous cell (PMMA) provided sufficient porosity for gas 

flow. In addition, long term reversible experiments were performed, showing no degradation for 

a period above 400 hours. 

Keywords: Tubular; Nickel; Zirconia; Microstructure; Pore-former; SOFC; SOEC 
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Introduction 

Solid oxide fuel cell (SOFC) technology is a clean and efficient method of electricity production 

which functions through electrochemical oxidation of a fuel such as hydrogen at high 

temperatures. A solid oxide electrolysis cell (SOEC) is a reversible SOFC which produces 

hydrogen by splitting water molecules when voltage is applied [1,2].  

Nickel-YSZ (yttria stabilized zirconia) is the commonly used anode under SOFC and cathode 

under SOEC modes. In this cermet, nickel provides the electrical conduction path for the 

released electrons and also acts as a catalyst for oxidation of hydrogen. YSZ is not only the 

electrolyte for oxygen ion conduction but also forms a porous matrix which provides the required 

mechanical properties for  cell operation at high temperatures, suppresses  nickel sintering and 

reduces the mismatch of the thermal expansion coefficient between the anode and electrolyte 

[3,4]. Nickel, YSZ and pores together form the triple phase boundaries (TPBs) where they meet 

in the vicinity of the electrolyte. Electrochemical reactions occur in such locations and electrons 

are released.  

It is known that the gas permeability, electrical conductivity and the rate of reaction in both 

SOFC and SOEC modes are highly dependent on the Ni-YSZ microstructure including the grain 

size of the nickel and YSZ phases, porosity and the percolation of each phase [5,6]. For example, 

it was shown by Han et al. that decreasing the grain size of nickel led to an increased TPB length 

[7]. Mogensen et al. have also shown that finer YSZ grains led to improved TPB length and fuel 

cell performance [8]. In addition, the influence of the reducing conditions on Ni-YSZ cermets 

also plays a crucial role on the final microstructure and performance of the SOFC cells [9]. 

Regarding the differences between SOFC and SOEC modes, the higher steam content as well as 

the more difficult removal of hydrogen into the Ni-YSZ electrode in SOEC mode leads to 
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different microstructural requirements than SOFC mode [10]. As water molecules are more 

difficult to be transported due to their increased size in comparison with hydrogen molecules, the 

required porosity of Ni-YSZ for SOEC application is about 45%, while for SOFC mode it is 

about 35% [5,11].   

In this respect, the authors have shown recently that using larger YSZ particles such as calcined 

YSZ instead of as-received YSZ during cell fabrication significantly enhances the cell 

electrochemical performance in SOEC mode where a high porosity is required to transfer the 

high steam content. However, the higher porosity of the cell as a result of using calcined YSZ 

leads to a decrease of the TPBs and the rate of electrochemical reactions in SOFC mode at the 

same time. The concentration polarization and activation polarization of the cell in this case 

seem to compensate each other and the fuel cell shows similar power performance to the cell 

which uses as-received YSZ in its anode [5].  

Adding pore-formers such as flour, rice, corn starch, wheat, graphite, carbon black, and 

microspheres to increase the porosity of the nickel-YSZ anode support following reduction is a 

known technique to enhance gas diffusion since the nickel-YSZ cermet does not have sufficient 

porosity following reduction [10,12,13,14,15]. The presence of a high porosity as a result of the 

addition of a high pore-former content leads to improved gas diffusion but at the same time 

causes degradation of mechanical properties and a reduction of electronic and ionic 

conductivities since the contact points are reduced [16,17]. Liu et al. [10] used  four different 

pore-formers such as polymethyl methacrylate (PMMA), potato starch, ammonium oxalate and 

ammonium carbonate in the Ni-YSZ electrode and realized that PMMA was the most promising 

pore-former for SOEC applications since it provided a high porosity and uniform pore size 

distribution in the microstructure. While large pores reduce the TPB length and as such the 
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power performance, very small pores can also obstruct the fuel gas and water vapor diffusion 

[18]. Therefore, it is important to understand the effect of pore-former content, shape and size on 

the Ni-YSZ anode microstructure which can affect the performance of the cell quite differently 

under SOFC and SOEC modes. This topic is the scope of the current research hoping to improve 

the underlying science behind the microstructure of SOECs. 

