Anexos

Anexo 1: Guia de plantillas VNFD y VNFFGD

En este anexo se va a describir la estructura completa de los VNFD y VNFFGD

segun su definicién en 1y 2,

1) Guia de plantilla VNFD

tosca_definitions_version: tosca_simple profile for nfv_ 1 0 0
description: Ejemplo de VNED
metadata:
template name: sample-tosca-vnfd-template-guide
topology template:
node_templates:
VDU:
type: tosca.nodes.nfv.VDU.Tacker
properties:
image: Imagen a usar por la VNF
flavor: Flavor a usar por la VNF
availability zone: zona de disponibilidad (nova)
mgmt_driver: [default=noop]
user_data: comandos a ejecutar en tiempo de creacidn
user_data_format: formato de los comandos
key _name: clave de usuario

CP:
type: tosca.nodes.nfv.CP.Tacker
properties:
management: [true, false]
security groups: lista de grupos de seguridad
(restricciones de trafico)
requirements:
- virtualLink:
node: VL asociado a este CP
- virtualBinding:
node: VDU asociado a este CP
VL:
type: tosca.nodes.nfv.VL
properties:
network name: nombre de la red a conectar
vendor: Tacker

FIP:
type: tosca.nodes.network.FloatingIP
properties:

floating network: red externa donde crear la floating-ip
floating ip address: floating-ip a asociar
requirements:
- link:
node: CP asociado a la floating ip

! https://docs.openstack.org/tacker/latest/contributor/vnfd_template_description.html
2 https://docs.openstack.org/tacker/latest/user/vnffg_usage guide.html

61

Anexo 1: Guia de plantillas VNFD y VNFFGD

Un VNFD esta formado por cuatro secciones:

— Virtual Deployment Unit (VDU): seccién donde se definen las

caracteristicas generales y de computo de la VNF como, por ejemplo,
nombre, imagen del sistema operativo, RAM, memoria en disco, etc.

El parametro user_data hace referencia a los comandos de Shell que
ejecutara la VNF en tiempo de creacidn.

El pardmetro mgmt_driver indica el driver de configuraciéon de la VNF.
Ciertos sistemas operativo soportan configuracién como VNF a partir de
paquetes de configuracién en lugar de con comandos de Shell.

— Connection Points (CP): seccion donde se define la asociacidn entre el

VDU y el VL.

— Floating IP (FIP) (opcional): se define la asociacion de una floating-ip a un

CP para proporcionar conectividad con una red publica.

2) Guia de plantilla VNFFGD

description:

id:

path:

groups:
VNFFG1:

tosca_definitions_version:
tosca_simple profile for nfv 1 0 O

Sample VNFFG template
topology template:
node_templates:

Forwarding path2:
type: tosca.nodes.nfv.FP.TackerVv2
description: creates path (CP1->CP2)
properties:

symmetrical: false

policy:

type:
criteria:

- name: name

classifier:

- forwarder: VNFD1
capability: CP1
- forwarder: VNFD2
capability: CP2

type: tosca.groups.nfv.VNFFG
description: SSH to Corporate Net

ACL

network src_port_id: Server port
destination_port range: port:port
ip proto: 4/6

ip dst prefix: IP

62

Anexo 1: Guia de plantillas VNFD y VNFFGD

properties:
vendor: tacker
version:
number of_ endpoints: SF number
dependent_virtual link: [VL1,VL2, ...]
connection point: [CP1,CP2, ...]
constituent vnfs: [VNFD1,VNFD2, ...]
members: [Forwarding path?2]

Un VNFFGD estd formado por cuatro secciones:

Forwarding path: seccion donde se definen las del clasificador de flujo para
el trafico que atravesara la cadena. En Path se definen los CP de los VNFD
a los cuales tiene que dirigir el trafico.

El parametro symetrical indica si la cadena de servicio es bidireccional o
unidireccional

Groups: seccidon donde se define el Forwarding_path que contiene las
reglas de clasificacion y el numero de SF que forman la cadena.

Tambien para cada VNFD que forma la cadena, el CP y VL asociados.

63

Anexo 2: CLI de Tacker

En este anexo se van a detallar los comandos basicos de Tacker para su uso.

La informacion completa se puede encontrar en 3

1) Registro del VIM

2)

3)

4)

tacker vim-register —config-file vim-config-file.yaml —is-default vim-name

Donde vim-config-file.yaml es el fichero que describe el VIM, contiene
parametros que hacen referencia a la instalacion de Openstack y vim-name es el
nombre que le das al VIM registrado.

