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The erasure of a bit of information encoded in
a physical system is an irreversible operation re-
sulting in a minimal entropy production kB ln 2.1

While this limit, called Landauer limit, has been
demonstrated to hold for a variety of classical sys-
tems, there is no definite proof that it can be ex-
tended to the quantum realm, where quantum su-
perposition of discrete energy eigenstates take the
place of thermal fluctuations in a continuous spec-
trum. Here, we use a crystal of molecular nano-
magnets as a spin-memory device and show that
the Landauer limit is also applicable to quantum
systems. In contrast to the other classical sys-
tems, the limit is bordered while preserving fast
operation thanks to the tunable and fast quan-
tum dynamics. This result explores the thermo-
dynamics of quantum information and suggests a
way to enhance classical computations by using
quantum processes.

While a computation performed with an ideal binary
logic gate (e.g. NOT) has no lower energy dissipation
limit5,6, one carried out in a memory device does. The
reason is that in the former the bit is merely displaced
isentropically in the space of states, whereas in the latter
the minimal operation, called Landauer erasure, entails
resetting the memory irrespective of its initial state. Let
us see how this erasure applies to a classical N -bit regis-
ter (Fig. 1(a, left)) and how the Landauer limit comes
about. In the first stage, each bit of the register, in
a definite state ’0’ or ’1’, is let to explore the two bi-
nary states by lowering the potential barrier and through
the action of temperature fluctuations. This doubling of
the phase space is accompanied by an entropy produc-
tion ∆S = kB ln 2 per bit. In the second stage, a work
W ≥ T∆S is required to reduce the register’s entropy and
phase space to their initial values. The limit W = T∆S
is reached only if this reduction is carried out reversibly.
This can be achieved when using a frictionless system in
a quasi-static fashion, i.e., at timescales slower than its
relaxation time τrel, so that unwanted memory and hys-
teresis effects are avoided. For this reason, slow (fast)
operation – with respect to the system-dependent τrel –
is generally associated with a lower (higher) dissipation.

This complementarity between work and time suggests
considering the product W ·τrel – rather than either of the
two – as the figure of merit assessing the energy-time cost
of a computation. On one hand, driven by the demand
for speed, effort has been put in pursuing fast-switching
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FIG. 1. Quantum-enhanced Landauer erasure and
storage of a molecular bit. (a) Schematics of the Lan-
dauer erasure process. In order to erase a classical bit register,
the effective barriers separating the two binary states of each
bit are lowered and thermal fluctuations allow the system to
fluctuate between these quasi-degenerate states. A small bias
is then applied to increase, within a time τrel, the equilibrium
population in the desired potential well and store the new in-
formation state (here ’1’). The Landauer principle fixes the
minimal entropy production ∆S and work W involved in the
erasure process. In quantum mechanics, the process changes
the wave functions describing the bit states (only the ground
state is shown for clarity). (b) Sketch of the Fe8 molecular
magnet. In the absence of a magnetic field, the double-well
potential favors the two Sz = ±10 spin eigenstates.

storage devices. This has successfully produced state-of-
the-art systems with picosecond timescales, though op-
erating far (& 106) above the reversible limit7–10. On
the other hand, reducing W down to the Landauer limit,
at the expense of slow operation, has been beautifully
demonstrated using small particles in traps13,14 or single-
domain nanomagnets15 as envisioned by Landauer and
Bennett.1,2
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All the mentioned systems are large enough to be
treated as classical. When the bit is realized with a
quantum system, the Landauer erasure protocol leads
to changes, namely de- and re-localization, in the wave-
functions describing the bit states, as Fig. 1 (a, right)
illustrates. One might then wonder if the Landauer limit
remains still applicable to such situations, and if phe-
nomena like quantum tunneling can help reducing the
energy-time cost of a computation. Such questions con-
cern the thermodynamics of quantum systems and are a
priori non-trivial.11,12 Here, we provide a experimental
framework that allows to explore them.

In our experiment, a crystal of Fe8 molecular mag-
nets (MMs)17 is used as a quantum spin memory to
perform the Landauer erasure. The molecular size and
net spin lie in between those of magnetic nanoparti-
cles and of paramagnetic ions. At low temperatures,
these molecular clusters show magnetic hysteresis, thus
magnetic memory,17,18 and display genuinely quantum
phenomena, such as spin tunneling,19 quantum spin
interference18,20 and quantum phase transitions.16

Each Fe8 molecule represents a magnetic bit and is
composed of eight spin-52 Fe3+-ions coupled to each other
by competing antiferromagnetic interactions to form a
collective S = 10 (20µB) giant-spin. By bottom-up chem-
ical synthesis, arrays of these MMs, with perfectly aligned
magnetic axes, are packed into a single crystal. Due to
the relatively large intermolecular spacing, the exchange
interactions between the molecules are negligible.16 The
giant-spin S = 10 multiplet of a single MM is described
by the following Hamiltonian17:

H = −DS2
z + E(S2

x − S2
y)− gµBS ·B. (1)

The ligand field, parameterized by the anisotropy con-
stants D = 0.294 K and E = 0.046 K, defines x, y and
z as the hard, medium and easy magnetic axes, respec-
tively, and creates an effective energy barrier separating
the Sz = ±10 ground eigenstates that encode the ’0’ and
’1’ bit states (Fig. 1(b), right). The third (Zeeman) term
of Eq. (1) accounts for the interaction with a magnetic
field, which gives the external control over the poten-
tial energy landscape that is required to carry out the
Landauer erasure. The effects of different magnetic field
components are depicted in Fig. 2(a), which shows the
classical potential and the quantum energy levels calcu-
lated from Eq. (1). A magnetic field Hy, applied along
the medium axis, allows to tune the height of the poten-
tial energy barrier without breaking the degeneracy be-
tween ’0’ and ’1’. In a quantum system, this transverse
magnetic field promotes the quantum mixing of ”up” and
”down” spin orientations. Spins are then able to tunnel
through the barrier via progressively lower lying levels,
thus leading to an effectively lower activation energy U
for the spin reversal and a consequently shorter spin re-
laxation time τrel.

21 For Fe8, τrel approximately follows
Arrhenius’ law τrel = τ0 expU/kBT , where U is deter-
mined by the dominant tunneling channel and τ0 ' 10−8

s is an attempt time (see Fig. 2(a) and Appendix C).
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FIG. 2. Susceptibility of the quantum MM during
the Landauer erasure. (a) Four-step sequence of mag-
netic fields Hy (blue) and Hz (red) inducing the erasure pro-
cess. The first step (Hy : 0 → 2 T) corresponds to the
bit erasure and the remaining three steps correspond to its
reset. (b) Magnetic energy of a Fe8 MM that is first sub-
ject to a transverse magnetic field Hy of increasing strength
(left, step 1) and then to a longitudinal magnetic field Hz

(right, step 2). Thick solid lines show the classical poten-
tial landscape while thin horizontal lines are the quantum
energy levels determined via the numerical diagonalization of
Eq. (1). Hy keeps the symmetry of the potential intact but
promotes quantum tunneling of the magnetization between
quasi-degenerate ±Sz states, thus promoting the spin rever-
sal; whereas Hz introduces an energy bias between up and
down spin states, thus increasing the magnetic polarization
along the easy axis. (c) Real component of the longitudi-
nal magnetic ac-susceptibility, χ′z, as a function of the vector
magnetic field’s modulus, measured at 1K and a frequency of
333 Hz. The sequence of steps corresponds to the one in (a).
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By contrast, a magnetic field Hz parallel to the easy axis
favours either of the two eigenstates Sz = ±10, i.e., by in-
creasing the ”up” or ”down” polarizations it selects states
’0’ or ’1’.

To perform the experiment, we first align our reference
frame to the principal magnetic axes of crystal (see Ap-
pendix B) and then apply the sequence of magnetic fields
depicted in Fig. 2(b) – comparable to that proposed in
Ref. 5 for classical magnets. In step 1, the magnetic field
along the medium axis of the MM (Hy) is ramped up
to 2 T and the spin states are mixed so that the bit is
erased. In step 2, Hz is ramped up to 210 mT in the
constant Hy field to reset all molecular spins in the ”up”
state. In steps 3 and 4, both magnetic field components
are returned to zero, completing the bit storage process.

Throughout the protocol, the complex ac-susceptibility
χz = χ′z + iχ′′z along the easy axis is measured with an
inductive susceptometer (see Appendix A for details).
χz is proportional to the derivative of the magnetization
∂M/∂Hac and a function of the temperature T , frequency
ω of the ac-field Hac and magnetic field vector H. The
magnetization and work can be derived by integrating
χ′z once and twice with respect to magnetic field, respec-
tively. The work W obtained in this manner quantifies
the entropy produced during the erasure and measures
how reversible the reset operation is.5,15

The measurements are performed at T = 1 K and
ω/2π = 333 Hz. This temperature is low enough to store
the spins for minutes at zero field,18 and high enough
to have them relaxing within hundreds of nanoseconds
when in a transverse field. Furthermore, this temper-
ature is well above the dipolar ferromagnetic ordering
temperature TC = 0.6 K of Fe8.16 Therefore, at zero bias
the molecular spins orient randomly along the anisotropy
axis.

