«2s Universidad
18 Zaragoza

1542

Trabajo Fin de Grado

Grado en Ingenieria Informatica

Generacion de mapas 3D teselados para su
visualizacion en web

Generation of tiled 3D maps for their visualization on the web

Autor

Pablo Vinuales Sanchez

Director

Rubén Béjar Hernandez

Escuela de Ingenieria y Arquitectura (EINA)
2018

Escuelade
Ingenieria y Arquitectura

Universidad Zaragoza

{Este documento debe acompanar al Trabajo Fin de Grado {TFG)/Trabajo Fin de
Mdster {TFM) cuando sea depositado para su evaluacion).

D./D2. Pablo Vifiuales Sanchez

con n? de DNI 180564378 en aplicacidn de lo dispuesto en el art.

14 (Derechos de autor) del Acuerdo de 11 de septiembre de 2014, del Consejo
de Gobierno, por el que se aprueba el Reglamento de los TFG y TFM de la

Universidad de Zaragoza,

Declaro que el presente Trabajo de Fin de (Grado/Master)

Grado , (Titulo del Trabajo)

Generacion de mapas 3D teselados para su visualizacion en web

3 4

es de mi autoria y es original, no habiéndose utilizado fuente sin ser citada

debidamente.

Zaragoza, 13 de abril de 2018

Fdo: Pablo Vifiuales Sanchez

Generacion de mapas 3D teselados
para su visualizacion en web

RESUMEN

El objetivo de este proyecto es realizar una aplicacién capaz de generar mapas 3D teselados, a
partir de unos datos de entrada que pueden ser descargados de repositorios publicos, para
posteriormente ser visualizados mediante una aplicacién web.

La aplicacién permite varias formas de ser ejecutada segun si el usuario quiere renderizar toda
la extension disponible o solo una parte de ella. Realiza transformaciones sobre los datos de
entrada para poder ser incluidos en los ficheros utilizados para especificar la escena que
posteriormente es generada a partir del programa renderizador.

Para generar el fichero utilizado por el programa renderizador, ademds de los ficheros iniciales
transformados, es necesario la especificacién de los objetos heightfield, principalmente (esferas
en un segundo plano), que son los que producen la sensacién de volumen en el aspecto de la
escena. También es necesario generar una cdmara correcta para la escena segun los parametros
especificados por el usuario (direccidn de vista, angulo de incidencia de la cdmara...) y generar
la escena con un ratio de aspecto que otorgue ese aspecto de perspectiva.

La aplicacion también es capaz de teselar el resultado obtenido de forma correcta, atendiendo
al cédigo que debe tener cada tesela, el tamafio de esta o donde ha de ser almacenada.

Dentro del proyecto entra la realizacién de un cliente sencillo que permita visualizar los datos
obtenidos. Para la comprobacién de los resultados que se obtienen, en cuanto a lo visual, como
de rendimiento, se ha generado una extensién grande como es la Comunidad Auténoma de
Aragdny en varios puntos de vista y niveles de zoom. Estos resultados son especificados, ademas
de una serie de estimaciones para mayores extensiones.

El desarrollo del proyecto se ha realizado principalmente en cuatro fases diferentes: una primera
fase donde se han analizado los datos necesarios, ademas de realizar un pequefio acercamiento
a ellos y los resultados esperados a partir de pequefias aplicaciones de procesado de estos datos
y aspectos manuales para una zona pequefia; una segunda fase donde se automatiza lo anterior
y extendiéndolo a una zona mayor; una tercera fase con la creacién del visualizador y la
concrecion de aspectos relacionados con este (teselas) comenzados en la segunda fase; y una
ultima fase con la realizacién de la documentacion.

A pesar de lo desarrollado habria aun trabajo posible en forma de mejorar la eficiencia del
programa, ya sea optimizando los procesos o con la paralelizacién de estos, y mejorando el
aspecto resultante, incidiendo todavia mas en el procesado de algunos de los datos.

Indice

1. INTRODUCCION.....coctiteveveeeeeeeteteeeeeeesseeeesae ettt ettt ettt et et e sttt es s s s s s asssassesessaetesesesetetesesasasnas 1
2. ANALISIS DEL PROBLEMA.......cocuitetevetetetetetetetetetetetesesesesessesasasssassesesesesesetesesesesesasasesesasasesesssasasans 1
2.1. OBUETIVOS ...ttt ettt et e e s et e s b et e s st ae e s snreeesanneeesannees 1
2.2. DATOS DE PARTIDA ...ttt ettt ettt st e st e e s s ne e e e samnee e e sanreeeenans 2
2.2.1. Modelo digital del tEITENO......uiiiieiieee e s 2
2.2.3. (] DAY P PSP PP PUPTPOPPP 3

2.3. ALTERNATIVAS ..ottt et e et e s e e e s amr et e s s emree e e s neeeesannees 4
2.3.1. [o3V Yo o 1 [1] =T = USRI 4

2.4, REQUUISITOS ..ttt ettt ettt ettt e e s e s st b e et e e e e e e s nnbaeeeeesesssnnrnneeeasessannnes 5
2.4.1. REQUISITOS PrOZrama.....cceii ittt e e e e e s e e e e e s s nnrraeees 5
2.4.2. Requisitos apliCaCion WEDei it 6

3. DISENO DE LA SOLUCIONcuuiurirrirriniiserireisesisesiseesesie s sssesse st siensees 6
3.1. DISENO DEL SOFTWARE CREADO........c.cueuiueieieteteeeeeeeeteseseaeeseseseseaeesesesesesesessesesesesessesesesesenes 6
3.2. PROCESOS DISENADOS........cvovetetieieeteteteteeeteteteteeses et eseseasesesesesessesesesesesessasesesesesessasesesesenes 6
3.3 IMODULODS ..ottt 9
3.4. BIBLIOTECAS Y PROGRAMAS USADOScoiiiiieeeiiieee ettt e s e e s 11
34.1. BiblOtECAS. .. ettt e 11
3.4.2. PrOgramMas . o, 12

3.5. TRATAMIENTO DE DATOS ...ttt a e e e e 12
3.5.1. Modelo digital del terreno (MDT)...cccui et sre e e 12
3.5.2. OrtOfOTOS. ..ttt 13
3.5.3. LIDAR .ttt e e e s 13

3.6. DISENO DEL VISUALIZADORuiuiiievetetieeetetetetee ettt se et se b s et anasnane 14
A, IMPLEMENTACIONoieceeeeeeeeceete st e sesete e s st sessas s s ss st et s s s s sss s sssesesensssssessnssastesnesenens 16
4.1, ASPECTOS TECNICOScviuvieeiiierisesssessssesssssssssessssessssessssssssssssssssssssssssesssssssssssssssssssssnns 16
4.2, PROBLEMAS ENCONTRADOSootitintiriiitetenie sttt sne st st snesre s e e 18
4.3. MEDIDAS DE PRESTACIONES. ..ottt e e 21
5. RESULTADOS Y PRUEBAS ...ttt ettt e e e s s e e e e e s s s anrene s 24
5.1, RESULTADOS ...ttt sttt st st sttt st snennes 24
5.2 POR HACER ...ttt sttt st 31
5.3. PRUEBAS. ...ttt ettt e e e e et e e e s e s b et e e e e e s s anrrrneeeeeeaas 32
5.3.1. Pruebas UNItariaseeceereeieeeeeee e 32
5.3.2. Pruebas SisteMALICAS.ccevviriiieiiiiieee e 34

6. GESTION DEL PROYECTO.....cocuiuiiiiiieeiseessissssesssssssssesssse s s sssss s sssssssse s sse s s ssesssssssesenes 35

B. 1. PLANIFICACION ..ottt ettt et e et et et e et ee e et eeeeeeeeeeeees et eneaeeseeeseeaeeeeneneens 35

6.1.1. PrIMEra fase ...cueeieeieee et reenre e 35
6.1.2. SEEUNUA FASE .. ittt et ettt st e et e e st e e be e e et s 36
6.1.3. TEICEIA FASE .ot s 36
6.1.4. CUANA FASE ettt 36

6.2. ESFUERZOS ..ottt e e e et e e s e e e b e et e e e s e s s annrrneeeeeeeas 37
6.3. ANALISIS DE RIESGOSoveveveeeieeeeeeeseeeecssaeaesesesesesesetesese st sssesesesessssssssssssssassssssesesesesesens 38
6.4. GESTION DE CONFIGURACIONESoocvveeerecreeesecseteseseese e sesessesesesessesssessssesssesesassesseseenns 39
6.4.1. Politicas de NOMBIadocoeeieririinieieeee e 39
6.4.2. CONLIOl B VEISIONES ..c.uviiiieiietieieettest ettt ettt ettt et s bt st s e satesaeesaeesaeesanesanes 39
6.4.3. COoPias de SEBUMITATcciuiiiiiie ettt et e e sbe e sbe e sbeeesabeesareeens 40

7. CONCLUSIONES.....coi ittt ettt et e et e st e e st e e e mr e e e s sneeeesanneeeesnneeeesanneeeeannreeesannes 40
8. BIBLIOGRAFIA. ...ttt sttt sttt 42
ANEXOS ..ttt ettt ettt e e e e e e e e et e e e e e b b e et e et e e e e bbb e e e e e e e e e e nrrreeeeeeeeannraaeeeeeeeeannne 44
A. MANUAL DEL RENDERIZADORueiitiiiiiieiiiiteee ettt e e ettt e e e s e st e e e s s s s snnrraeeeeseeas 44
a. Descarga de datos de iNTEIES........ciccciiiiiiiiee e sre e ee e e s e e e s snaaeeeanes 44

b. Bibliotecas NECESAIIASc.eiviiirieerieereee e 44

C. EJECUCION @pliCACiON ..cc.eeiieieiieecee ettt et te e st e e s aee e sabeeens 45

B. MAS INFORMACION DISENO.......couiiuiiiiiiiiiiieiiseiie i 47

a. Proceso transformacion inicial...........cooverieiieiienieneeeeeeeeeee e 47

b. Diagrama 0@ SECUBNCIAuuiieiceieeeeeiiee e et e eee e et e et e e e et e e e s ate e e e satee e e sntaeeeennaeeeennnens 48

C. DOCUMENTACION MODULOS........coouvemiimrimiiiirieeiseseesesisesise s sess s 51

- TR oF- | (ol U | = T | [PPSR 51

LT o= T 4 o 1=T - TP PP PP PP PRSP PRURPRPTRN 54

Co CAMETAULILS e e 56

Lo TR (=Y F=4 oY 11 o RPN 57

L [Y- o [1 o] o TP PPN 57

f. LT 1T T oY e ={ =T o o VOSSR 61

LB o To 1V - 1YY | (=] PP PPPP TP 63

T <=V [1o = o USROS 64

i. VB CEOT XY Z e aan 65

1. INTRODUCCION

A continuacidn, se presenta la memoria del proyecto de fin de Grado o Trabajo de Fin de Grado
(TFG) del alumno Pablo Vifiuales Sanchez (679609), del Grado de Ingenieria Informatica,
especialidad Ingenieria del Software, de la Escuela de Ingenieria y Arquitectura (EINA) de la
Universidad de Zaragoza (Unizar). El proyecto cuenta con un director perteneciente a la propia
EINA y profesor del Grado de Ingenieria Informatica Rubén Béjar Hernandez, perteneciente al
departamento de Informatica e Ingenieria de Sistemas del area de Lenguajes y Sistemas
Informaticos.

El proyecto se incluye como ultimo paso (asignatura) antes de la obtencién del titulo por parte
del alumno, parte desde cero y consiste en la realizacion de un programa capaz de generar
mapas teselados en 3D a partir de unos datos de entrada que pueden ser descargados de
repositorios publicos, y a causa de la busqueda y seleccién de los datos que se necesitan para la
realizacion del proyecto, se seguird una metodologia iterativa que permita adaptarse a lo que
se vaya descubriendo y probando.

Esta memoria estd dividida en varias secciones, y estas a su vez en varias subsecciones, en donde
se explican los diferentes conceptos del proyecto. Primero, en la seccién 2 se realiza un andlisis
del problema, donde se incluye una primera aproximacion al proyecto con los objetivos que se
proponen para la realizacién de el mismo, los requisitos del sistema, las alternativas a este y la
informacion de los datos con los que se va a trabajar. Posteriormente, se continuara con la parte
central del proyecto en las secciones 3 y 4: el disefio del programa a utilizar y sus procesos,
ademas de las bibliotecas y programas que han sido utilizados; y detalles de la implementacion,
con los problemas encontrados en el desarrollo y los resultados obtenidos en lo que a
rendimiento y prestaciones se refiere. Tras esto, se incluyen una serie de ejemplos de resultados
obtenidos con alguna pequena explicacién y el cobmo se presenta el futuro del proyecto (que
cosas se esperan hacer para mejorarlo) en la seccion 5. Ademas, se incluye una seccién referente
a la gestidn del proyecto (seccién 6) y otra con las conclusiones obtenidas tras la realizacién de
el mismo (seccion 7).

Anterior a esta seccidén de introduccion se incluye el indice, y al final de este documento, una
serie de anexos que complementan la informacion.

2. ANALISIS DEL PROBLEMA

El objetivo principal es crear las herramientas y procesos necesarios para producir mapas
realistas del territorio en tres dimensiones que puedan teselarse (dividirse en imagenes
rectangulares, estilo Google Maps) para su visualizacién rapida en web. Para ello se generaran
con estilos y puntos de vista predeterminados y una proyeccion ortogonal.

Se busca desarrollar una aplicacién web que muestre los resultados obtenidos de generar un
mapa 3D extenso a partir de cuatro direcciones de vista diferentes y dos angulos de vista
diferentes, utilizando el programa realizado para este proyecto. Ademas, se busca también que
personas ajenas a este proyecto sean capaces de generar sus propios mapas (siguiendo una serie
de instrucciones) mediante la herramienta desarrollada.

El codigo del proyecto se realizard utilizando el lenguaje de programaciéon Python[1] en su
version 3, ya que es adecuado para la manipulacidn de datos y la automatizacion de procesos.
Para renderizar los mapas se utilizard la herramienta libre POV-Ray[2]. Todas las librerias y
herramientas a utilizar en el proyecto seran libres.

En las diferentes pdginas web que poseen informacion geografica es posible encontrar archivos
gue contienen fotos aéreas, mapas de alturas o incluso representaciones muy precisas de una
zona en particular. La idea del proyecto es que, a partir de estos archivos, se pueda realizar un
programa que aglutine todos estos y genere una salida, en forma de imagen, que pueda ser
posteriormente dividida en pequefios trocitos (teselas) para ser mostradas en una web.

A continuacidn, se especifican los archivos que se han obtenido de las diferentes paginas web,
la informacidén que representan y la forma de representar esta informacion (formato). Para
trabajar con datos geograficos en Europa, y por lo tanto en Espaiia y Aragdn, se utiliza el sistema
de referencia geodésico ETRS89[3]. A partir de este sistema de referencia (datum), se utiliza
UTM[4] como sistema de coordenadas. Con este sistema el mundo se divide en diferentes zonas
(husos) y Aragdn principalmente se encuentra en el huso 30N. Aun asi, la parte mas al este de
Aragdn (aproximadamente a partir de Barbastro) se encuentra en el huso 31N lo que hace que
algunas ortofotos se encuentren en UTM 31N y haya que reproyectarlas para adecuarlas al huso
30N que es el que comparte la mayoria de los datos de entrada. Esta es ETRS89 / UTM zone 30N
[5] representada por el cédigo (EPSG:25830).

2.2.1. Modelo digital del terreno

Estos archivos, que se representan con una extensiéon .ASC (ASCIl matriz ESRI[6]), son
descargados del centro de descargas del Centro Nacional de Informacidon Geografica (CNIG[7])
(http://centrodedescargas.cnig.es/CentroDescargas/buscador.do). Representan, como su

propio nombre indica, un modelo digital del terreno de la zona que se ha descargado, es decir,
informacidn altimétrica que representa el relieve de este terreno. Cada archivo abarca
aproximadamente una zona de 760km2 (38kmx20km) con paso de malla de 5m (cada punto
representa una zona de 5mx5m). Es el mas preciso que se puede encontrar en la web.

Cada archivo MDT contiene 2 partes diferenciadas. Una primera parte que podriamos Ilamar
cabecera, donde se encuentran los datos relativos al tamano del fichero, coordenadas de su
punto inferior izquierdo, tamafio de cada punto en la realidad y el valor que se da a los puntos

http://centrodedescargas.cnig.es/CentroDescargas/buscador.do

gue no contienen informacidon. La segunda parte del fichero es una matriz de valores reales,
donde cada valor representa la altura del terreno en el punto especificado por su posicién en la
matriz, y las coordenadas geograficas del punto inicial (inferior izquierdo).

Con estos archivos MDT se construyen los modelos 3D del terreno para el proyecto sobre los
que luego se aplican las ortofotos, ademas de otros aspectos para dotarlos de realismo.

2.2.2. Ortofotos del PNOA

Las ortofotos del PNOA (Plan Nacional de Ortofotografia Aérea[8]) son fotos aéreas de una
zona concreta a las que se les ha realizado un cierto procesamiento para poder usarse como
un mapa. Son descargadas de la web de IdeAragon (Infraestructura de Datos Espaciales de
Aragdn) (http://idearagon.aragon.es/). Para realizar este proyecto, se han elegido las de

maxima actualidad (del afio 2015) donde cada pixel de la imagen representa 0.5m en la
realidad. Para cada MDT hay 16 ortofotos. Aunque tengan extensién .JPG, estos archivos son
directorios donde se encuentran (ahora si) la imagen en formato .JPG y un archivo .JGW, que
contiene la informacién geografica (coordenadas del pixel inicial, tamafio del pixel...).

2.2.3. LIDAR

Los archivos LiDAR representan informacion altimétrica de una zona mediante una nube de
puntos que ha sido generada utilizando sistemas LiDAR. Estos sistemas LiDAR (Light Detection
and Ranging o Laser Imaging Detection and Ranging[9]) permiten determinar la distancia desde
un emisor ldser a un objeto o superficie utilizando un haz de laser. Cada archivo LiDAR
representa una zona de 4km2 y han sido descargados del centro de descargas del CNIG. Se
encuentran en formato .LAZ que es el formato de compresion de ficheros LAS. Para poder
trabajar con ellos es necesario “descomprimir” estos ficheros (pasarlos a formato .LAS).

