000078712 001__ 78712
000078712 005__ 20200103141022.0
000078712 0247_ $$2doi$$a10.1016/j.cep.2018.03.024
000078712 0248_ $$2sideral$$a105887
000078712 037__ $$aART-2018-105887
000078712 041__ $$aeng
000078712 100__ $$aGangurde, L.S.
000078712 245__ $$aSynthesis, characterization, and application of ruthenium-doped SrTiO3 perovskite catalysts for microwave-assisted methane dry reforming
000078712 260__ $$c2018
000078712 5060_ $$aAccess copy available to the general public$$fUnrestricted
000078712 5203_ $$aA series of ruthenium-doped strontium titanate (SrTiO3) perovskite catalysts were synthesized by conventional and microwave-assisted hydrothermal methods. The structure was analyzed by X-Ray diffraction (XRD) confirming the formation of the perovskite phase with some TiO2 anatase phase in all the catalysts. Microwave irradiation decreases the temperature and time of synthesis from 220 °C for 24 h (conventional heating) to 180 °C for 1h, without affecting the formation of perovskite. A 7 wt. % ruthenium-doped SrTiO3 catalyst showed the best dielectric properties, and thus its catalytic activity was evaluated for the methane dry reforming reaction under microwave heating in a custom fixed-bed quartz reactor. Microwave power, CH4:CO2 vol. % feed ratio and gas hourly space velocity (GHSV) were varied in order to determine the best conditions for performing dry reforming with high reactants conversions and H2/CO ratio. Stable maximum CH4 and CO2 conversions of ~99.5% and ~94%, respectively, at H2/CO ~0.9 were possible to reach with the 7 wt. % ruthenium-doped SrTiO3 catalyst exposed to maximum temperatures in the vicinity of 940 °C. A comparative theoretical scale-up study shows significant improvement in H2 production capability in the case of the perovskite catalyst compared to carbon-based catalysts.
000078712 536__ $$9info:eu-repo/grantAgreement/EC/FP7/267348/EU/Towards Perfect Chemical Reactors:Engineering the Enhanced Control of Reaction Pathways at Molecular Level via Fundamental Concepts of Process Intensification/TOPCHEM
000078712 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000078712 590__ $$a3.031$$b2018
000078712 591__ $$aENGINEERING, CHEMICAL$$b45 / 138 = 0.326$$c2018$$dQ2$$eT1
000078712 591__ $$aENERGY & FUELS$$b51 / 103 = 0.495$$c2018$$dQ2$$eT2
000078712 592__ $$a0.789$$b2018
000078712 593__ $$aChemical Engineering (miscellaneous)$$c2018$$dQ1
000078712 593__ $$aChemistry (miscellaneous)$$c2018$$dQ1
000078712 593__ $$aProcess Chemistry and Technology$$c2018$$dQ1
000078712 593__ $$aIndustrial and Manufacturing Engineering$$c2018$$dQ1
000078712 593__ $$aEnergy Engineering and Power Technology$$c2018$$dQ1
000078712 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000078712 700__ $$aSturm, G.S.J.
000078712 700__ $$aValero-Romero, M.J.
000078712 700__ $$0(orcid)0000-0002-4758-9380$$aMallada, R.$$uUniversidad de Zaragoza
000078712 700__ $$0(orcid)0000-0002-8701-9745$$aSantamaria, J.$$uUniversidad de Zaragoza
000078712 700__ $$aStankiewicz, A.I.
000078712 700__ $$aStefanidis, G.D.
000078712 7102_ $$15005$$2555$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Ingeniería Química
000078712 773__ $$g127 (2018), 178-190$$pChem. eng. process.$$tCHEMICAL ENGINEERING AND PROCESSING$$x0255-2701
000078712 8564_ $$s1158206$$uhttps://zaguan.unizar.es/record/78712/files/texto_completo.pdf$$yPostprint
000078712 8564_ $$s53878$$uhttps://zaguan.unizar.es/record/78712/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000078712 909CO $$ooai:zaguan.unizar.es:78712$$particulos$$pdriver
000078712 951__ $$a2020-01-03-14:02:10
000078712 980__ $$aARTICLE