
61

Anexos

Anexo 1: Guía de plantillas VNFD y VNFFGD

En este anexo se va a describir la estructura completa de los VNFD y VNFFGD

según su definición en 1 y 2.

1) Guía de plantilla VNFD

tosca_definitions_version: tosca_simple_profile_for_nfv_1_0_0

description: Ejemplo de VNFD

metadata:

 template_name: sample-tosca-vnfd-template-guide

topology_template:

 node_templates:

 VDU:

 type: tosca.nodes.nfv.VDU.Tacker

 properties:

 image: Imagen a usar por la VNF

 flavor: Flavor a usar por la VNF

 availability_zone: zona de disponibilidad (nova)

 mgmt_driver: [default=noop]

 user_data: comandos a ejecutar en tiempo de creación

 user_data_format: formato de los comandos

 key_name: clave de usuario

 CP:

 type: tosca.nodes.nfv.CP.Tacker

 properties:

 management: [true, false]

 security_groups: lista de grupos de seguridad

(restricciones de tráfico)

 requirements:

 - virtualLink:

 node: VL asociado a este CP

 - virtualBinding:

 node: VDU asociado a este CP

 VL:

 type: tosca.nodes.nfv.VL

 properties:

 network_name: nombre de la red a conectar

 vendor: Tacker

 FIP:

 type: tosca.nodes.network.FloatingIP

 properties:

 floating_network: red externa donde crear la floating-ip

 floating_ip_address: floating-ip a asociar

 requirements:

 - link:

 node: CP asociado a la floating ip

1 https://docs.openstack.org/tacker/latest/contributor/vnfd_template_description.html
2 https://docs.openstack.org/tacker/latest/user/vnffg_usage_guide.html

Anexo 1: Guía de plantillas VNFD y VNFFGD

62

Un VNFD está formado por cuatro secciones:

 Virtual Deployment Unit (VDU): sección donde se definen las
características generales y de cómputo de la VNF como, por ejemplo,
nombre, imagen del sistema operativo, RAM, memoria en disco, etc.
El parámetro user_data hace referencia a los comandos de Shell que
ejecutara la VNF en tiempo de creación.

El parámetro mgmt_driver indica el driver de configuración de la VNF.
Ciertos sistemas operativo soportan configuración como VNF a partir de
paquetes de configuración en lugar de con comandos de Shell.

 Connection Points (CP): sección donde se define la asociación entre el
VDU y el VL.

 Floating IP (FIP) (opcional): se define la asociación de una floating-ip a un
CP para proporcionar conectividad con una red pública.

2) Guía de plantilla VNFFGD

tosca_definitions_version:

tosca_simple_profile_for_nfv_1_0_0

description: Sample VNFFG template

topology_template:

 node_templates:

 Forwarding_path2:

 type: tosca.nodes.nfv.FP.TackerV2

 description: creates path (CP1->CP2)

 properties:

 id: 52

 symmetrical: false

 policy:

 type: ACL

 criteria:

 - name: name

 classifier:

 network_src_port_id: Server port

 destination_port_range: port:port

 ip_proto: 4/6

 ip_dst_prefix: IP

 path:

 - forwarder: VNFD1

 capability: CP1

 - forwarder: VNFD2

 capability: CP2

 .

 .

 .

 groups:

 VNFFG1:

 type: tosca.groups.nfv.VNFFG

 description: SSH to Corporate Net

Anexo 1: Guía de plantillas VNFD y VNFFGD

63

 properties:

 vendor: tacker

 version: 1.0

 number_of_endpoints: SF number

 dependent_virtual_link: [VL1,VL2, ...]

 connection_point: [CP1,CP2, ...]

 constituent_vnfs: [VNFD1,VNFD2, ...]

 members: [Forwarding_path2]

Un VNFFGD está formado por cuatro secciones:

 Forwarding_path: sección donde se definen las del clasificador de flujo para
el tráfico que atravesara la cadena. En Path se definen los CP de los VNFD
a los cuales tiene que dirigir el tráfico.
El parámetro symetrical indica si la cadena de servicio es bidireccional o

unidireccional
 Groups: sección donde se define el Forwarding_path que contiene las

reglas de clasificación y el numero de SF que forman la cadena.
Tambien para cada VNFD que forma la cadena, el CP y VL asociados.

64

Anexo 2: CLI de Tacker

En este anexo se van a detallar los comandos básicos de Tacker para su uso.

La información completa se puede encontrar en 3

1) Registro del VIM

tacker vim-register –config-file vim-config-file.yaml –is-default vim-name

Donde vim-config-file.yaml es el fichero que describe el VIM, contiene

parámetros que hacen referencia a la instalación de Openstack y vim-name es el

nombre que le das al VIM registrado.

