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Abstract 

This study proposes a combined life cycle assessment (LCA) and Geographical Information Systems (GIS) 

methodology to develop complex LCA inventories for multiple applications. The study focusses on the 

environmental implications of buildings retrofits, especially in the European context, where the building 

sector is one of the largest energy consumers. In this context, a new and holistic perspective is needed that 

expands from the building scale to the urban scale.   

The combination of LCA and GIS methods includes the development of an urban characterization model 

based on bottom-up methodologies. The environmental implications associated with increasing the thermal 

insulation of existing buildings to the current standard are determined based on LCA methods. In this step, 

common construction systems for building retrofits are used, and insulation materials are compared. Then, 

absolute and relative extrapolations are performed considering different urban morphologies.   

The results confirm the importance of the energy retrofitting of residential buildings in large functional urban 

areas such as the Barcelona metropolitan area, which is examined as a case study. The LCA results indicate 

that the selection of proper construction systems and thermal insulation materials is important to the 

environmental performance of building retrofits, and these selections can lead to CO2 emission differences of 

up 16% in the region. The relative extrapolation results indicate significant environmental differences 

between urban morphologies. The LCA results show the potential strategic impacts of the inclusion of LCA 

methods in retrofit policies at the urban scale. 
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Highlights 

x A bottom-up methodology is presented to measure and map the environmental implications of 

retrofit scenarios for residential buildings at the urban scale based on a combined LCA-GIS method. 

x The study compares different construction systems and insulation materials, and significant 

differences are observed between retrofit scenarios. 

x The method is applied to the Barcelona metropolitan area, Spain, considering the urban morphology 

as an aggregate method. 

x The results show the potential strategic impacts of the inclusion of LCA approaches in retrofit 

policies at the urban scale.  
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1. Introduction 

Currently, cities are responsible for 75% of global energy consumption and greenhouse gas emissions [1], 

and recent studies have indicated that the population of cities will grow by up to 66% by 2050 [2]. Therefore, 

it is clear that the transformation to a low carbon economy offers an important opportunity for change in 

cities and their urban functional areas, where the building stock plays an essential role in energy consumption 

[3]. Moreover, more than 40% of total energy consumption is attributed to buildings in the EU [4] due to 

facilities and construction work. In this sense, the building sector represents one of the most significant 

challenges according to the European Union Framework Programme for Research and Innovation – Horizon 

2020 [5]. 

European Union Directive 2012/27/EU [6] recognizes the retrofitting of old building stock as an energy 

efficiency strategy to reduce energy consumption in the EU. In this regard, increasing the level of insulation 

in buildings is one of the most effective passive solutions in retrofitting [7]. Previous studies have noted the 

importance of introducing a comprehensive perspective to retrofit solutions based on life cycle assessment 

(LCA) methods due to the related environmental implications of the embodied energy of materials and 

processes [8,9]. Recent studies have focused on comparisons between different alternatives for building 

design and the selection of construction systems and building materials [10–14]. In this regard, the selection 

of building materials has received increased interest in the environmental field and has an important 

influence on the energy and environmental performance of buildings during both the construction phase [14–

16] and the building use phase [17,18]. These environmental evaluations, according to an LCA framework, 

have focused on the building level, and this focus is necessary for extending environmental research to the 

urban scale. Lotteau et al. [19] conducted a recent LCA review at the urban level and analysed buildings, 

open spaces, networks and mobility at the neighbourhood scale from a holistic perspective. However, 

assessments of building retrofits at the urban scale or large scales has been less common in LCA frameworks 

due to methodological barriers and data availability problems [20]. 

In this sense, the building stock aggregation model has been identified as an appropriate methodology for 

quantifying operational energy use at the urban level. Moreover, the environmental performance throughout 

several stages of the building life cycle can be assessed using LCA methodologies [21] that have been 

developed to support decisions regarding building stock retrofits for sustainable urban planning. According 

to the Swan and Ugursal classification [22], bottom-up models can be useful for developing building stock 

aggregation models, in which the definition of a minimum unit is required according to data availability and 

extrapolation methods. 

In the context of segregation models, several bottom-up studies have used archetype techniques in which the 

building stock is classified according to variables such as the age of construction, size, and house type [21]. 

After these variables are defined, a representative building is selected for each archetype, and the results are 

extrapolated for similar buildings. This technique has been previously applied to estimate energy 

performance at the urban scale [23–27].  
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Tools such as Geographical Information Systems (GIS) facilitate the use of information associated with 

individual buildings and permit building-by-building analyses. GIS are based on the combination of spatial 

data with several attributes and have been demonstrated as effective interdisciplinary tools [28]. Batty and 

Xie [29] indicated that GIS technology provides the basic framework for processing large volumes of spatial 

data, obtaining georeferenced information, and producing visual and easily updatable results; therefore, these 

systems are ideal for creating models that incorporate the attributes of individual buildings [20,30–34]. 

According to the extrapolation methods, the building-by-building approach considers the minimum unit in 

the data, an individual building. In this approach, multiple forms of data can be aggregated according to 

different criteria. This method provides flexibility and adaptability in the building-by-building approach and 

allows cross-comparisons with other studies and datasets. Various aggregation methods have been researched 

in recent studies. These studies highlight the use of administrative criteria, such as municipalities [35] or 

census sections [36], instead of physical criteria. Thus, urban morphology information can be incorporated 

into aggregation methods because it is directly related to the physical form of cities and their spatial 

configurations [37,38]. 