El parametro —is-default hace referencia a si se va a usar ese VIM por defecto
para gestionar cualquier VNF

Ejemplo de vim-config-file.yaml

auth_url: 'https://192.168.122.3:5000/v3'
username: 'admin'

password: 'opnfv-secret-password'
project_name: '‘admin’
project_domain_name: 'Default’
user_domain_name: 'Default’

cert_verify: 'False'

Donde; auth_url es la direccién del servicio de autenticacién, en nuestro caso
keystone, username y password son los datos de registro y Project_name,
project_domain_name y user_domain_name: son datos por defecto.

Registro de los VNFD
Para crear un VNF es necesario registrar su VNFD en el catalogo de Tacker.

tacker vnfd-create —vnfd-file vnfd.yaml vnfd-name

Donde vnfd.yaml es el fichero que contiene la plantilla TOSCA que define la VNF.
Informacidén detallada en el Anexo 1: Guia de plantillas VNFD y VNFFGD.

Creacion de las VNF
Las VNF se crean apartir de sus VNFD
Tacker vnf-create —vnfd-name vnfd-name vnf-name

Donde vnfd-name es el nombre del VNFD creado anteriormente y vnf-name es
el nombre que le asignas a la VNF creada.

Registro de los VNFFGD

3 https://docs.openstack.org/ocata/cli-reference/tacker.html

64

5)

Anexo 2. CLI de Tacker

Para crear cadenas de servicio, se crean VNF Forwarding Graph (VNFFG), son
usados para orquestar y gestionar el trafico que atraviesan las VNF. Estos VNFFG
se detallan en el anexo 2.

Para crear un VNFFG es necesario registrar su VNFFGD en el catdlogo de Tacker
tacker vnffgd-create —vnffgd-file vnffgd.yaml vnffg-name

Donde vnffgd.yaml es el fichero que contiene la plantilla TOSCA que describe el
VNF Forwarding Graf. Informacion detallada en el Anexo 1: Guia de plantillas
VNFD y VNFFGD.

Creacion del VNFFG
El VNFFG se crea a partir de su VNFFGD.
tacker vnffg-create —vnfggd-name vnffgd-name vnfg-name

Donde vnffgd-name es el nombre del VNFFGD creado anteriormente y vnffg-
name es el nombre que le asignas al VNFFG creado.

65

Anexo 3: Despliegue del escenario 1

A continuacién, se describe con detalle el procedimiento a seguir para
realizar el despliegue especifico y la puesta en marcha del escenario 1 descrito en el
apartado 5.3.1 del proyecto.

Descargar laimagen de Ubuntu “Ubuntu 16.04 Xenial Xerus”. Sera el sistema
operativo de las VNF.

wget https://cloud-images.ubuntu.com/xenial/current/xenial-server-cloudimg-
amd64-diskl.img

Se establecen las variables de entorno necesarias para usar el CLI de
Openstack.

source openrc
Se crea la imagen Openstack que se empleara para crear las instancias

openstack image create --disk-format gqcow2 --container-format bare --public --file
xenial-server-cloudimg-amd64-disk1l.img Ubuntu-Image

--disk-format hace referencia al formato del fichero de la imagen de disco que se va
a utilizar.

--container-format indica que la imagen se instalara sobre el disco. Similar a un
servidor baremetal.

--public indica que la imagen sera accesible para todos los usuarios de openstack.
Se definen las propiedades con las que se configuraran las VNF
openstack flavor create --ram 512 --disk 8 --public Little-Flavor

--ram indica la memoria RAM que se le asigna a las VNF que se configuren mediante
este flavor.

--disk indica el espacion de disco que se le asigna a las VNF que se configuren
mediante este flavor.

--public indica que el flavor sera accesible para todos los usuarios de openstack.

Se crea la clave RSA para acceder a VNF por SSH. Se crea a partir de la clave
publica de la maquina host.

openstack keypair create --public-key ~/.ssh/id_rsa.pub ClaveSSH

Se crea lared y subred virtual externa, esta dispondrd de un pool de floating-
ip.
openstack network create --external --provider-physical-network flat --provider-
network-type flat PUBLIC

66

Anexo 3. Despliegue del escenario 1

openstack subnet create --network PUBLIC --allocation-pool
start=192.168.122.10,end=192.168.122.254 --subnet-range 192.168.122.0/24 --
gateway 192.168.122.1 --no-dhcp Subnet-1

Se crea lared y subred privada donde estaran las VNF
openstack network create --internal Red-Privada

openstack subnet create --subnet-range 10.10.10.0/24 --dhcp --ip-version 4 --
network Red-Privada Subred-Privada-1

openstack network create --internal Red-Privada-2

openstack subnet create --subnet-range 20.20.20.0/24 --dhcp --gateway 20.20.20.1
--ip-version 4 --network Red-Privada-2 Subred-Privada-2

--gateway 20.20.20.1, importante especificar que el Gateway se encuentra en esa
direccion. Mas adelante se creard la VNF correspondiente con el router con esa
fixed-ip.

