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Numerical discretization and assessment of bed load discharge closure
equations for transient flow over erodible bed in 1D and 2D situations

Abstract

Free surface water flows over rigid bed are traditionally modeled using mass and mo-
mentum conservation laws. In the case of deformable bed, the physics of the problem
needs to be described in order to define suitable mathematical models. A theoretical
framework is developed in the first part of this work, useful to clarify the hypothe-
sis included in the mathematical model used to predict morphodynamic changes. As
a consequence, another equation is included to consider the variations in time and
space of the bed level. This extra equation is defined using the bed material mass
conservation law, where mass fluxes are governed by the dynamics of the surface flow.

When numerically modeling free surface flows with load transport over erodible bed
in realistic situations, conventional methods solve the decoupled hydrodynamic and
the morphodynamic systems, using splitting techniques. Considering that momentum
conservation equations include source terms arising from the variation of the bed level,
uncoupled solvers are not adequate for rapidly varying flows, leading to unstable so-
lutions even in cases of moderate transient flows. Therefore, it is necessary to define
a completely coupled formulation, able to deal with a full range of hydrodynamic and
morphodynamic problems.

Usual formulations for morphodynamic mass fluxes are given by empirical sediment
transport laws. The different sediment transport capacity formulae, used worldwide
to control the erosion and deposition rates that deform the bed in transient cases, are
based on equilibrium closure equations obtained from experimental observation in 1D
steady cases. Their general applicability to 2D unsteady problems requires a careful
analysis to assess whether they are able to predict sediment transport in complex
transient flows. This point is of paramount importance and requires a well tested and
robust numerical method.

In response to this necessity, this work focuses on the evaluation of the relative numer-
ical performance of a series of well known sediment transport formulae in laboratory
test cases with experimental data. The bed load formulae have been implemented in
the framework of a previously developed robust and accurate solver. The reliability of
the underlying numerical scheme has been useful to select one of the formulae, when
correctly implemented, as the one showing the best behavior of the computed solution
in comparison with experimental data.

The present work represents an introduction in the field of sediment transport process
modeling and the basis for future developments.






Discretizacion numérica y aplicabilidad de férmulas de cierre en flujos
transitorios sobre lecho erosionable en configuraciones 1D y 2D

Resumen

Los flujos transitorios sobre lecho rigido son normalmente modelados usando un con-
junto de ecuaciones que incluyen las de conservacion de masa y cantidad de movimiento.
Para el caso de lecho deformable, la fisica del problema necesita ser descrita de forma
matematica a través de diferentes modelos. La primera parte de este trabajo se centra
en clarificar las distintas hipotesis asumidas por dichos modelos matematicos. Como
consecuencia de este estudio se deriva la inclusién de una variable en la formulacién
del problema que incluye la variacién de fondo.

En la mayoria de los casos a la hora de modelar el flujo de agua sobre fondo ero-
sionable se suele desacoplar la parte hidrodinamica de la parte morfodinamica. Las
soluciones obtenidas con los modelos desacoplados han demostrado ser inadequados
para la resolucién de flujos transitorios con variaciones rapidas de régimen de flujo,
puesto que se generan inestabilidades. En consecuencia, es necesario emplear una for-
mulacién acoplada capaz de manejar un rango amplio de situaciones hidrodinamicas y
morfodinamicas diferentes.

Un sistema completo y acoplado de ecuaciones diferenciales parciales que incluia las
ecuaciones de aguas poco profundas y una ecuacién de conservacién de masa para el
sedimento fue desarrollado en un trabajo previo. Partiendo de este trabajo anterior
se han implementado diferentes formulaciones de cierre para calcular el transporte de
sedimento. Puesto que dichas formulaciones fueran derivadas de ensayos de laboratorio
en situaciones 1D y para situaciones en equilibrio, se impone la necesidad de valorar
su efectividad en situaciones transitorias para configuaciones 1D y 2D.

Ademas de realizar la comparativa entre estas correlaciones empiricas se ha propuesto
una nueva discretizacion para una de ellas, obteniéndose de esta manera unos resultados
numeéricos mas precisos en comparacion con los datos experimentales.

Las conclusiones extraidas de este trabajo han permitido comprender mejor la dindmica
del transporte de sedimento en flujos de agua y serdan utilizadas en un futuro préximo
para dotar de mayor complejidad al modelo matemaético.
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Chapter 1

Introduction

The science of sediment transport deals with the interrelationship between flowing
water and sediment particles. At present, morphological evolution is one of the most
active topic in the field of hydraulic research. In special, numerical efforts have been
devoted to the simulation of dam break flows over mobile bed. Appropriate closure
equations are needed to evaluate the rate of sediment transport, as they are determinant
for a correct description of the morphodynamic changes. Experimental investigation
based on 1D steady sediment transport laboratory tests is the basis to provide sediment
transport formulations, and has lead to a large range of capacity formulae.

On the other hand, mathematical models have been developed in last years under
different approaches. The improvement of the computer technology has allowed to
reformulate the earliest 1D models (Cunge et al., 1980; De Vriend et al., 1993) into
more sophisticated ones (Z. Cao, 2002), also making possible 2D computation of the
sediment transport in alluvial streams (Begnudelli et al., 2010; Wu & Wang, 2004). An
overview of 1D and 2D modeling approaches for river morphodynamics is presented
by Wu (2007), where attention is focused on non-equilibrium state formulations where
the bed evolution depends on the difference between the actual transported material
and the equilibrium sediment transport capacity. Different authors have suggested to
include this feature by means of the definition of an adaptation length, which can be
formulated through deterministic laws (Wu & Wang, 2004; Armanini & Di Silvio, 1988;
Greimann et al., 2008) or by the dominant dimensions of the sediment movement, the
bed forms or the channel geometry (Wu, 2007). Numerical results indicate that it is
possible to obtain accurate results at the cost of selecting the appropriate adaptation
length (Z. Cao, 2002; Wu & Wang, 2004; Xia et al., 2010). Begnudelli et al. (2010)
pointed out that the applicability of the non-equilibrium formulation depends on the
magnitude of the length scales in relation to the scales that must be resolved by the
model.

The complexity of non-equilibrium formulations can be avoided assuming that the
transported material discharge is at any time given by the capacity formulae obtained
from experimental one dimensional steady flows. Moreover it has to be remarked that
this sediment transport is approximated as bed load, without considering a separate
sediment transport layer which includes the suspension transport.
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Several sediment transport capacity formulae are available in the specialized litera-
ture (Meyer-Peter & Miiller, 1948; Ashida & Michiue, 1972; Camenen & Larson, 2005;
Luque & van Beek, 1976; Parker, 1979; Nielsen, 1992; Smart, 1984; Wong, 2003), each
one arising from different laboratory and field data sets and developed for a limited
range of conditions. This work is focused on analyzing the differences among more com-
monly used formulae, using a previously defined and tested numerical scheme (Murillo
& Garcia-Navarro, 2010), able to handle correctly with all range of hydrodynamic and
morphodynamic problems, limiting in this way, the possible interferences between nu-
merical modeling and sediment transport capacity formulation performance. Not only
1D situations are studied, but also 2D cases are numerically explored in order to test
the validity of this closure formulae for bidimensional flows.

The outline of the present work is as follows: in chapter 2 different mathematical
models are described in order to clarify the assumptions made in these type of flow,
leading to as suitable description of the problem by means of a reduced set of partial
differential equations. In Chapter 3 the bed load formulations employed in this work
are described, and are written using a differentiable expression. Chapter 4 presents
the numerical scheme used to solve the mathematical model selected, that includes the
shallow water equations and the Exner equation. Chapter 5 displays the numerical
results in one dimensional test cases and chapter 6 extends to bidimensional test cases,
comparing always with experimental data. Finally, in chapter 7 the conclusions and
further research are discussed.



Chapter 2

Mathematical model

2.1 Introduction

In this chapter the mathematical model which governs the dynamics of the sediment
transport problem will be described. The equations express the depth averaging of the
mass and momentum conservation laws, under the hypothesis of hydrostatic pressure
and negligible vertical accelerations (SWE) and are extended to include the morpho-
dynamic evolution of the bed.

Along this chapter, the physics of the problem is analyzed departing from a general
and complex two fluid layer model, where the set of equations is reduced ending up in
a one fluid layer model coupled with the bed evolution Exner equation. First, for the
sake of clarity, the formulation is presented considering only the vertical plane and 1D
flow. Then, the extension to 2D situations is indicated.

2.2 Two layer model

The model involves the following assumptions:

i) Based on experimental observations (Fraccarollo & Capart, 2002), and as a first
assumption, the flow is considered stratified and composed by two fluid layers (hence the
name of the model) and one solid layer, as shown in Figure 2.1. The upper liquid-solid
layer is called the suspended layer of thickness hi: the heterogeneous liquid-granular
flow behaves as an effective medium with little slip between water and transport layer,
sediment transport is produced by suspension. The medium layer, of thickness hs,
will be referred to as transport layer: the sediment phase is mostly transported as bed
load, supported by frictional and collisional grain-grain interactions. The lower layer,
defined by the position of the bed level, z, is commonly defined as the morphodynamic
layer: the bed boundary is viewed as a transition between two mediums with different
behaviors, the solid phase and the fluid phase.

ii) Both upper layers transport granular material, with variable size and density. The
amount of granular material transported is defined by means of the depth averaged
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volumetric concentration, ¢.