Experimental Procedure  

In this study, three different tubular fuel cells based on Ni-YSZ fuel electrodes were fabricated 

which were: Graphite cell: calcined YSZ + 30 vol.% graphite; PMMA cell: calcined YSZ + 30 

vol.% PMMA; and Mixture cell: calcined YSZ + 15 vol.% graphite + 15 vol.% PMMA. The 

volume of the pore-formers added was 30% of the total volume of the NiO-YSZ in the anode. 

All Ni-YSZ anodes were fabricated by slip casting of a NiO-YSZ support followed by dip 

coating of a thin YSZ electrolyte and a thin porous YSZ layer as a scaffold for Nd2NiO4+δ (Nd-

nickelate) infiltration. Nd and Ni salts were then infiltrated into the thin porous YSZ layer of the 

cells to form the cathode. In order to produce a suitable slip for casting the anode supported cells, 

as received YSZ powder (TZ-8Y, 8 mol% Y2O3, Tosoh) or its calcined form (calcined at 1500°C 

for 3 h), was mixed with 65 wt% NiO powder (Baker Chemicals) and water at a powder:water 

ratio of 1:1 at room temperature. The mixture was then milled at 120 rpm for 72 h in a plastic 

bottle with 5 mm zirconia balls. More water was added after milling to adjust the solid loading of 

the final suspension to 40%. The pH of the slip was set to 4.0 using 2% hydrochloric acid. In 

order to generate high porosity, the required quantity of pore-former (graphite (< 325 mesh, 

Sigma Aldrich) or PMMA (CA 6, Microbeads, Skedsmokorset, Norway)) was incorporated into 

the slip following pH adjustment, and then the suspension was mixed for 15 min prior to slip 

casting. To create the tubular support, the slip was cast into a plaster mold (previously prepared 
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from a tubular mandrel) and left for about 1 min, after which the excess slip was quickly poured 

out. The wet tube was then dried at room temperature for 1 h. The resulting drying shrinkage 

facilitates removal of the green tube. The green tube was further dried at 100°C in an oven, 

heated to 250°C (in case of PMMA) or 700°C (in case of graphite) for 1 h to eliminate the pore-

former, and then pre-sintered under air at 1000°C for 3 h. Following each application of 

electrolyte or the thin porous YSZ layer for cathode application, the cell was sintered at 1350°C. 

No anode functional layer was coated on the Ni-YSZ support. The electrolyte and the thin porous 

YSZ layer formulas and dip coating procedure as well as Nd-nickelate (NNO) infiltration have 

been explained previously elsewhere [19,20,21,22]. Density and porosity (open and closed) 

measurements were carried out on slip cast and sintered pellets of each anode using Archimedes 

principle. The same pellets were used for calculation of the sintering shrinkage. 

In order to measure the electrochemical performance of the cells, the open ends of the tubular 

cells were sealed to alumina tubes using a ceramic paste (Aremco Ceramabond 503). For the 

electrochemical experiments, platinum wire was coiled and tightly placed inside the tube to 

provide electrical contact. Gold wires were used for current collection at the oxygen electrode 

side, and gold paste (ElectroScience, ESL 8884-G) was used to improve current collection. 

Steam and hydrogen mixtures were introduced into the tubular cell through a smaller diameter 

alumina tube. Steam was supplied by the use of a direct vapour humidifier controlling the 

relative humidity (% RH) with a resolution of 1.3%. All gas lines located downstream of the 

humidifier were externally heated in order to prevent steam condensation. Electrochemical 

measurements were performed using a VSP Potentiostat/Galvanostat (Princeton Applied 

Research, Oak Ridge, USA). Current density-voltage (j-V) curves were collected in 

potentiodynamic mode from OCV (open circuit voltage) down to 0.5 V in SOFC mode, and from 
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OCV up to 1.5 V in SOEC mode, using a scan rate of 2.5 mA s-1. Electrochemical impedance 

spectroscopy (EIS) measurements were performed using a sinusoidal amplitude signal of 20 mV 

in the frequency range of 100 kHz to 0.1 Hz.  