El parámetro –is-default hace referencia a si se va a usar ese VIM por defecto

para gestionar cualquier VNF

Ejemplo de vim-config-file.yaml

auth_url: 'https://192.168.122.3:5000/v3'

username: 'admin'

password: 'opnfv-secret-password'

project_name: 'admin'

project_domain_name: 'Default'

user_domain_name: 'Default'

cert_verify: 'False'

Donde; auth_url es la dirección del servicio de autenticación, en nuestro caso
keystone, username y password son los datos de registro y Project_name,
project_domain_name y user_domain_name: son datos por defecto.

2) Registro de los VNFD

Para crear un VNF es necesario registrar su VNFD en el catálogo de Tacker.

tacker vnfd-create –vnfd-file vnfd.yaml vnfd-name

Donde vnfd.yaml es el fichero que contiene la plantilla TOSCA que define la VNF.
Información detallada en el Anexo 1: Guía de plantillas VNFD y VNFFGD.

3) Creación de las VNF

Las VNF se crean apartir de sus VNFD

Tacker vnf-create –vnfd-name vnfd-name vnf-name

Donde vnfd-name es el nombre del VNFD creado anteriormente y vnf-name es
el nombre que le asignas a la VNF creada.

4) Registro de los VNFFGD

3 https://docs.openstack.org/ocata/cli-reference/tacker.html

Anexo 2. CLI de Tacker

65

Para crear cadenas de servicio, se crean VNF Forwarding Graph (VNFFG), son
usados para orquestar y gestionar el tráfico que atraviesan las VNF. Estos VNFFG
se detallan en el anexo 2.

Para crear un VNFFG es necesario registrar su VNFFGD en el catálogo de Tacker

tacker vnffgd-create –vnffgd-file vnffgd.yaml vnffg-name

Donde vnffgd.yaml es el fichero que contiene la plantilla TOSCA que describe el
VNF Forwarding Graf. Información detallada en el Anexo 1: Guía de plantillas
VNFD y VNFFGD.

5) Creación del VNFFG

El VNFFG se crea a partir de su VNFFGD.

tacker vnffg-create –vnfggd-name vnffgd-name vnfg-name

Donde vnffgd-name es el nombre del VNFFGD creado anteriormente y vnffg-
name es el nombre que le asignas al VNFFG creado.

66

Anexo 3: Despliegue del escenario 1

A continuación, se describe con detalle el procedimiento a seguir para

realizar el despliegue específico y la puesta en marcha del escenario 1 descrito en el

apartado 5.3.1 del proyecto.

Descargar la imagen de Ubuntu “Ubuntu 16.04 Xenial Xerus”. Será el sistema

operativo de las VNF.

wget https://cloud-images.ubuntu.com/xenial/current/xenial-server-cloudimg-

amd64-disk1.img

Se establecen las variables de entorno necesarias para usar el CLI de

Openstack.

source openrc

Se crea la imagen Openstack que se empleara para crear las instancias

openstack image create --disk-format qcow2 --container-format bare --public --file

xenial-server-cloudimg-amd64-disk1.img Ubuntu-Image

--disk-format hace referencia al formato del fichero de la imagen de disco que se va

a utilizar.

--container-format indica que la imagen se instalara sobre el disco. Similar a un

servidor baremetal.

--public indica que la imagen será accesible para todos los usuarios de openstack.

Se definen las propiedades con las que se configurarán las VNF

openstack flavor create --ram 512 --disk 8 --public Little-Flavor

--ram indica la memoria RAM que se le asigna a las VNF que se configuren mediante

este flavor.

--disk indica el espacion de disco que se le asigna a las VNF que se configuren

mediante este flavor.

--public indica que el flavor será accesible para todos los usuarios de openstack.

Se crea la clave RSA para acceder a VNF por SSH. Se crea a partir de la clave

pública de la maquina host.

openstack keypair create --public-key ~/.ssh/id_rsa.pub ClaveSSH

Se crea la red y subred virtual externa, esta dispondrá de un pool de floating-

ip.

openstack network create --external --provider-physical-network flat --provider-

network-type flat PUBLIC

Anexo 3. Despliegue del escenario 1

67

openstack subnet create --network PUBLIC --allocation-pool

start=192.168.122.10,end=192.168.122.254 --subnet-range 192.168.122.0/24 --

gateway 192.168.122.1 --no-dhcp Subnet-1

Se crea la red y subred privada donde estarán las VNF

openstack network create --internal Red-Privada

openstack subnet create --subnet-range 10.10.10.0/24 --dhcp --ip-version 4 --

network Red-Privada Subred-Privada-1

openstack network create --internal Red-Privada-2

openstack subnet create --subnet-range 20.20.20.0/24 --dhcp --gateway 20.20.20.1

--ip-version 4 --network Red-Privada-2 Subred-Privada-2

--gateway 20.20.20.1, importante especificar que el Gateway se encuentra en esa

dirección. Más adelante se creará la VNF correspondiente con el router con esa

fixed-ip.

Se crea un router virtual llamado Router-Ext y se asocia a ambas redes. Es un

componente lógico que reenvía paquetes de datos entre redes. También

proporciona el reenvío de Capa 3 y NAT para proporcionar acceso a la red externa a

las VNF mediante la asociación de floating-ip.

openstack router create --enable RouterExt

openstack router set --external-gateway PUBLIC --enable-snat RouterExt

openstack router add subnet RouterExt Subred-Privada-1

A continuación, se despliegan las VNF que van a estar en la “Red-Privada 1”.