Se crea un router virtual lamado Router-Ext y se asocia a ambas redes. Es un
componente légico que reenvia paquetes de datos entre redes. También
proporciona el reenvio de Capa 3 y NAT para proporcionar acceso a la red externa a
las VNF mediante la asociacion de floating-ip.

openstack router create --enable RouterExt
openstack router set --external-gateway PUBLIC --enable-snat RouterExt
openstack router add subnet RouterExt Subred-Privada-1

A continuacidn, se despliegan las VNF que van a estar en la “Red-Privada 1”.

Una vez creada la estructura de la red se crearan las VNF mediante el CLI de
Tacker.

El primer paso para utilizar Tacker es registrar el VIM. Para ello, se ha de crear
el fichero vim-config.yaml con el siguiente contenido y registra el VIM con dicho
fichero.

vim-config.yam|

auth_url: 'https://192.168.122.3:5000/v3'
username: '‘admin’

password: 'opnfv-secret-password'
project_name: '‘admin'
project_domain_name: 'Default’
user_domain_name: 'Default’

cert_verify: 'False'

tacker vim-register --config-file vim-config.yaml —is-default vim1

67

Anexo 3. Despliegue del escenario 1

A continuacién, se crean plantillas TOSCA para cada VNF, se tratan de
ficheros .yaml que describen la VNF, estos se emplearan para crear los VNFD. El
formato de dichas plantillas puede consultarse en el Anexo 1: Guia de plantillas VNFD
y VNFFGD. El detalle de los campos aqui empleados se describe en el Anexo 3.

Pc-Gestion.yaml

tosca_definitions_version: tosca simple profile for nfv 1 0 O
description: PC que gestiona los demas
metadata:

template name: vnfd-PG

topology_ template:
node_templates:

VDU1:
type: tosca.nodes.nfv.VDU.Tacker
properties:

name: PC Gestion
image: Ubuntu-Image
flavor: Little-Flavor
key name: ClaveSSH
availability zone: nova
mgmt_driver: noop
user _data_ format: RAW
user_data: |
#!/bin/bash
sudo chmod 777 /etc/resolv.conf
sudo echo "nameserver 8.8.8.8" > /etc/resolvCP.conf
while read line; do echo "$line">>resolvCP.conf; done <
/etc/resolv.conf
sudo rm /etc/resolv.conf
mv /etc/resolvCP.conf /etc/resolv.conf
#sudo apt-get --yes --force-yes install python
sudo echo "----- BEGIN RSA PRIVATE KEY-----

MIIEowIBAAKCAQEAyzhOYN3Z+tX6w9qm5ZWnO9wuu+AIXfB9tHad4VzB6HjfLVgvVJ
gK90sjkiS70Nk40w/qIfhlTl/kgtIf7eoY6Kyhevmm+wmAJ6Igw5YXg20Ayga+6£f
glLLCyDyluWOTbmt501B36vy/3L06pafqGeZRA909zfa0i7M7¢c83aYXIU60OPUVY]
fKIR02C2gR1CcZ1rPN++5ihR+1448ujT15V5h2N72x+dkbBJ1QLTmLxh5MSx6jbL
peaGHRQZ01loEVbumcjH7VJoVU+cwVin8/jFk1SF1DTYwRhAALOK78GWydxoggKi6
34xdelidKOWyN7ksaxaWsH2QBo2vKn80ySVzaQIDAQABAOIBAQCcGZhjk+ZNpDJE
YVI9T+ToVLRAQkCLECEvDwaYirczIP6C8QHgebh7Iz9RFO/3jMwQxBA2dHPex9HUh
u339sUVw6PLNeT+39CcmoictdK7ZD/nmDlze/ijTOpKIUEWX9KnbsFegXSWCDSa0
T/cB390+CmxBgdkHHEXz4fkZiFcRzsUfEgl+Y1DTvFgBS7T/2+KzQuLaoUUBUZT5
11M50B3C2shh8qiXJhyHYhjQRwv2qF604P1chlG7vL7AgqlgOlx7Y40PrgDMOMODb