2.2.1 1D Conservation equations

The domain is divided in three layers, Figure 2.1, limited by interfaces. Interface I'y,
is the air-water /suspended load boundary at the flow free surface. Interface I'y defines
the upper limit of the transport layer, separating the low concentration layer above
from the high concentration liquid-granular mixture below. The third interface, Iy,
acts as a boundary between the fluid and the solid behavior.

I'w
Q hi,¢1 1 - Suspended layer
—_—
Is
I ha, 92 2 - Transport layer
Ty
z, $b 8 - Morphodynamic layer

Figure 2.1: Interfaces in the domain

Every layer between the interfaces has its own depth (hq, hs, 2), depth averaged velocity
(u1, ug) and depth averaged concentration (¢1, ¢a, @p).

I'w

uy b1 1 - Suspended layer

T's
r uz ¢2 % 2 - Transport layer
b

8 - Morphodynamic layer

Figure 2.2: Depth averaged quantities within the layers

Through these interfaces solid material exchanges take place.

Mass conservation

The balance of mass applied in an arbitrary control volume, €2, using the Reynolds
transport theorem, yields the general integral equation

0 0
at/gp(x,t)d 0& at/de —|—/F,0umd 0 (2.1)
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where I' are the sections across fluxes interact (mobile boundaries and fixed bound-
aries), p is the mass density, u, is the relative velocity between the flow velocity and
the speed of boundary I' (v, = u - v) and n is the outward unit vector normal to I'.
For a better comprehension Figure 2.3 is plotted below.

Fized boundaries — ~——— Q Mobile boundaries

Figure 2.3: Reynolds theorem applied in an arbitrary volume

Applying (2.1) to the spatial control volume of layer 1, the following integral formula
is obtained

x1 Tn T2
pp—
un=20
urn = —u(x1,t) urn = u(za,t)
- Ql 1
n n
un=20
Uig] ——— p¥i,2

¥ ln|

Figure 2.4: Mass conservation in layer 1

d [**
—/ / pldAdx—i—/ —prudS + / prudS +
flt x1 Ay (m,t) N Al(ﬁl,t) , Ay (127t) ,

J/

Local variation Flow boun?d,ary fized 1 Flow boun?d'ary fized 2
2
+/ {_<Bp1\112,1) + (B,Ol\I’LQ)} dr =0 (22)
1

'

Flow bottom

where A;(z,t), As(z,t) are the crossed areas, located at coordinates z; and x5, respec-
tively, and B is the width.

The convective inertia term has been split in two contributions, the first one belongs
to the fixed boundaries (horizontal flows) and the second one to the mobile boundaries
(vertical flows). In the horizontal exchange the relative velocity u, is equal to u, the
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flow velocity, because the speed of boundary is equal to zero, due to is fixed. In the
vertical exchange u, is the difference between the two velocities. The term of w, is
rewritten as a flow per unit length, ¥, ; = %, where () is the flow, A is the transversal
section equal to Bdx, being B the width. Hence, the product pW¥; ; is just a material
flux per unit area.

After time integrating, applying Leibnitz rule, the width B is eliminated and the inte-
gral form of mass conservation in layer 1 is rewritten as

to ) a t o a
—(pyhy)dzdt —(prhyuy)dzdt —
/t1 /M 815('01 1)dz +/t . ax(pl Uy )d

1

to T2
—/ / p1 W5 dedt = 0 (2.3)
t1 xr1

In differential form is expressed as

d(p1hy) n d(prhiuy)

ot 5y~ PVei =0 (24)

Splitting the above formulation in its two components, the differential equations are
expressed as one part of sediment material (2.5) and another part of water (2.6)

8(p1h1d)1) a<p1h1¢1u1> net __
o Oz —n¥,, =0 (2:5)
a(plhl(l - ¢1)) a(plhl(l - ¢1)u1> net __
ot * oz ¥, =0 (2.6)

Following the same procedure the mass conservation for layer 2, Figure 2.5, leads to

Figure 2.5: Mass conservation in layer 2

d(p2h2) N d(p2haus)
ot ox

— 235 + p2 W55 =0 (2.7)

and finally for layer 3
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A pvzdp)

5 T P55 =0 (2.8)

Momentum conservation

The balance of linear momentum, (2.9), applied in an arbitrary control volume, €,
using the Reynolds transport theorem, yields the general integral equation

%(P) = %/qudﬂ (2.9)

5 |+ [(putumyar = [ gyar+ [ (otan (2.10)

being f the stresses and f, the volumetric forces.

The application of momentum conservation is only available in layer 1 and layer 2
where there exists velocity. The momentum equation applied to layer 1, Figure 2.6,
using Gauss theorem, leads to

x1 T” x2
gsend —
—u(z1,t) g u(z2,t)
— 0 —r >
n n
7 -pzui‘lfz,l Plull‘l’l,z — 2]

Figure 2.6: Momentum balance in layer 1

i/ p1u1d9+/ plulumdF:/ gpldQ+/ (—pn)dl’ + / (tn)dl’  (2.11)
At Jq, I o r, r, }

(. J/ (. J/ (. J/ (.

v vV vV vV VvV
Local inertia Convective inertia Gravity force Pressure forces Tangential forces

where g is the acceleration gravity, p is the pressure (normal stress) and 7 is the shear
stress.

Expressing (2.11) in differential form:

O(hipiur) | O(hprud) | A(gmhi) | O(zpihi)
ot * ox t9 ox t9 ox n
= (pauaWo1 — prugWa ) — T2 (2.12)
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Following the same procedure for layer 2 the corresponding differential form is obtained:

8(h2p2u2) 8(h2p2u§) 0 1 2 8(zp2h2) .
% T 9, Y9, | grhateihihe | 90— =
= —(pauaWso1 — prurWa1 + pousVso) + (21 — To3) (2.13)

Summary of conservation equations of layers and bed

A summary of the conservation equations obtained from a 1D flow over a mobile bed
with a two layer fluid model is provided below

Total mass, layer 1
d(p1) N d(prhius)
ot Ox

+ U =0 (2.14)

Total mass, layer 2

8p2h2 3(p2h2u2) ne ne
ot or p2 V55 + p2 W5 =0 (2.15)
Sediment mass, bed
0
<p§§¢b) U, =0 (2.16)

Sediment mass, layer 1

A(p1hi¢) X d(prhiur¢r)

— p et — 2.17
ot o P15 (2:17)
Sediment mass, layer 2
d(pah d(pah
(p2 2¢2) + (p2 2U2¢2) . Pb\I’?;,tz +,01‘I’Z§7t1 =0 (218)

ot ox

Momentum of the mixture, layer 1

2
8(h1p1u1) + 8(h1p1u1) i 0 (%plh%) +g@(zp1h1) _

ot oz 9o oz

= (,02U2\I’2,1 - P1U1‘If2,1) —T2,1 (2-19)

Momentum of the mixture, layer 2

8(h2p2U2) 8(h2p2u§) 0 1 2 8(zp2h2) -
R P b G T RS I
= —(pouaVWa1 — prugWoq + pousWs o) + (721 — To3) (2.20)

In case that the granular material is not homogeneous in size or density, the subscript
p should be employed to distinguish among cases with non uniform size and specific
weight distributions, inside each liquid-granular layer. Thus the formulation becomes:
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Total mass, fraction p, layer 1

O(pl hl) 8(01 hl Ul) ne

817; * paxp +p1p W55 =0 (2.21)

Total mass, fraction p, layer 2

8p2 ho a(pQ ha Ug) ne ne
apt o paxp - p2p\1/3,2t + p2p\I’2,1t =0 (2.22)
Sediment mass, bed
O(ppz

(pgtd)b) T, =0 (2.23)

Sediment mass, fraction p, layer 1
a(plph1p¢1p) + a(plphlpul(blp)

— p,, UL =0 2.24
at ax plp s2,1 ( )
Sediment mass, fraction p, layer 2
d(payh O(paphaptis
Carlianon) | Oplntsln) _ gty gt = 0 (225)

ot ox

Momentum of the mixture, layer 1

O(h1pprpur) 5(h1pp1p1ﬁ) 0 (1 2 A(zpiphip) _
o or g\ ) T9T 5 =

= (popuaVoq — p1pu1Way) — T2y (2.26)

Momentum of the mixture, layer 2

(9(h2 P2 UQ) (9(h2 P2 U%) (9 1 8(2,02 hg )
patp + gxp +9% §p2ph§p+p1phlph2p +9—a§: B =

= —(Pzpuz‘lfz,l - Plpul‘l’m + ,02pU2‘I/3,2) + (72,1 - 7’2,3) (2-27)

There are (5 + 2) N, equations, being N,, the number of size fractions p which had the
bed material, and (5 + 2)N,, independent variables: the flow depth for each layer, hy,,
hap; the depth averaged velocity in layer 1, u; and in layer 2, uy; the bottom elevation,
z and finally the sediment concentration in layer 1 of fraction p, ¢1, and in layer 2, ¢,

Several closure equations are required to express the shear stress between layers, 7 ;
and 753 and the sediment fluxes, Wy ; and W3 in terms of the independent variables.
This represents such a complex task that it justifies further simplification of the model.
Next section is devoted to discuss this.