Una vez creada la estructura de la red se crearán las VNF mediante el CLI de

Tacker.

El primer paso para utilizar Tacker es registrar el VIM. Para ello, se ha de crear

el fichero vim-config.yaml con el siguiente contenido y registra el VIM con dicho

fichero.

vim-config.yaml

auth_url: 'https://192.168.122.3:5000/v3'

username: 'admin'

password: 'opnfv-secret-password'

project_name: 'admin'

project_domain_name: 'Default'

user_domain_name: 'Default'

cert_verify: 'False'

tacker vim-register --config-file vim-config.yaml –is-default vim1

Anexo 3. Despliegue del escenario 1

68

A continuación, se crean plantillas TOSCA para cada VNF, se tratan de

ficheros .yaml que describen la VNF, estos se emplearan para crear los VNFD. El

formato de dichas plantillas puede consultarse en el Anexo 1: Guía de plantillas VNFD

y VNFFGD. El detalle de los campos aquí empleados se describe en el Anexo 3.

Pc-Gestion.yaml

tosca_definitions_version: tosca_simple_profile_for_nfv_1_0_0

description: PC que gestiona los demas

metadata:

 template_name: vnfd-PG

topology_template:

 node_templates:

 VDU1:

 type: tosca.nodes.nfv.VDU.Tacker

 properties:

 name: PC_Gestion

 image: Ubuntu-Image

 flavor: Little-Flavor

 key_name: ClaveSSH

 availability_zone: nova

 mgmt_driver: noop

 user_data_format: RAW

 user_data: |

 #!/bin/bash

 sudo chmod 777 /etc/resolv.conf

 sudo echo "nameserver 8.8.8.8" > /etc/resolvCP.conf

 while read line; do echo "$line">>resolvCP.conf; done <

/etc/resolv.conf

 sudo rm /etc/resolv.conf

 mv /etc/resolvCP.conf /etc/resolv.conf

 #sudo apt-get --yes --force-yes install python

 sudo echo "-----BEGIN RSA PRIVATE KEY-----

MIIEowIBAAKCAQEAyzh0YN3Z+tX6w9qm5ZWn9wuu+AIXfB9tHa4VzB6HjfLVgvVJ

gK9osjkiS7ONk4Ow/qIfhlTl/kgtJf7eoY6Kyhevmm+wmAJ6Igw5YXg2oAyga+6f

g1LLCyDyluWOTbmt5O1B36vy/3L06pafqGeZRA9o9zfa0i7M7c83aYXIU6OpUVyj

fKIR02C2qR1CcZ1rPN++5ihR+l448ujT15V5h2N72x+dkbBJ1QLTmLxh5MSx6jbL

peaGHRqZ01oEVbumcjH7VJoVU+cwVin8/jFk1SF1DTYwRhAAL0K78GWydxoggKi6

34xdeli4KOWyN7ksaxaWsH2QBo2vKn8OySVzaQIDAQABAoIBAQCcGZhjk+ZNpDJE

YV9T+ToVLRdQkCLECEvDwaYirczIP6C8QHgebh7Iz9RFO/3jMwQxBA2dHPex9HUh

u339sUVw6PLNeT+39CcmoictdK7ZD/nmDlze/ijTOpK9UEWX9KnbsFeqXSWCDSaO

T/cB39o+CmxBgdkHHEXz4fkZiFcRzsUfEg1+Y1DTvFgBS7T/2+KzQuLaoUUBUZT5

1lM5OB3C2shh8qiXJhyHYhjQRwv2qF6O4P1chlG7vL7AgqlgO1x7Y4OPrqDM0MOb

b8HetLbnIhNgXqvjN/zy1srtlhWfxf94yQp7H/orvpMJ5jw+3qUZCBWo9/TBw1aO

Anexo 3. Despliegue del escenario 1

69

Z/RMRx8VAoGBAPPUA0Q+v0v1sM6x5BMvxDxwsyex3WhPCUVNFZj+jvsbHGDBl0Nl

Rwj2632CgICzsRn0hkaN4aChfxH6ftwJ9AfXr40tiqGEUe2zVAwQs/jH9XWjQtgO

O499xf/8VUr3Cut1EqzPTImL7jk8RfiwoKED5cTPtYBVDjRoGw5+M/B7AoGBANVd

f7ZkRVH4p1lN1TiTYw7liBxLajmVARqApmCG9jx2IV3TWEh3pmK5G4fZkRfVv2PJ

xmfoFNpTSzXtKN8vWBB6+Go9sGZ2+T2XJdXCcy1ZqlMYeS2+/j7p/IeIMGzsAeM0

CDv2dEqk9weYTDu0zFYMsQMZPE2K2/bvFoXSZNBrAoGAIcF7Rkptj2WPOb5U9fcJ

8tgjZV5xaYxvmyGF2O18+/SP5DFI8LKnt+z/Qxv7EFZQMWix4jioQOW6wtFsGKhk

GWXZzvC8HYpFEWRfQWBamhmMuOGGUoT95+qgq8TSRhOXdmt5z2TPksdFjrTydvB0

/HWerLWYyhB8a/Lxs/ry09sCgYBs7xOpV4Bc3YrzeV2HSRimHmJjr81IIN8zXMOV

PNKzA8z9Tk4gkZYNiVyY+2est6DDnd0CZ+ddoHEh0zeu20knAOGbvGs3pT6TR3w1

qtWLLeBcFH6p8H12OZiIyeuPcN911LbvhmDRS3AkHImvYhuBQ3GMl3HGVUMAzAi/

wi9eiQKBgENkmdT+F2s+r2SEB4t+uPB4/uzra0zvIbK1yH+C+VEQv2g4yd9QUr0u

tbi5byOZa5XHfxT6KDpStbyCZmuIYAUkql5mEMN8ceNlRHxS6jDe8gzHg8dFyHTj

 yXTZ31LouOhBuya95hV8tGSNrpPAqBeebqUfket3iWKspdZqxzBc

 -----END RSA PRIVATE KEY-----" > /home/ubuntu/id_rsa

 CP1:

 type: tosca.nodes.nfv.CP.Tacker

 properties:

 type: vnic

 management: true

 anti_spoofing_protection: false

 requirements:

 - virtualLink:

 node: VL1

 - virtualBinding:

 node: VDU1

 VL1:

 type: tosca.nodes.nfv.VL

 properties:

 network_name: Red-Privada

 vendor: Tacker

 FIP1:

 type: tosca.nodes.network.FloatingIP

 properties:

 floating_network: public

 floating_ip_address: 192.168.122.10

 requirements:

 - link:

 node: CP1

Anexo 3. Despliegue del escenario 1

70

DNS.yaml

tosca_definitions_version: tosca_simple_profile_for_nfv_1_0_0

description: Servidor DNS autoritativo de Red-Privada-2

metadata:

 template_name: vnfd-DNS

topology_template:

 node_templates:

 VDU2:

 type: tosca.nodes.nfv.VDU.Tacker

 properties:

 name: DNS-server

 image: Ubuntu-Image

 flavor: Little-Flavor

 key_name: ClaveSSH

 availability_zone: nova

 mgmt_driver: noop

 user_data_format: RAW

 user_data: |

 #!/bin/bash

 sudo chmod 777 /etc/resolv.conf

 sudo echo "nameserver 8.8.8.8" > /etc/resolvCP.conf

 while read line; do echo "$line">>resolvCP.conf; done <

/etc/resolv.conf

 sudo rm /etc/resolv.conf

 mv /etc/resolvCP.conf /etc/resolv.conf

 sudo apt-get --yes install bind9

 sudo mv /etc/bind/named.conf /etc/bind/named.conf.Orig

 sudo echo -e "include \"/etc/bind/rndc.key\";

 options {

 directory \"/var/cache/bind\";

 min-roots 1;

 match-clients {any;};

 };

 logging {

 category lame-servers { null; };

 //category cname { null; };

 };

 zone \"lan2.com\" {

 type master;

 file \"/etc/bind/db.lan2.com\";

 };" > /etc/bind/named.conf

 sudo echo "\$TTL 604800 ; default ttl

 lan2.com. IN SOA DNS.lan1.com. root.localhost. (

 1 ; Serial

 604800 ; Refresh

 86400 ; Retry

 2419200 ; Expire

 604800 ; Negative Cache TTL

)

 lan2.com. 84600 IN NS DNS.lan1.com.

 DNS.lan1.com. 84600 IN A 10.10.10.10

 WEB.lan2.com. 86400 IN A 20.20.20.5" >

/etc/bind/db.lan2.com

 sudo service bind9 start

 CP2:

 type: tosca.nodes.nfv.CP.Tacker

 properties:

Anexo 3. Despliegue del escenario 1

71

 type: vnic

 management: true

 ip_address: 10.10.10.10

 anti_spoofing_protection: false

 requirements:

 - virtualLink:

 node: VL2

 - virtualBinding:

 node: VDU2

 VL2:

 type: tosca.nodes.nfv.VL

 properties:

 network_name: Red-Privada

 vendor: Tacker

 FIP2:

 type: tosca.nodes.network.FloatingIP

 properties:

 floating_network: PUBLIC

 floating_ip_address: 192.168.122.11

 requirements:

 - link:

 node: CP2

Router-Ubuntu.yaml

tosca_definitions_version: tosca_simple_profile_for_nfv_1_0_0

description: Router frontera

metadata:

 template_name: vnfd-Router

topology_template:

 node_templates:

 VDU3:

 type: tosca.nodes.nfv.VDU.Tacker

 properties:

 name: Router-Ubuntu

 image: Ubuntu-Image

 flavor: Little-Flavor

 key_name: ClaveSSH

 availability_zone: nova

 mgmt_driver: noop

 user_data_format: RAW

 user_data: |

 #!/bin/bash

 sudo chmod 777 /etc/resolv.conf

 sudo echo "nameserver 8.8.8.8" > /etc/resolvCP.conf

 while read line; do echo "$line">>resolvCP.conf; done <

/etc/resolv.conf

 sudo rm /etc/resolv.conf

 mv /etc/resolvCP.conf /etc/resolv.conf

 sudo echo 1 > /proc/sys/net/ipv4/ip_forward

 sudo echo "auto ens4" >> /etc/network/interfaces

 sudo echo "iface ens4 inet static" >>

/etc/network/interfaces.d/50-cloud-init.cfg

 sudo echo "address 20.20.20.1" >>

/etc/network/interfaces.d/50-cloud-init.cfg

 sudo echo "netmask 255.255.255.0" >>

/etc/network/interfaces.d/50-cloud-init.cfg

 sudo echo "network 20.20.20.0" >>

/etc/network/interfaces.d/50-cloud-init.cfg

Anexo 3. Despliegue del escenario 1

72

 sudo echo "broadcast 255.255.255.0" >>

/etc/network/interfaces.d/50-cloud-init.cfg

 sudo service networking restart

 CP3:

 type: tosca.nodes.nfv.CP.Tacker

 properties:

 type: vnic

 management: true

 anti_spoofing_protection: false

 requirements:

 - virtualLink:

 node: VL3

 - virtualBinding:

 node: VDU3

 VL3:

 type: tosca.nodes.nfv.VL

 properties:

 network_name: Red-Privada

 vendor: Tacker

 CP4:

 type: tosca.nodes.nfv.CP.Tacker

 properties:

 ip_address: 20.20.20.1

 type: vnic

 anti_spoofing_protection: false

 requirements:

 - virtualLink:

 node: VL3

 - virtualBinding:

 node: VDU3

 VL4:

 type: tosca.nodes.nfv.VL

 properties:

 network_name: Red-Privada-2

 vendor: Tacker

 FIP3:

 type: tosca.nodes.network.FloatingIP

 properties:

 floating_network: PUBLIC

 floating_ip_address: 192.168.122.13

 requirements:

 - link:

 node: CP3

Anexo 3. Despliegue del escenario 1

73

WEB.yaml

tosca_definitions_version: tosca_simple_profile_for_nfv_1_0_0

description: Servidor Web

metadata:

 template_name: vnfd-WEB

topology_template:

 node_templates:

 VDU4:

 type: tosca.nodes.nfv.VDU.Tacker

 properties:

 name: WEB

 image: Ubuntu-Image

 flavor: Little-Flavor

 key_name: ClaveSSH

 availability_zone: nova

 mgmt_driver: noop

 user_data_format: RAW

 user_data: |

 #!/bin/bash

 sudo chmod 777 /etc/resolv.conf

 sudo echo "nameserver 8.8.8.8" > /etc/resolvCP.conf

 while read line; do echo "$line">>resolvCP.conf; done <

/etc/resolv.conf

 sudo rm /etc/resolv.conf

 mv /etc/resolvCP.conf /etc/resolv.conf

 CP5:

 type: tosca.nodes.nfv.CP.Tacker

 properties:

 type: vnic

 ip_address: 20.20.20.5

 management: true

 anti_spoofing_protection: false

 requirements:

 - virtualLink:

 node: VL5

 - virtualBinding:

 node: VDU4

 VL5:

 type: tosca.nodes.nfv.VL

 properties:

 network_name: Red-Privada-2

 vendor: Tacker

Una vez definidas las plantillas TOSCA, se procede a registrar los VNFD con
las plantillas creadas.

tacker vnfd-create –vnfd-file Pc-Gestion.yaml vnfd-PG

tacker vnfd-create –vnfd-file DNS.yaml vnfd-DNS

tacker vnfd-create –vnfd-file Router.yaml vnfd-Router

tacker vnfd-create –vnfd-file PC-1.yaml vnfd-WEB

Anexo 3. Despliegue del escenario 1

74

Con los VNFD registrados, se crean las VNF a partir de los VNFD.

tacker vnf-create –vnfd-name vnfd-PG vnf-PG

tacker vnf-create –vnfd-name vnfd-DNS vnf-DNS

tacker vnf-create –vnfd-name vnfd- Router vnf- Router

Tras estas operaciones ya tenemos el escenario desplegado, a falta de crear

el servidor WEB. A continuación, se agrega una ruta en el router virtual “Router-Ext”

para saber alcanzar la “Red-Privada-2” (20.20.20.0)

openstack router set --route destination=20.20.20.0/24,gateway=10.10.10.9

RouterExt

Como se ha comentado, una vez creado “Router”y la ruta para alcanzar la

“Red-Privada-2” en “RouterExt”, creamos el servidor WEB.

tacker vnf-create –vnfd-name vnfd- PC1 vnf- WEB

75

Anexo 4: Despliegue del escenario 2

A continuación, se describe con detalle el procedimiento a seguir para

realizar el despliegue específico y la puesta en marcha del escenario 2 descrito en el

apartado 5.3.2.