Results for the real component of the susceptibility χ′z,
are shown in Fig. 2(c). In step 1, χ′z, initially zero, steeply
increases at Hy ≈ 0.6 T, reaches a peak at Hy ≈ 1 T and
slowly decreases up to Hy = 2 T. In step 2, χ′z sharply
drops and reaches zero at Hz ≈ 0.19 T. Upon retract-
ing the fields in steps 3 and 4, χ′z remains substantially
zero. This behavior can be understood as follows: At
the beginning of step 1, all spins are frozen in one of the
potential wells, thus the spin register consists of an equal
number of ’0’s and ’1’s. Upon ramping up Hy, the spin
relaxation time τrel decreases (Fig. 2(b)). As soon as
τrel . 1/ω the spins can follow the oscillations of Hac,
χ′z peaks and the erasure begins. Further increase of Hy

determines a decrease of χz and reflects the spin wave-
functions delocalization, i.e. superposition of different
±Sz states, over the two potential wells. For Hy = 2T,
approximately 20% of the molecules in the crystal have
fully delocalized spin ground states (see Appendix B). In
step 2, χ′z decreases for increasing spin polarization, van-
ishing when the magnetization Mz along the anisotropy
axis is saturated. At this point, the spins are initialized
in the ”up” configuration, that is, the molecular bits are
reset to state ’1’. In step 3, the admixing field is ramped
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FIG. 3. Total bit reset work. (a) Longitudinal magneti-
zation per molecule Mz extracted by integrating χ′z of steps
2 and 4 (zoom-in from Fig. 2(c) in the inset) with respect to
Hz. During step 2, Mz increases for increasing Hz before flat-
tening out at about 13µB . Upon retracting Hy in step 3, Mz

increases up to about its maximum value of 20µB and remains
approximately constant as Hz is also ramped to zero in step 4.
The shaded area corresponds to the work done on the system
by Hz. (b) SQUID magnetization per molecule My along the
medium axis of the MM as a function of transverse field Hy

at T = 2 K. The slope of step 1 is higher than that of step 3
due to the small applied bias Hz field (fits are guidelines to
the eye). The area enclosed by these two curves (shaded area
in the inset) corresponds to the work done by Hy. Adding
the work values from (a) and (b) yields the energy needed for
resetting one bit of information.

down. The potential energy barrier is then restored and
spin tunneling is gradually turned off. This causes the
spins to remain frozen in the chosen configuration upon
retraction of the bias polarizing field (step 4).

By integrating the measured χ′z with respect to Hz

(inset of Fig. 3(a)), the easy axis magnetization Mz for
steps 2 and 4 can be calculated (see Appendix A). The
result is shown in Fig. 3(a), where the value on the y-
axis has been displayed in µB per molecule. The area
enclosed by the magnetization loop amounts to the work
made by the external magnetic field onto a single MM.
This yields the value W2,4 ≡W4−W2 = (1.7±0.3)·10−16

erg/molecule, where the uncertainty corresponds to a 1σ
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confidence interval (see Appendix C for the determina-
tion of molecules’ number and Appendix D for the un-
certainties). To this quantity, the work W1,3 done by the
Hy in steps 1 and 3 needs to be added. This work can-
not be reliably extracted from the measured medium-axis
susceptibility as this falls below our detection limit due
to the strong magnetic anisotropy χy � χz, . However,
χy is approximately independent of T and ω (see Ap-
pendix B). The transverse magnetization My can there-
fore be measured, with a SQUID, at T = 2 K. The re-
sults, recorded as Hy is first ramped up to 2 T (step 1)
and subsequently ramped down in a small bias longitudi-
nal field Hz = 0.21 T (step 3), are shown in Figure 3(b).
The net work is given by the difference between W3 and
W1 and amounts to W1,3 ≡W3 −W1 = (−6± 2) · 10−17

erg/molecule. The work, W , required for the erasure
of each bit is then the sum W = W1,3 + W2,4 = (1.1 ±
0.3)·10−16 erg/molecule. Within the experimental uncer-
tainty, this is equivalent to the theoretical Landauer limit
at the experimental temperature of 1 K, which equals
kBT ln 2 = 0.9570 · 10−16 erg.

We now discuss the dynamics of the erasure process
as the second important aspect in determining the W ·
τrel. Ac-susceptibility measurements allow estimating the
magnetic relaxation time τrel or, alternatively said, the
time the spin system takes to reach thermal equilibrium.
In particular, the ratio χ′′z/(ωχ

′
z) ' τrel.

17 In Fig. 4(a)
we show the evolution of τrel as a function of Hy during
step 1 in the range 0.7 ≤ Hy ≤ 1.15 T for which χ′′z ±
σχ′′ ≥ 0, inset of Fig. 4(a). We complement these data
with τrel extracted from χ′z measurements as a function
of temperature (see Appendix B). The relaxation time
exponentially drops from 71.2 s at Hy = 0 T to 1.09 µs
at Hy = 1.7 T. Extrapolation to Hy = 2 T leads to a
relaxation time of 196 ns. This time is to be interpreted
as the longitudinal response time of the phonon bath-
and-molecule system upon a change in Hz and fixes the
limit up to which quasi-static operation is retained and
unwanted (dissipative) hysteresis are avoided.