2.3 One layer model

The one layer model, Figure (2.7), is built upon a set of assumptions in relation to the
two layer model: (i) a unique layer of depth A is considered, which includes previous
layer 1 and 2, (ii) continuity approach, assuming the same velocity for the liquid and
for the solid phase, u, which leads to continuity of momentum and consequently to a
continuity of shear stresses, avoiding the necessity of calculating 7;; between interfaces.
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Q h 1 - Fluid layer
—_—
‘ Z, Pp 2 - Solid layer

Figure 2.7: Interfaces in the domain

2.3.1 Conservation equations

The relevant formulation of the model derives from the depth-averaged equation of bulk
mass conservation, mixture momentum conservation and conservation of the mass of
the different constituents.

The term ¢, represents the scalar depth-averaged volumetric concentration of compo-
nent p, with p = 1, ..., N, and N, the number of different components transported. The
mixture density is given by p,, = p,r where p,, is the density of the water and r means
the relative density of the bulk mixture with respect the clean water

Np
r=1+> Ay, (2.28)
p=1

where A, = (pp — pw)/pw 1s the relative density of the solid phase p. It is assumed that
dissolved species with low concentration do not change bulk density A, = 0. In case of
having an unique specie the relative density of the bulk mixture becomes r = 1 + Ag.

Mass conservation

Considering a generic control volume for a horizontal flow over a mobile bed where
the velocity is depth averaged, defined in Figure 2.7, the Reynolds transport for mass
conservation at the liquid layer leads to:

2 9 2 9 T2
a(pmh)dx—k/ %(pmhu)dx—i-/ pm ¥ dx = 0 (2.29)

xr1 xr1

and to the sediment balance mass

N,

o 8 x a o P
/ a(hz ppdp)da + / %(huz Ppdp)d + / > ppUntds =0 (2.30)

Tl — — Il p:1
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Following the same procedure for mass sediment balance at the bottom and considering,
¢v, = (1 —pp), being p, the porosity of each sediment, drives to

xT

N, N,

o a g o g
| e m-nde— [ gy =0 (2:31)

1 p=1 1 p=1

The term W7 which appears in the above set of equations, includes the vertical sedi-
ment flux, suspension transport, and the horizontal sediment flux, bed load transport.

\I’Zet = \Ijload + \Ijsusp (232)

Momentum equation
For the x direction, and considering Figure 2.7, the momentum conservation equation

for the mixing layer, which is the unique zone where there exists velocity, and with the
x component of the gravity mass force equal to 0, (f,), = 0, leads to

22 9 2 9 ) 2 2
/xl a(pmhu)dx—k/m %(pmhu )dl’:/xl pbdx_/xl del’ (233)

The term of superficial forces, (fs),, has been split in its two components, the hydro-
static pressure, pp, and the friction term exerted over the bed, 7.

fs =Ppb— Tp (234)

Summary of conservation equations

The set of developed differential equations is newly written below in terms of the
relative density 7.

Total mass N
O(hr)  O(hur) L et
ot = > ATy (2.35)
p=1
Sediment mass, bed
N,
o) | n Wy
+ —— =0 2.36
ot o (1—p,) ( )

Sediment mass of the mizing layer for specie p

a(h¢p) + a(hu¢p)
ot ox

_ net
=" (2.37)
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Momentum of the mixing layer

A(hur)  Olhur + (1/2)gh*r] T
o+ - S (2.38)

There are 3+, equations and 341V, variables, being NV, the number of species: the flow
depth, h, the mean flow velocity, u, the bed level, z, and the depth averaged sediment
concentration, ¢,. Furthermore two closure equations are still needed, one for the bed
shear stress, 7, and another one for the formulation of the sediment flux between flow
and bed, \Il;‘et. In the search for the simplest model involving the minimum number of
closure relations, the above formulation can be transformed into Exner equation, next
presented.

2.3.2 Exner equation

The above set of equations may be manipulated leading to a simpler model. Inserting
U, from (2.36) in (2.37) leads to the following sediment mass conservation,

0z 1 O(hug,) 1 9(hy)
% (-p) o (-p) 0t (2:39)

The second term on the left hand side of (2.39) is the derivative of transported sediment
flow g5, = hug, along the = coordinate, whereas the term on the right side contains
information about the temporal evolution of the bed level due to vertical fluxes of
material in cases of suspended material. They become the Exner equation (Kalinske,
1947), expressed as follows

0z 0¢s.»

yn +¢ o Ews (Es — ) (2.40)

with & = ﬁ, ws the settling velocity of the sediment particles, F, a dimensionless
factor accounting for the sediment material entering the volume by suspension and ¢,
is the suspended material concentration. Both terms of ¢, and &ws (Es — ¢p) can be
estimated if using empirical closure formulae, that depend on the flow conditions.

Regarding the bulk density, it can be evaluated assuming that the volumetric con-
centration is given by the closure formulae themselves (Rosatti et al., 2007). In many
environmental problems, the bulk density remains almost constant and furthermore low
concentrations of transported material are present. This means that further simplica-
tions over liquid phase mass and momentum conservation equations are admissible,
allowing the elimination of the dependence with the relative density of the mixture,
r. Alternatively, assuming that the sediment material presents low concentration and
does not change the bulk density, the relative density of the mixture,  can be made
constant and equal to 1.

Gathering the depth averaged set of equations which governed the 1D flow and the
sediment dynamics leads to
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e o) | o) _ (2.41)
ot ox
Momentum
6(ahtu) | Ol +8(I1/2)gh2] _ S_Z - pr_i 0.12)
Sediment mass, bed
% 462 g (B, - ) (2.43)

The extension of the formulation of the shallow water equations to unsteady 2D flow
over mobile bed using the Exner equation approach is:

Mass
(h) . J(hu) n J(hv)

ot ox oy

=0 (2.44)

Momentum in x direction

d(hu) N Olhu® + (1/2)gh?] N d(huv) _ P Tow

— - — 2.4
ot T %  pu P 24)
Momentum in y direction
O(hu)  I(huv)  Ah? + (1/2)gh*] Doy Toy
=— - = 2.4
ot + ox + dy Po  Pu (2.46)
Sediment mass, bed
0z aCst aQSy
— ’ = = E, — 2.4

with (u,v) the depth averaged components of the velocity vector along the (z,y) co-
ordinates.

The above set of equations have been used to study the relative behavior of the sediment
transport capacity formulae described in the next chapter.






Chapter 3

Bed load formulation

3.1 Introduction

When using the Exner equation, horizontal solid fluxes can be evaluated using capacity
formulae. In this chapter, different formulations empirically proposed for the modeling
of non-cohesive granular material flows are presented and written following a unified
expression. In this work mass exchange fluxes associated to suspended load will be
considered negligible in comparison with bed load transport, and therefore will not be
included in the mathematical model.

3.2 Description of bed load formulation

Considering a bidimensional flow where the solid transport is focused on the bed load,
the Exner equation can be written as

0z 0Gs
ox

0qs.y
dy

e (3.1)

The formulation of the bed load discharge ¢; can be based on deterministic laws (Meyer-
Peter & Miiller, 1948), (Camenen & Larson, 2005), (Smart, 1984) or in probabilis-
tic methods (Kalinske, 1947), (Einstein, 1950), always supported by experimentation.
Grass (Grass, 1981) discussed one of the most basic sediment transport laws that in
2D can be written as (Hudson, 2001)

Gow = Agu (UQ + 1;2) Gsy = Agv (u2 + vz) (3.2)

This deterministic formulation is well suited for the modeling of non-cohesive granular
material and, as a basic feature, this model does not involve any sediment movement
threshold but assumes that the flow is always able to mobilize the bed. The model
requires a dimensional calibration constant A, accounting for the effects associated to
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the grain size and the kinematic viscosity. Ranging typically from 0 to 1, it represents
a stronger interaction between flow and sediment as it approaches 1.

Following the idea presented in (Murillo & Garcia-Navarro, 2010), A, can be deter-
mined by using the empirical deterministic formulae avoiding the necessity of express-
ing this quantity as a calibration constant in each particular problem. To do this,
several empirical formulations for sediment transport will be analyzed assuming that
it is possible to write them all as

Ag = Ag(h,, qs,z, Qs,y> (33>

The bed load transport is often represented by the following dimensionless parameter,

||

d— s
g(s —1)d3,

(3.4)

where s = p,/p, is the ratio between solid material (p,) and water densities, and d,,
is the median diameter.