Estos archivos estan formados por una serie de cabeceras, donde se encuentra la
metainformacién del fichero, y la parte principal del fichero, donde se encuentran los diferentes
puntos. Cada punto tiene unas coordenadas geograficas, altura, color del punto, entre otra
informacidn menos relevante. A pesar de que cada fichero contiene una gran cantidad de
puntos, en segln qué zonas la densidad de estos puntos no es suficiente para poder representar
con maxima precision el terreno al que pertenece, ademas, el color tampoco es muy preciso.
Con LiDAR se pueden representar ciudades de forma muy precisa (si la densidad de puntos es
suficiente), algo que los archivos MDT no son capaces de hacer, por ello se ha decidido limitar
las zonas de interés del LiDAR a ciudades o alguna zona boscosa.

http://idearagon.aragon.es/

La idea de realizar el proyecto utilizando estos datos siempre ha estado presente, aunque si que
de forma algo diferente. La primera idea era realizar dos tipos de mapas diferentes, uno
utilizando los MDT y PNOA juntos y otro utilizando LiDAR. Al final se ha optado por realizar un
tipo de mapa que incluye los tres, aunque el LiDAR de forma limitada a causa de las
circunstancias especificadas con anterioridad (poca densidad de puntos).

Se considerd en un primer momento elegir una zona mayor para mostrar el resultado del
proyecto; también se planted hacerlo en una zona algo menor. Sin embargo, se llegd a la
conclusién de que un punto intermedio seria lo mejor, como lo es Aragdn (ya que ademas posee
bastante variabilidad en lo que accidentes geograficos se refiere), e incluir un célculo
aproximado del tiempo y espacio que costaria realizarlo para toda Espafia.

Otro aspecto que se llegd a considerar fue el sustituir el renderizado mediante el programa POV-
Ray por renderizado utilizando Three.js[10]. Three.js es una biblioteca JavaScript para crear y
mostrar graficos animados por ordenador en 3D en un navegador Web. Por el momento se
descartd ya que se consigue una mayor calidad de imagen con un sistema como POV-Ray,
basado en ray-tracing, a cambio de un mayor tiempo de renderizado que lo hace inviable para
visualizar datos 3D en tiempo real. Se podria considerar en un futuro sustituir el sistema de
renderizado del proyecto por este.

2.3.1. Proyectos similares

La generacion de mapas teselados en 3 dimensiones no es algo de reciente creacién. Como ya
se sabe, existen varios sistemas muy parecidos que posibilitan el visualizar de forma interactiva
mapas 3D. Quizas, el sistema mas conocido y mas utilizado sea Google Maps[11].

Google Maps es un servidor de aplicaciones de mapas en la web que ofrece mapas desplazables,
asi como fotografias por satélite del mundo, la ruta entre diferentes ubicaciones e incluso
imagenes a pie de calle. Esta claro que al tratarse este proyecto de un sistema de no tanta
envergadura como Google Maps, no posee tantas caracteristicas como el desarrollado por
Google. Aun asi, existen varios puntos en los que el sistema desarrollado es favorable respecto
al de Google:

e Elsistema desarrollado para este proyecto estd basado exclusivamente en datos (y
programas) disponibles libremente, es decir, es posible descargarlos gratis e incluirlos
en el programa.

e Laaplicacién de visualizacion funciona en maquinas muy basicas (mdviles, tablets...)
porque esta aplicacion es bastante simple y su tarea es Unicamente mostrar imagenes
(teselas) o cambiar entre varias capas de imagenes (cambio de punto de vista).

e El disefio arquitectural en forma de pipeline permite sustituir algunos de sus

componentes por soluciones mas interactivas. En un futuro se podria sustituir los

componentes que generan y renderizan la escena de POV-Ray por la generacién de un

fichero en lenguaje JavaScript basado en Three.js.

e Al renderizar de forma offline y posibilitando renderizar zonas concretas (o teselas)

permite aplicar aspectos visuales que renderizados en tiempo real se generan peor. Por

ejemplo, una zona con un lago con unos reflejos perfectamente calculados con ray-

tracing (determinar el aspecto del objeto a partir de trazar rayos desde la cdmara hasta

la escena) o radiosidad (calculo de la iluminacidn global para renderizarlo con un

aspecto lo mas realista posible).

A la hora de especificar los requisitos, se ha optado por diferenciarlos en dos aspectos

diferentes. Un primero con los requisitos del programa a desarrollar (con cddigo RP) y un

segundo con los requisitos de la aplicacion web donde se mostraran los resultados (con cadigo

RC).

2.4.1. Requisitos programa

REQUISITOS FUNCIONALES

RPF-1 La aplicacion debe permitir transformar datos geograficos de fuentes publicas en
mapas teselados.

RPF-2 Los mapas teselados generados deben ofrecer una perspectiva isométrica de la
escena deseada.

RPF-3 La aplicacion debe permitir generar un mapa teselado en vista isométrica a partir
de todos los ficheros disponibles en el sistema.

RPF-4 La aplicaciéon debe permitir generar una vista isométrica de una zona especificada
por el codigo de las teselas de su esquina superior izquierda y su esquina inferior
derecha.

RPF-5 La aplicaciéon debe permitir generar una vista isométrica de una zona especificada
por las coordenadas de su esquina superior izquierda y su esquina inferior derecha.

RPF-6 La aplicacidon debe permitir generar una vista isométrica segun 4 puntos de vista
diferentes (norte, sur, este y oeste).

RPF-7 La aplicaciéon debe permitir generar una vista isométrica desde 2 dangulos
diferentes (302 y 459).

REQUISITOS NO FUNCIONALES

RPNF-1 | La aplicacion es ejecutada desde una terminal Shell.

RPNF-2 | La aplicacion trabaja con coordenadas en ETRS89 / UTM zone 30N.

Figura 1: Requisitos programa

2.4.2. Requisitos aplicacion web

REQUISITOS FUNCIONALES

RCF-1 El cliente web debe soportar mapas teselados.
RCF-2 El cliente web debe mostrar mapas a varios niveles de zoom.
RCF-3 El cliente web debe permitir cambiar el modo de visualizacién del mapa.

REQUISITOS NO FUNCIONALES

RCNF-1 | El cliente debe funcionar en las ultimas versiones de los navegadores Mozilla
Firefox, Google Chrome y Microsoft Edge.

RCNF-2 | Los modos de visualizacién son: norte, sur, este y oeste, por un lado y 302 y 45¢
por otro.

Figura 2: Requisitos aplicacion web

3. DISENO DE LA SOLUCION

A la hora de disefar el software necesario para el programa a desarrollar, dadas las
caracteristicas del proyecto (poca o nula interaccidn con el usuario, transformacién de unos
datos de entrada en otros de salida...) se ha disefiado una arquitectura de flujo de datos, con el
patrdn arquitectural de filtros y tuberias[12]. Esta arquitectura dicta que unos datos de entrada
navegan mediante unas tuberias por diferentes filtros donde se procesan transformandolos en
la salida deseada al final del ultimo filtro. Cada filtro es una entidad independiente sin estado
(no importa que datos/ficheros han pasado con anterioridad, realiza siempre el mismo proceso).

En el sistema desarrollado en el proyecto, cada filtro es representado por un componente
transformador y el programa principal hace de coordinador, obteniendo la salida de un filtro y
pasandoselo al siguiente o a otro proceso. También, es posible una ejecucion parcial a través de
sus moédulos, posibilitando que el cliente pueda utilizar esas funciones de forma ajena al
programa principal, por si le es necesario utilizar algunas de estas para si mismo o sencillamente
para no realizar todo el proceso completo. Aun asi, decir que es posible "activar/desactivar"
algunas de estas funciones para no ser utilizadas siempre. Posteriormente se incidira en estas
opciones.

Como ya se ha comentado con anterioridad, se ha seguido un disefio de flujo de datos. Como se
muestra en el diagrama de la Figura 3, desde el principio se han ido desarrollando una serie de
procesos para transformar los datos de entrada (descargados), en pequefias porciones de
imagenes (teselas) que representan un mapa.

de
CNIG
IDEAragon ﬂf‘h;‘;g\s

Descarga
datos de
interés

X

Usuario

de
ficheros
ortofotos

U0B) _ extensidn
- punto de vista
-angulo
- nivel de zoom
-directorios
-tipo renderizado
- otras opciones..

Generador
archivos .pov

Scriptde [N
POV-Ray

POV-Ray

Imagen
perspectiva
isométrica

(PNG)

ImageMagick

Figura 3: Diagrama procesos del sistema

rutas, resolucian,
extents
de ficheros MDT

MDT.asc
iortofotos.jpg
ILIDAR.LAZ

Transformacidn
inicial

MDT.png
iortofotos.jpg
lortofotos.png
ILIDARLAS

Principalmente, el sistema se puede dividir en cuatro procesos principales diferentes. A su vez
estos procesos principales estan compuestos de otros procesos menores. A pesar de tratarse en
este diagrama un proceso completo del sistema, normalmente la parte izquierda y central se
realiza una sola vez (hasta el momento y si no cambian los datos) y la que se realiza siempre en
cada ejecucion es la parte de la derecha. A continuacién, se extiende esto.

El primer proceso principal del sistema es el de descarga de los datos de entrada. Este proceso
es hasta el momento completamente manual y se incluye la automatizacion del mismo como
trabajo futuro. El proceso consiste en la seleccién de datos interesantes para el proyecto como
lo son los ficheros MDT y LiDAR del repositorio del CNIG (Centro Nacional de Informacidn
Geografica) y las ortofotos provenientes de IDEAragén. Al tratarse de un proceso manual, el
autor del proyecto ha debido buscar en los centros de descargas de estas instituciones los
ficheros correspondientes a la Comunidad de Aragdn y con las caracteristicas que se describen
en la seccién X.X de Tratamiento de datos, y almacenarlos en un disco duro (externo) para ser
posteriormente utilizados por el programa.

El siguiente proceso es el de tratamiento de los datos descargados. Tal y como son descargados
y almacenados los datos de entrada al sistema no pueden ser utilizados, al menos algunos de
ellos. Para poder adaptarlos a las exigencias de las bibliotecas utilizadas y el resultado deseado,
estos datos de entrada han debido pasar por un proceso de transformacion de datos. Este
proceso se puede considerar el primer filtro del sistema. Solo parte de las ortofotos (las que se
encuentran en la proyeccién ETRS 89 / UTM 30N) no han necesitado de este tratamiento de
datos y tal como han sido descargadas son utilizadas en el sistema. Una mayor informacion de
los procesos realizados a cada tipo de fichero se puede encontrar en la secciéon 3.5 de

— Teselas

Tratamiento de datos y en el Anexo B donde se especifican los procesos menores que componen
el filtro principal. Comentar también que en este proceso se generan una serie de ficheros (uno
para cada tipo de fichero, es decir, tres en total) con los metadatos de los ficheros de entrada
del sistema (informacién de ruta del fichero, tamafio, informacién geografica...) que
posteriormente son utilizados para obtener los datos necesarios para renderizar la escena
deseada.

Estos dos primeros procesos pueden ser realizados una Unica vez, ya que tanto los ficheros
descargados, como los transformados y los ficheros de metadatos generados, no van a cambiar
a lo largo del tiempo. Esto permite una mayor eficiencia del programa principal evitando realizar
estos procesos en cada ejecuciéon del sistema. Por el contrario, si se desea afiadir o eliminar
algun dato de entrada (por ejemplo, incluir datos de la Comunidad de Navarra) es necesario
descargar los ficheros correspondientes y volver a realizar estos procesos para mantener una
coherencia entre los ficheros que se poseen, sus homdnimos transformados y los ficheros de
metadatos.

El tercer proceso es quizds el mds importante, se trata de la generacidn del fichero en formato
POV. Se considera este proceso el mas importante o el principal porque su tarea no es solo la de
generar este fichero, sino que tiene que interpretar lo que el usuario le pide y actuar en
consecuencia. Asi pues, se encarga de recibir la informacién que el usuario incluye a la hora de
ejecutar el programa y de contestar a las preguntas que él mismo genera (por ejemplo, ¢desde
qué coordenada desea renderizar?). Esta informacion que incluye datos de la escena como el
punto de vista y angulo de incidencia de la cdmara o sencillamente la extensién de la escena
deseada, ha de ser interpretada por el programa de forma que sea capaz de generar una cadena
de caracteres, de forma que el programa POV-Ray sepa interpretarla, que incluya la definicion
de una cdmara y los objetos heightfield (y esferas) a incluir. Esto se hace incluyendo los ficheros
de entrada que corresponden a la escena pedida por el usuario. Por todo ello se considera el
proceso principal, ya que debe comunicarse con el usuario, consultar los metadatos, incluir los
ficheros de entrada y generar una salida interpretable. Este proceso ha de ser perfecto para que
no se incluyan ficheros de mas o de menos o sencillamente para que la cdmara se encuentre en
la posicidn perfecta y orientada correctamente. Si esto no fuese asi, ejecuciones consecutivas
del programa de zonas adyacentes podrian no casar unas con otras a causa de los errores en
calculos o sencillamente de inclusién de ficheros de entrada transformados. Una vez generada
esta cadena de caracteres, se incluye en un fichero con extensidn .POV que puede ser
interpretado posteriormente por el programa POV-Ray.

Por ultimo, el proceso final del sistema es el encargado de renderizar la escena y teselarla. Este
proceso es quizas a simple vista el mas simple porque se apoya en la utilizacion de dos
programas: POV-Ray para renderizar y ImageMagick[13] para teselar. Una vez el fichero POV ha
sido generado, este es pasado como pardmetro al programa POV-Ray para renderizar la escena
deseada y de forma que muestre el ratio de aspecto deseado (calculado al generar la cdmara).
Tras la ejecucidn de este programa se obtiene una imagen en formato PNG de toda la escena 'y
con resolucién dependiente del nivel de zoom introducido por el usuario. El proceso de teselado
no es tan simple porque ha de calcular a qué teselas corresponde la escena y generarlas
incluyendo en su nombre el codigo correspondiente a su posicidn. Esto es calculado a partir de
una serie de especificaciones de extensidén de Aragdn y de forma que respete el ratio de aspecto

de la escena. Se utiliza el programa ImageMagick, incluido en las distribuciones GNU-Linux, para
partir en pequefios trocitos la imagen que se ha obtenido del renderizado del POV-Ray. Estos
pequefios trocitos son sencillamente pequefias imagenes (teselas) en formato PNG que
mantienen el ratio de aspecto con el que se ha renderizado la escena y que posteriormente son
interpretados en el cliente para “pintar” los mapas en el navegador del usuario.

Estos procesos han sido definidos a alto nivel de forma que no se tienen en cuenta los mddulos
en los que estan repartidos o la forma de implementacién. En los posteriores apartados se
incluye una mayor informacién sobre esto.

main_program

¥

‘ heightfield ‘ ‘ povray_writer

‘ load_info ‘ ‘ read_lidar ‘ ‘ cameralltils ‘ ‘ calculate_tile ‘

png vector_XYZ camera

Figura 4: Diagrama mddulos

Tal y como se ha explicado con anterioridad y como se puede comprobar en el diagrama de
madulos de la Figura 4, main_program es el médulo principal del sistema y el que se comunica
con el resto de los mddulos, hace de coordinador. Algunos de estos también se comunican unos
con otros, pero esto no quiere decir que se produzca un flujo de datos entre ellos, sino que,
hacen uso de alguna funcidn publica que se encuentra en el médulo objetivo. Concretamente
tanto povray_writer como read_lidar utilizan una funcién del mddulo load_info que permite
comprobar si existe una colision (si abarcan ambos una misma area) entre dos rectangulos
definidos por las coordenadas pasadas como parametro. El médulo main_program se encarga
también de ejecutar los programas externos de renderizado y teselado (POV-Ray e
ImageMagick), ademas de la coordinacion entre los resultados que se obtienen a la hora de por
ejemplo calcular las coordenadas limite de una tesela y aportar estos datos al mddulo que se
encarga de generar la cdmara necesaria para representar la escena.

El médulo heightfield se encarga de realizar la transformacion inicial de los MDT, load_info es el
encargado de generar los archivos de metadatos y buscar en ellos los ficheros que se necesitan.
El mdédulo read_lidar se encarga de realizar la transformacion inicial de los objetos LiDAR, de
obtener los puntos que se desean y generar la cadena de caracteres que representa los objetos
esfera del fichero POV. Por su parte, povray_writer se encarga de generar la cadena de

caracteres de los objetos heightfield, la cdmara y la fuente de luz del fichero POV; también, crea
el fichero con extensién POV e incluye tanto estas cadenas de caracteres como la de esferas (si
procede). El mddulo calculate_tile, se utiliza para todas las operaciones relacionadas con el trato
de teselas (cdlculo de teselas necesarias, transformacién de su cédigo en otro...).

Se ha decidido incluir en el diagrama el mddulo png, que como se va a explicar posteriormente,
pertenece a una biblioteca que ha sido descargada. Al tratarse de otro fichero incluido en el
directorio del proyecto y ser importado como el resto de los mddulos se ha decidido darle una
funcién de médulo. Solo es usado por heightfield.

Por ultimo, se incluyen los Unicos dos mdodulos que crean objetos en el sistema (son clases).
Estos objetos son representados por la Figura 5.

VectorXYZ Camera
- float - pos: VectorkYZ
-y float - up: Vectorx¥Z
-Z float - right: VectorxYZ
+ get_x{) - lookAt: VectorXYZ
+ gety() ‘ - aspectRatio: float
+get_z() +get_pos()
+ length() +get_up()
+ narmalizel) + get_right()
+ mult) + get_lookAt()
+toString() + get_aspectRatiof)

+set_aspectRatiof)

+set_cameral)

Figura 5: Diagrama clases

Son las Unicas clases del sistema y estan relacionadas. Los objetos que generan ambas son
utilizados por el modulo cameraUtils, que es el encargado de realizar los célculos necesarios
para obtener una cdmara que aporte a la escena de ese aspecto en 3D con una vista isométrica.
Ademas, el objeto Camera al estar formado por objetos VectorXYZ, explica la relacidon entre
ellos. Se han decidido incluir por limpieza tan solo los métodos utilizados en el sistema, ya que
ambos poseen alguno mas que se desarrollé con antelacion pero que en la versién actual no es
utilizado.