The product of the work and relaxation time, W · τrel,
yields 2.31 · 10−23 erg/bit·s. This figure quantifies the
overall energy-time cost of a computation and its value
can be compared to that of other storage devices, op-
erating at room temperature (T ≈ 300 K). As shown
in Fig. 4(b) (see Appendix E for the extended chart),
the product W · τrel for standard flip-flops – moderately
fast but lossy – is ∼ 10−9 erg/bit·s; the optical trap sys-
tem in Ref. 14 – slow but efficient – attains ∼ 10−12

erg/bit·s. Increased performances (∼ 10−19 erg/bit·s)
over these two system is given by the recent GdFeCo
laser-driven ferromagnetic element in Ref. 10 owing to
its tens of ps operation time. The Fe8 MM performs
about 104 times better than this system – reducing to
100 times when accounting for the lower operating tem-
perature. This shows that quantum tunneling provides
the key to achieve energetically efficient and fast classical
operations.

It is interesting to compare this figure with an inde-
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FIG. 4. Relaxation time and energy-time cost. (a) Evo-
lution of the spin relaxation time as a function of Hy during
step 1. The blue data points are obtained from χ′′z in the
interval 0.7 ≤ Hy ≤ 1.15 T (inset). The green data points are
extracted from temperature sweeps (see Appendix B). The
relaxation time reaches 196 ns at Hy = 2 T. This value sets
the maximum speed up to which quasi-static operation is re-
tained. (b) Chart comparing the energy-time cost of a storage
operation performed with various systems at their respective
operating temperature. The Fe8 in this study is the closest
to the quantum limit.

pendent bound on the energy-time cost of a computa-
tion given by the Heisenberg uncertainty relation.22,23

According to it, the quantum evolution between two or-
thogonal, thus classically distinguishable, bit states split
by an energy E would take the minimal ”relaxation” time
τrel = π~/(2∆) called quantum speed limit24–26. From it,
the limit π~/2 = 1.65×10−27 erg/bit·s is obtained as the
ultimate trade-off between speed and energy cost.

We have shown that the Landauer limit applies also
to the erasure of a quantum spin register. Quantum me-
chanics leaves its mark on the the speed, the energetic
efficiency and the nature of the process. Contrary to
the situation met with classical memories, the potential
energy barrier does not need to be reduced to zero in or-
der to erase the bits, because tunneling provides a very
fast shortcut for the spin reversal. As a consequence of
its discrete energy level spectrum, each molecule behaves
then as a truly two-level system28 and the entropy pro-
duction and work remain very close to ∆S ' kB ln 2 and
W ' kBT ln 2, respectively. In other words, the erasure
can be energetically as efficient as allowed by the Lan-
dauer limit or, equivalently, by the second principle of
thermodynamics. The erasure is also qualitatively dif-
ferent from its classical analogue. The wave functions
of the two bit states, and not just their populations, are
continuously shaped along the process from a delocalized
configuration back to a pure spin projection +S. Given
the generality of these operations, we expect that this
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result remains valid for a variety of realizations. Our
findings would then suggest that the Landauer limit gov-
erns also the initialization of spin qubits from arbitrary
states and provide a framework to further explore the
thermodynamics of quantum information.

The research reported here was supported by an ad-
vanced ERC grant (Mols@Mols). We also acknowledge

financial support by the Dutch Organization for Funda-
mental research (NWO/FOM). EB acknowledges funds
from the EU FP7 program through the project 618082
ACMOL. FL acknowledges the Spanish MINECO (grant
MAT2015-68204-R), the Gobierno de Aragón (grant E98-
MOLCHIP) and the European Union (COST 15128
Molecular Spintronics project). R.G. especially thanks
Prof. Dr. Luca Gammaitoni for inspiring discussions.

∗ r.gaudenzi@tudelft.nl
1 Landauer, R. Irreversibility and heat generation in the

computing process. IBM Journal of Research and Devel-
opment 5, 183–191 (1961).

2 Bennett, C. H. The thermodynamics of computation - a
review. International Journal of Theoretical Physics 21,
905–940 (1982).

3 Bennett, C. H. Notes on the history of reversible com-
putation. IBM Journal of Research and Development 32,
16–23 (1988).

4 Leff, H. & Rex, A. Maxwell’s demon: Information, en-
tropy, computing. A Hilger and Princeton Univ. Press,
Europe/USA (1990).