The dimensionless bottom shear stress or Shields parameter, can be expressed as:

|'T|

p—_ =0
9(ps — pw)dm

(3.5)

where Ty = (T4, Tby) is the shear stress at the bottom due to the steady flow, that
written in terms of the Manning-Strickler’s coefficient (3.6) can be expressed as

T 20/ u2 402
l:ghsf)m Sf7x:nu e

fl:,uy = ghS S _ n2v\h/Z;+v2 (36>
p_w - g fry fy — h4/3

This allows to express |T| as

Ts| = /75, + 7, = \/(,owgth,m)2 + (pwghSty)? (3.7)

leading to the following expression for the Shields parameter:

9 — n’ 2 2 _ n’ 2
= GonanA Y T = g e

(3.8)
Different commonly applied empirical deterministic formulae are written in terms of ®
and 6. The formulae tested in this work are gathered in Table 3.1, where dgyy and ds3, are
the grain diameter for which 90% and 30% of the weight of a nonuniform sample is finer
respectively, C' is the flow resistance factor C' = u/(ghsS;)%?, S, is the bed slope, 6, is
the critical Shields parameter, Table 3.2, expressing the sediment movement threshold,
and
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Table 3.1: Summary of sediment formulae

Formula o

Meyer-Peter & Miiller (1948) 8 (0 —0,)3?

Ashida & Michiue (1972) 17 (60 — 6.) (V0 — /8,)
Engelund & Fredsoe (1976) 18.74 (0 — 6.)(v/0 — 0.7:/8,)
Luque & van Beek (1976) 5.7 (0 — 6.)%?

Parker (1979) fit to Einstein (1950) 11.2 632 (1 — 6/6,)"/*
Smart (1984) 4 (dgo/dso)’? S%6 COY2(H — 6%)
Nielsen (1992) 12620 —0,)

Wong (2003) 4.93 (6 — 0,.)'°

Wong (2003) 3.97 (6 — 6,)%?

Camenen & Larson (2005) 12 6032 exp (—0/6.)

Table 3.2: Summary of threshold of non dimensional shear stress

Formula 0.

Meyer-Peter and Miiller (1948) 0.0470
Ashida and Michiue (1972) 0.0500
Engelund and Fredsoe (1976) 0.0500

Fernandez Luque and Van Beek (1976) 0.037-0.0455
Parker (1979) fit to Einstein (1950) 0.030

Smart(1984) 0.0470
Nielsen (1992) 0.0470
Wong (2003) 0.0470
Wong (2003) 0.0495
Camenen and Larson(2005) 0.0400
S tan ¢
02 = 0. cos o (1 tanw) (3.9)

with ¢ the angle of the bed slope and v the angle of repose of saturated bed material.
Using (3.8) and (3.4) the transport formulae in (3.1) can be expressed as

las| = Ko Ky (u? +0%)%2 = A |u)? (3.10)

g'/2n? s and K varying in each case as displayed in Table

with Ay = Ko Ky, Ko = (s—1)h1/

3.3.
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Table 3.3: Summary of Grass coefficients written for sediment formulae

Formula K

Meyer-Peter and Miiller (1948) 8(1—6,/60)%?

Ashida and Michiue (1972) 17(1-6./0)(1 —+/6./0)
Engelund and Fredsoe (1976) 18.74 (1 —6./0)(1 — 0.7,/6./6)

Fernandez Luque and Van Beek (1976) 5.7 (1 — 6,./6)%/?
Parker (1979) fit to Einstein (1950) 11.2 (1—6/6.)"?

Smart(1984) 4 (dgo/ds0)"* S%¢ C (1 —6,/6)
Nielsen (1992) 12 (1—-10./0)

Wong (2003) 4.93(1—6,/0)** (6 — 6,)0
Wong (2003) 3.97 (1 —6,/6)%*

Camenen and Larson(2005) 12 exp (—6/6.)

These more complex definitions provided for A,, (3.10), allows to standardize sediment
transport formulae and perform a study about their relative behavior under different
hydrodynamic and morphodynamic conditions.



Chapter 4

Numerical scheme

4.1 Introduction

In order to build a well suited bed load model for unsteady flow, the previous system
of equations presented in the one layer model for the shallow water (2.41) and for the

Exner model (2.40) is written in a 2D coupled form as follows:

ou N JOF(U) N 0G(U)
ot ox oy

=S(U,z,y)
where

U= (h7 Gz, Qy, Z)T

with

h3

2 2 T
F = (g %+ bgh?, B, 4,000

— i 2. .2\ T
G = (qy, Qv %4 Lgh?, A9W>

and the source term S

T
S <07 P Toa Py Thy 0)
Po Pw Pu Pu

In the next section, the finite volume scheme is described.

(4.1)

(4.2)

(4.3)

(4.4)
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4.2 Description of the finite volume scheme

To introduce the finite volume scheme, (4.1) is integrated in a constant size volume or
grid cell 2 using Gauss theorem:

9 / UdQ + f{ Endl — / SdQ (4.5)
ot Jq o0 Q

where E,, = Fn, + Gn, and n = (n,,n,) is the outward unit normal vector to the
volume Q. In order to obtain a numerical solution of system (4.1) we divide the domain
in computational cells, €);, using a mesh fixed in time, and (4.5) is applied to each cell

a NE
— [ UdQ + / E,)rdl, = / SdQ 4.6
at/m > [ mian= [ (4.6)

Here (En)t is the value of the interface flux function through the edge %k to be defined,
n; = (ng,ny) is the outward unit normal vector to the cell edge k, and NE is the
number of edges in cell 7. Assuming a piecewise representation per cell of the conserved
variables,

1
U = —/ U(z,y,t")d (4.7)
A; Jo,
(4.6) is written as
9 NE NE NE
o / UdQ + ) (Ea)ile = Y Taple + > Tl (4.8)
& k=1 k=1 k=1

where [ is the corresponding edge length and Tyn and T n are suitable integrals of
the bed slope and friction source terms (Murillo et al., 2009):

(Tn,b)k = (ﬁ_b> ( Oanzany )Z (Tn,s)k = g(%sf)kdn( Oanxany )Z (49)
w/ k

with b = 1/2(h; + h;), i and j the cells sharing edge k, Sy the friction slope and dy,
the normal distance between neighboring cell centers.

The numerical scheme is constructed by defining an approximate Jacobian matrix J
at each k edge each cell combining the normal flux E,, with the bed slope source term
T, at each cell edge

(0E — Tp)kny, = Jn iUy (4.10)

with §(Ey)r = (Ej — Ej)n,, 60Uy = U; — U;, and U; and Uj; the initial values at cells
¢t and j sharing edge k. The approximate Jacobian matrix J is
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0 Ng ny 0
~ (¢ —u*)n, —uvn, 2un, + on, un, Db
Inp = ~ 2 ~ ~ ~ (4.11)
) —uvn, + (¢ —0°)n, Ny ung + 20m,  pyany
A B C 0

being w, v and ¢ the Roe averaged variables (Roe, 1986)

. ui\/h_i—i-ujwhj . Ui\/h_i‘i‘vj\/hj . ghz—l-hj (4 12)

T VE T Ry

and the coefficients ﬁ, B and C equal to

A= —(sz + Cony)u — (Cony, + Csny)v
C = (CQ’/lm + any)

where

(uf +usu;+u)

Cr = Agp §T + Ag g\/ﬁ
Cy = Ag € % (4.14)
_ (v} +viv; +”]2') Uiuj
C3=Agx € + Agr €

V/hih; V/hih;

As the coefficient Ay is not a constant but varies from cell to cell, at every edge k a
local A, value is defined as an arithmetic mean between cells

Agy = 2021 Pod (4.15)

where the Ay ; coefficients are obtained through the relations presented in the bed load
formulation chapter. Other average possibilities have been tested leading to negligible
differences.

From the approximate Jacobian matrix in (4.11) a set of four real eigenvalues X? and
eigenvectors €}' are obtained (see Appendix A for their detailed expression). Vector U
is then split through the matrix eigenvectors basis, P, as

§U, = PLA, (4.16)

with

(4.17)
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The friction source terms are also projected onto the matrix eigenvectors basis, f’, in
4.18, to guarantee the exact equilibrium between fluxes and source terms

(Ths)k = P.B, (4.18)

with
B.= (8 5 5 p'), (4.19)
The complete details of the coefficients can be found in (Murillo & Garcia-Navarro,

2010). Gathering all the previous information the volume integral in the cell at time
t"*! is expressed as

TE L~ At &2 At
U = U= 3 (o= SRy — D 0B (420)
k=1 m=1 k=1
being [, the length of the edge normal to the n; vector and
aEtm 1 . I\\m om NE.m 1~ N ym
= Sk sign (AT AT = S (421)

in (4.20) the second term of the right side evaluates the flux in the cell edge and the
third term completes the updating formula to consider the spacial variation of A,, see
Appendix B for further details.