En el Anexo C (Documentacion mddulos) se puede encontrar una especificacion de las
operaciones, y sus parametros, incluidas en cada médulo.

3.4.1. Bibliotecas

Como se ha podido comprobar en el anterior apartado, se han utilizado varios médulos y
bibliotecas de las que se han obtenido alguna funcionalidad necesaria. Dentro de la libreria
estdndar de Python[14], se han incluido algunos mddulos los cuales pueden ser usados
incluyendo la cldusula <<import>> seguido del nombre de los mddulos que se desean en cada
fichero donde van a ser utilizados. Estos son:

e math: médulo que provee acceso a funciones matematicas. Es importado en los
siguientes moadulos: <<read_lidar>>, <<calculate_tile>>, <<cameraUtils>>,
<<vector_XYZ>>.

e 0s: mddulo que provee acceso a funcionalidad dependiente del sistema operativo como
la navegacion por los distintos ficheros de un directorio. Es importado en los siguientes
modulos: <<main_program>>, <<read_lidar>>, <<povray_writer>>,

e random: médulo que genera nimeros pseudo-aleatorios. Es importado en los siguientes
modulos: <<read_lidar>>.

e sys: mddulo que provee acceso a algunas variables y funciones que interactuan con el
intérprete de comandos. Es importado en los siguientes mdédulos: <<heightfield>>.

e argparse: médulo que permite escribir cédigo para generar interfaces de usuario de
linea de comandos de forma sencilla. Es importado en los siguientes mddulos:
<<main_program>>.

e time: mddulo que provee de varias funciones relacionadas con el tiempo del sistema. Es
importado en los siguientes médulos: <<main_program>>.

Por otra parte, el mddulo doctest, incluido también en la libreria estandar de Python, ha sido
utilizado para realizar pruebas unitarias sobre el cédigo. Serd explicado con mas atencién
posteriormente, en la seccién 5.3.1 de pruebas unitarias.

Ademas de estos mdédulos, han sido necesarios otros no pertenecientes a la libreria estandar de
Python. <<PyPNG>>[15] es uno de ellos. Este mddulo permite leer y escribir imagenes en
formato PNG y estd escrito todo en el lenguaje de programacién Python. Por ello, se ha
descargado e incluido en el proyecto como si de un médulo propio se tratase. No ha sido
editado. Es utilizado en el médulo <<heighfield>>.

El resto de moédulos utilizados han sido incluidos utilizando la herramienta PIP[16]. PIP es un
sistema de gestidon de paquetes utilizado para instalar y administrar paquetes de software
escritos en Python. Estos mddulos han de ser descargados mediante esta herramienta y
posteriormente importados en cada fichero Python en el que se va a utilizar. Estos médulos son:

e numpy[17]: médulo que agrega un gran soporte para operar con matrices y vectores. Es
importado en los siguientes médulos: <<load_info>>, <<read_lidar>>.

o Jaspy[18]: mddulo que permite leer, modificar y crear ficheros LiDAR con formato LAS.
Es importado en los siguientes mddulos: <<load_info>>, <<read_lidar>>.

e PIL[19]: mddulo que anade funcionalidades de procesado de imagenes. Es importado
en los siguientes modulos: <<load_info>>, <<povray_writer>>.

3.4.2. Programas

El programa que ha sido absolutamente necesario para el desarrollo de este proyecto, ya que
ha sido utilizado en todo momento, ha sido Sublime Text[20]. Sublime Text es un editor de texto
y cddigo que puede ser configurado de forma que resalte palabras reservadas de Python o
incluso tabule correctamente, ademas de proporcionar otras funcionalidades interesantes como
la busqueda de palabras. Ha sido utilizado tanto para el desarrollo del cédigo del programa,
como para visualizar el interior de alguno de los ficheros de entrada y de salida (ficheros POV).

Otro programa muy usado ha sido POV-Ray. POV-Ray es un programa de ray-tracing. Ha sido
utilizado para renderizar las escenas descritas en los ficheros con extensién .POV. En estos
ficheros se han de especificar desde la posicion de la cdmara, a los objetos a crear, pasando por
la fuente de luz.

ImageMagick, un conjunto de utilidades de linea de comandos para manipular imagenes ha sido
utilizada en varios aspectos. Quizas, el mas importante, para teselar (partir en pequefios trozos)
la escena renderizada a partir del fichero .POV. También se ha utilizado en algunos aspectos
menores en el tratamiento de los datos de entrada.

Para reproyectar los datos de entrada (se explica mas adelante) ha sido necesario el programa
GDAL Warp[21].

Laszip[22] es un programa que se ha utilizado para transformar (descomprimir) los ficheros
LiDAR en formato LAZ a fichero en formato LAS que pueden ser leidos.

Evidentemente también ha sido necesario el intérprete de Python y un navegador con el que se
han descargado los datos de entrada y se ha visualizado el resultado del proyecto.

Para los datos de entrada ha sido necesario realizar algun tratamiento con ellos, ya sea durante
la ejecucion del programa (mediante los filtros) o de forma aparte sin ser ejecutado el programa.
A continuacion, se especifica que se ha tenido que realizar con cada tipo de fichero.

3.5.1. Modelo digital del terreno (MDT)

Como ya se ha explicado con anterioridad en este documento, estos archivos vienen en formato
.ASC que el programa POV-Ray no soporta. Para ello se ha tratado de transformar estos ficheros
ASCIl en imagenes con formato PNG. Como ya se ha comentado, esta transformacion se realiza
durante la ejecucion del programa si se incluye la opcidn necesaria para ello.

A partir de los valores que se obtienen del fichero y la altura limite establecida a la hora de
ejecutar el programa (por defecto 2200), se da un valor desde 0 a 65535, que es el valor maximo

para imagenes PNG en escala de grises de 16 bits, al pixel correspondiente. Una vez se tiene la
matriz con todos los valores de los pixeles, se genera la imagen PNG utilizando la biblioteca de
Python PyPNG. Ademas, los datos de cabecera donde se especifican las coordenadas del MDT y
su escala se vuelcan en un fichero de texto con el mismo nombre. Posteriormente, este fichero
de texto es utilizado en el proceso de carga de informacién para incluir los datos contenidos en
él en el fichero de texto con los datos de todos los MDTs.

Los ficheros MDT en formato PNG son utilizados por el programa POV-Ray para generar los
objetos heightfield, los cuales dotan de volumen a la escena. POV-Ray es capaz de transformar
estas imdgenes en un objeto tridimensional utilizando como altura (tercera dimensidn, las otras
dos son el ancho y el largo) el valor de cada pixel. Asi un pixel mas claro representa mayor altura
y uno mds oscuro una altura menor.

3.5.2. Ortofotos

Para algunas de las ortofotos ha sido necesario un tratamiento fuera de la ejecucion del
programa. Esto es a causa de que algunas de ellas (las mas al este) se encontraban en una
proyeccion diferente a la utilizada en el resto de ficheros. Por ello ha sido necesario utilizar el
programa GDAL Warp para reproyectar estas ortofotos a la proyecciéon deseada. A partir de la
imagen JPG y el fichero JGW donde se encuentra la informacion geografica, utilizando este
programa se genera una nueva imagen en formato TIF y un nuevo fichero con informacién
geografica en formato TFW. La instruccidn necesaria para realizar esto ha sido:

gdalwarp -s_srs EPSG:25831 -t_srs EPSG:25830 -of GTiff -dstalpha -co
“TFW=YES” in.jpg out.tif

Al reproyectar, la imagen es rotada para adecuarla a la nueva proyeccién y por ello es necesario
utilizar un formato que permita que zonas sin datos sean transparentes (cosa que JPG no puede).
A pesar de que POV-Ray soporta ficheros con formato TIF, estos no daban el resultado esperado
(habia una variacion en los colores originales de la ortofoto) asi que ha sido necesario convertir
esta imagen de formato TIF a formato PNG que también soporta zonas transparentes. El fichero
TFW es similar al JGW y tan solo se modifica su formato (cambidandolo manualmente) a JGW
para adecuarlo a nuestro programa.

A la hora de afiadir las ortofotos necesarias al fichero POV, no cambia nada ya que en el fichero
de datos de las ortofotos se incluye el nombre del directorio y no el formato de la imagen. Son
afiadidos a la textura de su objeto heighfield correspondiente. El programa soporta tanto JPGs
como PNGs.

3.5.3. LIiDAR

Se ha creado un fichero de texto (areas_interest.txt) donde se han especificado zonas de interés
donde se pueda usar los ficheros LiDAR. En casi todas las zonas se ha optado por no utilizar LIiDAR

ya que se considera que con los heightfields creados a partir de los MDT y ortofotos es suficiente,
ya que aportan a la escena el volumen suficiente para dotar esa apariencia 3D. En otras zonas
(como las ciudades), los MDT no son capaces de otorgar ese volumen que, con los datos LiDAR
si es posible.

Para leer estos ficheros en formato LAZ es necesario primero descomprimirlos (pasarlos a
formato LAS) lo cual se realiza durante la ejecucion normal del programa. Una vez
descomprimidos, se comprueba que los datos estén dentro de nuestras zonas de interés y si es
asi, se genera un objeto esfera para cada dato utilizando sus valores geograficos y de color. La
conjuncién de estas esferas son las que al ser renderizadas utilizando el programa POV-Ray
generan objetos (edificios, bosques...) muy precisos en lo que altura se refiere.

No todas las esferas son renderizadas (se toman un tercio de todas las que estan dentro de
nuestra zona de interés) ya que la inclusion de demasiadas en seguin qué zonas solo hace que
distorsionar la imagen y no queda tan bien. A pesar de ello, en otras zonas, los ficheros no
poseen la suficiente densidad de puntos, lo que hace que, aunque se rendericen todas las
esferas resultantes, no dan de forma clara volumen a la zona, quedando una escena con muchas
esferas, pero no las suficientes para representar con precisién la zona. Se ha intentado minimizar
esto ultimo lo maximo posible ajustando las zonas de interés.

Estos objetos esferas se afiaden al fichero POV como si de otro objeto de la escena (heightfield)
se tratase.

Para mostrar los mapas obtenidos una vez ya teselados se ha disefiado un visualizador simple
siguiendo el patron cliente/servidor. Como se puede ver en la Figura 6, el sistema disefiado es
bastante sencillo donde en la maquina servidor se encuentran las teselas y el servidor web
desplegado a partir del médulo de Python <<HTTPServer>>[23]. Este mdédulo es suficiente para
desplegar el servidor que necesitamos para mostrar las teselas.

Al tratarse de un cliente sencillo, se ha optado por incluir todo lo relacionado con la vista en un
solo fichero (<<index.html>>). En este fichero estan definidos todos los parametros necesarios
para mostrar los mapas, no sin antes realizar una comunicacién con el servidor donde se
encuentran los ficheros necesarios para hacer funcionar Openlayers[24] en el cliente.
Openlayers es una biblioteca JavaScript que permite mostrar mapas interactivos en los
navegadores web. Al definir en el fichero <<index.html>> diferentes capas para la zona a
mostrar, la biblioteca de OpenlLayers[25] se encarga de tomar las teselas necesarias que se han
de mostrar en el cliente. Ademads, ofrece una serie de controles para el nivel de zoom y la capa
que se desea que se muestre. Mediante una conexidon HTTP la maquina cliente se comunica con
la maquina donde se encuentran las teselas y obtiene las que son necesarias en ese momento.

PC Servidor

Servidorweb |- .

HTTPSenver 3 | Teselas (PNG)
(Python module)

Servidor Openlayers
HTTP
oljs &
Cliente
HTTP MNavegador
ol.css index.html

Figura 6: Diagrama despliegue visualizador

La estructura que se ha seguido para almacenar las teselas ha sido por directorios. Asi, en el
directorio donde se encuentra el fichero HTML, se incluyen un directorio mds por punto de vista
segun el dngulo (es decir, dos directorios mas 45 y 30). Dentro de estos directorios se encuentran
cuatro directorios adicionales, uno para cada punto de vista segln la direccién (N, S, Ey W) y
dentro de estos uno para cada nivel de zoom generado (7, 8, 9...). Dentro de estos ultimos se
encuentran las teselas con una estructura de nombre de “map_x_y.png”, donde X e Y son los
codigos de la tesela segun su posicidn respecto al eje X y al Y respectivamente. Por ejemplo, la
tesela mas al sureste (la ultima, la de mas abajo a la derecha) para un nivel de zoom de 7 tendra
un nombre igual a “map_127_127.png”.

La maquina encargada de conectarse al servidor (mdaquina cliente) solo necesita de cualquier
navegador para acceder a la web y poder interaccionar con ella para mostrar la zona del mapa
de Aragdn que desee y a varios niveles de zoom.

4. IMPLEMENTACION

Dada la cantidad de bibliotecas libres que dispone y de tratarse de un lenguaje adecuado para
la manipulacién de datos y la automatizacién de procesos, se ha decidido que el cddigo se
desarrolle en el lenguaje de programacion Python en su version 3.

Se ha decidido dividir el cédigo desarrollado segun las funciones que realizan, por ello, cada
funcionalidad altamente diferenciadora es representada por un fichero Python diferente (salvo
el renderizador y teselado que se encuentran en el fichero del programa principal) de esta forma
se dota al sistema de un disefio mas modular y claro para el desarrollador. El programa principal
hace de coordinador entre funciones del resto de ficheros y por lo tanto también entre filtros,
salvo en los dos casos comentados. Se ha considerado que al tratarse de las dos funciones clave
del sistema (al fin y al cabo, el fin es renderizar mapas y teselarlos), tanto la funcion de
renderizado como el teselado deben permanecer al fichero principal. Ademas, estas funciones
se “nutren” de ejecutar otros programas (POV-Ray en el caso del renderizado, ImageMagick en
el caso del teselado), su funcion principal sigue siendo la de hacer de tuberia entre los datos
obtenidos del resto de filtros y el programa que renderiza/tesela.

Un aspecto interesante del sistema es el cdmo se ha calculado la posicién de la cdmara que se
incluye en el fichero POV, que posteriormente es renderizado por el programa POV-Ray, y que
da esa sensacidon de perspectiva. Antes, hay que explicar que pardmetros de la camara posee
este programa y cémo deben utilizarse para calcular la posicidon de esta. A continuacidn, se
presenta una imagen (Figura 7) descargada directamente de la documentacion de POV-Ray[26]
para apoyar las explicaciones.

jUP

image plane —__ look_at

+0.5 9

\\\\\\\ right

Figura 7: Elementos de la cdmara en POV-Ray

location

El tipo de la cdmara siempre va a ser ortogréfica (orthographic en POV-Ray). Este tipo de camara
utiliza rayos paralelos para crear la escena y utiliza los vectores <<right>> y <<up>> para
determinar el drea que se va a visualizar. <<location>> y <<look_at>> son especificados para
determinar la posicion de la cdmara. El vector <<location>> es donde se sitla la cdmara vy el
vector <<look_at>> es el punto hacia donde debe estar orientada la camara. Los demads
pardmetros (<<angle>>y <<direction>>) no son utilizados en este tipo de camara.

Segun la direccidn de vista de la escena (norte, sur, este u oeste), una serie de datos se aplican
de una forma u otra[27]. Estos datos son: el ancho de la escena (max coordenada X — min
coordenada X), el largo de la escena (max coordenada Y — min coordenada Y) y un valor offset
(calculado como el valor de la altura de la cdmara sin contar la altura del lookAt (10.000), dividido
para el valor de la tangente del angulo especificado a la hora de ejecutar el programa). Este
offset y el valor de look_at es el que da a la escena una vista con algo de dangulo (perspectiva) y
no perpendicular a la escena. Para especificar la primera y tercera coordenada de <<location>>,
se toman las coordenadas X e Y respectivamente del centro de la escena a renderizar y se aplica
el offset comentado con anterioridad, restdndoselo a la tercera coordenada, en caso de estar
en modo norte; sumandoselo a la tercera coordenada, en caso de estar en modo sur;
restandoselo a la primera coordenada, en caso de estar en modo este; y sumandoselo a la
primera coordenada, en caso de estar en modo oeste. La segunda coordenada es siempre la
misma y se especifica como la altura de la cdmara, contando la altura del lookAt, (11.200 en
total).

El vector <<lookAt>>, que siempre debe ser colocado en ultima posicion en la definicidn de la
camara para que posteriores inclusiones no puedan modificarlo, toma como primera y tercera
coordenadas el centro de la escena, y como segunda coordenada la altura la especificada con
anterioridad (1.200).

Para el vector <<right>> solo se incluye la primera coordenada (el resto 0) y esta primera
coordenada es igual al ancho de la escena, en caso de estar en modo norte o sur; o igual al largo
de la escena, en caso de estar en modo este u oeste.

Se incluye un vector inicial <<up>> con la primera coordenada igual a 0, la segunda igual a la
tangente del angulo y la tercera igual a 1. Posteriormente, este vector es normalizado,
multiplicado por el largo de la escena, en caso de estar en modo norte o sur; o multiplicado por
el ancho, en caso de estar en modo este u oeste y por ultimo multiplicado por el seno del angulo
de la escena.

Estos son los valores que se incluyen en el objeto camera en el fichero POV aunque también es
utilizado un dltimo valor que ya ha sido comentado, el ratio de aspecto, calculado como el
ancho, en caso de estar en modo norte o sur; o el largo, en caso de estar en modo este u oeste,
dividido para la longitud del vector <<up>>. Este ratio de aspecto es utilizado posteriormente
para renderizar la escena.

Ademas de esto, no se incluye nada especial en el codigo desarrollado, ya que el proyecto posee
mucho mas trabajo en tratamiento de datos, que en algoritmos especiales o complicados.

A lo largo del desarrollo del proyecto han ido sucediendo varios problemas. A continuacidn, se
comentan los mas importantes.

Quizds, el mayor problema encontrado durante el desarrollo del proyecto, y que aun sigue
presente, es la cantidad de datos de entrada que hay para representar todo Aragdn y que a
causa de la cantidad de datos y la gran calidad que poseen, hace que los ficheros sean muy
grandes y ya no solo por el espacio que ocupan, sino que, a la hora de renderizar, el programa
POV-Ray necesite de una gran cantidad de memoria. Esto hace que el proceso de renderizado
se ralentice muchisimo. Estos datos de espacio y tiempo de renderizado serdn comentados en
el siguiente apartado (seccion 4.3 de Medidas de prestaciones).