Descargar la imagen de Ubuntu “Ubuntu 16.04 Xenial Xerus”. Será el sistema

operativo de las VNF.

wget https://cloud-images.ubuntu.com/xenial/current/xenial-server-cloudimg-

amd64-disk1.img

Se establecen las variables de entorno necesarias para usar el CLI de

Openstack.

source openrc

Se crea la imagen Openstack que se empleara para crear las instancias

openstack image create --disk-format qcow2 --container-format bare --public --file

xenial-server-cloudimg-amd64-disk1.img Ubuntu-Image

--disk-format hace referencia al formato del fichero de la imagen de disco que se va

a utilizar.

--container-format indica que la imagen se instalara sobre el disco. Similar a un

servidor baremetal.

--public indica que la imagen será accesible para todos los usuarios de openstack.

Se definen las propiedades con las que se configurarán las VNF

openstack flavor create --ram 512 --disk 8 --public Little-Flavor

--ram indica la memoria RAM que se le asigna a las VNF que se configuren mediante

este flavor.

--disk indica el espacio de disco que se le asigna a las VNF que se configuren

mediante este flavor.

--public indica que el flavor será accesible para todos los usuarios de openstack.

Se crea la clave RSA para acceder a VNF por SSH. Se crea a partir de la clave

pública de la maquina host.

openstack keypair create --public-key ~/.ssh/id_rsa.pub ClaveSSH

Se crea la red y subred virtual externa. Los términos red y subred en Openstack

hacen referencia a un conjunto de direcciones IP y sus características que pueden

ser asignadas a las VNF bajo las características de las redes tradicionales.

Anexo 4. Despliegue del escenario 2

76

openstack network create --external --provider-physical-network flat --provider-

network-type flat PUBLIC

openstack subnet create --network PUBLIC --allocation-pool

start=192.168.122.10,end=192.168.122.254 --subnet-range 192.168.122.0/24 --

gateway 192.168.122.1 --no-dhcp Subnet-1

El parámetro –external hace referencia que la red es externa, dispone de floating-

ip.

Se crea la red y subred privada donde estarán las VNF

openstack network create --internal Red-Privada

openstack subnet create --subnet-range 10.10.10.0/24 --dhcp --ip-version 4 --

network Red-Privada Subred-Privada-1

Se crea un router virtual y se asocia a ambas redes. Es un componente lógico

que reenvía paquetes de datos entre redes. También proporciona el reenvío de Capa

3 y NAT para proporcionar acceso a la red externa a las VNF mediante la asociación

de floating-ip.

openstack router create --enable RouterExt

openstack router set --external-gateway PUBLIC --enable-snat RouterExt

openstack router add subnet RouterExt Subred-Privada-1

Una vez creada la estructura de la red se crearán las VNF mediante el CLI de

Tacker.

El primer paso para utilizar Tacker es registrar el VIM. Para ello, se ha de crear

el fichero vim-config.yaml con el siguiente contenido y registra el VIM con dicho

fichero.

vim-config.yaml

auth_url: 'https://192.168.122.3:5000/v3'

username: 'admin'

password: 'opnfv-secret-password'

project_name: 'admin'

project_domain_name: 'Default'

user_domain_name: 'Default'

cert_verify: 'False'

tacker vim-register --config-file vim-config.yaml –is-default vim1

Anexo 4. Despliegue del escenario 2

77

A continuación, se crean plantillas TOSCA para cada VNF. El formato de dichas

plantillas puede consultarse en [69]. El detalle de los campos aquí empleados se

describe en el Anexo 1.

Cliente.yaml

tosca_definitions_version: tosca_simple_profile_for_nfv_1_0_0

description: Cliente-SFC

metadata:

 template_name: Cliente

topology_template:

 node_templates:

 VDU1:

 type: tosca.nodes.nfv.VDU.Tacker

 properties:

 name: Cliente

 image: Ubuntu-Image

 flavor: Little-Flavor

 key_name: ClaveSSH

 availability_zone: nova

 mgmt_driver: noop

 user_data_format: RAW

 user_data: |

 #!/bin/sh

 sudo chmod 777 /etc/resolv.conf

 sudo echo "nameserver 8.8.8.8" > /etc/resolvCP.conf

 while read line; do echo "$line">>resolvCP.conf; done <

/etc/resolv.conf

 sudo rm /etc/resolv.conf

 mv /etc/resolvCP.conf /etc/resolv.conf

 sudo apt-get --yes --force-yes install python

 CP1:

 type: tosca.nodes.nfv.CP.Tacker

 properties:

 type: vnic

 management: true

 anti_spoofing_protection: false

 requirements:

 - virtualLink:

 node: VL1

 - virtualBinding:

 node: VDU1

 VL1:

 type: tosca.nodes.nfv.VL

 properties:

 network_name: Red-Privada

 vendor: Tacker

 FIP1:

 type: tosca.nodes.network.FloatingIP

 properties:

 floating_network: public

 floating_ip_address: 192.168.122.10

 requirements:

 - link:

 node: CP1

Anexo 4. Despliegue del escenario 2

78

ParentalControl.yaml

tosca_definitions_version: tosca_simple_profile_for_nfv_1_0_0

description: VNF-SFC

metadata:

 template_name: ParentalControl

topology_template:

 node_templates:

 VDU2:

 type: tosca.nodes.nfv.VDU.Tacker

 properties:

 name: ParentalControl

 image: Ubuntu-Image

 flavor: Little-Flavor

 key_name: ClaveSSH

 availability_zone: nova

 mgmt_driver: noop

 user_data_format: RAW

 user_data: |

 #!/bin/sh

 sudo chmod 777 /etc/resolv.conf

 sudo echo "nameserver 8.8.8.8" > /etc/resolvCP.conf

 while read line; do echo "$line">>resolvCP.conf; done <

/etc/resolv.conf

 sudo rm /etc/resolv.conf

 mv /etc/resolvCP.conf /etc/resolv.conf

 sudo apt-get --yes --force-yes install python

 CP2:

 type: tosca.nodes.nfv.CP.Tacker

 properties:

 type: vnic

 management: true

 anti_spoofing_protection: false

 requirements:

 - virtualLink:

 node: VL2

 - virtualBinding:

 node: VDU2

 VL2:

 type: tosca.nodes.nfv.VL

 properties:

 network_name: Red-Privada

 vendor: Tacker

 FIP2:

 type: tosca.nodes.network.FloatingIP

 properties:

 floating_network: public

 floating_ip_address: 192.168.122.11

 requirements:

 - link:

 node: CP2

Anexo 4. Despliegue del escenario 2

79

VNF2.yaml

tosca_definitions_version: tosca_simple_profile_for_nfv_1_0_0

description: VNF-SFC

metadata:

 template_name: vnfd2

topology_template:

 node_templates:

 VDU3:

 type: tosca.nodes.nfv.VDU.Tacker

 properties:

 name: VNF-2

 image: Ubuntu-Image

 flavor: Little-Flavor

 key_name: ClaveSSH

 availability_zone: nova

 mgmt_driver: noop

 user_data_format: RAW

 user_data: |

 #!/bin/sh

 sudo chmod 777 /etc/resolv.conf

 sudo echo "nameserver 8.8.8.8" > /etc/resolvCP.conf

 while read line; do echo "$line">>resolvCP.conf; done <

/etc/resolv.conf

 sudo rm /etc/resolv.conf

 mv /etc/resolvCP.conf /etc/resolv.conf

 sudo apt-get --yes --force-yes install python

 CP3:

 type: tosca.nodes.nfv.CP.Tacker

 properties:

 type: vnic

 management: true

 anti_spoofing_protection: false

 requirements:

 - virtualLink:

 node: VL3

 - virtualBinding:

 node: VDU3

 VL3:

 type: tosca.nodes.nfv.VL

 properties:

 network_name: Red-Privada

 vendor: Tacker

 FIP3:

 type: tosca.nodes.network.FloatingIP

 properties:

 floating_network: public

 floating_ip_address: 192.168.122.12

 requirements:

 - link:

 node: CP3

Anexo 4. Despliegue del escenario 2

80

VNF3.yaml

tosca_definitions_version: tosca_simple_profile_for_nfv_1_0_0

description: VNF-SFC

metadata:

 template_name: vnfd3

topology_template:

 node_templates:

 VDU4:

 type: tosca.nodes.nfv.VDU.Tacker

 properties:

 name: VNF-3

 image: Ubuntu-Image

 flavor: Little-Flavor

 key_name: ClaveSSH

 availability_zone: nova

 mgmt_driver: noop

 user_data_format: RAW

 user_data: |

 #!/bin/sh

 sudo chmod 777 /etc/resolv.conf

 sudo echo "nameserver 8.8.8.8" > /etc/resolvCP.conf

 while read line; do echo "$line">>resolvCP.conf; done <

/etc/resolv.conf

 sudo rm /etc/resolv.conf

 mv /etc/resolvCP.conf /etc/resolv.conf

 sudo apt-get --yes --force-yes install python

 CP4:

 type: tosca.nodes.nfv.CP.Tacker

 properties:

 type: vnic

 management: true

 anti_spoofing_protection: false

 requirements:

 - virtualLink:

 node: VL4

 - virtualBinding:

 node: VDU4

 VL4:

 type: tosca.nodes.nfv.VL

 properties:

 network_name: Red-Privada

 vendor: Tacker

 FIP4:

 type: tosca.nodes.network.FloatingIP

 properties:

 floating_network: public

 floating_ip_address: 192.168.122.13

 requirements:

 - link:

 node: CP4

Anexo 4. Despliegue del escenario 2

81

Servidor.yaml:

tosca_definitions_version: tosca_simple_profile_for_nfv_1_0_0

description: Servidor-SFC

metadata:

 template_name: vnfd-servidor

topology_template:

 node_templates:

 VDU5:

 type: tosca.nodes.nfv.VDU.Tacker

 properties:

 name: Servidor

 image: Ubuntu-Image

 flavor: Little-Flavor

 key_name: ClaveSSH

 availability_zone: nova

 mgmt_driver: noop

 user_data_format: RAW

 user_data: |

 #!/bin/sh

 sudo chmod 777 /etc/resolv.conf

 sudo echo "nameserver 8.8.8.8" > /etc/resolvCP.conf

 while read line; do echo "$line">>resolvCP.conf; done <

/etc/resolv.conf

 sudo rm /etc/resolv.conf

 mv /etc/resolvCP.conf /etc/resolv.conf

 sudo apt-get --yes --force-yes install python

 sudo python -m SimpleHTTPServer 80 > /dev/null 2>&1 &

 CP5:

 type: tosca.nodes.nfv.CP.Tacker

 properties:

 type: vnic

 management: true

 anti_spoofing_protection: false

 requirements:

 - virtualLink:

 node: VL5

 - virtualBinding:

 node: VDU5

 VL5:

 type: tosca.nodes.nfv.VL

 properties:

 network_name: Red-Privada

 vendor: Tacker

 FIP5:

 type: tosca.nodes.network.FloatingIP

 properties:

 floating_network: public

 floating_ip_address: 192.168.122.14

 requirements:

 - link:

 node: CP5

Una vez definidas las plantillas TOSCA, se procede a registrar los VNFD con
las plantillas creadas.

tacker vnfd-create –vnfd-file Cliente.yaml vnfd-Cliente

Anexo 4. Despliegue del escenario 2

82

tacker vnfd-create –vnfd-file ParentalControl.yaml vnfd-PC

tacker vnfd-create –vnfd-file VNF2.yaml vnfd-VNF2

tacker vnfd-create –vnfd-file VNF3.yaml vnfd-VNF3

tacker vnfd-create –vnfd-file Servidor.yaml vnfd-Servidor

Con los VNFD registrados, se crean las VNF a partir de los VNFD.

tacker vnf-create –vnfd-name vnfd-Cliente vnf-Cliente

tacker vnf-create –vnfd-name vnfd-PC vnf-PC

tacker vnf-create –vnfd-name vnfd-VNF2 vnf-VNF2

tacker vnf-create –vnfd-name vnfd-VNF3 vnf-VNF3

tacker vnf-create –vnfd-name vnfd-Servidor vnf-Servidor

Tras estas operaciones ya tenemos el escenario desplegado, a continuación,

se añade el funcionamiento SFC.

Lo primero se crean las plantillas TOSCA que definen la clasificación y

encaminamiento de los flujos. Se van a crear dos, una para tráfico TCP y otra para

trafico UDP.

vnffgd-SFC-HTTP.yaml

ca_definitions_version: tosca_simple_profile_for_nfv_1_0_0

description: Vnffgd para SFC

topology_template:

 node_templates:

 Forwarding_path1:

 type: tosca.nodes.nfv.FP.TackerV2

 description: creates path (CP1->CP2)

 properties:

 id: 51

 policy:

 type: ACL

 criteria:

 - name: HttpControl

 classifier:

 network_src_port_id: 1dc1eaa7-12c9-437a-ad51-

37b527d7dd41

 destination_port_range: 80-80

 ip_proto: 6

 path:

 - forwarder: vnfd-PControl

 capability: CP2

 groups:

 VNFFG1:

 type: tosca.groups.nfv.VNFFG

 description: HTTP to Corporate Net

Anexo 4. Despliegue del escenario 2

83

 properties:

 vendor: tacker

 version: 1.0

 number_of_endpoints: 1

 dependent_virtual_link: [VL2]

 connection_point: [CP2]

 constituent_vnfs: [vnfd-PControl]

 members: [Forwarding_path1]

vnffgd-SFC-UDP.yaml

tosca_definitions_version: tosca_simple_profile_for_nfv_1_0_0

description: Vnffgd para SFC

topology_template:

 node_templates:

 Forwarding_path3:

 type: tosca.nodes.nfv.FP.TackerV2

 description: creates path (CP1->CP5)

 properties:

 id: 53

 policy:

 type: ACL

 criteria:

 - name: manage_udp

 classifier:

 network_src_port_id: 1dc1eaa7-12c9-437a-ad51-

37b527d7dd41

 ip_proto: 17

 path:

 - forwarder: vnfd-VNF2

 capability: CP3

 - forwarder: vnfd-VNF3

 capability: CP4

 groups:

 VNFFG3:

 type: tosca.groups.nfv.VNFFG

 description: UDP to Corporate Net

 properties:

 vendor: tacker

 version: 1.0

 number_of_endpoints: 2

 dependent_virtual_link: [VL3, VL4]

 connection_point: [CP3,CP4]

 constituent_vnfs: [vnfd-VNF2,vnfd-VNF3]

 members: [Forwarding_path3]