The updated value U™ in (4.20) can be interpreted as a cell average of the contri-
butions of the local RPs, and in consequence the time step At is taken small enough
so that there is no interaction of waves from the k neighboring Riemann problems. In
the 2D framework, considering unstructured meshes, the relevant distance, that will
be referred to as y; in each cell © must consider the volume of the cell and the length
of the shared k edges (Murillo & Garcia-Navarro, 2010),

A

_ 4.22
maXg=1,NFE Ui ( )

Xi =

Considering that each k RP is used to deliver information to a pair of neighboring cells
of different size, the distance min(A;, A;)/lx is relevant, so in case that the water depth
is greater than zero in all the regions of the RP solution the time step is limited by

At<CFL AP AP = MG X) (4.23)
max | A™|

with CFL=1/2 in the case of rectangular or structured triangular cells and, according
to computational experience, CFL close to 1 for triangular unstructured grids as the
construction of finite volume schemes from direct application of one-dimensional fluxes
leads to reduced stability ranges (Toro, 2001).
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4.2.1 Numerical discretization of the bed slope in the gener-
alized Grass coefficient for the Smart formulation

Empirical formulations for bed load transport presented in the previous chapter are
written as a function of the bed friction slope, except in the case of the Smart formula-
tion, that considers an additional term based on an estimation of the bed slope along
the preferential flow direction.

D =4 (dgo/dso)"? S0 CHV*(0 — 69) (4.24)

where ® is the dimensionless sediment transport, # is the dimensionless shear stress,
dgg and dzo are the grain diameters for which 90% and 30% of the weight of a non-
uniform sample is finer respectively, S, stands for the bed slope along the preferential
flow direction, 6. is the critical Shields parameter, and C'is the flow resistance factor
C = u/(ghS;)"?, being u the unique velocity in the 1D experimental tests carried out
by Smart and Sy the friction slope along that direction, calculated as 3.6.

In a 2D model both the bed slope and friction slope are defined along the two horizontal
coordinate directions. This subsection is devoted to the discussion of their correct
evaluation in that case. As the Smart formula was derived from 1D experimental cases
involving the bed slope in the flow direction, in 2D simulation it is necessary to evaluate
the bed slope in the local flow direction, |S,4|. The bed slope in the flow direction is
given by:

|So,u’i = |So,inu,i’ (425)

where n,,; is the unit vector associated to the local velocity u, ¢ at each cell i. Asin 2D
the bed level surface is defined by a plane, the following technique, able to handle both
rectangular and triangular meshes, is used to evaluate the bed slope S,; = (5,4, So,y)
in each cell (Murillo et al., 2009),

S = (T8 (22)) (25 1al) ™ Sy = (S5 (52)) (S2E5 )
(4.26)

where dz is the difference of bottom heights, d,, is the normal distance between the
centers of cells and n,, n, are the components of the normal vector along the axis.

Furthermore, in cases where the flow finds a nil or an adverse slope S,;u; < 0 the
bed slope in (4.25) is replaced by the friction slope computed in cell i, S;;, with the
components as defined in (3.6) . This option will be referred to as Smart CFBS (Com-
bined Friction and Bed Slope). In case of using under any morphodynamic condition
the friction slope, the option will be called Smart.






Chapter 5

One dimensional cases

5.1 Introduction

This chapter gathers 1D cases with experimental data in order to study the relative
behavior of the numerical results predicted when using different sediment transport
formulae. These closure laws were derived from 1D experimental steady flows and are
going to be tested in order to verify their capacity of prediction in unsteady situations.

First, a series of sudden dam break test cases are presented, with a combination of
morphodynamic and hydrodynamic situations. In the next test case, dam erosion in
time due to flow overtopping is considered. In all these numerical experiments the flow
finds different regions under subcritical or supercritical regime. The last experiment
considers a case of fully subcritical flow, with an important discontinuity at the bottom.

5.2 Dam break test cases

These experiments were performed in a flume designed at the UCL Civil Engineering
Department (Spinewine & Zech, 2007). The flume had a length of 6 m, 3 m on both
sides of a central gate simulating an idealized dam. The channel width was set constant
and equal to 25 cm. The bed material was uniform coarse sand with the following
properties: particle sizes ranging from 1.2 to 2.4 mm, with dsy = 1.82 mm, density
ps = 2683 kg m3, a friction angle ¢ = 30°, negligible cohesion, porosity p = 0.47 and
was characterized by a Manning roughness factor n = 0.0165 sm™'/3.

Table 5.1 summarizes the set of experiments selected in this work. The regions up-
stream and downstream the gate were filled with sediments and different water depths.
The three first test cases, A, B, and D, have been chosen to guarantee the correct per-
formance of the numerical scheme in combination with a discharge formulation, in cases
where morphological changes are produced in presence of dry bed and null, adverse or
in favorable slope. Case F allows checking if the numerical scheme in combination with
a discharge formulation is able to handle with the different type of waves that may
arise in a dam break case over wet bed. Numerical simulations have been performed
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Table 5.1: Summary of dam break test cases.

Test hy, hgr Zr, ZR

A 0.35 0.00 0.00 0.00
B 0.40 0.00 -0.05 0.00
D 0.25 0.00 0.10 0.00
F 0.25 0.10 0.10 0.00

using Az = 0.01 m and CFL = 1.0. In all the simulations the bed domain is considered
deformable and no boundary condition is imposed at the downstream section.

5.2.1 Test A

Test A is a dam break over dry bed with an initially plain bed level. The flow evolves in
time leading to a left moving rarefaction wave upstream the gate ending in a flooding
front dominated by friction. The experimental results are close to those ones obtained
for dam break cases over dry and fixed bed Dressler (1954). Figure 5.1 shows the
numerical results and experimental data for the dam break test case A using MPM (left)
and Smart CFBS (right). In this case little scour is produced and both formulations
provide indistinguishable results. The Smart CFBS formulation provides a correct
tracking of the advance velocity, bed level and water level surface in time, as shown in
Figure 5.2. Considering that the numerical scheme is conservative, differences among
measured and computational data are expected to be produced by the lack of an
infiltration parameter in the numerical model.
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Figure 5.1: Numerical results and experimental data for the dam break test case A at
t = 1.5 s, using a variable value of A, computed using MPM (left) and Smart CFBS
(right): measured water level surface (— e —), measured bed level surface (— o —),
computed water level surface (—A—), computed bed level surface (—A—)

In Figure 5.2 numerical results and experimental data have been plotted for test case A,
for times ranging from 0 to 1.5 seconds. The front wave is numerically well reproduced
in space and time when using Smart CFBS.
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Figure 5.2: Numerical results and experimental data for the dam break test case A
at times ¢t = 0.025, 0.050, 0.075, 0.100, 0.125 and 1.5 s, using a variable value of A,
computed using Smart CFBS: measured water level surface (— e —), measured bed
level surface (—o—), computed water level surface (—A—), computed bed level surface

(—A-)
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Figure 5.3: Modulus of the water level surface error (left) and bed level error (right)
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Figure 5.4: RMSE for water level surface (left) and bed level surface (right) with
different formulas at ¢ = 1.5 s in test A.

The similarity among computational results for the different discharge formulations is
clear when observing Figure 5.3, that displays the modulus of the water level surface
error (left) and bed level (right) error in « for the different formulations at t = 1.5 s.
The RMSE (Root median square error) for the different formulations plotted at Figure
5.4, confirms that in plain bed, accurate results are given by all formulas.

5.2.2 Test B

Test B is a case of advance front over dry bed and adverse discontinuity. The flow
developpes leading to a left moving rarefaction wave ending in front wave dominated
by friction. Figure 5.5 shows again the numerical results and experimental data for
the dam break test case B when using MPM (left) and Smart CFBS (right). In both
cases, the most relevant difference with measured data is observed over the step, due
to the lack of erosion with respect to experimental data. Upstream and downstream
the step both numerical simulations provide identical results, being able to reproduce
accurately the free surface level in space. Figure 5.6 shows how front wave celerity is
well reproduced in time.

The lack of precision over the upward step is observed for all discharge formulations
if observing Figure 5.7, that provides level errors in space. The rest of the domain
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presents an acceptable error. The RMSE for water level surface (left) and bed level
surface (right) at ¢ = 1.5 s plotted at Figure 5.8 shows that in this test case there is
not clearly a more advantageous formula.

0'4 T T T T T 04 T T T T T
03 | S 03 S e
he .,
a a
| et aamesaly o AP B
g 02 it Yevee L ‘ ‘ ‘ s 02 i e L ‘ |
~ el - i ; ;
N 2, N i by,
N “ease, + ;
< 01} M < 01} B e WU SR —
‘ " ‘
: e, : Y,
A A,
e KA ® oo 'AL
ot . A of PO : e

x (m) X (m)

Figure 5.5: Numerical results and experimental data for the dam break test case B at
t = 1.5 s, using a variable value of A, computed using MPM (left) and Smart CFBS
(right): measured water level surface (— e —), measured bed level surface (— o —),
computed water level surface (—A—), computed bed level surface (—A—)

5.2.3 Test D

Test D represents a reservoir partially filled with sediments and includes a downward
step. In this case, once flow passes through the gate location accelerates and decelerates
in the friction dominated front. Figure 5.9 shows numerical results and experimental
data for the dam break using MPM (left) and Smart CFBS (right). Smart CFBS
formulation is able to handle perfectly with this kind of bed discontinuity, tracking
the water level surface and redrawing correctly the bed level. Different time instants
captured in Figure 5.10 allow appreciating the accuracy and the grade of detail of
the computational results in time. Free surface and bed levels are correctly captured
for both rarefaction wave and advance front wave, as well as, the bed level at the
discontinuity point.