Al inicio del proyecto, el primer problema “gordo” que hubo, ademas de generar una cdmara en
una posicion y con una vista que proporcionase una visién isométrica de la escena, fue al pasar
de renderizar una zona pequefa (incluyendo solo una ortofoto) a otra mas grande. El poder
incluir varios heightfield y varias ortofotos fue facilmente solucionable, pero a la hora de unir
dos zonas renderizadas, tedricamente adyacentes, las dos imdgenes no casaban bien. Al estar
creados en exceso (dos ficheros de zonas adyacentes comparten una pequefia area), tanto MDTs
como ortofotos, el unir dos imdgenes ya renderizadas se convertia en una ardua tarea al intentar
calcular cudnto exceso tenia cada imagen para recortarla y casase correctamente con la otra
imagen. Esto se soluciond creando escenas a renderizar a partir de las coordenadas de dos
esquinas. Se incluian todos los objetos heightfield (con sus ortofotos) en la escena (a pesar de
que podia haber partes que no se veian a causa de posicidn de la cdmara) y se renderizaba de
forma que la cdmara en su posicién limitaba la escena al rectangulo formado por las dos
esquinas. Si se queria la zona adyacente, se debia introducir coordenadas de aquella zona
adyacente (por ejemplo, si para el eje X se habia renderizado de la coordenada 2 ala 5y se
queria la zona al este de la anterior, la minima coordenada para el eje X debia ser 5), y si
posteriormente se queria unir con la imagen renderizada con anterioridad, ahora casaban
correctamente (siempre y cuando las coordenadas estuviesen bien especificadas). Esta solucion
sigue utilizdndose como la ejecuciéon normal del programa (sin opcién teselas o todo). El dltimo
quebradero de cabeza que hubo relacionado con esto fue que a pesar de que imagenes de
renderizaciones diferentes casaban bien en cuanto a zona, aun asi, el aspecto (sombras, color...)
era bastante diferente. Esto era a causa de que para cada escena a renderizar se generaba una
fuente de luz diferente y proyectaba las sombras incorrectamente. Simplemente se solucioné
incluyendo en todas las escenas la misma fuente de luz, posicionada al noreste de Aragény a
una altura considerable.

Otro problema, o mas que problema seria eleccion, con el que hubo que lidiar fue con especificar
la exageracion vertical, esto es, el valor con el que se escala la altura del objeto heightfield
generado a partir de un fichero MDT. Este valor se suele exagerar en estos sistemas para que se
diferencien bien las alturas y uno de los problemas era encontrar ese valor que aportase esta
exageracion sin ser excesivo. En la Figura 8 se pueden observar los resultados de dos valores
menores al utilizado actualmente. En la Figura 9, por el contrario, se observa el resultado para
un valor mayor al actual.

4. IMPLEMENTACION

Figura 8: Zona montafiosa con exageracion vertical de 2000 (izquierda) y 3000 (derecha)

Esto se tested en varias zonas y al final se optd por un valor de exageracion vertical de 4000 ya
gue se considerd que menor valor no era suficiente y mayor era demasiado, originando un
aspecto ideal con el valor de 4000. En la Figura X en la seccion X (Resultados) se puede observar
un ejemplo de la misma zona para un valor de exageracion vertical de 4000.

Figura 9: Zona montafosa con exageracion vertical de 5000

El siguiente problema importante que hubo que solventar fue el esquema de teselado que se
iba a seguir. Principalmente, se iba a seguir el esquema de nombrado que utiliza
OpenStreetMaps[28], pero a causa de que las teselas generadas por el programa no son
cuadradas (para dar esa sensacién de perspectiva, se debe respetar el ratio de aspecto de la
escena) o las teselas se modificaban (perdiendo su ratio de aspecto y por lo tanto la sensacién
de perspectiva) o era complicado renderizar zonas adyacentes a causa de que se producian
saltos de nombre (se pasaba por ejemplo de la tesela 5 a la 8) ocasionando zonas sin teselas
entre ambas. Tras varios intentos de trabajar con este esquema, se descarté definitivamente y
se decidid crear un sistema propio de nombrado para las teselas. Se generd una extension limite
cuadrada, que incluyese todo Aragon, para generar las teselas, pero en el cliente que se encarga
de mostrarlas, hubo que acortar esta extensién limite por una dimensidn, para que se respetase
el ratio de aspecto y las teselas siguiesen dando sensacion de perspectiva, ademas de especificar
el tamafio de estas. Relacionado con esto, hubo que afiadir modificaciones al programa para
que renderizase siempre teselas completas (aunque las coordenadas partiesen una por la
mitad), para evitar problemas de continuidad y que, por ejemplo, la tesela 5 se correspondiese
alamisma zona; y también se renderizasen el mismo nimero de teselas tanto para el eje X como
para el Y, asi evitar que escenas a generar mas anchas que largas, modificase el ratio de aspecto.

19

Al tratar con los datos LiDAR hubo también algunos problemas con los que tratar. El principal
era el como representar los puntos que eran interesantes. Actualmente, se utilizan objetos
esfera que tienen volumen, y la unidén de muchos de estos objetos son los que aportan a la
escena de volumen y sensacidn 3D (en zonas urbanas principalmente), pero anteriormente se
probaron otras soluciones. La idea principal al empezar a trabajar con estos datos era utilizar
splats, es decir, elipses (discos), pero solo aquellos que estuviesen apuntando a la cdmara, de
esta forma se podia conseguir dotar a la escena de volumen utilizando muchos menos objetos
y por lo tanto de manera mas eficiente. Esta orientacién se podia comprobar calculando el
vector normal de un punto a partir de los vectores a dos puntos cercanos y no colineales. A partir
del vector de orientacidon de la cdmara y estos vectores normales de cada punto se podia
comprobar si estos puntos se veian (orientados hacia la cdmara) o por contra no se debian ver
(de espaldas a la camara). Como se puede ver en la Figura 10, no se consiguieron resultados que
mejorasen al que se podia conseguir con esferas en lo que aspecto se refiere ni siquiera
probando varias combinaciones diferentes de opciones con los splats (diferente tamafio, incluir
aquellos casi perpendiculares a la orientacion de la cdmara...). Quizds, con mayor tiempo para
realizar calculos y procesamiento sobre estos puntos se podia haber conseguido un mejor
resultado, pero como objetivo de este proyecto no se contaba con realizar tanto procesamiento
sobre estos datos, por eso se eligio utilizar esferas a costa de una peor eficiencia a la hora de
renderizar.

Figura 10: Zona urbana con puntos LiDAR en forma de discos (sin heightfields)

De esta forma no se generaban escenas con suficiente densidad de puntos y en las zonas en las
qgue habia mayor densidad, la forma de estos objetos no quedaba excesivamente bien. En la
Figura 21 en la Seccién 5.1 de resultados se puede ver la solucidn por la que se ha optado (con
objetos esfera).

El siguiente problema se encontrd al renderizar sobre todo zonas altas y préximas a cambios de
heightfields. En la parte de debajo de la escena se renderizaba una zona negra. Esto era a causa
de que la zona que en teoria queda fuera de la zona a renderizar, al ser tan alta, se interponia
entre la cdmara y la escena, generando esa zona negra. Se soluciond incluyendo heightfields

adyacentes mediante una inclusidn al fichero POV de objetos en exceso, aunque no fuesen a ser
mostrados en la escena final.

El Ultimo problema por comentar se produjo cuando hubo que renderizar todo Aragdn. Algunas
de las ortofotos mas al estaban disponibles en una proyeccion diferente al resto. La solucion a
esto ya ha sido comentada con anterioridad.

Ha habido mds problemas durante la realizacion de este proyecto, pero se han incluido solo los
que se han considerado mayores, ya sea por el tiempo que costd solucionarlos (si han sido
solucionados) o por la situacidn critica que causaban.

Como se ha comentado, existe una gran cantidad de datos de entrada para renderizar Aragén.
Esto ralentiza mucho el renderizar todo el mapa en sus diferentes puntos de vista y niveles de
zoom. A continuacidn, se presenta la cantidad de ficheros y el espacio que ocupan de cada tipo
de fichero utilizado por el programa.

Para generar los objetos heightfield de todo Aragdn, se han descargado: 125 ficheros MDT (con
formato ASC) que ocupan 20,2 GB, que al ser transformados en imagenes (con formato PNG)
ocupan 3,84 GB adicionales; 1743 ficheros ortofotos (incluyendo en cada uno foto y fichero con
informacidn geografica) que ocupan 260 GB; y, por ultimo, 28 (solo se han descargado los que
se incluyesen en zonas de interés) archivos LiDAR (con formato LAZ) que ocupan 0,5 GB. Es decir,
un total cercano a 300 GB de datos de entrada. De aqui se puede extraer el por qué lleva tanto
tiempo renderizar todo el mapa, mads aun, si hay que hacerlo para diferentes puntos de vista.

Para toda Espafa, contando las islas y las ciudades auténomas de Ceuta y Melilla,
aproximadamente habria que generar cerca de 1.800 objetos heightfield, es decir, 14,4 veces
Aragén. Esto traducido en espacio ocupado serian 4.176 GB (mas de 4 TB) de informacién de los
objetos heightfield y sin contar los ficheros LIDAR que serian necesarios. Haria falta una gran
base de datos para almacenar todo esto (que evidentemente no entra dentro de los objetivos
de este proyecto) y también los resultados generados.

Como se puede ver en la tabla de la Figura 11, todo Aragdn renderizado para solo un punto de
vista y un nivel de zoom (concretamente nivel de zoom 9 con una resoluciéon de 4,5 metros por
pixel) genera un total de 49.432 teselas que ocupan cerca de 3,5 GB. Un nivel de zoom mayor
equivale a el doble de teselas para cada dimensidon (cada tesela abarca la mitad del territorio),
es decir, el nUmero de teselas es cuatro veces mayor y por lo tanto ocupa cuatro veces masy un
nivel de zoom menor cuatro veces menos, es decir, que para un punto de vista (por ejemplo,
norte y 452) y niveles de zoom de 5 a 12 se genera un numero de teselas cercano a 4.220.000
ocupando aproximadamente 291 GB. Si esto lo multiplicamos por cuatro puntos cardinales y por
dos angulos diferentes (452 y 302), es decir, por 8 puntos de vista diferentes, da un total de
33.760.000 teselas y 2.400 GB (2,4 TB) que sumados a los datos de entrada daria una cifra
cercanaalos 3 TB (2,7 TB). Para calcular lo que ocuparia todo Espafia, seria necesario multiplicar
estas cifras por 14,4 (Espafia segln el nimero de ficheros de entrada es 14,4 veces mayor), 34,56
TB de teselas en total seria el espacio necesario para mostrar teselado todo Espafia, 38 TB
contando los datos de entrada.

4. |IMPLEMENTACION

Nivel de Resolucidon N2 teselas Tamafio total
zoom (m/pixel) (GB)

5 72 324 0,014

6 36 1.225 0,0556

7 18 4,761 0,218

8 9 12.358 0,859

9 4,5 49.432 3,41

10 2,25 197.728 13,64

11 1,125 790.912 54,56

12 0,5625 3.163.648 218,24

Figura 11: Tabla con datos de las teselas para todo Aragon

El tiempo de renderizado también ha sido muy alto, dadas también las caracteristicas de la
magquina con la que se ha renderizado (un portatil con 4 GB de RAM y procesador de dos nucleos
(i3) a 2.40 GHz), donde aproximadamente renderizar todo Aragdn para solo un punto de vista y
a nivel de zoom de 9 es necesario del orden de cinco dias y medio para renderizar todo. En la
Figura 12 se puede ver una evolucion del tiempo que tarda renderizar segun el nivel de zoom.

28

26
24 /

22 /
20 /

Tiempo (dias)
=

s 2 A0) vl
Mivel de zoom

Figura 12: Grdfica del tiempo (dias) que se tarda en renderizar todo Aragon segun nivel de zoom

Un renderizado a nivel de zoom de 12, para posteriormente generar las teselas de zooms
anteriores y no tener que renderizar varias veces, tardaria aproximadamente unos 25 dias para
solo un punto de vista, es decir para renderizar todo Aragdén en todos sus puntos de vista (con
la maquina actual) tardaria un total (aproximadamente) de 200 dias, es decir, unos 6 meses y
medio. Para toda Espafia, cerca de 8 afios como se puede ver en el grafico de barras de la Figura
13.

22

4. |IMPLEMENTACION

Tiempo (meses)
8

. N |
° PR ® ®
o ™ .

0%
o b ¢
pae® o mﬁn‘ waﬁ*

Figura 13: Grdfica barras con el Tiempo (meses) en renderizar segun la extension y puntos de vista

Para solo un punto de vista la barra casi no se ve, pero al tratar con una magnitud de meses, al
ver sobretodo la barra de Espafia, se puede comprobar como creceria en tiempo el renderizar
toda Espafia.

A partir de todas estas cifras, se puede comprobar la magnitud del proyecto realizado vy la
magnitud que puede llegar a tener hacerlo para toda Espafia. Estas cifras tan poco eficientes y
de dimensién tan alta para un ordenador personal como con el que se ha realizado este
proyecto, hace que no se pueda incluir un mapa de Aragén para todos los puntos de vista
posibles. Minimo seria necesario una maquina con bastante mas recursos (principalmente
RAM), que fuese capaz de renderizar los resultados de forma mucho mds rdpida y que ademas
fuese capaz de almacenar todos los resultados obtenidos. Por ello, se ha decidido realizar dos
clientes diferentes, uno local donde se incluye todo Aragdn para dos puntos de vista (452Norte
y 459Sur) y tres niveles de zoom; y un cliente disponible online con una zona mucho mas
pequefia, pero con todos los puntos de vista disponibles.

A pesar de estas cifras, el proceso es muy facilmente paralelizable. Gracias a las diferentes
opciones de renderizado que ofrece la aplicacién, pueden estar varias maquinas al mismo
tiempo renderizando escenas, lo que hace que el tiempo de renderizado disminuya mucho, mas
si estas maquinas son mejores que con la que se ha trabajado. Suponiendo que hay 444
columnas de teselas para solo un punto de vista y se poseen cuatro maquinas diferentes, cada
magquina podria encargarse de 111 columnas de teselas (la primera de la 1 a la 110, la segunda
dela1l1ala221...) paralelizando el renderizado de un solo punto de vista y reduciendo 4 veces
el tiempo necesario. Otra opcidn seria que cada maquina trabajase con un punto de vista
diferente (la primera 45-N, la segunda 30-S...).

23

4. |IMPLEMENTACION

Podrian buscarse mayores formas de reducir el tiempo renderizado como afinando aun mas el
numero de objetos heightfield que se pueden renderizar en cada escena, renderizando zonas
mas grandes o mas pequefias, no incluir LiDAR nunca... Para mejorar las prestaciones en caso
de tratar con datos que cubrieran un mayor terreno seria necesario realizar un anlisis, y
actualizarlo periddicamente, de que soluciones hardware serian éptimas, o que alternativas
software para el renderizado podrian mejorar las prestaciones.

5.RESULTADOS Y PRUEBAS

5.1. RESULTADOS

A continuacidn, se presentan algunos de los resultados obtenidos en ejecuciones del programa.
Primero, se muestran algunas imagenes de los procesos intermedios antes de los mapas finales.
En la Figura 14 se puede comprobar el aspecto de un MDT transformado en imagen con formato
PNG para que posteriormente pueda ser leido por el programa POV-Ray.

Figura 14: MDT en formato PNG

Las zonas mas blancas corresponden a zonas mas altas, asi pues, esas lineas negras que se
atisban en la imagen corresponden seguramente a rios o pequefios valles donde la altura del
terreno es menor.

La siguiente imagen corresponde a una ortofoto la cual ha sido necesaria una reproyeccion para
adaptarla a la proyeccion que se usa en el proyecto. Como se puede comprobar en las 4
esquinas, existen zonas representadas por una trama a cuadrados grises. Estas zonas se han

24

5. RESULTADOS Y PRUEBAS

generado al rotar la imagen para adaptarla a la proyeccion y representan zonas transparentes,
para que, posteriormente, se adapten correctamente con el resto de ortofotos y no genere
zonas negras.

e

Figura 15: Ortofoto reproyectada con zonas transparentes

En la Figura 16 se puede ver un ejemplo de ejecucidn, en la que simplemente se va escribiendo
que teselas se estan renderizando y a que coordenadas corresponde y los procesos por los que
pasa el programa (identificacién tesela, lectura LiDAR y generacion de esferas, creacién del
fichero POV, renderizado y teselado).

Figura 16: Ejemplo ejecucion programa

Solo se ha decidido incluir en este apartado una pequefia muestra de uno de los ficheros que se
generan cuando se carga la informacién de los datos de entrada. Concretamente, la Figura 17
corresponde a un pequefio pedazo del fichero “orto_data.txt” encargado de almacenar la
informacién de las ortofotos disponibles para el sistema.

25

0A_MDTO5_ ETRS89

TR589

TR589

5_ETRS89

TR589

TR589

TR589

TRS89_H) E L) L A TR589
: TR589
TR589

TR589

TR589

5_ETRS89

TR589

TR589

TR589

5_ETRS89

Figura 17: orto_data.txt

Se muestra para cada fichero: MDT al que pertenece, ruta, tamafio pixel para ejes X e Y (dos
valores), coordenadas de su esquina superior izquierda (dos valores) y tamafio de laimagen (dos
valores). Algunos ficheros, como los primeros tienen valores de coordenadas y tamafio de pixel
con mayor numero de decimal, estos son los que han sido reproyectados y son los valores que
dan sin manipular tras su reproyeccién.

A continuacién, se muestran ya datos finales (renderizados e incluso teselados). Una tesela en
nivel de zoom 8 que muestra una escena algo montafosa tiene este aspecto.

Figura 18: Tesela zoom 8 zona algo montafiosa

Como se aprecia en la imagen, esta tesela, que abarca una zona de 2,3x2,3 km, ofrece una zona
algo montafiosa con la que se es capaz de visualizar el aspecto 3D que posee. La Figura 19
representa una zona de mayor extension donde se puede comprobar lo anterior en una zona
mas grande y con la diferencia que hay entre una zona mas llana (el lago) y zonas mas altas
(montafias).