b8HetLbnIhNgXqvjN/zylsrtlhWfx£f94yQp7H/orvpMJI5jw+3qUZCBWo9/TBwlaO

68

Anexo 3. Despliegue del escenario 1

Z/RMRx8VAOGBAPPUA0Q+v0v1sM6x5BMvxDxwsyex3WhPCUVNFZj+jvsbHGDB10ON1
Rwj2632CgICzsRnO0hkaN4aChfxH6ftwI9AfXr40tiqGEUe22zVAwQs/jHIXWIQtgO
0499%xf/8VUr3CutlEqzPTImL7 jk8REfiwoKED5cTPtYBVDjRoGw5+M/B7A0GBANVA
£7ZkRVH4pl1N1TiTYw71iBxLajmVARGApPmMCGYjx2IV3TWEh3pmK5G4 £ZkREVV2PJ
xmfoFNpTSzXtKN8VWBB6+G09sGZ2+T2XJdXCcylZglMYeS2+/j7p/IeIMGzsAeMO
CDv2dEqgk9weYTDu0zFYMsQMZPE2K2 /bvFoXSZNBrAoGAIcF7Rkptj2WPOb5U9fcT
8tgjZV5xaY¥xvmyGF2018+/SP5DFI8LKnt+z/Qxv7EFZOMWix4jioQOW6wtFsGKhk
GWXZzvC8HYpFEWREfQWBamhmMuOGGUoT95+qgq8TSRhOXdmt5z2TPksdFjrTydvBO
/HWerLWYyhB8a/Lxs/ry09sCgYBs7x0OpV4Bc3YrzeV2HSRimHmJjr81IIN8zXMOV
PNKzA8z9Tk4gkZYNiVyY+2est6DDnd0CZ+ddoHEhO0zeu20knAOGbvGs3pT6TR3wl
qtWLLeBcFH6p8H120ZiIyeuPcN911LbvhmDRS3AkHImvYhuBQ3GM13HGVUMAzZzAL/
wi9eiQKBgENkmdT+F2s+r2SEB4t+uPB4/uzra0zvIbKlyH+C+VEQv2g4yd9QUrOu

tbi5byO0Za5XHfxT6KDpStbyCZmuIYAUkql 5mEMN8ceN1RHxS6jDe8gzHg8dFyHT]
yXTZ31LouOhBuya95hV8tGSNrpPAgBeebqUfket3iWKspdZgxzBc

————— END RSA PRIVATE KEY-----" > /home/ubuntu/id_rsa
CP1:
type: tosca.nodes.nfv.CP.Tacker
properties:
type: vnic

management: true
anti_spoofing protection: false

requirements:
- virtuallink:
node: VL1
- virtualBinding:
node: VDUl
VL1:
type: tosca.nodes.nfv.VL
properties:

network name: Red-Privada
vendor: Tacker

FIP1:
type: tosca.nodes.network.FloatingIP
properties:

floating network: public
floating ip address: 192.168.122.10
requirements:
- link:
node: CP1

69

DNS.yaml

Anexo 3. Despliegue del escenario 1

tosca_definitions_version: tosca simple profile for nfv 1 0 0

description:

Servidor DNS autoritativo

metadata:
template name: vnfd-DNS

topology template:
node_ templates:
VDU2:

type:

tosca.nodes.nfv.VDU.Tacker

properties:

DNS-server
Ubuntu-Image
flavor: Little-Flavor
key name: ClaveSSH
availability zone: nova
mgmt_driver: noop
user _data format: RAW
user_data: |
#!/bin/bash

name:
image:

de Red-Privada-2

sudo chmod 777 /etc/resolv.conf
sudo echo "nameserver 8.8.8.8" > /etc/resolvCP.conf

while read line;

/etc/resolv.conf

sudo rm /etc/resolv.conf

do echo "$line">>resolvCP.conf; done <

mv /etc/resolvCP.conf /etc/resolv.conf

sudo apt-get --yes install bind9

sudo mv /etc/bind/named.conf /etc/bind/named.conf.Orig
sudo echo -e "include \"/etc/bind/rndc.key\";

options {

directory \"/var/cache/bind\";

min-roots 1;
match-clients {any;};
}s

logging {

category lame-servers { null;

//category cname { null;
}i

zone \"lan2.com\" {

type master;

};

};

file \"/etc/bind/db.lan2.com\";

};:" > /etc/bind/named.conf
sudo echo "\S$TTL 604800 ;
lan2.com.

default ttl
IN SOA DNS.lanl.com.

root.localhost. (

1 ; Serial

604800 ; Refresh

86400 ; Retry

2419200 ; Expire

604800 ; Negative Cache TTL

)

lan2.com. 84600 IN NS DNS.lanl.com.
DNS.lanl.com. 84600 IN A 10.10.10.10
WEB.lan2.com. 86400 IN A 20.20.20.5" >

/etc/bind/db.lan2.com

sudo service bind9 start

CP2:
type: tosca.nodes.nfv.CP.Tacker
properties:

70

Anexo 3. Despliegue del escenario 1

type: vnic

management: true

ip_address: 10.10.10.10
anti_spoofing protection: false

requirements:
- virtuallink:
node: VL2
- virtualBinding:
node: VDU2
VL2:
type: tosca.nodes.nfv.VL
properties:

network_name: Red-Privada
vendor: Tacker

FIP2:
type: tosca.nodes.network.FloatingIP
properties:

floating network: PUBLIC
floating ip address: 192.168.122.11
requirements:
- link:
node: CP2