Scanning electron microscopy (SEM) was carried out on the fuel cells using a Zeiss EVO LS15 

EP-SEM instrument and a Carl Zeiss Merlin equipped with an Energy Dispersive Spectroscopy 

(EDS) INCA-350 system (Oxford Instruments, United Kingdom). 

Results and Discussion 

Microstructural Characterization 

Figure 1a and 1b show the SEM images of the graphite and PMMA used to generate the porous 

Ni-YSZ anode. Graphite particles present a shape of flakes (ranging from about 5 to 10 µm) 

whereas PMMA particles are almost perfect spheres of about 6 µm in diameter. Figure 1c, d and 

e shows the microstructure of the Ni-YSZ anode (after NiO to Ni reduction) containing graphite, 

mixture and PMMA as the pore-former, respectively. Regardless of the pores generated by the 

pore-former, it can be observed that the PMMA cell has more sub-micron size pores which are 

formed during reduction of NiO to Ni. NiO-YSZ support porosity and shrinkage following 

sintering at 1350°C are shown in Table 1. As can be seen, the graphite, PMMA and mixture cells 

show about 51%, 41% and 45% open porosity, respectively. Despite using the same volume of 

pore-former in fabrication of the Ni-YSZ anode (30 vol.%), this result shows that the porous 

structure is affected by the sintering shrinkage. In the case of PMMA, the anode showed about 

18% shrinkage and in the case of graphite it showed 15% shrinkage.  This can be a reason for 

less porosity when PMMA was used as the pore-former.  

The three types of studied cells were also observed under the SEM after the electrochemical 

measurements, as shown in Figure 2. Images (a), (b) and (c) show the microstructure of the 
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different layers of the three types of cells. Final dimensions of the cells are: ~450-550 µm Ni-

YSZ support, ~10-15 µm YSZ electrolyte, ~20-25 µm NNO-YSZ oxygen electrode and ~10-15 

µm NNO current collection layer. Images (d), (e) and (f) show the microstructure of the NNO-

YSZ oxygen electrode. A homogeneous distribution of fine NNO grains (ranging from 50 to 100 

nn) are observed in all cells. Finally, images (g), (h) and (i) shows the functional Ni-YSZ region 

next to the YSZ electrolyte. It is clearly observed that the PMMA cell exhibits finer porosity in 

the functional region which is considered to be the active area within the first 10 µm distance 

from the electrolyte where most of the electrochemical reactions occur. Ni and YSZ grains are 

both about  1 µm in size in these microstructures. 

 

Electrochemical Characterization 

The three different types of cells were characterized under both fuel cell and electrolysis modes 

using a fuel composition of 50%H2O-50%H2 inside the fuel electrode and static air at the oxygen 

electrode side. Electrochemical impedance spectroscopy (EIS) collected under OCV conditions 

is shown in Figure 3 (a) and the variation of the fitting resistances is also presented in Figure 3 

(b). In these types of microtubular cells, usually up to four components are distinguished 

accounting for diffusion (oxygen gas phase and O2- migration) and activation (charge transfer) at 

both electrodes [23,24,25]. In those cells, the contribution associated with diffusion at the 

oxygen electrode is almost negligible due to the small thickness of the oxygen electrode (~30-40 

µm), especially in comparison with the fuel electrode supports (~500 µm). As a consequence, all 

EIS measurements were fitted using the equivalent circuit L-Ro-(R1CPE1)-(R2CPE2)-(R3CPE3), 

where L is an inductance, Ro the ohmic resistance, and (R1CPE1), (R2CPE2), (R3CPE3) are three 

resistance-constant phase elements.  
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The R2 component, appearing at frequencies ranging from 2 to 5 kHz with capacitance values in 

the range of 10-4 Fcm-2, is almost constant for the three types of studied cells. Experiments 

varying pO2 (see supplementary material S1) confirmed that R2 is the only variable component 

and, as a consequence, it was assigned to activation at the oxygen electrode. The R3 component, 

appearing at frequencies ranging from 1 to 10 Hz with capacitance values in the range of 10 

Fcm-2, is also about constant for the three types of cells. This component is assigned to gas 

conversion at the fuel electrode, as it also decreases when increasing pH2O (see supplementary 

material S2). This assignation is also consistent with other literature data [26,27]. This shows 

that, despite the different anode porosities, none of the cells present gas diffusion limitations. 