26

5. RESULTADOS Y PRUEBAS

Figura 19: Zona montafiosa (45-N)

Zonas urbanas, como la de la Figura 20, se ven casi llanas pues a pesar de tener muchos cambios
de altura (los edificios), estos nos son relevantes (no es tan alto un edificio como lo puede ser
una montafia) y los MDT, como su propio nombre indica, realiza un modelado del terreno. En la
Figura 21, esta representada la misma zona, pero esta vez incluyendo las esferas generadas a
partir de los ficheros LIDAR. Como se puede comprobar, gracias a estas esferas, la sensacion de
volumen en las ciudades aumenta. A cambio, el color de estas esferas y el color de las ortofotos
no coinciden, y se generan esferas que no aportan demasiado a la escena, sino que mas bien
estorban.

Figura 21: Zona urbana con LiDAR

27

5. RESULTADOS Y PRUEBAS

Se ha intentado ajustar lo maximo posible las esferas que se renderizan evitando estas esferas
gue no aportan demasiado, quitando las esferas que representan la zona del suelo. Por el
contrario, en algunas zonas la densidad de puntos no es suficiente como para representar con
precision la escena. En la Figura 22 se puede ver un ejemplo de esto.

Figura 22: Zona urbana con LiDAR densidad pobre

Para nivel de zoom muy alto (nivel 12 donde aproximadamente cada pixel ocupa una zona de
0,5x0,5m) el LiDAR tampoco es muy buena solucidn, por lo menos con esta configuracion que
favorece el resto de zooms. En la Figura 23 se puede comprobar esto, donde a una distancia tan
cercana, las esferas se diferencian entre ellas y, a pesar de que el efecto 3D sigue presente, el
gue se vean estas esferas empeora el resultado final.

Figura 23: Zona urbana con LiDAR a nivel de zoom 12

En la Figura 24 se representa el cliente web visualizando una zona de Aragon. Se pueden ver los
botones que se han incluido para realizar los cambios de punto de vista. Por defecto, estan
activados norte (N) y 459, pero si se pulsa un botén diferente, como, por ejemplo, sur (S), cambia
el punto de vista dejando el sur arriba en el mapa como se puede comprobar en la Figura 25.

28

5. RESULTADOS Y PRUEBAS

Figura 24: Cliente web en modo 45-N (zoom 9)

+|{n] s [E]w
g 4501304

=
o

Figura 25: Cliente web en modo 45-S (zoom 9)

A la izquierda de los botones de cambio de punto de vista, se incluye el slider del zoom. Ya sea
arrastrando este slider, o pulsando los botones “+” y “-“ del zoom, el nivel de zoom cambiay se
cargan las teselas correspondientes a ese zoom. En la Figura 26 se puede comprobar el resultado
de presionar el botdn menos a partir de la situacién de la imagen anterior.

(+1N] s [efw]

8% 45303

Figura 26: Cliente web en modo 45-S (zoom 8)

29

5. RESULTADOS Y PRUEBAS

Se incluyen teselas que abarcan mayor espacio (una tesela en zoom 8 son 2x2 teselas en zoom
9), pero cada tesela sigue teniendo la misma resolucidn (256x181 en modo 459).

Por ultimo, se incluyen 3 imdgenes similares a la de la Figura 19 pero en puntos de vista 45-E,
45-W y 30-N.

Figura 27: Zona montafiosa (45-E)

En la Figura 27, se puede ver la primera de ellas, 45-E. Esta figura muestra una zona montafiosa
con angulo de la cdmara de 459, con la direccion de vista hacia el este (el este esta hacia arriba
en la foto, norte a la izquierda...) y nivel de zoom 8. En la Figura 28 (45-W), se muestra la misma
zona, pero con direccidn de vista hacia el oeste (el oeste estd hacia arriba, a la derecha el
norte...).

Figura 28: Zona montafiosa (45-W)

30

Por ultimo, la Figura 29 muestra un ejemplo con direccidn de vista norte y nivel de zoom 8 de la
misma zona, pero con angulo de la cdmara de 302. Este angulo dota a la escena de aun mayor
perspectiva al no estar tan perpendicular al suelo. Por el contrario, parece que la zona es mas
pequeia, pero esto es a causa de que la vista al estar mas paralela al suelo, y el intentar respetar
el ratio de aspecto que otorga este angulo, achata la imagen del mapa. Gracias a esto, se
consigue una sensacién de mayor volumen.

Figura 29: Zona montariosa (30-N)

Mediante esta serie de pequefios resultados obtenidos, se ha intentado dar una pequefia
pincelada de lo que el programa consigue en sus ejecuciones. Gracias a estos resultados y al
apartado anterior en esta memoria de Medidas de Prestaciones, se puede intuir el por qué es
complicado conseguir un mapa muy extenso con muchos puntos de vista diferentes. Con el
estado actual del proyecto, se ha querido aportar todo Aragdn renderizado desde dos puntos
de vista diferentes (norte y sur) y a unos pocos niveles de zoom, para poder visualizar la
magnitud del proyecto en lo que extensidon del mapa y gestidn de espacio y tiempo se refiere.
Ademas, con la inclusidn del cliente alternativo online, poder mostrar todas las posibilidades
actuales del programa realizado, en una zona pequena.

A pesar de todo lo desarrollado durante el proyecto, hay cosas que se esperan hacer o mejorar
en el futuro. La primera de ellas seria el renderizar todo Aragdn para todos los puntos de vista
disponibles ademas de aumentar el niUmero de niveles zoom disponibles. Actualmente, solo esta
disponible Aragdn tanto para direccidn de vista norte como para sur en la versién local del
proyecto; y una versién disponible online (https://strummertfiu.github.io/) donde se incluye

una zona muy pequefia dentro de Aragén, pero con todos los puntos de vista disponibles,
posibilitando consultar un pequefio ejemplo de lo que seria renderizarlo para todo Aragén. Esto
es a causa de las limitaciones tanto de tiempo como espacio comentadas con anterioridad.

https://strummertfiu.github.io/

Una vez renderizado todo Aragon, se buscaran formas de mejorar el resultado de los datos
obtenidos de los ficheros LiDAR, ya fuese mejorando la eficiencia usando menos esferas, pero
colocadas de tal forma que diesen una mayor informacién; o generandolo en mayor nimero de
zonas de forma eficiente.

Se seguird mejorando el renderizado dando al usuario nuevas posibilidades, afiadiendo aspectos
diferentes a la escena segun la situacion de la fuente de luz (amanecer, atardecer...) o incluso
incluyendo algin fendmeno meteorolégico como niebla.

Afadir mas puntos de vista (noreste, 202 de angulo...) sera otra forma de mejorar el proyecto y
completarlo alin més.

Evidentemente, mejorar la eficiencia del proyecto ya sea paralelizando los diferentes procesos
o adquiriendo mejores maquinas seria otro aspecto a mejorar para asi renderizar de forma mas
rapida.

Y, por ultimo, tener Espafia al completo renderizado seria la situacién final que se espera
conseguir, pero como se ha comprobado con anterioridad, esto supondria una gran cantidad de
espacio y tiempo para renderizar todo el pais (en incluir los datos de entrada) que la maquina
actual no puede aportar. Ademads, habra que incluir todos los mapas renderizados en una
plataforma online, para que estuviesen disponibles para todo el mundo.

Dada la naturaleza del proyecto, automatizar una serie de pruebas a realizar en todo el cédigo
no es sencillo. Por ello, se ha decidido incluir una serie de pruebas unitarias en algunos médulos
y realizar una serie de pruebas sistematicas sobre las mismas zonas.

5.3.1. Pruebas unitarias

Se ha decidido incluir pruebas unitarias en algunos de los médulos del proyecto. Estos médulos
son: <<main_program>>, <<calculate_tile>>, <<cameraUtils>> y <<vector XYZ>>. Estos
mddulos, realizan calculos matemdticos o sencillamente devuelven objetos faciles de
comprobar automdticamente. El resto de mddulos, necesitan o generan ficheros muy
especificos (los MDT con formato ASC por ejemplo), lo que complica comprobar los resultados
obtenidos de forma automatica. En el médulo principal del proyecto (<<main_program>>) se
han incluido pruebas unitarias, pero solo sobre funciones que no necesitan de ficheros externos
o sencillamente no utilizan un programa externo que genera una salida particular (la funcién
render ademads de generar el fichero de POV, invoca al programa POV-Ray para renderizar la
escena, lo que hace que comprobar automaticamente esta funcién sea muy complicado).

Para realizar estas pruebas se ha utilizado el mddulo doctest[29] incluido en la libreria estandar
de Python. Este mddulo, permite incluir pruebas en el encabezado comentado con triples
comillas de cada funcién. El médulo busca, en las zonas comentadas, trozos de texto similares a

una sesion interactiva de Python. Cuando encuentra estos trozos de texto ejecuta las sesiones
para verificar que han funcionado como se muestra a continuaciéon. Como se puede comprobar
en la Figura 30, la cldusula “>>>" simula el intérprete de Python, y lo que hay justo debajo es el
resultado esperado.

culate tile(x, y, z):

Calculate tile number from the coordinates passed as parameter.

mal test
calculate tile(650
7, 417)

Figura 30: Prueba doctest incluida en un modulo

Para ejecutar estas pruebas se utiliza una terminal en la que se ejecuta la instruccién:
python3 -m doctest

seguido del mdédulo a probar. Cada vez que se ha realizado algliin cambio sobre este
cddigo, se han ejecutado las pruebas de médulo en mddulo utilizando esta instruccién.
Mediante un script que realizase esta instruccion sobre todos los médulos con pruebas
doctest, automatizaria el proceso para todos los modulos al mismo tiempo en vez de ir
de uno en uno (al fin y al cabo, es lo que hace el script pero sin la intervencion del
usuario). Si la ejecucién ha sido correcta para todas las pruebas incluidas en un médulo,
en la terminal no se muestra nada a no ser que se active el modo verbose (mediante la
opciodn -v), con la que, como se puede comprobar en la Figura 31, genera una traza de
los tests realizados y el resultado.

Lad Pl

+ ot

Pl Pod Pod Pod Pud Pd

C
c
S
c
C
C
<
o
.

Figura 31: Traza pruebas doctest sobre un maodulo (-v activado)

Todas las pruebas han sido correctas en la traza especificada, pero si alguna hubiese fallado, se
mostraria que prueba ha fallado comparando el resultado esperado con el que se ha obtenido.

5.3.2. Pruebas sistematicas

A la hora de comprobar si la ejecucidn del programa ha sido correcta y se renderiza la escena
como se desea, principalmente se realizaron pruebas sobre las mismas zonas. Al principio, se
probaba sobre una misma zona situada en una zona no urbana y sin mucha diferencia de altura.
En cada ejecucidn, se comprobaba visualmente que se renderizaba toda la escenay que la unién
de ortofotos y MDTs fuese la correcta y no se produjesen irregularidades, principalmente en la
unién entre 2 ortofotos diferentes. Cada vez que se realizaba un cambidn en la generacion de la
escena (por ejemplo, modificacidon de algin pardmetro de la cdmara) se realizaban las pruebas
sobre esta misma zona para comprobar que seguia renderizandose exactamente la zona
deseada sin irregularidades y habiendo aplicado las modificaciones que se hubiesen hecho a la
escena.

Posteriormente, se utilizaron (y se siguen utilizando) dos zonas diferentes: una zona urbana
(desde las coordenadas actuales (coordenadas precisas para coger teselas completas)
[712129.62, 4670707.15] a las [716739.52, 4666097.25]) y otra zona montafiosa (desde las
coordenadas [773210.77, 4731788.30] a las [775515.72, 4729483.35]). La primera zona, sirvio
sobretodo para comprobar que la escena renderizada presentaba la perspectiva deseada.
Gracias a los edificios, y principalmente a la plaza de toros, que al ser redonda facilitaba la
comprobacion del aspecto, se comprobaba que el ratio de aspecto y el angulo deseado se
mostraban correctamente. Posteriormente, esta zona sirvié también como base de pruebas
para la inclusidon del LIDAR y comprobar como afectaban las esferas a la escena. La zona
montafiosa, se decidid incluir en las pruebas porque se consideré que una zona alta podia
ocasionar alguin problema en la renderizacion de la escena. Y como se puede ver en la Figura 32,
hubo problemas.

Figura 32: Zona montanosa con irregularidad

A causa de la altura de la escena, una zona, que queda fuera de nuestro limite de la escena, se
interpone entre la cdmaray la zona a la que apunta y al no estar pintada con la ortofoto (como
quedaba fuera de la escena no se afadia la ortofoto) se ve una zona negra; o en la interseccién
entre dos MDT se pueden generar estas zonas negras si queda arriba un MDT que no tiene las

5. RESULTADOS Y PRUEBAS

ortofotos adyacentes del MDT con el que colisiona. Se realizaron pruebas sobre esta zona hasta
que se dio con la solucién minima (sin incluir ortofotos de mas) para hacer lo mas eficiente
posible el renderizado. En la Figura 33 se puede ver un resultado actual.

Figura 33: Zona montafiosa sobre la que se probaba

Ambas zonas fueron posteriormente utilizadas para comprobar que el teselado se realizaba
correctamente y tras esto siguen utilizdndose como zonas de pruebas cada vez que se cambia
algo en el renderizado ya sea por deseo o necesidad. Ademds, comentar que todas estas pruebas
no se limitaban a un punto de vista, sino que, aunque se nombra una escena como tal, cada vez
que se realizaban (o se realizan) pruebas sobre estas zonas, se comprueban todas las
combinaciones de puntos de vista posibles hasta el momento. Otras zonas han sido también
objeto de pruebas (principalmente si se ha detectado algin problema), pero han sido pruebas
mas esporadicas y no se han repetido por cada cambio como si se ha hecho con estas zonas.

6. GESTION DEL PROYECTO

6.1. PLANIFICACION

El proyecto se ha dividido en cuatro fases diferentes, cada una de ellas con unas tareas
especificas. A pesar de ello, en algunos casos, ha sido necesario corregir o incluso volver a
realizar una tarea de una fase anterior para corregir algun defecto que se ha encontrado en las
fases posteriores.

6.1.1. Primera fase

La primera fase corresponde a la fase de inicio del proyecto. En esta primera fase, se realiza el
lanzamiento del proyecto seleccionando los datos geograficos de interés y realizando una

35

primera eleccidon de las herramientas a utilizar. También, se especifica de forma general, las
tareas a realizar en el resto de fases y el coste estimado en tiempo de realizarlas.

Ademas, se realiza un primer acercamiento a los datos de entrada, procesando algunos de ellos
y generando un mapa 3D con proyeccién ortogonal desde diferentes puntos de vista y angulos
de una pequeiia zona de forma manual, esto es, sin la ayuda de un programa que automatice
todo. Se desarrolla un pequefio programa para procesar estos datos de entrada (los referentes
a los MDT) para que nuestra herramienta de renderizado sea capaz de abordar.

6.1.2. Segunda fase

La segunda fase corresponde a la parte mas extensa del proyecto. Se desarrolla un programa en
el lenguaje de programacién Python capaz de automatizar el proceso realizado en la fase
anterior y de forma precisa. El programa debe procesar los datos de entrada para adaptarlos a
las herramientas a utilizar posteriormente, ser capaz de generar una vista isométrica de una
zona especificada por coordenadas introducidas por el usuario. Ademas, debe ser capaz de
trocear (teselar) la salida para adaptar la zona generada a una web. Una vez funcione para una
zona pequena, el programa se ha de extender y ser capaz de realizar lo mismo para una zona
mas grande.

Se considera esta la fase mds extensa y la que mas tiempo va a costar llevar a cabo porque
contiene la funcionalidad principal que se ha de desarrollar para el proyecto. A causa de esto, al
finalizar esta fase y continuar con las siguientes, si se encuentran fallos en el programa que
genera los mapas, es necesario volver a tareas referentes de esta fase para corregirlos y que no
sigan reproduciéndose posteriormente.

6.1.3. Tercera fase

En esta fase la tarea principal es la de desarrollar una aplicacion web capaz de visualizar los
resultados obtenidos en la segunda fase. La aplicacién no debe ser muy compleja, solo debe
representar el mapa (y sus diferentes vistas) y tener la posibilidad de que el usuario pueda
navegar por las diferentes vistas. También en esta fase hay que concretar definitivamente el
proceso de teselado de la segunda fase para que se adapte correctamente a la aplicacion web
desarrollada.

6.1.4. Cuarta fase

Durante la ultima fase del proyecto las tareas principales son las de terminar la documentacién

y memoria de este y si es necesario realizar un pequefio repaso por todo lo realizado.

6. GESTION DEL PROYECTO

6.2. ESFUERZOS

Para llevar un seguimiento de los esfuerzos se ha usado una hoja de calculo (fichero Excel con
formato XLSX) que divide el trabajo en cuatro apartados distintos (andlisis y disefio, desarrollo,
pruebas y documentacidn). Cada celda representa el trabajo de uno de estos apartados por dia.
También existen celdas que muestran la suma del trabajo total por meses, por apartado o
sencillamente por dia. En la Figura 34 se puede ver un grafico del reparto de horas de trabajo
segun el mes.

75

70

&5

&0

55

S0

Horas

35

30

25

20

15

10

yha® e Mcr'i“‘aﬂ " e &hi‘““ﬂsmu

Mes

Figura 34: Grdfica con las horas/mes dedicadas al proyecto

Como se puede comprobar, durante los primeros meses la carga de trabajo no fue alta a causa
de las exigencias del resto de asignaturas. Principalmente el trabajo se desarrollé durante los
meses desde septiembre a diciembre ambos incluidos. Durante enero y febrero la carga de
trabajo es menor porque se dedicd a concluir el cddigo del programa y retocar minimamente
este codigo para mejorarlo. También se dedico a realizar la documentacion. Comentar también,
que las horas que la maquina estaba renderizando los mapas no se han contabilizado a pesar de
que, durante ese tiempo en el que la maquina se encontraba ocupada trabajando, no era posible
realizar algo adicional (documentacién, refactorizacién de cédigo, realizacion de pruebas...) al
mismo tiempo con la misma maquina. Estas horas (y dias) de renderizado han copado muchas
horas de los meses de enero y febrero, pero tal como se ha visto anteriormente es a causa de la
gran cantidad de recursos que se necesita para generar todos los mapas. Las pequeiias pruebas
que se realizaban renderizando alguna zona pequefa (que no llevaban mas de 10 minutos las
mas lentas) si que han sido contabilizadas. Se incluyen en el apartado del desarrollo si se

37

6. GESTION DEL PROYECTO

realizaban durante el desarrollo del cédigo (para ir comprobando como afectaba un cambio en
la camara); o en el apartado de pruebas si eran pruebas mas sistematicas que se realizaban al
incluir algin cambio grande o sencillamente para comprobar que todo funcionaba segun lo
esperado.