Router-Ubuntu.yaml

tosca_definitions_version: tosca simple profile for nfv 1 0 0
description: Router frontera
metadata:

template name: vnfd-Router

topology template:
node_templates:

VDU3:
type: tosca.nodes.nfv.VDU.Tacker
properties:

name: Router-Ubuntu
image: Ubuntu-Image
flavor: Little-Flavor
key name: ClaveSSH
availability zone: nova
mgmt_driver: noop
user_data_format: RAW
user_data: |
#!/bin/bash
sudo chmod 777 /etc/resolv.conf
sudo echo "nameserver 8.8.8.8" > /etc/resolvCP.conf
while read line; do echo "$line">>resolvCP.conf; done <
/etc/resolv.conf
sudo rm /etc/resolv.conf
mv /etc/resolvCP.conf /etc/resolv.conf
sudo echo 1 > /proc/sys/net/ipv4/ip forward
sudo echo "auto ens4" >> /etc/network/interfaces
sudo echo "iface ens4 inet static" >>
/etc/network/interfaces.d/50-cloud-init.cfqg
sudo echo "address 20.20.20.1" >>
/etc/network/interfaces.d/50-cloud-init.cfg
sudo echo "netmask 255.255.255.0" >>
/etc/network/interfaces.d/50-cloud-init.cfg
sudo echo "network 20.20.20.0" >>
/etc/network/interfaces.d/50-cloud-init.cfg

71

Anexo 3. Despliegue del escenario 1

sudo echo "broadcast 255.255.255.0" >>
/etc/network/interfaces.d/50-cloud-init.cfqg
sudo service networking restart

CP3:
type: tosca.nodes.nfv.CP.Tacker
properties:
type: vnic
management: true
anti_spoofing protection: false

requirements:
- virtuallink:
node: VL3
- virtualBinding:
node: VDU3
VL3:
type: tosca.nodes.nfv.VL
properties:

network name: Red-Privada
vendor: Tacker

CP4:
type: tosca.nodes.nfv.CP.Tacker
properties:

ip address:
type: vnic
anti_spoofing protection: false

requirements:
- virtuallink:
node: VL3
- virtualBinding:
node: VDU3
VL4:
type: tosca.nodes.nfv.VL
properties:

network name: Red-Privada-2
vendor: Tacker

FIP3:
type: tosca.nodes.network.FloatingIP
properties:

floating network: PUBLIC
floating_ ip address:
requirements:
- link:
node: CP3

72

Anexo 3. Despliegue del escenario 1

WEB.yaml

tosca_definitions_version: tosca simple profile for nfv 1 0 0
description: Servidor Web
metadata:

template name: vnfd-WEB

topology_ template:
node_templates:

VDU4 :
type: tosca.nodes.nfv.VDU.Tacker
properties:

name: WEB
image: Ubuntu-Image
flavor: Little-Flavor
key name: ClaveSSH
availability zone: nova
mgmt_driver: noop
user _data_ format: RAW
user_data: |
#!/bin/bash
sudo chmod 777 /etc/resolv.conf
sudo echo "nameserver 8.8.8.8" > /etc/resolvCP.conf
while read line; do echo "$line">>resolvCP.conf; done <
/etc/resolv.conf
sudo rm /etc/resolv.conf
mv /etc/resolvCP.conf /etc/resolv.conf

CP5:
type: tosca.nodes.nfv.CP.Tacker
properties:
type: vnic
ip address:
management: true
anti_spoofing protection: false

requirements:
- virtuallink:
node: VL5
- virtualBinding:
node: VDU4
VL5:
type: tosca.nodes.nfv.VL
properties:

network name: Red-Privada-2
vendor: Tacker

Una vez definidas las plantillas TOSCA, se procede a registrar los VNFD con
las plantillas creadas.

tacker vnfd-create —vnfd-file Pc-Gestion.yaml vnfd-PG
tacker vnfd-create —vnfd-file DNS.yaml vnfd-DNS
tacker vnfd-create —vnfd-file Router.yaml vnfd-Router

tacker vnfd-create —vnfd-file PC-1.yaml vnfd-WEB

73

Anexo 3. Despliegue del escenario 1

Con los VNFD registrados, se crean las VNF a partir de los VNFD.
tacker vnf-create —vnfd-name vnfd-PG vnf-PG
tacker vnf-create —vnfd-name vnfd-DNS vnf-DNS

tacker vnf-create —vnfd-name vnfd- Router vnf- Router

Tras estas operaciones ya tenemos el escenario desplegado, a falta de crear
el servidor WEB. A continuacién, se agrega una ruta en el router virtual “Router-Ext”
para saber alcanzar la “Red-Privada-2” (20.20.20.0)

openstack router set --route destination=20.20.20.0/24,gateway=10.10.10.9
RouterExt

Como se ha comentado, una vez creado “Router”y la ruta para alcanzar la
“Red-Privada-2" en “RouterExt”, creamos el servidor WEB.

tacker vnf-create —vnfd-name vnfd- PC1 vnf- WEB

74

Anexo 4: Despliegue del escenario 2

A continuacién, se describe con detalle el procedimiento a seguir para
realizar el despliegue especifico y la puesta en marcha del escenario 2 descrito en el
apartado 5.3.2.

