000078807 001__ 78807
000078807 005__ 20200117221656.0
000078807 0247_ $$2doi$$a10.1016/j.energy.2018.04.012
000078807 0248_ $$2sideral$$a105930
000078807 037__ $$aART-2018-105930
000078807 041__ $$aeng
000078807 100__ $$0(orcid)0000-0001-8350-6485$$aPina, E.A.
000078807 245__ $$aThermoeconomic cost allocation in simple trigeneration systems including thermal energy storage
000078807 260__ $$c2018
000078807 5060_ $$aAccess copy available to the general public$$fUnrestricted
000078807 5203_ $$aThe present paper tackles the issue of allocating economic costs in trigeneration systems including thermal energy storage (TES) for buildings of the residential-commercial sector. As energy systems become more and more complex (multiple resources, products and technologies; joint production; TES) the issue of the appropriate way to allocate the cost of the resources consumed arises. This is important because the way in which allocation is made directly affects the prices of the products obtained and, thus, the consumers' behavior. Thermoeconomics has been used to explain the cost formation process in complex energy systems. In this paper, two issues in thermoeconomics that have not been deeply studied are addressed: (i) the joint production of energy services in dynamic energy systems; and (ii) the incorporation of TES. A thermoeconomic analysis of a simple trigeneration system including TES was performed and the hourly unit costs of the internal flows and final products were obtained for a day of the year. The cost allocation proposal considered that the cogenerated products must share the benefits of the joint production. Regarding the TES, the interconnection between charging and discharging periods was explored, allowing the discharged energy flow to be traced back to its production period.
000078807 536__ $$9info:eu-repo/grantAgreement/ES/DGA/FEDER$$9info:eu-repo/grantAgreement/ES/MICINN/ENE2014-57262-R
000078807 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000078807 590__ $$a5.537$$b2018
000078807 591__ $$aTHERMODYNAMICS$$b3 / 60 = 0.05$$c2018$$dQ1$$eT1
000078807 591__ $$aENERGY & FUELS$$b15 / 103 = 0.146$$c2018$$dQ1$$eT1
000078807 592__ $$a2.048$$b2018
000078807 593__ $$aBuilding and Construction$$c2018$$dQ1
000078807 593__ $$aCivil and Structural Engineering$$c2018$$dQ1
000078807 593__ $$aElectrical and Electronic Engineering$$c2018$$dQ1
000078807 593__ $$aPollution$$c2018$$dQ1
000078807 593__ $$aIndustrial and Manufacturing Engineering$$c2018$$dQ1
000078807 593__ $$aMechanical Engineering$$c2018$$dQ1
000078807 593__ $$aEnergy (miscellaneous)$$c2018$$dQ1
000078807 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000078807 700__ $$0(orcid)0000-0002-4411-9834$$aLozano, M.A.$$uUniversidad de Zaragoza
000078807 700__ $$0(orcid)0000-0002-5161-7209$$aSerra, L.M.$$uUniversidad de Zaragoza
000078807 7102_ $$15004$$2590$$aUniversidad de Zaragoza$$bDpto. Ingeniería Mecánica$$cÁrea Máquinas y Motores Térmi.
000078807 773__ $$g153 (2018), 170-184$$pEnergy$$tEnergy$$x0360-5442
000078807 8564_ $$s537993$$uhttps://zaguan.unizar.es/record/78807/files/texto_completo.pdf$$yPostprint
000078807 8564_ $$s7895$$uhttps://zaguan.unizar.es/record/78807/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000078807 909CO $$ooai:zaguan.unizar.es:78807$$particulos$$pdriver
000078807 951__ $$a2020-01-17-22:11:24
000078807 980__ $$aARTICLE