W Analisis y Disefio W Desanalla W Prugbas W Documentacian

Figura 35: Grdfica con porcentaje de tiempo dedicado a cada apartado del proyecto

Como se puede observar en la Figura 35, el desarrollo a copado el mayor tiempo en el proyecto,
aunque se considera que, para el resto de los apartados, también se ha realizado una carga de
trabajo correcta.

El tiempo total destinado a la realizacién del proyecto (sin contar el tiempo de renderizado
comentado con anterioridad) ha sido de 334 horas. Este nimero se considera alto y es a causa
de la gran carga de trabajo del apartado del desarrollo. Esta gran carga es debida a la gran
cantidad de tiempo que se consumié en desarrollar en forma de ensayo y error (probar un dato
de la cdmara e ir variando ese dato hasta que quede como queremos) y por las veces que hubo
que subsanar algun error o los problemas que han sido comentados en la seccidn de problemas,
los cuales, alguno de ellos llevd bastante tiempo subsanar.

6.3. ANALISIS DE RIESGOS

Analizar dafio y probabilidad por | Probabilidad de fallo
riesgo Alto Medio Bajo
Dafio en caso | Alto A A B
de fallo Medio B B C
Bajo B C C

38

Riesgo Prob. | Dafio | RC | Justificacion Estrategia
Retraso Medio | Medio | B Si el proyecto no esta Realizar un
enla disponible para la fecha de | seguimiento del
entrega entrega habria que proyecto a partir de
del retrasarlo a una entrega las fases
proyecto posterior. establecidas al
inicio del mismo y
el codigo
almacenado en
GitHub.
No poder | Medio | Bajo C Si no se puede volver a Todo el codigo y los
volver a una version anterior del documentos se
una proyecto se podria perder | encuentran en
versién tiempo modificando la sistemas bajo
anterior actual. control de
versiones.
Falta de Alto Alto A Si hay problemas para Buscar un punto
espacio almacenar todos los intermedio entre
mapas, es posible que renderizar lo
algunos puntos de vista o méximo posible,
zonas queden sin pero solo lo
renderizar. necesario.

Figura 36: Tablas andlisis de riesgos

6.4.1. Politicas de nombrado

Todos los ficheros referentes a la documentacién (memoria, imagenes utilizadas, diagramas...)
tienen sus nombres en castellano, pero vienen precedidos de la etiqueta <<TFG_D_>>. Por
ejemplo, este fichero (memoria del proyecto) es nombrado como <<TFG_D_memoria.pdf>>.

En cuanto a todos los ficheros referentes a el programa y su cédigo, lo Unico destacable es que,
tienen sus nombres en inglés y se intenta que estos nombres representen el contenido del
fichero o la funcién que tienen en el proyecto.

6.4.2. Control de versiones

El control de versiones se ha realizado utilizando las plataformas GitHub y Dropbox. GitHub se
ha usado para llevar el control de versiones del cédigo del programa como se puede comprobar
en el repositorio publico https://github.com/strummerTFIU/TFEG-IsometricMaps, ademas,

también se ha utilizado un repositorio adicional privado en el que se almacenan las teselas de
los diferentes mapas generados.

Dropbox, en cambio, ha servido para almacenar la documentacién del proyecto.

https://github.com/strummerTFIU/TFG-IsometricMaps

6.4.3. Copias de seguridad

Como se ha especificado en el anterior apartado, se ha utilizado GitHub[30] y Dropbox[31] como
plataformas de control de versiones. Esto permite almacenar copias de seguridad en la nube
con las que, ademads, es posible recuperar una version anterior de los ficheros en caso de
intentar mitigar o sencillamente localizar algin error en alguna versién mas reciente del
programa o la documentacion.

También, se incluyen copias locales en el ordenador personal del autor del proyecto y en un
disco duro externo, también propiedad del autor.

/7. CONCLUSIONES

Tras la finalizacién del proyecto, se considera el trabajo realizado como bueno ya que se han
conseguido los objetivos propuestos. El objetivo principal era crear las herramientas y procesos
necesarios para producir mapas realistas en 3D capaces de ser teselados y se considera que este
objetivo ha sido conseguido.

Se es capaz de realizar mapas 3D a partir de unos datos de entrada publicos, pueden ser
descargados de repositorios nacionales, ya sea mediante la especificacién de una serie de
coordenadas, especificando que teselas (si el usuario conoce ya como estdn nombradas y que
tesela corresponde a que zona) o incluso teselando todo lo posible a partir de todos los datos
de entrada. Dentro de este objetivo, una idea importante era poder realizar esto para una zona
bastante extensa, y se pensd en la Comunidad de Aragdn como la zona a renderizar. Se considera
que hubiese sido mejor poder renderizar todo Aragdn en bastantes puntos de vista diferentes y
niveles de zoom, pero, a causa de las limitaciones de hardware, se ha renderizado Aragén, pero
de forma mas limitada. Son dos los puntos de vista disponibles para visionar todo Aragén, pero
existe también una alternativa en la que, para una zona bastante menor, se ha renderizado
utilizando todas las posibilidades. Esto ayuda a ver el potencial del proyecto.

Si se consiguiesen maquinas importantes para poder seguir el proyecto, se conseguiria mejorar
aun mas el resultado y posibilitar mayores puntos de vista para la zona de Aragdn o incluso
extenderse a toda Espana, por ello se considera que el proyecto tiene potencial.

A pesar de no ser un proyecto con gran carga en lo que a disefio de software se refiere, se
considera que se ha realizado un buen trabajo de manipulacién de datos y realizacidon de mapas.
Gracias a la naturaleza del proyecto, es bastante sencillo demostrar la funcionalidad del
programa, pues se obtienen resultados graficos, al fin y al cabo, son mapas, y por ello se
considera un proyecto agradable para la vista de un usuario o cliente ajeno al proyecto.

En su defecto, el tratar todos estos datos de entrada y producir las salidas, conlleva mucho
tiempo en el que la maquina propia a de trabajar, evitando poder usar la maquina para otros
propdsitos al mismo tiempo, lo que dificulta bastante el trabajo.

7. CONCLUSIONES

La gran experiencia obtenida en el tratamiento de estos datos, en la misma generacién de
teselas, en la informacidn sobre proyecciones y coordenadas, e incluso en el desarrollo de
cddigo en Python (el autor no habia trabajado aun con este lenguaje), se considera un gran valor
para el futuro profesional ya sea relacionado con el proyecto como no.

41

8. BIBLIOGRAFIA

8. BIBLIOGRAFIA

Web oficial de Python (https://www.python.org/). Junio 2017.

Web oficial de POV-Ray (http://www.povray.org/). Junio 2017.

ETRS89 - Wikipedia (https://es.wikipedia.org/wiki/ETRS89). Julio 2017.

UTM - Wikipedia

(https://es.wikipedia.org/wiki/Sistema de coordenadas universal transversal de M

ercator). Julio 2017.

5. [EPSG:25830 — Spatial Reference (http://spatialreference.org/ref/epsg/etrs89-utm-zone-
30n/). Julio 2017.

6. .ASC files — StackExchange
(https://gis.stackexchange.com/questions/71867/understanding-esris-asc-file). Abril
2017.

7. CNIG (https://www.cnig.es/). Abril 2017.

PNOA - Wikipedia
(https://es.wikipedia.org/wiki/Plan _Nacional de Ortofotograf%C3%ADa A%C3%A9rea).
Abril 2017.

9. LiDAR - Wikipedia (https://es.wikipedia.org/wiki/LIDAR). Octubre 2017.

10. Three.js — Wikipedia y web oficial (https://es.wikipedia.org/wiki/Three.|s)
(https://threejs.org/). Septiembre 2017.

11. GoogleMaps (https://www.google.es/maps). Abril 2017.

12. Estilos de Arquitectura — Dallan (http://dallanmnr.blogspot.com.es/2011/08/estilos-de-
arquitectura.html). Septiembre 2017.

13. Web oficial ImageMagick (https://www.imagemagick.org/script/index.php). Noviembre
2017.

14. Libreria estandar de Python (https://docs.python.org/3.5/library/index.html). Abril 2017 -
Diciembre 2017.

15. Documentacion PyPNG (https://pythonhosted.org/pypng/). Junio 2017.

16. PIP — Wikipedia (https://es.wikipedia.org/wiki/Pip (administrador de paquetes)). Junio
2017.

17. Web oficial de NumPy (http://www.numpy.org/). Octubre 2017.

18. Documentacion Laspy (https://pythonhosted.org//laspy/). Octubre 2017.

19. PIL (http://www.pythonware.com/products/pil/). Junio 2017.

20. Web oficial de Sublime Text (https://www.sublimetext.com/). Abril 2017.

21. Web oficial GDAL, documentacion GDALWarp (http://www.gdal.org/gdalwarp.html).
Diciembre 2017.

22. LASzip (https://www.laszip.org/). Octubre 2017.

23. Mddulo http.server de Python3 (https://docs.python.org/3/library/http.server.html).
Diciembre 2017.

24. Tutorial Openlayers (https://mappinggis.com/2013/04/como-crear-un-mapa-con-
openlayers-3/). Diciembre 2017.

25. Documentacion Openlayers (https://openlayers.org/en/latest/apidoc/). Diciembre 2017.

26. Documentacién POV-Ray (http://www.povray.org/documentation/3.7.0/). Junio 2017.

27. Cddigo OSM2World para apoyo calculo posicién cdmara — GitHub

(https://github.com/tordanik/OSM2World). Julio 2017.

i A

https://www.python.org/
http://www.povray.org/
https://es.wikipedia.org/wiki/ETRS89
https://es.wikipedia.org/wiki/Sistema_de_coordenadas_universal_transversal_de_Mercator
https://es.wikipedia.org/wiki/Sistema_de_coordenadas_universal_transversal_de_Mercator
http://spatialreference.org/ref/epsg/etrs89-utm-zone-30n/
http://spatialreference.org/ref/epsg/etrs89-utm-zone-30n/
https://gis.stackexchange.com/questions/71867/understanding-esris-asc-file
https://www.cnig.es/
https://es.wikipedia.org/wiki/Plan_Nacional_de_Ortofotograf%C3%ADa_A%C3%A9rea
https://es.wikipedia.org/wiki/LIDAR
https://es.wikipedia.org/wiki/Three.js
https://threejs.org/
https://www.google.es/maps
http://dallanmnr.blogspot.com.es/2011/08/estilos-de-arquitectura.html
http://dallanmnr.blogspot.com.es/2011/08/estilos-de-arquitectura.html
https://www.imagemagick.org/script/index.php
https://docs.python.org/3.5/library/index.html
https://pythonhosted.org/pypng/
https://es.wikipedia.org/wiki/Pip_(administrador_de_paquetes)
http://www.numpy.org/
https://pythonhosted.org/laspy/
http://www.pythonware.com/products/pil/
https://www.sublimetext.com/
http://www.gdal.org/gdalwarp.html
https://www.laszip.org/
https://docs.python.org/3/library/http.server.html
https://mappinggis.com/2013/04/como-crear-un-mapa-con-openlayers-3/
https://mappinggis.com/2013/04/como-crear-un-mapa-con-openlayers-3/
https://openlayers.org/en/latest/apidoc/
http://www.povray.org/documentation/3.7.0/
https://github.com/tordanik/OSM2World

8. BIBLIOGRAFIA

28. Teselado en OpenStreetMaps

(https://wiki.openstreetmap.org/wiki/Slippy map tilenames). Noviembre 2017.
29. Tutorial de doctest (https://docs.python.org/2/library/doctest.html). Octubre 2017.
30. Web oficial de GitHub (https://github.com/). Abril 2017.
31. Web oficial de Dropbox (https://www.dropbox.com/). Abril 2017.

43

https://wiki.openstreetmap.org/wiki/Slippy_map_tilenames
https://docs.python.org/2/library/doctest.html
https://github.com/
https://www.dropbox.com/

ANEXOS

A continuacidn, se presentan las acciones necesarias para poder renderizar una zona deseada
de Aragdn (se podria expandir a Espaia descargando ficheros desde otras fuentes).

a. Descarga de datos de interés

Como se ha comentado en la seccién 2.2 Datos de partida, existen tres tipos de datos diferentes
con los que se parte y sobre los que se transforman y combinan para obtener el resultado final.

Tanto los MDT como los LiDAR pueden ser descargados desde el centro de descargas del CNIG
(http://centrodedescargas.cnig.es) seleccionando “modelos digitales de elevaciones”. Para los

datos LiDAR solo hay un tipo, pero los MDT hay de tres diferentes tipos. Para el desarrollo de
este proyecto se ha seleccionado el mas preciso con paso de malla de 5 metros (MDTO05), pero
cualquiera podria valer, incluso si se desease una vista desde un nivel de zoom bajo seria
recomendable utilizar un MDT con menos precisidn para aligerar el programa. A partir de aqui,
se pueden seleccionar los ficheros que se deseen a partir de un listado organizado por
comunidades, cédigo o municipios; o seleccionando directamente en el mapa la zona deseada.

Las ortofotos pueden ser descargadas desde la web de IDEAragén
(http://idearagon.aragon.es/descargas) (si se buscasen ortofotos fuera de esta comunidad seria

necesario otra fuente de descargas). En el desplegable de coleccidn si ha de buscar el apartado
de ortofotos y seleccionar las deseadas del PNOA (existen ortofotos mas recientes y otras
menos) y como en el listado del CNIG buscar los deseados en los otros dos desplegables. Se han
de descargar y descomprimir. Comentar que, si la proyeccion de las ortofotos no es posible
hacerla coincidir con la proyeccién de los MDT, es necesario reproyectar estas ortofotos
utilizando el programa GDALWarp tal cual se explica en la seccién 3.5 de Tratamiento de datos.

Se recomienda incluir cada tipo de fichero en directorios diferentes, de forma que la aplicacion
pueda encontrarlos y diferenciarlos facilmente.

b. Bibliotecas necesarias

Para que funcione la aplicaciéon es necesaria la inclusidén de varias bibliotecas. La descarga e
instalacion de estas bibliotecas se puede realizar utilizando la herramienta PIP3, esto se hace
mediante la instruccién escrita por terminal de: pip3 install <<la biblioteca a instalar>>. Como se
comenta en la seccion 3.4 de Bibliotecas, las bibliotecas a instalar son: <<NumPy>>, <<laspy>>y
<<PIL>>.

http://centrodedescargas.cnig.es/
http://idearagon.aragon.es/descargas

También es necesario el programa laszip encargado de descomprimir los ficheros en formato
LAZ, que estd incluido con el resto de fuentes de la aplicacion y el programa POV-Ray que ha de
ser instalado.

c. Ejecucién aplicacion

Una vez descargados los datos de interés y las bibliotecas necesarias, solo queda ejecutar la
aplicacién. Para ello, es necesario saber las opciones que proporciona el programa a la hora de
ejecutarlo.

i. Pardmetros obligatorios

e mdt directory: directorio de los ficheros MDT iniciales.

e png directory: directorio de las imagenes generadas de la transformacion de los
MDT iniciales.

e orto directory: directorio de los ficheros ortofotos.

e lidar directory: directorio de los ficheros LiDAR.

e dir_view: direcciéon de la vista (solo posibles los valores: N, S, E'y W). Por ejemplo: el
valor N representa que la cdmara de la escena estara orientada hacia el norte.

e angle: dngulo de la vista (solo posibles los valores 45 y 30).

e zoom: nivel de zoom maximo a renderizar (solo valores de 8 - 12).

ii. Parametros opcionales

e --max_height <<entero>>: mdxima altura de los heightfield creados, mayores

valores no se tendrdn en cuenta y seran similares al valor que se le dé. Por defecto
este valor es 2200 y no se recomienda su cambio ya que estd optimizado para
conseguir el mejor aspecto.

e --renderAll: renderiza todas las zonas disponibles a partir de los ficheros incluidos en
los directorios especificados.

e -—renderTiles: renderiza las teselas deseadas por el usuario.

e --transform: realiza la transformacion de los ficheros MDT iniciales en imagenes
(activarlo siempre en primera ejecucion).

e --Joad: carga los metadatos de los ficheros en sendos ficheros de texto para facilitar
la consulta en posteriores ejecuciones (activarlo siempre en primera ejecucion).

e --tile: permite introducir posteriormente el directorio destino de las teselas
generadas.

e --deletePov: si se incluye se elimina el fichero POV que se genera con la escena.

e --idar: si se incluye activa el renderizado con LiDAR.

iii. Ejemplo ejecucion

Para la primera ejecucidon del programa una vez descargados los ficheros seria necesario
especificar los directorios de los parametros obligatorios y si se desease la renderizacién de
todas las zonas disponibles a partir de los ficheros descargados, incluir la opcidon —renderAll. Al
tratarse de la primera ejecucidn, seria necesario incluir las opciones —transform y —load. Habria
que incluir el dngulo, direccién de vista y el zoom y si se desease incluir esferas a partir de los
ficheros LiDAR, seria necesario la opcion --lidar. Asi pues, un ejemplo de instruccién seria este:

python3 main_program.py ./MDT/ ./PNG/ ./ORTO/ ./LIDAR/ E 45 10
—renderAll —transform —load —deletePov —lidar

donde se transformarian los MDT a imagenes, se cargaria su informacion en ficheros de texto,
se renderizarian todas las escenas posibles con punto de vista 45-E, incluyendo esferas
generadas a partir de los ficheros LiDAR y generando teselas para niveles de zoom de 8-10. Estas
teselas serian almacenadas en el directorio por defecto (./result_dir) siguiendo el esquema
explicado con anterioridad, y se eliminaria el fichero POV resultante.