Figure 5.11 shows how Smart CFBS formulation provides the lowest level for bed level
(right) and free surface (left) error in space at ¢t = 1.5 s if compared with the rest of
formulations. Also, the RMSE for water level surface (left) and bed level surface (right)
displayed in Figure 5.12 confirms that Smart CFBS formulation gives the better results.
Compared with test cases A and B, error is drastically reduced with the proposed
formulation.

5.2.4 Test F

Test F is the last dam break studied in this paper. It is the case of a downward bed
step combined with an initial layer of clear water in the downstream reach. The flows
evolves in time leading to a left moving rarefaction wave upstream the gate, followed by
an steady hydraulic jump downstream the gate and ending up in a right moving shock.



44

One dimensional cases

h+z (m)

h+z (m)

h+z (m)

0.4

0.3

0.2

0.1

-0.1

0.4

0.3

0.2

0.1

-0.1

0.4

0.3

0.2

0.1

-0.1

oo st."‘\“
Ve
A
A
2
2
Y
l\.
e
S
e,
°R,
"1
e
9
-1 0 1 2 3
x (m)
“ e
T
e
v
Jast
- .
A
A,
he ¥
LY
e,
ey
1 o8 © &
s
-1 0 1 2 3
x (m)
e,
R .
\'«*.4:;‘
M“*‘\,‘.
hat
e,
Meeg a
ey
f‘s‘g 2
-1 0 1 2 3
x (m)

h+z (m)

h+z (m)

h+z (m)

0.4
&
0.3 Tay
«:\‘
\ e
A\A .
0.2 iy
\ S
R
Y,
0.1 :
A“‘u
o S
N
0 .
0.1
1 0 1 2 3
X (m)
0.4
0.3
B
\A .
S,
0.2 i
[
R
0.1 Py
e
.“.AA Sa,
0 e e
0.1
1 0 1 2 3
x (m)
0.4
0.3
e,
0.2 | mmrtans
\.ﬁ“'/M
0.1 M
W*ﬂ-mm“
'u A‘A‘i
0 s
0.1
1 0 1 2 3
X (m)

Figure 5.6: Numerical results and experimental data for the dam break test case B
at times ¢t = 0.025, 0.050, 0.075, 0.100, 0.125 and 1.5 s, using a variable value of A,
computed using Smart CFBS: measured water level surface (— e —), measured bed
level surface (—o—), computed water level surface (—A—), computed bed level surface
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Figure 5.9: Numerical results and experimental data for the dam break test case D at
t = 1.5 s, using a variable value of A, computed using MPM (left) and Smart CFBS
(right): measured water level surface (— e —), measured bed level surface (— o —),
computed water level surface (—A—), computed bed level surface (—A—)

Figure 5.13 gathers numerical results and experimental data for the dam break test
case ' using MPM (left) and Smart CFBS (right). The results of Smart CFBS show
that the experimental data is well depicted by numerical predictions in the rarefaction,
the hydraulic jump and in the moving shock.

Figure 5.14 plots free surface and bed level at different times, where it can be observed
how the shock celerity is perfectly captured by the numerical scheme in combination
with Smart CFBS formulation. Small differences produced in the shock wave are
attributable to fast transient energy variations associated to the existence of a hydraulic
jump.

Smart CFBS leads to the smallest error in comparison with the other discharge formu-
las, as it is appreciated in Figure 5.15, where modulus of the water level surface error
(left) and bed level error (right) in = are plotted. Figure 5.16 displays RMSE for water
level surface (left) and bed level surface (right) with different formulas at ¢ = 1.5 s
leading to the same conclusion.
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Figure 5.10: Numerical results and experimental data for the dam break test case D
at times ¢t = 0.025, 0.050, 0.075, 0.100, 0.125 and 1.5 s, using a variable value of A,
computed using Smart CFBS: measured water level surface (— e —), measured bed
level surface (—o—), computed water level surface (—A—), computed bed level surface
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Figure 5.12: RMSE for water level surface (left) and bed level surface (right) with
different formulas at ¢ = 1.5 s in test D.
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Figure 5.14: Numerical results and experimental data for the dam break test case F
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Figure 5.16: RMSE for water level surface (left) and bed level surface (right) with
different formulas at ¢ = 1.5 s in test F.

5.3 Numerical modelling of dam failure

Dam surface erosion and slope sliding failure in time due to flow overtopping was
studied in Tingsanchali & Chinnarasri (2001). Figure (5.17) shows a sketch of the
experimental setup. Experiments were carried out in a rectangular flume 35 m long,
1.0 m deep, and 1.0 m wide. The height and crest width of the dam were fixed at 0.80 m
and 0.30 m. The upstream slope was fixed at 1V:3H, while the downstream slopes set
to 1:5. The dam was made of sand with the following characteristics: p, = 2650kgm 2,
dso = 0.52mm, dsg = 0.86mm, dgy = 3.80mm and d,,, = 1.13mm. A friction angle of
¢ = 30° was suggested, and the porosity was estimated using the formula Wu & Wang
(2007):

0.21
p=0.013 + 0o (5.1)
(d501000 + 0.002)™
and the Manning roughness coefficient by the Strickler formula:
1
n=—dy° (5.2)

26 90

To have a uniform overflowing across the flume width, in the experiment reproduced
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Figure 5.17: Sketch of the dam failure experimental setup.

in this work a vertical plate was held at the dam crest across the flume width until
the upstream water level was 3 cm higher than the dam crest. The vertical plate was
lifted up suddenly to allow the overflow to start.

In the dam breaching experiment three zones can be distinguished. The first is a
subcritical region in the reservoir area, characterized by a very low velocity. The
second zone is a supercritical region of highly unsteady flow over a steep bed slope in
the downhill slope of the dam, starting at the front edge of the dam crest. The third
zone, downstream of the dam is characterized by the presence of a hydraulic jump.
The dam erosion model was computed in all cases using cells Ax = 0.05 m and CFL
=1

During the development of this experiment bed level was recorded in time at three
stations: SA, SB and SC, located respectively 15, 65 and 115 cm downstream from
the edge of the original dam crest. The overtopping discharge was also caught along
time, as well as, the reservoir level, just upstream the breach. The results presented
below compare these experimental data with the computed ones, in order to validate
the accuracy of the numerical method.

In Figure 5.18 (a) and (b) the numerical results for water level and bed level using MPM
and Smart CFBS, respectively, are plotted. Figure 5.18 (c¢) and (d) show measured and
computed bed level surface in time evolution at stations SA, SB and SC using MPM
and Smart CFBS respectively. While MPM clearly underestimates the erosion rate,
Smart CFBS provides results in good agreement with experimental data. Experimental
and computed values of reservoir free surface level are displayed in Figure 5.19 (a) and
(b) using MPM and Smart CFBS respectively. Better accuracy is reached when using
the new proposed formulation.

Figure 5.20 (a) and (b) depicts the evolution in time of overtopping discharge using
MPM and Smart CFBS respectively. It is observed that the maximum experimental
overtopping discharge is reached by Smart CFBS while MPM predictions are quite far
away from experimental data. Figure 5.20 shows the maximum overtopping discharge
which is achieved with different formulas. The continuous line at the top of the im-
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Figure 5.18: Results for Run case RB1. Initial bed level (- - -), computed water level
surface (—A—) and bed level surface (—A—) at ¢t = 120 s using (a) MPM and (b) Smart
CFBS. Bed level surface evolution in time measured at stations SA (—o—) (—0—),SB
(—e —), and SC (—A—) and computed at stations SA (— x —),SB (—[O—), and SC
(—M—) using (c) MPM and (d) Smart CFBS.

age represents the maximum experimental overtopping discharge which is only well
calculated with Smart CFBS formula.

Modulus of bed level error in time at stations SA, SB and SC with different formulas
are shown in Figure 5.21 (a), (b) and (c), respectively. Smart CFBS formulation is the
one which introduces less error in computed values. RMSE for bed level with different
formulas in time appears plotted in Figure 5.21 (d). Newly, Smart CFBS presents the
best agreement with experimental data in the three stations.
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5.4 Sand cube

The last experiment studied in this paper is a test where the flow has a subcritical
regime in opposition to previous tests. The experiment was made in a 15 m long
channel, with a cross section of 0.5 x 0.5 m?, at the Hydraulics Laboratory of the Civil
Engineering School of the University of A Coruna (Spain) (Pena et al., 2008).

The bottom of the flume was characterized by uniform slope, 0.00052, and a sediment
layer 4.5 cm height, was placed in the central part, between 4.5 and 9 m from its
upstream end. A sketch can be appreciated in Figure 5.22. The sand employed had the
following properties: p, = 2680kgm ™3, dso = Ilmm (uniform size), » = 30°, negligible
cohesion, porosity p = 0.5 and was characterized by a Manning roughness factor n =
0.015 sm~*/3.