The main differences were found for the R1 component (appearing at frequencies ranging from 

15 to 20 kHz with capacitance values in the range of 10-5 Fcm-2), typically attributed to 

activation at the fuel electrode, with the maximum resistance for the graphite cell and the 

minimum resistance for the PMMA cell. This is consistent with the observed microstructure 

shown in Figure 2, where the presence of PMMA pore former leads to an enhanced distribution 

of small pores, favouring charge transfer in the functional regions. In fact, the presence of pores 

formed by PMMA should facilitate the formation of finer pores compared with graphite in the 

functional regions of the studied cells. It is thought that PMMA pores affect hydrogen gas 

diffusion in the Ni-YSZ anode and as such the conversion of NiO to Ni in a manner such that 

finer pores form. The shrinkage of the support containing PMMA was also higher than the 

supports containing graphite or mixed pore-formers and this may also favour the formation of 

finer pores. The increased TPB length can increase the reaction rate and reduces the activation 

polarization. The use of mixtures of PMMA/graphite yields intermediate activation polarization 

as well as area specific resistance (ASR) values. 
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Typical j-V curves are plotted in Figure 4 and a summary of their electrochemical properties is 

shown in Table 2. The performance of the graphite cell is very similar to that reported by Hanifi 

et al. [5], fabricated with identical composition, indicating a good reproducibility of the 

fabrication process. As described in that work, the behaviour in electrolysis for this cell is better 

than in SOFC mode (see ASR values in Table 2). The optimized microstructure of the fuel 

electrode led to an increased performance in SOEC, especially at high current densities, as a 

consequence of easy gas diffusion through the pores of the support. On the contrary, slightly 

higher values are obtained in SOEC mode for both mixture and PMMA cells. In concordance 

with EIS experiments, the best electrochemical performance was found for the PMMA sample. 

For example, 818 and -713 mAcm-2 were obtained in SOFC (at 0.5V and 800 ºC) and SOEC (at 

1.3V and 800 ºC) modes, respectively. 

In order to fully understand such observed differences between cells, EIS under current load was 

also performed (Figure 5 left). A summary of the fitting parameters is shown in Figure 5 (right). 

As previously explained, R1 accounts for the activation at the fuel electrode, R2 component to 

activation at the oxygen electrode and R3 is assigned to steam/hydrogen gas phase diffusion at 

the fuel electrode. It is worth noting that, in general, the R2 resistance decreases slightly in 

electrolysis mode possibly due to the excess oxygen stoichiometry of the Ruddlesden-Popper 

Nd2NiO4+δ phase favouring oxygen evolution, as previously reported by different authors 

[28,29,30]. On the other hand, the main differences were observed for the component assigned to 

activation at the fuel electrode, especially for the graphite cell, where R1 increases in fuel cell 

mode and decreases in electrolysis mode. The reason for this phenomenon is still unclear and 

under investigation. The lower activation polarization of the cell containing PMMA can also be 

attributed to the finer pores formed in the functional region of the Ni-YSZ fuel electrode which 
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enhances the electrochemical reactions. In addition, all the cells show relatively similar R3 values 

meaning that despite different porosity content and morphology coming from the different pore-

formers, the fuel gas diffusion did not encounter problems and it may be unnecessary to have a 

highly porous fuel electrode. In any case, detailed experiments as a function of steam and 

hydrogen content are required to fully understand this effect. 

Reversible Durability Studies  

It was recently reported that electrolysis-induced degradation can be eliminated by reversibly 

cycling between electrolysis and fuel cell modes, similar to a rechargeable battery [31]. In fact, 

cycling studies on reversible SOFC/SOEC cells is under continuous investigation [32,33,34]. In 

the present study, we selected the mixture cell for cycling studies as it contains a mixture of both 

PMMA and graphite pore-formers. The selected conditions for the experiments were: 24 hours 

under a fixed voltage of 1150 mV (SOEC) followed by 24 hours under a fixed voltage of 700 

mV (SOFC). This experiment was conducted for a total period of about 412 hours, as shown in 

Figure 6. Despite the initial fluctuations in electrolysis mode during the first 24 hours, the 

measured current density is approximately constant in both operation modes up to a period 

approaching 200 hours. From this point, it is then observed that during electrolysis mode there is 

always a slight degradation which seems to be recovered during the subsequent operation under 

fuel cell mode. As previously reported by Graves et al. [31], the typical microstructural 

degradation mechanism that occurs near the oxygen-electrode/electrolyte interface in SOEC 

mode [35,36,37] seems to be avoided. 