Si el usuario quisiese modificar una zona porgue no le ha gustado como queda, o sencillamente
desea solo esa zona, podria no incluir la opcidn renderAll, de forma que la aplicacidn le exigiria
las coordenadas necesarias, no incluir la opcién --deletePov, para poder modificar el fichero al
gusto, --transform y —load, ya que, si no han sido modificados los ficheros de partida ya se
encontrarian transformados y los ficheros de metadatos ya creados, haciendo mas eficiente la
ejecucion.

A partir de ahora, el usuario ya posee las teselas con su nombre correctamente generado segin
su zoom y zona a la que pertenece y podria elegir incluirlas en un cliente sencillo generado por
él mismo para visualizarlas en su conjunto, eso si, atendiendo a el ratio de aspecto de estas.

a. Proceso transformacion inicial

A continuacién, se explican varios aspectos del disefio que no se han concretado con
anterioridad.

En la Figura 37 se especifican los procesos que se incluyen dentro del proceso principal de
transformacion de datos inicial. Se incluyen también los repositorios desde donde se descargan
los datos iniciales.

load_MDTs mdt_data
bt

transform_to_png

WMDTs

LiDAR_data
bt

| WDTs

load_LiDARs

LiDARS
LAZ

N

LASZip LiDARs Generador archivos

CD(

L
Ortofotos
1pg
EPSG.25820 load_Orlos
~—
IDEAragon
orto_data
bt
N
Onofotos GDALWarp Ortofotos
ing L—J o
EPSG:25831 EPSG:25830
S~

Figura 37: Procesos transformacion inicial

Este diagrama muestra los procesos realizados desde que se descargan los datos hasta que son
utilizados por el generador de archivos para POV-Ray. Esta “zona” esta disefiada de forma que
solo sea necesario ejecutarla una vez para que los datos obtenidos permanezcan almacenados
e inalterables, y favorecer el rendimiento a la hora de renderizar escenas concretas obteniendo
los datos que ya han sido transformados en una ejecucidn anterior. Para que se ejecuten estos
procesos debe activarse la opcidn correspondiente a la hora de ejecutar el programa, como se
ha explicado en el anterior anexo.

Desde el CNIG se descargan (manualmente) los ficheros MDT y LiDAR, que son almacenados en
un disco duro externo pero en directorios diferentes, los cuales ambos deben pasar por un filtro
para posteriormente ser utilizados para generar la escena. Los MDT, que tienen formato ASC,
son transformados a imagenes PNG para que puedan ser incluidos en los objetos heightfield que
se crean a la hora de generar el fichero POV. Mediante el proceso load_MDTs, se genera un
fichero con los metadatos de cada fichero MDT incluyendo la ruta de la imagen, el tamafio de
esta, las coordenadas geograficas en las que se encuentra... Por el contrario, el fichero de
metadatos de los LiDARs se crea antes de realizar la transformacion inicial de estos ficheros. Esto

es porque la transformacién consiste en descomprimir (pasar de formato LAZ a formato LAS) los
ficheros LiDAR, y estos ficheros descomprimidos ocupan mucho espacio en disco y como la
transformacidn es bastante rapida y no siempre se utilizan estos ficheros a la hora de renderizar
la escena, se ha decidido que se descomprima el fichero solo cuando debe ser utilizado. Para
generar el fichero de POV comprueba en el fichero de metadatos cuales necesita y los
descomprime entonces. Genera las esferas necesarias y elimina el fichero descomprimido
dejando el comprimido intacto.

Desde IDEAragon se descargan las ortofotos del PNOA. La mayoria de estas no pasan por la
transformacion inicial porque estan proyectadas sobre el sistema ETRS89 / UTM 30N que es con
el que se trabaja, pero algunas de ellas, las que se encuentran mads al este, se encuentran
proyectadas en ETRS89 / UTM 31N lo que hace que haya que reproyectarlas para adecuarlas al
resto. Este proceso de reproyeccion es el que se hace durante esta transformacién inicial y se
realiza mediante el programa GDALWarp y un script para que vaya reproyectando los ficheros.
A partir de las ortofotos reproyectadas y de las que no ha sido necesario reproyectar, se genera
el fichero de metadatos correspondiente a las ortofotos.

A partir de aqui, el siguiente proceso principal (el generador de archivos POV), recibe la
informacidn de la escena del usuario y consulta en los ficheros de metadatos que ficheros son
necesarios para renderizar la escena y los obtiene de la ruta donde se encuentren almacenados.

b. Diagrama de secuencia

Como se muestra en el diagrama de secuencia de la Figura 38, una ejecucién completa del
programa conlleva una serie de procesos que transforman los datos de entrada en nuestra salida
deseada, los mapas teselados de la zona especificada. Este diagrama sirve como un apoyo entre
el disefio a alto nivel de abstraccién de los procesos y los trabajos que deben realizar los médulos
desarrollados.

Este diagrama muestra una ejecucion donde se pide renderizar todo Aragdn (opcion —renderAll),
las otras dos opciones son similares. No se incluyen los mdédulos VectorXYZ y Camera porque se
considera que ya han sido explicados con antelacion y se considera la creacion de estos en el
diagrama implicita durante la ejecucion del proceso de cameraUtils.

El usuario debe incluir la ruta al directorio en el que se encuentran tanto los ficheros MDT (tanto
transformados en imagen como no), como las ortofotos y los ficheros LiDAR. Ademas, debe
incluir la direccidn de la vista (norte (N), sur (S), este (E) y oeste(W)), el angulo de la cdmara (40
0 35) y el zoom que desea.

Como se ha explicado en esta misma seccién, como en la seccidn X de Tratamiento de datos, lo
primero que se hace (si estd la opcion activada) es el proceso de transformar los MDTs utilizando
el mdédulo heightfield (se considera que las ortofotos en la proyeccidn errénea ya han sido
reproyectadas con anterioridad).

{malniprngram] { heightfield] { load_info] [:a\cu\ateitwle] [read_lidar] { camerautwls] {pnvravﬁwrlter]
(zoom,
EAN

dir_view,
angle)
alt
[—transform == true]
transform(.asc)
generate
return
P e S,
alt
[Hload ==true] load_info{.png, Ortos, LIDARS)
mdt_data.txt[y, generate ™
generate
orto_data.b %
generate
lidar_data.txt [\ 4
return
areas_interesttxfy, 00 LAt
alt
[—renderAll == true]
loop)
caldulate_coordinates(tiles, Zoom)
(c_nw, c_se) J
find(ci nw, c_se) R
(MDTsy Ortos, LIDARS)
alt
[lidar == true]

generate_sphieres(LiIDARs)

PSS SO BEREres) b et i

write_heightfields(MDTs, Ortos)

(heightfields) |

write_povray_file(cam, heightfields, spheres)

return

render()

result.png [generate

C

te llation()
e T Tena essellation()
- generats T

‘t\leilfzpng |¥ =

{maln_program] { heightfield] { load_info] [:a\cu\ate_t\le] [read_lidar] { camerautwls] {povray_wrlter]

Figura 38: Diagrama secuencia procesos

Se realiza la carga de informacion (creacién de ficheros de metadatos). Se incluye para cada
fichero informacién sobre tamafio de el mismo, coordenadas geograficas donde se encuentran
los datos representados en el fichero; entre algin dato mds, ademas de su nombre vy
localizacién. Estos ficheros de texto permiten que en cada ejecucidn no sea necesario ir fichero
por fichero obteniendo su informacién y comprobando si es necesario incluirlo en la zona de
renderizado para la ejecucién actual, haciendo que mejore el rendimiento. Tanto este proceso
como el anterior son opcionales (es necesario incluir un parametro para cada uno para que se
ejecuten), esto es asi porque si se trabaja con datos de entrada iguales para ejecuciones
diferentes, tanto los MDTs transformados como la informacion cargada en los ficheros de texto
va a ser la misma, y no es necesario volver a ejecutar estos procesos. Esto aligera algo el tiempo
por el que el programa es ejecutado para ejecuciones del programa seguidas.

A continuacion, el programa principal, a partir de la informacién que se encuentra en los ficheros
de datos, generados en el paso de cargar la informacién, obtiene los MDTs, ortofotos y LIDAR

que necesita (aplicando un pequefio offset para evitar zonas negras en zonas altas o en zonas
con cambios de MDT). A partir de las coordenadas de la zona a renderizar, la direccion y angulo
de la vista, se genera una cdmara que vaya a mostrar la zona en perspectiva isométrica. Gracias
a los MDTs y ortofotos necesarias, se generan los objetos heightfields; y gracias a los ficheros
LiDAR, si procede (debe ser incluido por el usuario), se generan objetos esferas, obtenidos del
proceso de lectura del LiDAR (read_lidar), que dotan a la escena de ese aspecto 3D. Todos estos
objetos, la camara y una fuente de luz, se incluyen en un fichero con formato POV el cual es la
salida del ultimo filtro (povray_writer) antes de renderizar la escena. Con este fichero POV el
programa POV-Ray renderiza la escena resultante de incluir todos estos aspectos. Esta escena
es renderizada respetando el ratio de aspecto (imagen mas ancha o menos) de la zona a
renderizar y con una resolucidn segun las teselas que abarca.

Por ultimo, una vez renderizada la escena, se procede al Gltimo aspecto del sistema, el teselado.
Se trocea la escena segun las teselas que abarca, el tamafio de estas (respetando el ratio de
aspecto) y el nivel zoom. Para niveles de zoom altos (de 9 a 12) se incluye también un teselado
de la misma escena para niveles menores (hasta 8), siempre y cuando sea posible (la escena
abarque al menos una tesela completa en el zoom anterior).

Aungue tanto la instruccion de renderizado como la de teselado se encuentran en el programa
principal (main_program), ambos necesitan acceder a la salida de dos procesos. La primera
salida, como ya se ha comentado, el fichero POV con el que renderizar proveniente de
povray_writer; y la segunda, las teselas necesarias para renderizar la escena (calculate_tile).

Al final de la ejecucién del programa, se muestra el tiempo total de ejecucién en minutos y se
elimina (o no, segun si se ha especificado la opcién) el fichero con formato POV de la ultima
escena renderizada, por si el usuario desea modificar algo de la escena de forma manual (ha
encontrado un fallo o decide que no se deben mostrar todos los objetos heightfield) y volverla
a renderizar.

Las opciones a incluir para realizar una ejecucién u otra estan especificadas en el manual del
renderizador del Anexo A.

C. DOCUMENTACION MODULOS

C. DOCUMENTACION MODULOS

En el siguiente anexo se describen los mddulos creados, para la realizacidon del proyecto, y sus
interfaces. No se incluye el médulo PyPNG ya que ha sido descargado y no ha sido ni creado ni
modificado para la realizacion del proyecto.

a. calculate_tile

Mdédulo encargado de realizar las operaciones referentes al calculo de las teselas necesariasy a
la transformacidn del cédigo de estas segun el punto de vista.

i. Variables

e origin: Coordenadas de la esquina superior izquierda de toda la zona teselable (zona
cuadrada mayor que Aragon). Su valor actual es de [399809, 4881610].

e end: Coordenadas de la esquina inferior derecha de toda la zona teselable (zona
cuadrada mayor que Aragon). Su valor actual es de [989876, 4291543].

ii. Operaciones

e calculate_tile(x, y, z):

Calcula el cédigo (nombre) de la tesela a partir de las coordenadas y el nivel de zoom pasados
como parametro.

Pardmetros:

o x: Coordenada x del punto del que se desea el cddigo de tesela.
o y: Coordenada x del punto del que se desea el cédigo de tesela.
o z:Nivel de zoom.

Devuelve:

o Tupla 2 valores: Si la ejecucién ha sido correcta se devuelven los valores X e Y
de la tesela obtenida.

o ‘null’: Sila ejecucion ha obtenido un fallo (coordenadas superan los limites que
forman el rectangulo a partir de las variables origin y end) se devuelve este
valor.

¢ calculate_coordinates(xtile, ytile, z):
Calcula las coordenadas del vértice superior izquierdo de la tesela y nivel de zoom pasados como
parametro.

51

Pardmetros:

o xtile: Cddigo de la tesela para el valor X.
o vytile: Cédigo de la tesela para el valor V.
o z: Nivel de zoom.

Devuelve:

o Tupla 2 valores: Si la ejecucidn ha sido correcta se devuelven las coordenadas X
e Y de la esquina superior izquierda de la tesela.

o ‘null’: Si la ejecucion ha obtenido un fallo (codigo de la tesela supera el limite
segun el nivel de zoom) se devuelve este valor.

o tile_to_south(tile, z):
Calcula el nuevo cddigo (nombre) de la tesela para punto de vista sur a partir de la tesela para
punto de vista norte y el nivel de zoom pasados como parametro.
Pardmetros:

o tile: Tupla con los cddigos de la tesela para punto de vista norte a transformar.
o z: Nivel de zoom.

Devuelve:

o Tupla 2 valores: Si la ejecucidn ha sido correcta se devuelven los valores X e Y
de la tesela obtenida tras la transformacién.

o ‘null’: Si la ejecucion ha obtenido un fallo (codigo de la tesela supera el limite
segln el nivel de zoom) se devuelve este valor.

o tile_to_east(tile, z):
Calcula el nuevo cédigo (nombre) de la tesela para punto de vista este a partir de la tesela para
punto de vista norte y el nivel de zoom pasados como parametro.

Parametros:

o tile: Tupla con los cddigos de la tesela para punto de vista norte a transformar.
o z: Nivel de zoom.

Devuelve:

o Tupla 2 valores: Si la ejecucidn ha sido correcta se devuelven los valores X e Y
de la tesela obtenida tras la transformacién.

o ‘null’: Si la ejecucion ha obtenido un fallo (codigo de la tesela supera el limite
segln el nivel de zoom) se devuelve este valor.

o tile_to_west(tile, z):
Calcula el nuevo cédigo (nombre) de la tesela para punto de vista oeste a partir de la tesela para
punto de vista norte y el nivel de zoom pasados como parametro.

Pardmetros:

o tile: Tupla con los cédigos de la tesela para punto de vista norte a transformar.
o z: Nivel de zoom.

Devuelve:

o Tupla 2 valores: Si la ejecucidon ha sido correcta se devuelven los valores X e Y
de la tesela obtenida tras la transformacién.

o ‘null’: Si la ejecucion ha obtenido un fallo (cédigo de la tesela supera el limite
segln el nivel de zoom) se devuelve este valor.

o tile_from_south(tile, z):
Calcula el nuevo cédigo (nombre) de la tesela para punto de vista norte a partir de la tesela para
punto de vista sur y el nivel de zoom pasados como pardmetro.

Pardmetros:

o tile: Tupla con los cédigos de la tesela para punto de vista sur a transformar.
o z: Nivel de zoom.

Devuelve:

o Tupla 2 valores: Si la ejecucion ha sido correcta se devuelven los valores X e Y
de la tesela obtenida tras la transformacion.

o ‘null’: Si la ejecucidn ha obtenido un fallo (cédigo de la tesela supera el limite
segun el nivel de zoom) se devuelve este valor.

o tile_from_east(tile, z):
Calcula el nuevo cédigo (nombre) de la tesela para punto de vista norte a partir de la tesela para
punto de vista este y el nivel de zoom pasados como parametro.

Pardmetros:
o tile: Tupla con los cédigos de la tesela para punto de vista este a transformar.
o z: Nivel de zoom.

Devuelve:

o Tupla 2 valores: Si la ejecucidn ha sido correcta se devuelven los valores X e Y
de la tesela obtenida tras la transformacién.

o ‘null’: Si la ejecucion ha obtenido un fallo (cédigo de la tesela supera el limite
segun el nivel de zoom) se devuelve este valor.

o tile_from_west(tile, z):
Calcula el nuevo cédigo (nombre) de la tesela para punto de vista norte a partir de la tesela para
punto de vista oeste y el nivel de zoom pasados como parametro.

Pardmetros:

C. DOCUMENTACION MODULOS

o tile: Tupla con los cédigos de la tesela para punto de vista oeste a transformar.
o z: Nivel de zoom.
Devuelve:

o Tupla 2 valores: Si la ejecucidn ha sido correcta se devuelven los valores X e Y
de la tesela obtenida tras la transformacién.

o ‘null’: Si la ejecucion ha obtenido un fallo (cédigo de la tesela supera el limite
segln el nivel de zoom) se devuelve este valor.

b. camera

Moddulo que incluye la clase Camera encargada de generar objetos Camera (camara) y de realizar
las operaciones simples sobre estos.

i. Atributos

e pos: VectorXYZ que representa la posicidn de la cdmara.

e up: VectorXYZ que representa el vector up de la cdmara.

e right: VectorXYZ que representa el vector right de la cdmara.

o lookAt: VectorXYZ que representa el vector lookAt de la cdmara.

e aspectRatio: valor real que representa el ratio de aspecto de la escena.

Para mayor precisidon de estos vectores consultar la seccidn 4.1 (Aspectos técnicos).

ii. Operaciones
e get_pos():
Devuelve el VectorXYZ que representa la posicion de la cdmara.

Pardmetros:
o Ninguno
Devuelve:
o Objeto VectorXYZ: Objeto con los valores de la posicion de la cdmara.
e get_up():
Devuelve el VectorXYZ que representa el vector up de la cdmara.
Pardmetros:

o Ninguno

Devuelve:

54

C. DOCUMENTACION MODULOS

o Objeto VectorXYZ: Objeto con los valores del vector up de la cdmara.
e get_right():
Devuelve el VectorXYZ que representa el vector right de la cdmara.
Pardmetros:

o Ninguno

Devuelve:
o Objeto VectorXYZ: Objeto con los valores del vector right de la cdmara.
o get_lookAt():
Devuelve el VectorXYZ que representa el vector lookAt de la cdmara.
Pardmetros:

o Ninguno

Devuelve:
o Objeto VectorXYZ: Objeto con los valores del vector lookAt de la cdmara.
e get_aspectRatio():
Devuelve el valor del ratio de aspecto de la cdmara.
Pardmetros:

o Ninguno

Devuelve:
o Valor real: Niumero real que representa el ratio de aspecto de la cdmara.
e set_aspectRatio(new):
Cambia el valor del ratio de aspecto de la cdmara por el pasado por pardmetro.
Pardmetros:

o new: Nuevo valor (real) del ratio de aspecto.

Devuelve:
o Nada
e setCamera(posX, posY, posZ, upX, upY, upZ, lookAtX, lookAtY, lookAtz, rightX,

aspectRatio):
Cambia los atributos de la cdmara a partir de los valores pasados como parametro.