Initial conditions used were a water surface level downstream set to 0.115 m and a flow
value enforced to be 21.8 1/s. Numerical simulations were performed using cells Az =
0.05 m and CFL = 1.

0.115 m

4.5 m 4.5 m Sp = 0.00052 :

15 m
Figure 5.22: Sand cube sketch.

Figure 5.23 shows experimental data and numerical results calculated using MPM
(left) and Smart CFBS (right) at different times. The bed evolution in time is well
described with Smart CFBS. In the first part of the simulation there is an important
mobilization of material up to time ¢ = 40 min, when the sediment bed tends to
stabilize. Most relevant differences between numerical and experimental data appear
downstream the cube. This difference is more noticeable at time ¢ = 120 min and is
attributable to the fact that in the sediment transport model suspended load is not
considered. A careful data analysis of the measured bed level reveals that at this time,
the initial mass associated to the cube is not conserved, may be due to suspension
effects. On the other hand, the numerical scheme used in this work is exactly mass
conservative, so differences between numerical and experimental data downstream the
cube are expectable. The results provided by MPM formula are unable to gather
information correctly, leading to a poor bed level prediction as time increases.

Correct performance of Smart CFBS in comparison with the rest of sediment discharge
formulae is well appreciated in Figure 5.24, where the modulus of bed level error in z
(left) and RMSE for bed level surface at time ¢ = 120 min (right) are plotted. Smart
CFBS presents the more accurate results.



5.4 Sand cube 55

0.06 0.06
0.05 o 0.05 —~ o
o e N
— .04 - — .04 i-d
B 0.0 é{ 5 B 0.0 i T
3z i N E ¥ B
g 003 £ : $ 003 ; X
b § v 3 i i
L H Q |
o 0.02 L @D 0.02 4
0.01 i 0.01 i
——— & [t i
o o o s SV
o 2 4 6 8 10 12 14 16 o 2 4 6 8 10 12 14 16
(a) x (m) (b) x (m)
0.06 0.06
0.05 o 0.05 e
— 0.04 p— — 0.04 I e
§’ e !_‘1 g K suz‘
[ 3 L » P
3 003 2 - 3 003 o i
b= N = P, N
ges3 9 ki3 3
@ 0.02 v @ 0.02 ¥
\ : \..".
0.01 : : 0.01 :
F— : SN
o T 0 e
0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16
(¢) x (m) (d) x (m)
0.06 0.06
0.05 o 0.05 L
£ 0.04 £ 0.04
3 T TN, 3 — B et
$ o003 7 ' $ 003 e =53
E S \ . E
@ 0.02 Later ! @D 0.02 o i
i ¢ i \
\ \
0.01 A 0.01 3
——— ] N SO S .
o R M o R M
o 2 4 6 8 10 12 14 16 o 2 4 6 8 10 12 14 16
(e) x (m) (f) x (m)

Figure 5.23: Results for the sand cube test case. Initial bed level (- - -), measured bed
and water level (— e —) and computed (—A—) using MPM at times (a) ¢ = 10 min,
(c) t = 40 min, (e) t = 120 min, and using Smart CFBS at times (b) ¢ = 10 min,(d) ¢
= 40 min, (f) t = 120 min.



56 One dimensional cases

0.04 T T

MPM —e—
ASHIDA-MICHIUE -~ 0.014
0.085 [ o o FERNAN BEL TUQUEVAN BEER -~
’ PARKER - 0.012
0.03 WORG (& 1 0.01
WONG -
CAMENEN-LA B 0.008 -
0.025 50
3  0.006 |
= 0.02
5 0.004 -
|
s 0.002 | |
0.01 e s R R
%y S, Yo, S, T M, Y Yo Yo S
% % 4, & > S (g B N
0.005 %, %, 26, o
% e Y K, T
G Ry e,
0 < Q. %
) 1 % S
W,
R
&

Figure 5.24: Results for the sand cube test case. Modulus of the bed level error in z
for the different formulations after 120 min (left) and RMSE for bed level surface with
different formulae at 120 min (right).



Chapter 6

Two dimensional cases

6.1 Introduction

Considering the increasing complexity in 2D flow with respect to 1D cases, and the
fact that well proven capacity formulas are based on 1D experimental steady flows, the
performance of different closure formulas in unsteady 2D numerical models must be
carefully analyzed. In order to ensure the reliability of the numerical experimentation,
the formulation has to be general enough in order to allow for the use of different
empirical laws and the numerical scheme must handle correctly the coupling between
the 2D shallow-water equations and the Exner equation under any condition. In this
chapter the relative performance of the sediment formulae presented in chapter 3, for
the cases of a dam failure and a dam break in a channel with a symmetric enlargement,
are compared in bidimensional unsteady situations.

6.2 Numerical modelling of dam failure

Dam surface erosion and slope sliding failure modeling in time due to flow overtopping
was studied by Tingsanchali et al. in Tingsanchali & Chinnarasri (2001). A sketch
of the experimental setup and laboratory conditions are detailed in previous chapter,
Figure 5.17. Being the flow mostly onedimensional in this case, it is important to check
the performance of the numerical discretization of the empirical formulations in a 2D
mesh to ensure that numerical results are not influenced by the grid definition. This
case is of great interest, as it allows a direct comparison between 1D and 2D simulations
in a wide variety of flow conditions.

2D numerical simulations have been performed using a coarse unstructured triangular
mesh, with a maximum cell size of 0.01m?, Figure 6.1. The CFL is retained equal to 0.5
in all the simulations, and the bed has been considered deformable in all the domain.
No boundary condition has been imposed at the outflow section. Figure 6.2 displays the
numerical results obtained using Smart CFBS formulation for both the water level and
the bed level. During the first seconds the erosion rate reduces drastically the height
of the crest and downstream the dam a hydraulic jump appears. At the final stage
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Figure 6.2: Numerical results of water level (top image) and bed level (bottom level)
in the dike at 0s (a) and 120s (b) using Smart CFBS formulation.

of the simulation, a large wedge has been developed. Also, the presence of incipient
antidunes is observed.

Figures 6.3 (a) and (b) show the water and bed level surface computed after 120s using
MPM and Smart CFBS formulations respectively. The bed level evolution recorded
in time at the three stations SA, SB and SC, located downstream from the edge of
the original dam crest, are plotted in Figures 6.3 (c) and (d). The evolution of the
measured and computed water reservoir level is depicted in Figures 6.3 (e) and (f).
In all cases the Smart CFBS formulation presents accurate results, while the MPM
formulation shows noticeable discrepancies with respect to the experimental data.

Figures 6.4 (a) and (b) display the measured and computed overtopping discharge
just upstream the breach using MPM and Smart CFBS formulations respectively. It
is observed that the experimental overtopping discharge is better tracked with Smart
CFBS while MPM predictions are quite far from experimental data.

The relative performance of the different formulations in terms of RMSE is plotted in
Figure 6.5 at the three stations SA, SB and SC, showing important differences among
numerical results depending of the experimental law selected. The Engelund and Fred-
soe sediment transport relation was derived for a wide range of slopes, and Figure 6.5
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Figure 6.3: Initial bed level (- - -), computed water level surface (—A—) and bed level
surface (—A—) at t = 120 s using (a) MPM and (b) Smart CFBS. Bed level surface
evolution in time measured at stations SA (—o—) (—=0—),SB (—e—), and SC (—A—)
and computed at stations SA (—* —),SB (—O—), and SC (—M-) using (¢) MPM and
(d) Smart CFBS. Evolution in time of the measured water reservoir level (— o —) and
computed water reservoir level (— e —) using (¢) MPM and (f) Smart CFBS.

shows how this formulation leads to low values of RMSE. The Smart formula was de-
rived for a set of experimental cases with steep slopes, therefore it can be expected that
in this case any numerical discretization would provide accurate predictions. Contrar-
ily, numerical simulation shows that the Smart F'S discretization leads to less accurate
results if compared with those given by the Smart CFBS discretization. The rest of
formulations, derived from experiments ranging from low to medium slopes provide

higher RMSE.

When comparing the numerical results of the 2D simulation with those obtained of a
1D discretization, it can be observed that the RMSE is slightly bigger in the 2D cases
and that 2D results follow closely the tendencies given by the 1D formulation.
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6.3 Symmetric configuration for dam break flow
over erodible bed

This experiment was designed at the laboratory of UCL (Soares et al., —) consisting of
a dam break over a 3.6 m wide and about 36 m long flume. The gate was connected to
an upstream reservoir and was 1 m wide. The sand was extended over 9 m downstream
the gate and 1 m upstream the gate, having a thickness of 0.085 m. A complete sketch
of the set up of the experiment is shown in Figure 6.6. The properties of the sand were
ps = 2630 kg m™3, dso = 1.61 mm, ¢ = 30°, negligible cohesion, porosity p = 0.40 and
was characterized by a Manning roughness factor n= 0.019 sm~'/3. Initial conditions
used were: upstream, the water level was imposed to 0.047 m, and downstream, a
control section at the end of the flume with the same height as the sand layer, 0.085 m.
The measurements carried out during the experiments consisted of recording the water
level evolution for the first 20 s at different probes, Figure 6.7, and the longitudinal
bed profiles measured from z = 0.5 m to z = 8 m at two y coordinates, Table 6.1, and
at t = 100 s.