Descargar laimagen de Ubuntu “Ubuntu 16.04 Xenial Xerus”. Sera el sistema
operativo de las VNF.

wget https://cloud-images.ubuntu.com/xenial/current/xenial-server-cloudimg-
amd64-diskl.img

Se establecen las variables de entorno necesarias para usar el CLI de
Openstack.

source openrc
Se crea la imagen Openstack que se empleara para crear las instancias

openstack image create --disk-format gqcow2 --container-format bare --public --file
xenial-server-cloudimg-amd64-disk1l.img Ubuntu-Image

--disk-format hace referencia al formato del fichero de la imagen de disco que se va
a utilizar.

--container-format indica que la imagen se instalara sobre el disco. Similar a un
servidor baremetal.

--public indica que la imagen sera accesible para todos los usuarios de openstack.
Se definen las propiedades con las que se configuraran las VNF
openstack flavor create --ram 512 --disk 8 --public Little-Flavor

--ram indica la memoria RAM que se le asigna a las VNF que se configuren mediante
este flavor.

--disk indica el espacio de disco que se le asigna a las VNF que se configuren
mediante este flavor.

--public indica que el flavor sera accesible para todos los usuarios de openstack.

Se crea la clave RSA para acceder a VNF por SSH. Se crea a partir de la clave
publica de la maquina host.

openstack keypair create --public-key ~/.ssh/id_rsa.pub ClaveSSH

Se crea la red y subred virtual externa. Los términos red y subred en Openstack
hacen referencia a un conjunto de direcciones IP y sus caracteristicas que pueden
ser asignadas a las VNF bajo las caracteristicas de las redes tradicionales.

75

Anexo 4. Despliegue del escenario 2

openstack network create --external --provider-physical-network flat --provider-
network-type flat PUBLIC

openstack subnet create --network PUBLIC --allocation-pool
start=192.168.122.10,end=192.168.122.254 --subnet-range 192.168.122.0/24 --
gateway 192.168.122.1 --no-dhcp Subnet-1

El pardametro —external hace referencia que la red es externa, dispone de floating-
ip.
Se crea la red y subred privada donde estaran las VNF

openstack network create --internal Red-Privada

openstack subnet create --subnet-range 10.10.10.0/24 --dhcp --ip-version 4 --
network Red-Privada Subred-Privada-1

Se crea un router virtual y se asocia a ambas redes. Es un componente légico
gue reenvia paquetes de datos entre redes. También proporciona el reenvio de Capa
3 y NAT para proporcionar acceso a la red externa a las VNF mediante la asociacién
de floating-ip.

openstack router create --enable RouterExt
openstack router set --external-gateway PUBLIC --enable-snat RouterExt
openstack router add subnet RouterExt Subred-Privada-1

Una vez creada la estructura de la red se crearan las VNF mediante el CLI de
Tacker.

El primer paso para utilizar Tacker es registrar el VIM. Para ello, se ha de crear
el fichero vim-config.yaml con el siguiente contenido y registra el VIM con dicho
fichero.

vim-config.yam|

auth_url: 'https://192.168.122.3:5000/v3'
username: '‘admin’

password: 'opnfv-secret-password'
project_name: '‘admin'
project_domain_name: 'Default’
user_domain_name: 'Default’

cert_verify: 'False'

tacker vim-register --config-file vim-config.yaml —is-default vim1

76

Anexo 4. Despliegue del escenario 2

A continuacidn, se crean plantillas TOSCA para cada VNF. El formato de dichas
plantillas puede consultarse en [69]. El detalle de los campos aqui empleados se
describe en el Anexo 1.

Cliente.yaml

tosca_definitions version: tosca simple profile for nfv 1 0 0
description: Cliente-SFC
metadata:

template_name: Cliente

topology_ template:
node_templates:

VDU1:
type: tosca.nodes.nfv.VDU.Tacker
properties:

name: Cliente
image: Ubuntu-Image
flavor: Little-Flavor
key name: ClaveSSH
availability zone: nova
mgmt_driver: noop
user _data_ format: RAW
user data: |
#!'/bin/sh
sudo chmod 777 /etc/resolv.conf
sudo echo "nameserver 8.8.8.8" > /etc/resolvCP.conf
while read line; do echo "$line">>resolvCP.conf; done <
/etc/resolv.conf
sudo rm /etc/resolv.conf
mv /etc/resolvCP.conf /etc/resolv.conf
sudo apt-get --yes --force-yes install python