5 Lambson, B., Carlton, D. & Bokor, J. Exploring the ther-
modynamic limits of computation in integrated systems:
Magnetic memory, nanomagnetic logic, and the Landauer
limit. Phys. Rev. Lett. 107, 010604 (2011).

6 Gammaitoni, L., Chiuchiu, D., Madami, M. & Carlotti,
G. Towards zero-power ict. Nanotechnology 26, 222001
(2015).

7 Gerrits, T., van den Berg, H. A. M., Hohlfeld, J., Bar, L.
& Rasing, T. Ultrafast precessional magnetization reversal
by picosecond magnetic field pulse shaping. Nature 418,
509–512 (2002).
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FIG. B.1. Temperature and frequency characterization. (a) Real (left) and imaginary (right) part of the susceptibility as
a function of T and indicated frequency ω ranging from 5 Hz to 1378 Hz. The frequency-dependent departure from equilibrium
signals the expected superparamagnetic behaviour.

Appendix A: Methods

Susceptibility measurements An ac-susceptometer thermally anchored to the mixing chamber of a dilution refrig-
erator in combination with a 3D vector magnet (9T, 1T, 1T, 0.001◦ accuracy) is used to measure the erasure-storage
protocol. The complex susceptibility χ(T, ω) = χ′(T, ω) + iχ′′(T, ω) is measured with a standard lock-in technique
with an ac excitation magnetic field of amplitude Hac = 0.01 Oe parallel to the common easy axis of the molecules.

Magnetization measurements Magnetization is measured with a commercial SQUID magnetometer (T ≥ 1.8 K)
equipped with a rotating stage and an ac susceptibility option.

Calculations of magnetization and work The easy-axis magnetization Mz is obtained from the susceptibility χ′z
by making use of the integral:

Mz =

∫
χ′z dHz.

The works done by Hz (steps 2 and 4) and Hy (steps 1 and 3) are calculated by performing an analogous integration
on the resulting Mz and My, respectively:

W2,4 =

∮
Mz dHz, W1,3 =

∮
My dHy.

These correspond to the loop shaded areas in Fig. 3 (a) and (b).

Appendix B: Characterisation in temperature and transverse field

This section contains details on: (i) the characterisation of the superparamagnetic behaviour of the MM crystal in
temperature and frequency; (ii) the extraction of the relaxation time as a function of selected Hy fields; (iii) the deter-
mination of the crystal’s magnetic easy and medium axes orientation with respect to the laboratory’s reference system.

(i) Temperature and frequency In Fig. B.1, the real (in-phase) χ′(T, ω) and imaginary (out-of-phase) χ′′(T, ω)
components of the ac-susceptibility are shown as a function of temperature for the indicated frequencies in zero
magnetic field. For each component, the longitudinal χz and transverse χ⊥ parts are plotted. For a fixed frequency,
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decreasing the temperature results in the increase of χ′z accompanied by a constant χ′′z ≈ 0. This is the typical
behaviour of a standard paramagnet, where the absence of an out-of-phase response signals equilibrium and a fast
relaxation time τrel � 1/ω. However, as a frequency-dependent temperature is reached, χ′z starts dropping to
zero while χ′′z exhibits a peak. This temperature corresponds to the so-called blocking temperature, Tb, and it
is characterised by a spin relaxation time τrel ' 1/ω. For T < Tb, the spin of the MM is increasingly driven
out-of-equilibrium and τrel further increases. The observed behaviour is a fingerprint of the superparamagnetism
expected in a MM, where the potential barrier prevents fast spin relaxation at sufficiently low temperatures. The
small temperature- and frequency-independent χ′⊥ and zero χ′′⊥ further signal the strong spin polarisation along the
easy-axis and negligible transverse (hard-plane) spin projection.
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(ii) Transverse magnetic field To extract the relaxation time data-points shown in Fig. 4 (and labelled ”χ vs T
data”), we use temperature-dependent complex susceptibility measurements for the different Hy fields at the frequency
ω = 333 Hz. Plotting the ratio χ′′z/ωχ

′
z = τrel as a function of the inverse temperature results in Fig. B.2. At high

temperatures, the relaxation time behaves according to Arrhenius’ law log τrel = Ueff/T +τ0 with the effective barrier
Ueff(Hy) obtained by fitting the temperature-dependent part of the curves. Extrapolation of the fit to T = 1 K, yields
τrel(Hy;T = 1 K) for the selected fields.

0 2 4 6

0 T
0.5 T
1 T
1.5 T
1.7 T

1/T (K-1)

τ re
l (s

)  

10-2

10-4

10-5

10-3 μ0Hy (T):

FIG. B.2. Relaxation time for different transverse fields. (a) τrel, obtained from χ′′z/ωχ
′
z, as a function of the reciprocal

temperature. Fitting of the temperature-dependent side allows to obtain the desired τrel(Hy) at T = 1 K by extrapolation.