The domain was discretized on a non-uniform triangular mesh, with a higher density
downstream the widening, being the total number of cells equal to 12500. The CFL
used was imposed to 0.5.

Table 6.1: Position of the sections

Section Y coordinate (m)

S1 0.20
52 0.70

Figures in 6.8 show a sequence of plant views of the computed bed evolution in time
predicted by the Smart CFBS discretization, characterized by fast morphodynamic
changes. Figure 6.8 (a) at t = 10 s shows how the flow generates a wavefront which
causes an important erosion process in the enlargement zone of the channel. While
the flooding wave advances the sand particles grabbed in this process are carried out
to the wavefront and to the wall, where they tend to sediment, as shown in Figure 6.8
(b) at t = 20s respectively. Symmetric elongated sedimentary bodies appear on the
right and left banks of the channel, that grow in time to merge generating a diamond-
shaped erosion region at t = 40s, shown in Figure 6.8 (c). At ¢ = 60 s most of the
morphodynamic changes have taken place, and the drainage of the water contained in
the upstream reservoir smooths the bed surface, attenuating the bed forms previously
generated. For longer times, no more important morphodynamic changes happen. At
t = 100 s, Figure 6.8 (f) shows how only the diamond-shaped erosion region in the
enlargement zone, generated by the sudden change in flow direction after the opening
of the gate, remains in time. The rest of the bed surface becomes almost planar.

Figure 6.9 displays the final bed surface at ¢ = 100 s obtained with the experimental
data (left) and with the numerical results using Smart CFBS formula (right). Numer-
ical results follow correctly the tendency of the final bed morphology although they
tend to underestimate the length of the diamond-shaped body and the thickness of the
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Figure 6.8: Numerical results of bed level in the enlargement zone at 10s (a), 20s (b),
40s (c), 60s (d), 80s (e) and 100s (f) using Smart CFBS formula

eroded layer, resulting in smaller heights for the deposition forms. In the experimental
data the length of the bed-form zones is bigger than the one provided by the numerical
simulation. This may be explained, if considering that, due to the underestimation
of erosion rates along the numerical simulation, the magnitude of the bed forms is
smaller, and consequently, they are more easily eroded. Also, differences between nu-
merical and experimental bed surfaces can be justified by two important points: i) the
2D SW model neglects the vertical accelerations and decreases the erosion/deposition
rate and ii) errors associated to the reconstruction of the experimental bed surface,
which was generated through the interpolation of measured bed profiles.

The results shown in, Figures 6.10, 6.11, display the experimental bed level against
the computed one using the MPM and the Smart CFBS formulae at the two control
sections. The first one, section S1, which is placed to study the effect of the flow over
the bottom in the enlargement zone presents differences between both load discharge
formulae. The Smart CFBS formula obtains a better tracking of the sedimentary
proccess, getting more accurate results for the maximum erosion position, z = 1.4 m,
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Figure 6.9: Experimental results (left) and numerical results using Smart CEBS formula
(right) of bed level in the enlargement zone at 100s

and in the maximum deposition position, r = 2.6 m.

At the second control section, section S2, differences are also noticeable between both
sediment transport formulae, being the Smart CFBS the formula which achieves a
better averaged bed level. The computed results obtained with MPM show a zone at
x = 1.2 m where erosion is clearly overestimated.
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Figure 6.10: Numerical results of bed level
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Figure 6.11: Numerical results of bed level with MPM (left) and Smart CFBS (right)
against experimental data at section S2 (y = 0.7 m) and at t = 100 s

The RMSE of every section and every bed load discharge are shown in Figure 6.12.
The results obtained with Smart CFBS are always among the ones which provide less
error.
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Figure 6.12: RMSE values corresponding to the two control sections, S1 (left) and S2
(right), and obtained with every sediment transport formula

In the case of the probes, the results are presented in Figures 6.13 and 6.14. The water
level measured is compared with the results obtained using the MPM and Smart CFBS
formulae. Both formulations provide similar values, except at probes U2 and U3 where
the Smart CFBS formula shows a better tracking of the water level evolution in time.
Probes which are further from the widening location obtain more accurate predictions

and this is justified by the reduced influence of the erosion/deposition rates in those
zones.
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Figure 6.13: Probe Ul (z = 0.64 m, y =-0.99 m). Probe U2 (z = 0.64 m, y =-0.33 m).
Probe U3 (z = 0.64 m, y = 0.33 m). Probe U4 (z = 0.64 m, y = 0.99 m). Comparison
between experimental values and MPM and Smart CFBS water level at ¢ = 20 s

The RMSE value associated to every probe and to every bed load transport formula
is displayed in Figures 6.15 and 6.16. The RMSE provided by probes which are close
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Figure 6.14: Probe U5 (x = 1.94 m, y =-0.5 m). Probe U6 (z = 1.94 m, y = -0.165 m).
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to the enlargement zone, Ul, U2, U3 and U4, presents a bigger error, as it is has
been argued previously. Smart CFBS formula is always between formulations with less

associated error.
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Figure 6.15: RMSE values corresponding to four probes (U1, U2, U3, U4, from left to
right and from top to the bottom) and computed for every sediment transport formula
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right and from top to the bottom) and computed for every sediment transport formula






Chapter 7

Conclusions and further research

7.1 Conclusions

1D test cases

In the first set of test cases, the bed load formulae have been applied to solve dam
break flows over dry/wet initial conditions. Whilst advance front celerity has been well
captured in the dam break cases over dry bed with independence of the type of capacity
formula used, noticeable differences appear in the bed level predictions, except in the
dam break test case A with initially flat bed level and in the case B with adverse slope.
In experiment D, over favorable slope and dry bed, erosion produces a meaningful
variation of the initial bed step, leading to a rate of erosion and deposition only well
captured in time and space if using Smart CFBS formula. In test case F, where both
sides are initially filled with water, and a favorable slope is present, only Smart CFBS
formula leads to a correct erosion evolution in time, that becomes negligible in the final
stage of the experiment. From this set of test cases it can be concluded that Smart
CFBS formula can be recommended for dam break test cases with null, adverse and
favorable slopes, and wet /dry problems.

When numerically modeling dam erosion and failure it has been found that Smart
CFBS formula is applicable in all cases analyzed in this study. Also, Engelund and
Fredsoe capacity formula provides correct results in bed level predictions, although
Smart CFBS formula estimates much better the maximum discharge values reached
in all experiments. It is also worth mentioning that, for downstream steep slopes, the
computational time associated to the peak discharge value is calculated earlier.

The computed sand cube test showed that the best agreement between experimental
and numerical data are obtained with Smart (computing slope as friction slope) and
Smart CFBS. This can be explained considering that, in this case, unsteady hydrody-
namic effects are a quasi-steady process of slowly varying bed-load, and friction slope
is adapted to bed slope.
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2D test cases

For the first experiment, the dike failure by overtopping, characterized by a one-
dimensional flow, it was clearly stated that the Smart CFBS formulation provides
the most accurate results in time and in space.

In the second experiment, a symmetric dam break over a mobile bed in a channel with
an enlargement zone was numerically reproduced. In this case a two-dimensional flow
is generated and differences among different sediment formulations are less noticeable.
Numerical results follow the tendency of the final bed morphology, underestimating
the length of the diamond-shaped body and the thickness of the eroded layer. In the
third experiment, where an erodible channel with a sudden enlargement produces a
two-dimensional flow, the computational results provided good agreement with exper-
imental values for the different sediment formulae.

Comparing with previous results from other authors (Spinewine & Zech, 2004; Abder-
rezzak & Paquier, 2011; Wu & Wang, 2007, 2008) it can be stated that the numerical
scheme used in this work allows to clarify the differences among different formulations
which were derived by 1D stationary laboratory experiments.

The Smart CFBS discretization reaches the more accurate results in all cases, although
in a genuinely 2D flow, that is, a situation involving more than one flow direction, the
differences between sediment transport formulae are not as noticeable as in the 1D
situations.

7.2 Further research

Numerical experimentation is necessary to include non-equilibrium state formulation in
the mathematical model. Hence, it is necessary to develop the one layer model derived
of mass conservation equations, section 2.3.1, which included a non uniform density
along the longitudinal profile. Several authors have suggested to include the differ-
ence between the actual transported material and the equilibrium sediment transport
capacity by means of the definition of an adaptation length.

The inclusion of the suspended transport coupled with the bed load model developed
here is other natural follow-up of this work. For this phenomenon, both mathematical
and numerical model are still to be studied.

The study of the mathematical and numerical properties of more complex friction laws
for the definition of the shear stress at the bottom is also necessary. This feature is
oriented to the definition of a hyperconcentrated model, where the rheology of the flow
presents a pseudo plastic behavior due to high values of depth averaged concentrations.

Applications to flood events, where the bed topology is dramatically modified by the
flow are still to be studied.
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