A class of explicit high-order exponentially-fitted two-step methods for solving oscillatory IVPs
Resumen: The derivation of new exponentially fitted (EF) modified two-step hybrid (MTSH) methods for the numerical integration of oscillatory second-order IVPs is analyzed. These methods are modifications of classical two-step hybrid methods so that they integrate exactly differential systems whose solutions can be expressed as linear combinations of the set of functions {exp(¿t), exp(-¿t)}, ¿¿C, or equivalently {sin(¿t), cos(¿t)} when ¿=i¿, ¿¿R, where ¿ represents an approximation of the main frequency of the problem. The EF conditions and the conditions for this class of EF schemes to have algebraic order p (with p=8) are derived. With the help of these conditions we construct explicit EFMTSH methods with algebraic orders seven and eight which require five and six function evaluation per step, respectively. These new EFMTSH schemes are optimal among the two-step hybrid methods in the sense that they reach a certain order of accuracy with minimal computational cost per step. In order to show the efficiency of the new high order explicit EFMTSH methods in comparison to other EF and standard two-step hybrid codes from the literature some numerical experiments with several orbital and oscillatory problems are presented.
Idioma: Inglés
DOI: 10.1016/j.cam.2018.04.026
Año: 2018
Publicado en: Journal of Computational and Applied Mathematics 342 (2018), 210-224
ISSN: 0377-0427

Factor impacto JCR: 1.883 (2018)
Categ. JCR: MATHEMATICS, APPLIED rank: 47 / 254 = 0.185 (2018) - Q1 - T1
Factor impacto SCIMAGO: 0.849 - Computational Mathematics (Q2) - Applied Mathematics (Q2)

Financiación: info:eu-repo/grantAgreement/ES/MINECO/MTM2016-77735-C3-1-P
Tipo y forma: Artículo (PostPrint)
Área (Departamento): Área Matemática Aplicada (Dpto. Matemática Aplicada)

Creative Commons Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace. No puede utilizar el material para una finalidad comercial. Si remezcla, transforma o crea a partir del material, no puede difundir el material modificado.


Exportado de SIDERAL (2019-11-27-15:47:07)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Artículos > Artículos por área > Matemática Aplicada



 Registro creado el 2019-05-08, última modificación el 2019-11-27


Postprint:
 PDF
Valore este documento:

Rate this document:
1
2
3
 
(Sin ninguna reseña)