(iii) Alignment to principal axes In this subsection we describe the procedure used for finding the accurate
orientation of the principal axes of the MM with respect to the X, Y and Z axes of the vector magnet. Provided
this orientation is approximately known, the crystal is placed in the susceptometer with its easy, medium and hard
axes about the Y , Z and X-axis of the magnet, respectively. Measurements are executed at T = 3 K and ω = 1333
Hz. Under these conditions, the susceptibility is close to equilibrium (see Fig. B.1) and thus strongly dependent
on the magnetic field orientation. The first operation consists of rotating the magnetic field µ0|H| = 0.1 T on the
XZ-plane by fixing φ = 0 and sweeping θ. As Fig. B.3(a) shows, χ′z exhibits a maximum (minimum), signalling
a condition relatively closer to (further from) equilibrium. In correspondence of the maximum, for θ = 5.70◦, the
magnetic field crosses the hard plane, while it is closest to the easy axis in correspondence of the minimum. An
analogous operation is conducted on the XY -plane (Fig. B.3(b)), where the crossing with the hard plane occurs for
φ = 22.72◦. The cross product between the two hard plane vectors yields an easy axis with angular coordinates
θ = 87.79◦ and φ = 112.72◦. This axis is hereafter labelled by the subscript z. A confirmation of the accurate
orientation of this axis is shown in Fig. B.3(c). Sweeping the magnetic field along it gives rise to a peak at 0.22
T (0.44 T), in correspondence of the resonance between the spin eigenstates Sz = 10 and Sz = −9 (Sz = 10 and
Sz = −8) expected at Bn = D

gµB
n = 0.219 T× n, for n = 1 (2).

At this point, the magnetic field is swept on the hard plane for θ = 90◦ and φ = 22.72◦ (Fig. B.4). The observed
oscillatory behaviour in χ′z, with minima at the indicated fields, is in accordance with the characteristic quantum
interference pattern (see Ref. [17] of the main text) occurring in the proximity to the hard axis – labelled by x
hereafter. A 90◦-shift from this axis along the hard plane fixes the medium axis – labelled by y – and concludes the
orientation procedure.

Appendix C: Determination of the number of molecules

We have determined the number of molecules (bits) in the crystal with two independent methods. The first
and most straightforward is that of dividing the weight of the crystal, m = 0.411 mg, by the molecular weight,
Pm = 2262.45 g/mol and multiply by the Avogadro constant. This yields a number of molecules N = 1.094 · 1017.
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FIG. B.3. Determination of the easy axis. (a) χ′z as a function of angle θ for fixed φ = 0◦ (XZ-plane). (b) Same as (a) for
fixed θ = 90◦ (XY -plane). Maxima signal the two crossings with the hard plane from which the orientation of the easy axis
is obtained. (c) χ′z as a function of magnetic field intensity along the easy axis (labelled by the subscript z). The three peaks
signal the expected magnetic level crossings.
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FIG. B.4. Quantum interference pattern along the hard axis. χ′z as a function of magnetic field intensity along the hard
axis (labelled by the subscript x). Oscillations signal the expected quantum interference pattern with minima at the indicated
fields.

The second method takes advantage of the fact that each molecule has a definite spin S = 10 (20µB). By measuring
the saturation magnetization, Ms, of the crystal in the SQUID setup and dividing by the spin of the single molecule
yields:

N =
Ms(emu)

20µB
5.1883 · 1020 µB/emu

Provided Ms = (2.029± 0.006) · 10−2 emu (Fig. C.5), N = (1.09392± 0.00326) · 1017.
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FIG. C.5. Saturation of the magnetization. (a) Raw magnetization M (emu) measured in the SQUID as a function of
magnetic field. (b) Scaled magnetization M(µB/molecule) obtained normalizing the raw magnetization to the single-molecule
value of 20 µB. The ratio between the two quantities yields the indicated estimate for the number of molecules in the crystal.

Appendix D: Quantum nature of the Landauer process: wave functions and spin relaxation

The states and the magnetic response of Fe8 MMs depend on interactions that are intrinsic to each individual
molecule, such as the magnetic anisotropy and the Zeeman interaction with an external magnetic field, described by
the spin Hamiltonian 1, as well as on couplings to the ’surrounding world’, chiefly to other spins in the crystal and to
lattice vibrations.