CP1l:
type: tosca.nodes.nfv.CP.Tacker
properties:

type: vnic
management: true
anti_spoofing protection: false

requirements:
- virtuallink:
node: VL1
- virtualBinding:
node: VDUl
VL1:
type: tosca.nodes.nfv.VL
properties:

network name: Red-Privada
vendor: Tacker

FIP1:
type: tosca.nodes.network.FloatingIP
properties:

floating network: public
floating ip address:
requirements:
- link:
node: CPl

77

Anexo 4. Despliegue del escenario 2

ParentalControl.yaml|

tosca_definitions version: tosca simple profile for nfv 1 0 0
description: VNF-SEC
metadata:

template_name: ParentalControl

topology_ template:
node_ templates:

VDU2:
type: tosca.nodes.nfv.VDU.Tacker
properties:

name: ParentalControl

image: Ubuntu-Image

flavor: Little-Flavor

key name: ClaveSSH

availability zone: nova

mgmt_driver: noop

user_data format: RAW

user_data: |
#!'/bin/sh
sudo chmod 777 /etc/resolv.conf
sudo echo "nameserver 8.8.8.8" > /etc/resolvCP.conf
while read line; do echo "$line">>resolvCP.conf; done <

/etc/resolv.conf
sudo rm /etc/resolv.conf
mv /etc/resolvCP.conf /etc/resolv.conf
sudo apt-get --yes --force-yes install python
CP2:
type: tosca.nodes.nfv.CP.Tacker
properties:

type: vnic

management: true

anti_spoofing protection: false

requirements:
- virtuallink:
node: VL2
- virtualBinding:
node: VDU2
VL2:
type: tosca.nodes.nfv.VL
properties:

network name: Red-Privada
vendor: Tacker

FIP2:
type: tosca.nodes.network.FloatingIP
properties:

floating network: public
floating_ ip address:
requirements:
- link:
node: CP2

78

Anexo 4. Despliegue del escenario 2

VNF2.yaml

tosca _definitions version: tosca simple profile for nfv 1 0 0
description: VNF-SEC
metadata:
template name: vnfd2
topology_ template:
node_ templates:

VDU3:
type: tosca.nodes.nfv.VDU.Tacker
properties:

name: VNEF-2
image: Ubuntu-Image
flavor: Little-Flavor
key name: ClaveSSH
availability zone: nova
mgmt_driver: noop
user _data format: RAW
user_data: |
#!/bin/sh
sudo chmod 777 /etc/resolv.conf
sudo echo "nameserver 8.8.8.8" > /etc/resolvCP.conf
while read line; do echo "$line">>resolvCP.conf; done <
/etc/resolv.conf
sudo rm /etc/resolv.conf
mv /etc/resolvCP.conf /etc/resolv.conf
sudo apt-get --yes --force-yes install python

CP3:
type: tosca.nodes.nfv.CP.Tacker
properties:

type: vnic
management: true
anti_spoofing protection: false

requirements:
- virtuallink:
node: VL3
- virtualBinding:
node: VDU3
VL3:
type: tosca.nodes.nfv.VL
properties:

network name: Red-Privada
vendor: Tacker

FIP3:
type: tosca.nodes.network.FloatingIP
properties:

floating network: public
floating_ip_ address:
requirements:
- link:
node: CP3

79

Anexo 4. Despliegue del escenario 2

VNF3.yaml

tosca _definitions version: tosca simple profile for nfv 1 0 0
description: VNF-SEC
metadata:

template name: vnfd3

topology template:
node_templates:

VDU4 :
type: tosca.nodes.nfv.VDU.Tacker
properties:

name: VNF-3
image: Ubuntu-Image
flavor: Little-Flavor
key name: ClaveSSH
availability zone: nova
mgmt_driver: noop
user_data_format: RAW
user_data: |
#!/bin/sh
sudo chmod 777 /etc/resolv.conf
sudo echo "nameserver 8.8.8.8" > /etc/resolvCP.conf
while read line; do echo "$line">>resolvCP.conf; done <
/etc/resolv.conf
sudo rm /etc/resolv.conf
mv /etc/resolvCP.conf /etc/resolv.conf
sudo apt-get --yes --force-yes install python

CP4:
type: tosca.nodes.nfv.CP.Tacker
properties:

type: vnic
management: true
anti_spoofing protection: false

requirements:
- virtuallink:
node: VL4
- virtualBinding:
node: VDU4
V14:
type: tosca.nodes.nfv.VL
properties:

network name: Red-Privada
vendor: Tacker

FIP4:
type: tosca.nodes.network.FloatingIP
properties:

floating network: public
floating_ ip address:
requirements:
- link:
node: CP4

80

Anexo 4. Despliegue del escenario 2

Servidor.yaml:

tosca _definitions version: tosca simple profile for nfv 1 0 0
description: Servidor-SFEC
metadata:

template name: vnfd-servidor

topology template:
node_templates:

VDUS5:
type: tosca.nodes.nfv.VDU.Tacker
properties:

name: Servidor

image: Ubuntu-Image

flavor: Little-Flavor

key name: ClaveSSH

availability zone: nova

mgmt_driver: noop

user_data_format: RAW

user_data: |
#!/bin/sh
sudo chmod 777 /etc/resolv.conf
sudo echo "nameserver 8.8.8.8" > /etc/resolvCP.conf
while read line; do echo "$line">>resolvCP.conf; done <

/etc/resolv.conf
sudo rm /etc/resolv.conf
mv /etc/resolvCP.conf /etc/resolv.conf
sudo apt-get --yes --force-yes install python
sudo python -m SimpleHTTPServer 80 > /dev/null 2>&l1 &
CP5:
type: tosca.nodes.nfv.CP.Tacker
properties:

type: vnic

management: true

anti_spoofing protection: false

requirements:
- virtuallink:
node: VL5
- virtualBinding:
node: VDU5S
VL5:
type: tosca.nodes.nfv.VL
properties:

network name: Red-Privada
vendor: Tacker

FIPS5:
type: tosca.nodes.network.FloatingIP
properties:

floating network: public
floating ip address:
requirements:
- link:
node: CP5

Una vez definidas las plantillas TOSCA, se procede a registrar los VNFD con
las plantillas creadas.

tacker vnfd-create —vnfd-file Cliente.yaml vnfd-Cliente

81

Anexo 4. Despliegue del escenario 2

tacker vnfd-create —vnfd-file ParentalControl.yaml vnfd-PC
tacker vnfd-create —vnfd-file VNF2.yaml vnfd-VNF2
tacker vnfd-create —vnfd-file VNF3.yaml vnfd-VNF3
tacker vnfd-create —vnfd-file Servidor.yaml vnfd-Servidor
Con los VNFD registrados, se crean las VNF a partir de los VNFD.
tacker vnf-create —vnfd-name vnfd-Cliente vnf-Cliente
tacker vnf-create —vnfd-name vnfd-PC vnf-PC
tacker vnf-create —vnfd-name vnfd-VNF2 vnf-VNF2
tacker vnf-create —vnfd-name vnfd-VNF3 vnf-VNF3
tacker vnf-create —vnfd-name vnfd-Servidor vnf-Servidor

Tras estas operaciones ya tenemos el escenario desplegado, a continuacion,
se anade el funcionamiento SFC.

Lo primero se crean las plantillas TOSCA que definen la clasificacion y
encaminamiento de los flujos. Se van a crear dos, una para trafico TCP y otra para
trafico UDP.

vnffgd-SFC-HTTP.yaml

ca_definitions version: tosca simple profile for nfv 1 0 O
description: Vnffgd para SFC
topology_ template:

node_templates:

Forwarding pathl:
type: tosca.nodes.nfv.FP.TackervV2
description: creates path (CP1->CP2)
properties:
id:
policy:
type: ACL
criteria:
- name: HttpControl
classifier:
network_src port id: ldcleaa7-12c9-437a-ad51-
37b527d7dd41
destination port range:
ip proto:
path:
- forwarder: vnfd-PControl
capability: CP2

groups:
VNFFG1:
type: tosca.groups.nfv.VNFFG
description: HTTP to Corporate Net

82

Anexo 4. Despliegue del escenario 2

properties:
vendor: tacker
version:
number of endpoints:
dependent virtual link: [VL2]
connection point: [CP2]
constituent vnfs: [vnfd-PControl]
members: [Forwarding pathl]

vnffgd-SFC-UDP.yaml

tosca_definitions version: tosca simple profile for nfv 1 0 0
description: Vnffgd para SFC
topology_ template:

node_templates:

Forwarding path3:
type: tosca.nodes.nfv.FP.TackerVv2
description: creates path (CP1->CP5)
properties:
id:
policy:
type: ACL
criteria:
- name: manage_ udp
classifier:
network src port id: ldcleaa7-12c9-437a-ad51-
37b527d7dd41
ip_ proto:
path:
- forwarder: vnfd-VNF2
capability: CP3
- forwarder: vnfd-VNF3
capability: CP4

groups:
VNFFG3:
type: tosca.groups.nfv.VNFFG
description: UDP to Corporate Net
properties:
vendor: tacker
version:
number of endpoints:
dependent_virtual link: [VL3, VL4]
connection_point: [CP3,CP4]
constituent vnfs: [vnfd-VNF2,vnfd-VNF3]
members: [Forwarding path3]

83