C. DOCUMENTACION MODULOS

Parametros:

O 0O OO OO O O O OO0

posX: Nuevo valor X (real) de la posicién de la camara.

posY: Nuevo valor Y (real) de la posicion de la cdmara.

posZ: Nuevo valor Z (real) de la posicidn de la cdmara.

upX: Nuevo valor X (real) del vector up de la camara.

upY: Nuevo valor Y (real) del vector up de la camara.

upZ: Nuevo valor Z (real) del vector up de la camara.
lookAtX: Nuevo valor X (real) del vector lookAt de la cdmara.
lookAtY: Nuevo valor Y (real) del vector lookAt de la cdmara.
lookAtZ: Nuevo valor Z (real) del vector lookAt de la camara.
rightX: Nuevo valor X (real) del vector right de la cdmara.
aspectRatio: Nuevo valor X (real) del ratio de aspecto.

Devuelve:

o

C.

Nada

cameraUtils

i. Variables

e Ninguna

ii. Operaciones

¢ calculate_camera(xzl, xz2, angleDeg, direction):
Crea un objeto Camera y calcula sus valores a partir de los valores pasados como parametro.

Parametros:

O 0 0O

xz1: Tupla con las coordenadas del vértice superior izquierdo.

xz2: Tupla con las coordenadas del vértice inferior derecho.
angleDeg: Angulo de perspectiva deseado para la escena (45 o 30).
direction: Direccién del punto de vista de la escena (N, S, E o W).

Devuelve:

(o]

Objeto Camera: Camara con los valores calculados a partir de los datos de la
escena pasados como parametro.

56

C. DOCUMENTACION MODULOS

d. heightfield

i. Variables
¢ Ninguna

ii. Operaciones

e transform_file_to_heightfield(file_in, file_out, maxHeight):

Crea un fichero de texto y una imagen en formato PNG a partir de un fichero MDT con formato
ASC pasado como parametro.

Pardmetros:

o file_in: Ruta del fichero ASC a transformar.

file_out: Ruta del fichero PNG a crear.

O maxHeigth: Altura maxima que se va a representar en la imagen resultante.
Valores superiores a este serdn, en la nueva imagen, iguales a este parametro.

(o)

Devuelve:

o Nada

e. load_info

Mddulo encargado de realizar las operaciones referentes a la creacion y consulta de ficheros de
texto que contienen todos los ficheros de entrada y datos metadatos sobre ellos.

i. Variables

m_file: Ruta del fichero encargado de almacenar los datos de los ficheros MDT.

e o_file: Ruta del fichero encargado de almacenar los datos de los ficheros ortofotos.

e |_file: Ruta del fichero encargado de almacenar los datos de los ficheros LiDAR.

e a_file: Ruta del fichero encargado de almacenar las dreas de interés para el LiDAR (zonas
donde se necesita LiDAR).

e laszip: Ruta del programa LASZip encargado de descomprimir los archivos LAZ para
transformarlos en archivos LAS.

ii. Operaciones

¢ load_mdt_info(png_directory):

57

C. DOCUMENTACION MODULOS

Crea el fichero de texto que incluye todos los MTDs disponibles en el sistema y algunos datos
sobre ellos (tamanio, ruta...).

Pardmetros:
o png_directory: Directorio donde se encuentran los ficheros MDT.
Devuelve:

o Nada

o find_mdt(x1, y1, x2, y2):

Busca en el fichero de texto de los MDT y devuelve aquellos en los que algunos de sus puntos se
encuentran dentro del rectangulo formado por las coordenadas pasadas como parametro.

Pardmetros:
o x1: Coordenada del punto mas al oeste.
o yl: Coordenada del punto mas al norte.
o x2: Coordenada del punto mas al este.
O y2: Coordenada del punto mas al sur.

Devuelve:

o Lista de listas: Lista con informacién de los MDTs que se incluyen dentro de las
coordenadas especificadas como pardmetros. Si la lista estd vacia es que no se
ha encontrado ningin MDT dentro de los limites establecidos.

¢ load_orto_info(orto_directory):

Crea el fichero de texto que incluye todas las ortofotos disponibles en el sistema y algunos datos
sobre ellos (tamanio, ruta...).

Pardmetros:

o orto_directory: Directorio donde se encuentran las ortofotos.

Devuelve:

o Nada

e find_orto(x1, y1, x2, y2, mdts):

Busca en el fichero de texto de los MDT y devuelve aquellos en los que algunos de sus puntos se
encuentran dentro del rectangulo formado por las coordenadas pasadas como parametro.

58

Pardmetros:

x1: Coordenada del punto mas al oeste.
y1: Coordenada del punto mas al norte.
x2: Coordenada del punto mas al este.
y2: Coordenada del punto mas al sur.
mdts: Lista de ficheros MDT.

O 0 0 0O

Devuelve:

O Lista de listas: Lista con informacién de las ortofotos que se incluyen dentro de
las coordenadas especificadas como parametros. Si la lista esta vacia es que no
se ha encontrado ninguna ortofoto dentro de los limites establecidos.

e load_lidar_info(lidar_directory):

Crea el fichero de texto que incluye todos los ficheros LiDAR disponibles en el sistema y algunos
datos sobre ellos (tamafio, ruta...).

Pardametros:
o lidar_directory: Directorio donde se encuentran los ficheros LiDAR.
Devuelve:

o Nada

o find_lidar(areas, c1, c2):

Busca en el fichero de texto de los LiDAR y devuelve aquellos en los que algunos de sus puntos
se encuentran dentro del rectdngulo formado por las coordenadas pasadas como parametro y
dentro de las areas de interés.

Pardmetros:

O areas: Lista con las areas de interés incluidas en las escenas.
o cl: Tupla con las coordenadas de la esquina superior izquierda.
o ¢2: Tupla con las coordenadas de la esquina inferior derecha.

Devuelve:

o Lista de listas: Lista con informacion de los ficheros LIDAR que se incluyen
dentro de las coordenadas especificadas como parametros. Si la lista estd vacia
es que no se ha encontrado ningun fichero LiDAR dentro de los limites
establecidos.

e find_a_interest(x1, y1, x2, y2):

Busca en el fichero de texto de las dreas de interés y devuelve aquellas en las que algunos de
sus puntos se encuentran dentro del rectdngulo formado por las coordenadas pasadas como
pardmetro.

Pardmetros:

x1: Coordenada del punto mas al oeste.
y1: Coordenada del punto mas al norte.
x2: Coordenada del punto mas al este.

O 0 0O

y2: Coordenada del punto mas al sur.

Devuelve:

o Lista de listas: Lista con las areas de interés que se incluyen dentro de las
coordenadas especificadas como parametros. Si la lista esta vacia es que no se
ha encontrado ninguna area de interés dentro de los limites establecidos.

e is_collision(x1, y1, x2, y2, mx1, myl, mx2, my2):

Comprueba si existe colisidn, es decir, tienen alguna coordenada comun en su interior, entre los
dos rectdngulos formados por las coordenadas pasadas como pardmetros. El primer rectangulo
esta formado por los parametros x1, y1, x2, y2 y el segundo por los parametros mx1, myl, mx2,
my?2.

Pardmetros:

x1: Coordenada del punto mas al oeste (rectangulo 1).
y1: Coordenada del punto mas al norte (rectangulo 1).
x2: Coordenada del punto mas al este (rectangulo 1).
y2: Coordenada del punto mas al sur (rectangulo 1).
mx1: Coordenada del punto mds al oeste (rectangulo 2).
myl: Coordenada del punto mas al norte (rectangulo 2).
mx2: Coordenada del punto mas al este (rectangulo 2).

O 0 00O OO OO

my2: Coordenada del punto mas al sur (rectangulo 2).

Devuelve:

o True: Existe colisidén entre los dos rectangulos que forman las coordenadas
pasadas como parametro.

o False: No existe colision entre los dos rectangulos que forman las coordenadas
pasadas como parametro.

¢ load_info(png_directory, orto_directory, lidar_directory):

Crea los ficheros de textos que incluyen la informacién de los ficheros MDT y LiDAR vy las
ortofotos disponibles en el sistema.

Pardmetros:

C. DOCUMENTACION MODULOS

o png_directory: Directorio donde se encuentran los ficheros MDT.
o orto_directory: Directorio donde se encuentran las ortofotos.
o lidar_directory: Directorio donde se encuentran los ficheros LiDAR.

Devuelve:

o Nada

f. main_program
Médulo principal encargado de realizar la interaccién con el usuario y de invocar al resto de
funciones del sistema para desarrollar las acciones requeridas. Ofrece el cdlculo del tiempo de
ejecucion.

i. Variables
e Ninguna

ii. Operaciones

e tiles_to_render(cl, c2, zoom):

Calcula que teselas y sus coordenadas son limite para la escena (tesela superior izquierda e
inferior derecha) limitada por los valores de las coordenadas y el nivel de zoom pasados como
pardametro.

Pardmetros:

o cl: Tupla con las coordenadas de la esquina superior izquierda.
o ¢2: Tupla con las coordenadas de la esquina inferior derecha.
o zoom: Nivel de zoom.

Devuelve:

o Tupla de 4 tuplas: Dos tuplas que contienen el cédigo de las teselas limite y 2
tuplas que contienen las coordenadas de estas teselas (vértice mas al norte y
oeste y vértice mas al sur y este).

o ‘null’: Si se produce algun error en el célculo de teselas (algun valor superior a
el posible a partir del nivel de zoom).

e dir_view_tile(tile, dir_view, zoom):

Transforma, a partir del punto de vista norte, el cédigo de la tesela al punto de vista
especificado como parametro.

Pardmetros:

o tile: Tupla con el cédigo de la tesela a transformar.

o dir_view: Caracter que especifica el punto de vista de la tesela nuevo (N, S, Eo
W).
o zoom: Nivel de zoom.

Devuelve:

o Tupla de 2 valores: Contiene el nuevo cédigo de la tesela para el punto de
vista especificado por parametro.

¢ render(tilel, tile2, c1, c2, dir_view, angle, result, lidar):

Genera el archivo de POV-Ray que representa la escena pasada a través de los valores de los
pardmetros. Posteriormente utiliza el programa POV-Ray para renderizar la escena a partir del
archivo generado.

Pardmetros:

tilel: Tupla con el cddigo de la tesela limite al noroeste.

tile2: Tupla con el cddigo de la tesela limite al sureste.

c1: Tupla con las coordenadas de la esquina superior izquierda.

c2: Tupla con las coordenadas de la esquina inferior derecha.

dir_view: Caracter que especifica el punto de vista de la tesela nuevo (N, S, E o
W).

O 0 0 0O

o angle: Angulo de perspectiva deseado para la escena (45 o 30).
o result: Ruta donde guardar la escena renderizada.
o lidar: Booleano para activar la generacion de esferas a partir de ficheros
LiDAR.
Devuelve:

o Tupla de 3 valores: Dos valores para el tamafio de las teselas y otro con el
numero de teselas necesarias para la escena.

o ‘null’: Si se produce algun error en el renderizado (la zona no contiene ningun
heightfield).

e tessellation(result, tilel, tile_size_x, tile_size_y, w_tiles, zoom, dir_view, angle,
dist_tile):

Genera las teselas a partir de la escena renderizada. La ruta de la escena renderizada y la
informacidn del teselado son pasados por pardmetros.

Parametros:

result: Ruta donde se encuentra la imagen de la escena renderizada.
tilel: Tupla con el cddigo de la tesela inicial.

tile_size_x: Tamafo de la tesela para el eje X.

tile_size_y: Tamafiio de la tesela para el eje Y.

O 0 0 0O

w_tiles: NUmero de teselas a generar (para una dimensidn).

C. DOCUMENTACION MODULOS

o zoom: Nivel de zoom.

o dir_view: Caracter que especifica el punto de vista de la tesela nuevo (N, S, E o
W).

o angle: Angulo de perspectiva deseado para la escena (45 o 30).

o dist_tile: Ruta donde guardar las teselas generadas.

Devuelve:

o Nada

e main():

Funcidén principal del sistema. Realiza la interaccién con el usuario y calcula el tiempo de
ejecucion del programa.

Pardmetros:
o Ninguno
Devuelve:

o Nada

g. povray_writer
Moddulo encargado de generar el archivo de POV-Ray que representa la escena a renderizar.

i. Variables
e Ninguna

ii. Operaciones

e write_heigthfields(mdt_list, orto_list):

Genera los heightfields necesarios para la escena a partir de los ficheros MDT y ortofotos
necesarias pasados como parametros.

Pardmetros:

o mdt_list: Lista con los MDTs a incluir en la escena.
o orto_list: Lista con las ortofotos a incluir en la escena.

Devuelve:

o Cadena de texto: Cadena de texto que contiene todos los heightfields a incluir
en formato de fichero para POV-Ray.

63

C. DOCUMENTACION MODULOS

e write_povray_file(cam, heightfields, spheres):
Crea el fichero POV e incluye los objetos pasados como parametros.
Parametros:

o cam: Cadena de texto en formato para POV-Ray que incluye la definicion de la
camara de la escena.

o heightfields: Cadena de texto en formato para POV-Ray que incluye los
heightfields incluidos en la escena.

o spheres: Cadena de texto en formato para POV-Ray que incluye los objetos
esfera que representan puntos pertenecientes a ficheros LiDAR.

Devuelve:

o Nada.

¢ write_headers_and_camera(pov, cam):
Escribe en el fichero POV la definicion de la cdmara.
Pardmetros:

o pov: Objeto que representan el stream de datos al fichero de POV-Ray.
o cam: Cadena de texto en formato para POV-Ray que incluye la definicién de la
camara de la escena.

Devuelve:

o Nada.

e write_texture_finish():

Escribe en el fichero POV las caracteristicas finales del objeto heightfield (difuminacién, color
ambiente...).

Pardmetros:
o Ninguno
Devuelve:

o Nada.

h. read_lidar

Moédulo encargado de descomprimir los ficheros LIDAR y generar las esferas que representan
los puntos contenidos en estos ficheros.

64

C. DOCUMENTACION MODULOS

i. Variables

e laszip: Ruta del programa LASZip encargado de descomprimir los archivos LAZ para
transformarlos en archivos LAS.

ii. Operaciones

e generate_spheres(lidar_list, areas_list, c1, c2):
Genera una cadena de texto que contiene objetos esfera en formato para POV-Ray que
representa parte de los puntos de los ficheros LiDAR pasados como parametro. Estos puntos son
escogidos segln si se encuentran dentro de los limites establecidos por el resto de los
pardmetros.

Pardmetros:
o lidar_list: Lista con los ficheros LiDAR a incluir.
o areas_list: Lista con las areas de interés que se incluyen en la escena.
o cl: Tupla con las coordenadas de la esquina superior izquierda.
O ¢2: Tupla con las coordenadas de la esquina inferior derecha.

Devuelve:

o Cadena de texto: Contiene las esferas generadas a partir de los puntos que se
encuentran dentro de los limites establecidos y con la informacién que poseen
en los archivos LiDAR. Si esta cadena de texto estd vacia es que no se han
encontrado esferas que cumplan lo establecido.

I. vector XYZ
Mddulo que incluye la clase VectorXYZ encargada de generar objetos Vector y de realizar las
operaciones simples sobre estos.

i. Atributos

e x:Valor para la dimensién de las X.
e y:Valor parala dimensién de las Y.
e z:Valor para la dimensién de las Z.

iil. Operaciones

o get_x():
Devuelve el valor que representa la dimensién X del vector.

Parametros:

65

C. DOCUMENTACION MODULOS

o Ninguno
Devuelve:

o Valor real: NUmero real que representa la dimensién X.

o gety():
Devuelve el valor que representa la dimension Y del vector.
Parémetros:
o Ninguno
Devuelve:

o Valor real: Niumero real que representa la dimensién Y.

o get_z():
Devuelve el valor que representa la dimension Z del vector.
Pardmetros:
o Ninguno
Devuelve:

o Valor real: Numero real que representa la dimensién Z.

e length():
Devuelve la longitud del vector.
Pardmetros:
o Ninguno
Devuelve:

o Valor real: Numero real que representa la longitud del vector.

e length_squared():
Devuelve la longitud del vector al cuadrado.
Pardametros:
o Ninguno

Devuelve:

66

C. DOCUMENTACION MODULOS

o Valor real: NUumero real que representa la longitud del vector al cuadrado.

e normalize():
Devuelve el vector normalizado.
Pardametros:
o Ninguno
Devuelve:

O Objeto VectorXYZ: Objeto VectorXYZ que representa el vector normalizado.

e add(other):
Devuelve la suma de dos vectores.
Pardmetros:
o other: Objeto VectorXYZ que se suma al objeto VectorXYZ propio.
Devuelve:

o Objeto VectorXYZ: Objeto VectorXYZ que representa el vector sumado al
pasado como parametro.

e subtract(other):
Devuelve la resta de dos vectores.
Pardmetros:
o other: Objeto VectorXYZ que se resta al objeto VectorXYZ propio.
Devuelve:

o Objeto VectorXYZ: Objeto VectorXYZ que representa el vector pasado como
pardmetro restado al propio.

e cross(other):
Devuelve el producto vectorial de dos vectores.
Pardmetros:

o other: Objeto VectorXYZ que se multiplica vectorialmente al objeto VectorXYZ
propio.

Devuelve:

67

C. DOCUMENTACION MODULOS

o Objeto VectorXYZ: Objeto VectorXYZ que representa el vector producto
vectorial entre el propio y el pasado por parametro.

¢ mult(scalar):
Devuelve el resultado de multiplicar el vector por el escalar pasado como pardmetro.
Pardametros:
o scalar: Escalar que se multiplica al objeto VectorXYZ propio.
Devuelve:

o Objeto VectorXYZ: Objeto VectorXYZ que representa el producto escalar entre
el vector propio y el escalar pasado por parametro.

e invert():
Devuelve el vector invertido.
Pardmetros:
o Ninguno.
Devuelve:

o Objeto VectorXYZ: Objeto VectorXYZ que representa el vector invertido.

e toString():
Devuelve el objeto Vector en formato texto.
Pardmetros:
o Ninguno.
Devuelve:

o Cadena de texto: Representa los valores del objeto VectorXYZ separados por
comas y limitados por los simbolos “<” y “>”.

68