∆m

FIG. D.6. Magnetic anisotropy vs dipole-dipole interactions. (a)Uniaxial magnetic anisotropy −DS2
z generates a zero-

field splitting of levels associated with different spin projections m along the anisotropy axis z that resembles the well-known
classical double-well potential. The ground state doublet is given by states with m = ±10, which encode the states ’1’ and ’0’
of a magnetic bit. Off-diagonal terms modify the classical potential landscape and introduce quantum tunneling between |+m〉
and | −m〉. ∆m is the quantum tunneling splitting. (b) Distribution of bias dipolar fields Hd,z in a magnetically unpolarized
crystal of Fe8 (inset) at H = 0.
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Longitudinal anisotropy terms, i.e., those including only powers of Sz, generate a zero-field splitting of the magnetic
levels, associated with Sz eigenstates |m〉 (Sz|m〉 = m|m〉),and define the ground states (that we here associate to ’0’
and ’1’) as the maximum spin projections along the anisotropy axis z. Transverse anisotropy terms, which include
powers of Sx and Sy, modify this picture. In classical mechanics, any distortion from a perfect axial anisotropy
modifies the double well potential and the activation barrier. In quantum mechanics, these terms mix different |m〉
states, introduce a finite probability of tunneling from |+m〉 to | −m〉, and split the initially degenerate states by a
quantum tunneling splitting ∆m. These effects are illustrated in Fig. D.6a.

Each molecular spin generates a magnetic dipolar field Hd that acts on its neighbors. Because of the strong magnetic
anisotropy, its main effect is a bias ξm ≡ 2gµBmHd,z associated with the component Hd,z along z. Eventually, these
interactions lead to long range magnetic order below a critical temperature Tc (' 0.6 K for Fe8).16 Above Tc and for
a magnetically unpolarized crystal (i.e., when Hz = 0, as in step 1 of the Landauer erasure), dipolar interactions give
rise to a close to Gaussian distribution in Hd,z, with a width σ ' 31 mT, as shown in Fig. D.6a.

a b

ξm

µ0Hz = 2 mT ξ10 = 54 mK
µ0Hy = 2 T         ∆10 = 71 mK

µ0Hz = 2 mT ξ10 = 54 mK
µ0Hy = 0            ∆10 = 0.05 µK

Ψ
2

Ψ
2

FIG. D.7. Quantum spin tunneling and wave-functions. (a) Quantum tunneling splittings for all level doublets at Hy = 0
(left) and as a function of Hy, as in step 1 of the Landauer erasure process. The solid line shows the bias ξm ≡ 2gµBmHd,z

generated by a field Hd,z = 31 mT (width of the dipolar field distribution at zero field). (b) Wave function of the ground state
of Fe8 for Hz = 2 mT and two values of Hy corresponding to the beginning and the end of step 1, respectively.

The relative strength of ∆m and ξm determines the shape of the wave functions, being close to pure spin projections
for ∆m � ξm and becoming delocalized over different |m〉 states otherwise (see Fig. D.7b). This situation can be
tuned externally, via the application of a magnetic field along the medium axis that, as shown in Fig. D.7, enhances
∆m of all levels.
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∆m ≈ ξm

∆m << ξm

FIG. D.8. Phonons: thermal populations and spin relaxation. (a) Equilibrium populations of the two lowest lying
magnetic states of a Fe8 at T = 1 K calculated under the conditions applicable to steps 1 (left) and 2 (right) of the Landauer
erasure process. (b) Illustrative scheme of spin-lattice relaxation in Fe8 at finite temperatures.

The coupling of the spins to lattice vibration modes, i.e. phonons, enables the attainment of thermal equilibrium.
The populations of the two lowest lying levels of Fe8 are shown in Fig. D.8a. In step 1, they are very close to each
other and to 1/2 (the population of excited states remains always below 2 %), thus entropy is close to kB ln 2 per
spin, whereas in step 2 the external bias drives the system to a well defined ground state (state ’1’). Therefore, each
Fe8 provides a close to ideal realization of a two-level system throughout the erasure process.

Spin relaxation combines tunneling with excitations induced by the spin-phonon coupling and it is illustrated in
Fig. D.8b. At finite temperatures, spin reversal can take place via the absorption of phonons to reach states having
∆m not much smaller than ξm, followed by tunneling to the opposite side of the potential barrier and a de-excitation,
emitting a phonon to the lattice, to the ground state. These events become exponentially more rare as T decreases,
thus leading to very long τrel& 100 s at T = 1 K and, therefore, to magnetic memory. The situation can be changed
by increasing Hy. Lower and lower levels then fulfil ∆m & ξm and τreldecreases.

The discussion of the relaxation process can be made quantitative, as follows. Transitions between different energy
spin states are induced by absorption and emission of resonant phonons (cite Luis1998,Chudnovsky1997,Loss2000).
Here, we have estimated the relaxation rate and the dynamical susceptibility by numerically solving the following
quantum master equation

dPn(t)

dt
=
∑
n′ 6=n

γn←n′Pn′ −
∑
n′ 6=n

γn′←nPn (D1)

where Pn and Pn′ are, respectively, the (time-dependent) populations of the spin Hamiltonian eigenstates |ψn〉 and
|ψn〉, while γn←n′ and γn′←n are phonon-induced transitions between them, calculated using Fermi’s golden rule.
Further details can be found in 21.

