000078824 001__ 78824
000078824 005__ 20200716101419.0
000078824 0247_ $$2doi$$a10.1038/s41598-019-40341-y
000078824 0248_ $$2sideral$$a111147
000078824 037__ $$aART-2019-111147
000078824 041__ $$aeng
000078824 100__ $$0(orcid)0000-0002-6116-9331$$aTorres, T.E.
000078824 245__ $$aThe relevance of Brownian relaxation as power absorption mechanism in Magnetic Hyperthermia
000078824 260__ $$c2019
000078824 5060_ $$aAccess copy available to the general public$$fUnrestricted
000078824 5203_ $$aThe Linear Response Theory (LRT) is a widely accepted framework to analyze the power absorption of magnetic nanoparticles for magnetic fluid hyperthermia. Its validity is restricted to low applied fields and/or to highly anisotropic magnetic nanoparticles. Here, we present a systematic experimental analysis and numerical calculations of the specific power absorption for highly anisotropic cobalt ferrite (CoFe 2 O 4 ) magnetic nanoparticles with different average sizes and in different viscous media. The predominance of Brownian relaxation as the origin of the magnetic losses in these particles is established, and the changes of the Specific Power Absorption (SPA) with the viscosity of the carrier liquid are consistent with the LRT approximation. The impact of viscosity on SPA is relevant for the design of MNPs to heat the intracellular medium during in vitro and in vivo experiments. The combined numerical and experimental analyses presented here shed light on the underlying mechanisms that make highly anisotropic MNPs unsuitable for magnetic hyperthermia.
000078824 536__ $$9info:eu-repo/grantAgreement/ES/DGA-FEDER/Construyendo Europa desde Aragón$$9info:eu-repo/grantAgreement/ES/DGA-FEDER/E26$$9info:eu-repo/grantAgreement/ES/DGA-FEDER/E28-17R
000078824 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000078824 590__ $$a3.998$$b2019
000078824 592__ $$a1.341$$b2019
000078824 591__ $$aMULTIDISCIPLINARY SCIENCES$$b17 / 71 = 0.239$$c2019$$dQ1$$eT1
000078824 593__ $$aMultidisciplinary$$c2019$$dQ1
000078824 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000078824 700__ $$aLima, E.Jr.
000078824 700__ $$0(orcid)0000-0001-9359-0019$$aCalatayud, M.P.
000078824 700__ $$0(orcid)0000-0002-5578-7635$$aSanz, B.$$uUniversidad de Zaragoza
000078824 700__ $$0(orcid)0000-0002-4599-3013$$aIbarra, A.$$uUniversidad de Zaragoza
000078824 700__ $$0(orcid)0000-0002-6813-780X$$aFernández-Pacheco, R.$$uUniversidad de Zaragoza
000078824 700__ $$aMayoral, A.
000078824 700__ $$0(orcid)0000-0003-0602-492X$$aMarquina, C.$$uUniversidad de Zaragoza
000078824 700__ $$0(orcid)0000-0003-0681-8260$$aIbarra, M.R.$$uUniversidad de Zaragoza
000078824 700__ $$0(orcid)0000-0003-1558-9279$$aGoya, G.F.$$uUniversidad de Zaragoza
000078824 7102_ $$12003$$2395$$aUniversidad de Zaragoza$$bDpto. Física Materia Condensa.$$cÁrea Física Materia Condensada
000078824 773__ $$g9, 1 (2019), 3992 [11 pp]$$pSci. rep.$$tScientific Reports$$x2045-2322
000078824 8564_ $$s733525$$uhttps://zaguan.unizar.es/record/78824/files/texto_completo.pdf$$yVersión publicada
000078824 8564_ $$s111407$$uhttps://zaguan.unizar.es/record/78824/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000078824 909CO $$ooai:zaguan.unizar.es:78824$$particulos$$pdriver
000078824 951__ $$a2020-07-16-08:38:47
000078824 980__ $$aARTICLE