Finally, in all the studied samples, there are no apparent signs of the typical SOEC degradation: 

neither agglomeration of nickel grains at the fuel electrode nor oxygen electrode delamination at 
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the electrolyte/electrode interface, as confirmed by SEM image analysis (see supplementary 

material S3 and Figure 2). 

 

Conclusions 

The results of the current study show that PMMA can be an ideal pore-former for generation of a 

microstructure performing well under both SOFC and SOEC operational modes. Despite an 

equal amount producing less porosity in the Ni-YSZ support when compared with graphite, the 

generated porosity (41%) appears to be sufficient for gas diffusion. Channels produced by 

PMMA also facilitate the formation of finer porosity next to the cell electrolyte which increases 

the rate of electrochemical reactions, reduces the activation polarization and as such enhances the 

power performance under both SOFC and SOEC modes. Durability studies under both fuel cell 

and electrolysis modes  demonstrated that the cells are stable for a period of more than 400 

hours. 
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Table 1. Porosity and shrinkage of NiO-YSZ support following sintering at 1350°C.  

 

Sample Open 

porosity (%) 

Closed 

porosity (%) 

Shrinkage 

(%) 

Graphite 51 4 15 

Mixture 45 2 16 

PMMA 41 1 18 

 

Table 2. Summary of the electrochemical properties for the different studied cells. 

Sample Temp. 

(ºC) 

j at 0.5V 

(mAcm
-2

) 

j at 1.3V 

(mAcm
-2

) 

ASRSOFC 

(Ωcm
2
) 

ASRSOEC 

(Ωcm
2
) 

Graphite 600 293 -179 1.70 1.68 

650 363 -241 1.33 1.31 

700 429 -315 1.08 1.07 

750 556 -453 0.81 0.77 

800 653 -620 0.68 0.58 

Mixture 600 293 -145 1.80 1.88 

650 376 -211 1.37 1.34 

700 495 -287 1.01 1.04 

750 548 -371 0.87 0.87 

800 619 -454 0.75 0.74 

PMMA 600 441 -264 1.06 1.25 
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650 560 -363 0.81 0.95 

700 677 -484 0.65 0.74 

750 757 -608 0.57 0.61 

800 818 -713 0.51 0.54 
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Figure 1. SEM images showing the typical morphology of the pore-formers used. (a): Graphite 

and (b): PMMA. SEM images showing the Ni-YSZ-pore distribution in the support for the 

graphite (c), mixture (d) and PMMA (e) cells. 
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Figure 2. SEM images showing the microstructure of the three type of studied cells: (a), (b) and 

(c): general view showing fuel electrode (Ni-YSZ), electrolyte (YSZ), oxygen electrode (NNO-

YSZ) and current collector (NNO); (d), (e) and (f): magnification showing the NNO-YSZ  and 

NNO layers; (g), (h) and (i): magnification of the Ni-YSZ functional region. 

  



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

17 
 

 

 

Figure 3. (a) Nyquist diagrams collected under OCV conditions at 800 °C just after NiO to 

Nireduction for the three types of cells; (b) Resistance fitting parameters from the Nyquist 

diagrams. 
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Figure 4. Current density (j) versus voltage (V) in both fuel cell and electrolysis modes at 

temperatures between 600 and 800 °C for the three types of cells. 
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Figure 5. (left) Nyquist diagrams collected under OCV, 0.7 V (SOFC) and 1.25 V (SOEC) at 800 

°C for the three types of cells; (right) Resistance fitting parameters from the Nyquist diagrams. 
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Figure 6. Reversible durability studies for the mixture cell by switching the voltage from 1150 

mV (SOEC) to 700 mV (SOFC) every 24 hours, for a total period of about 412 hours. 
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