At sufficiently low temperatures, direct tunneling via the ground state, not induced by phonons, becomes rele-
vant and often provides the dominant spin relaxation channel. Both the nature the rate Γtun of this process de-
pend on details of the spin interaction with its environment, i.e. phonons, nuclear spins, other MMs as well as
on the tunnel splitting ∆. However, in most situations the following expression provides a suitable description(cite
Prokof’ev1998,Fernandez2005)

Γtun = η∆2f(ξ = −2gµBHzS) (D2)

where η is a constant. Equation (D2) reflects the fact, discussed above (cf Fig. D.8), that only MMs with sufficiently
low net bias are able to tunnel at any time.
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In this work, we describe our experiments with the combination of spin-phonon rates, derived from Eq. (D1),
and tunneling rates, obtained using Eq. (D2). The only two fitting parameters are the strength of the spin-phonon
interaction and η

FIG. D.9. Fraction of ”quantum molecules”. (a) Dots: longitudinal ac susceptibility χ′z of Fe8 measured as a function of
Hy (step 1). For Hy & 1.1 T it corresponds to the equilibrium susceptibility χz. Line: equilibrium susceptibility χz of Fe8 at
T = 1 K, calculated from the quantum eigenstates of the spin Hamiltonian (1). (b) Fraction of Fe8 MMs having ∆m ≥ ξ as a
function of Hy (step 1).

Finally, we discuss the nature of the spin ground state along the Landauer process. In step 1, Hy is ramped from 0
up to 2 T. As we have just discussed, this enhances ∆m and therefore modifies the wave functions of the ground state
doublet, which gradually deviate from the pure | ±m〉 spin projections (see Fig. D.6). This effect reflects itself in the
decrease of the equilibrium longitudinal susceptibility χz, by a factor close to 2, which is observed experimentally and
shown in Fig. D.9a. It also tends to weaken the dipolar bias ψ by approximately same relative amount (remember
that both χz and ψ scale with 〈S2

z 〉). By integrating over the distribution function, one can then estimate the fraction
fQ of Fe8 molecules that, at any time, fulfill the condition ξ < ∆10. As expected, and as Fig. D.9b shows, fQ increases
with Hy and approaches 10 % near 2 T. For these molecules, the magnetic ground doublet is characterized by fully
delocalized wave functions. Step 1 then involves a delocalization of the bit states, e.g. from |0〉 to |0〉 ± |1〉 rather
than a classical fluctuation between ’0’ and ’1’, whereas step 2 is a re-initialization of the wave function to a pure
state, i.e. from |0〉 ± |1〉 to |1〉.
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Appendix E: Uncertainty estimation

The values of the susceptibility χ′z given in Fig.2 at each magnetic field result from averaging over n = 15 samples.
The uncertainty on the mean, σχ, is calculated as its standard deviation assuming a normal distribution. The
magnetization per molecule Mz is a function of χ′z and the number of molecules N and is therefore affected by an
uncertainty σM (Hz) given by the propagated uncertainties:

σM (Hz) =

√(
∂Mz

∂χ′z

)2

σ2
χ +

(
∂Mz

∂N

)2

σ2
N .

Since the work W2,4 is calculated as:

W2,4 =

∮
Mz(Hz) dHz,

its upper (+) and lower (−) confidence bounds are given by:

W±2,4 =

∮
(Mz(Hz)± σM (Hz)) dHz,

So that its associated standard deviation σ2,4 is:

σ2,4 = |W2,4 −W±2,4|.
The uncertainty, σ1,3, on the work W1,3 – obtained by integrating My – is calculated using an analogous procedure.

The total error affecting the work W = W1,3 +W2,4 is then σ =
√
σ2
1,3 + σ2

2,4.

Appendix F: Details on the energy-time cost of a computation

Here we report a more complete version of the chart in figure 4 of the main text where the quantities W and τ
determining the product W ·τ are plotted on the Cartesian plane (Fig. F.10). Along the diagonal line, at the top-right
corner of the plane sit slow and lossy devices whereas the fast and efficient ones are on the bottom-left. The devices be-
longing to this corner of the plane are bounded from below by the quantum limit W ·τrel = π~/2 = 1.65·10−27 erg/bit·s.
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FIG. F.10. Relaxation time and efficiency comparison. (a) Chart comparing the energy-time cost of a storage operation
performed with various systems. The Fe8 is the closest to the quantum limit.