Therefore, bottom-up techniques based on building-by-building methods represent potential methods of 

characterizing buildings according to geospatial building stock models [34]. Considering the objective of this 

approach, the evaluation performance of building retrofits at the urban scale is assessed using a novel LCA-

GIS approach that focuses on small-sized cities [20]. Moreover, the data available for the development of the 

geospatial model differ in different contexts; therefore, a methodological adaptation to each situation is 

needed.  

The presented methodology combines LCA and GIS methods for retrofits at the urban scale and extends the 

scope of previous methodologies to functional urban areas. Focusing on a Spanish dataset, the residential 

building stock of the “area metropolitana de Barcelona” (Barcelona metropolitan area, AMB) is assessed. 

This area is home to more than 3 million inhabitants [39]. The specific objectives are as follows: to develop 

an urban bottom-up characterization from a building-by-building approach in which the results are 

georeferenced, visually displayed and easily updated and to apply this method to the Spanish dataset; to 

identify the environmental implications of both typical construction systems used in retrofitting and urban 

morphologies; and to provide a scientific basis for policymakers to propose future strategies in the field of 

building retrofits. 

2. Materials and Methods 

This section is presented based on the three main steps of the proposed methodology (Figure 1): (i) envelope 

surface characterization to obtain qualitative and quantitative envelope surface data, (ii) LCA to obtain the 

environmental implications of 1 m2 of a declared unit, and (iii) the extrapolation of results. 

<FIGURE 1> 
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2.1 Envelope surface characterization at the urban scale 

Urban characterization includes three main steps: a data collection process that defines open source data for 

our case study (Spain) and standardization criteria; a qualitative characterization that defines the year of 

construction and urban morphology variables; and a quantitative characterization to develop a geospatial 

model and obtain a geometric characterization. 

2.1.1 Data collection process 

Since the promulgation of the 2003/98/CE European Commission Directive [40], which regulates the reuse 

of public information, governments have worked towards the creation of public databases that are useful to 

citizens, companies and research institutes. Data are crucial to developing a bottom-up approach. Moreover, 

each country regulates and establishes particular conditions. In this context, this study uses Spanish dataset 

sources. Recently, some authors have performed studies to assess the data structure and investigated the 

possibility of reusing the Spanish cadastral dataset, which is the main public administration dataset of 

building stock information in Spain. Among these studies, Mora-García et al. [41] described a methodology 

in which urban-scale cadastral data were reused in urban analysis cases. 

2.1.2 Qualitative characterization 

The envelope surface of residential buildings can be characterized from a qualitative approach considering 

two main factors: the year of construction and the urban morphology. Sufficient urban scale information 

regarding thermal regulation and morphological features should be available (Table 1). 

<Table 1> 

A recent study conducted by the Spanish Institute for Diversification and Energy Savings (IDAE) [42] 

defined three main classes of residential buildings from an energy perspective considering the year of 

construction: (i) buildings built before 1981, when compulsory thermal insulation regulations did not exist; 

(ii) buildings built between 1981 and 2007, when the first regulations determining minimum thermal 

insulation demands were established for the first time [43]; and (iii) buildings built between 2008 and 2014, 

when the Spanish Technical Building Code, which increased the minimum requirements, was implemented 

[44]. A new class must be considered based on the IDAE methodology: (iv) buildings built after 2015, when 

the most recent regulations, which enforce the latest European Union directives, were established [45]. 

Urban morphology characterization allows for the aggregation of building information based on the physical 

characteristics of the urban fabric where buildings are located [38]. Moreover, this information allows to 

discern between residential buildings, included in residential morphologies, and other uses such us amenities 

or tertiary uses. At this level, two different datasets could be considered. On one hand, cadastral data include 

4 categories: (Ca) slab, (Cb) perimeter block, (Cc) detached house and (Cd) terraced house. This information, 

which is automatically generated considering both the number of dwellings on a property and the relative 

positions of these buildings with respect to other buildings [46], is available for almost all Spanish territories, 
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except Basque country. Although this dataset includes three-dimensional information on each building [47], 

it is not currently possible to obtain large quantities of three-dimensional building data. On the other hand, 

the AMB dataset provides abundant information for urban morphology characterization. Data are obtained 

from metropolitan planning [48] and produced by technicians through on-site visits. Table 2 shows a 

correlation scheme of these two datasets. Finally, the AMB dataset is considered because of its detailed 

characterization and the associated acquisition methodology. At this level, 4 main categories and 14 

subcategories are defined (Figure 2): 

<Table 2> 

x  (S) Slab: multi-family residential areas characterized by a non-street-based layout. These areas 

include (S1) grouped slab, which represents canonical functionalist urbanism, such as post-war mass housing 

estates; (S2) aligned slab, which is directly related to the street axis; and (S3) disaggregated slab, if none of 

the situations above apply.  

x (P) Perimeter block: multi-family residential areas characterized by street-based layouts as grids. 

These areas include (P1) axial, in which blocks are adapted to rigid axes; (P2) irregular, where blocks are not 

adjusted to a rigid grid; (P3) regular, in which blocks are arranged according to homogeneous criteria grids; 

and (P4) Cerdà, designed by Idelfonso Cerdà and characterized by a grid of 113x113 m blocks located in 

Barcelona.  

x (H) Historical: multi-family residential areas with historical street-based layouts. These areas 

include (H1) historical old town, the traditional urban morphology in which plots have a small façade length 

and narrow streets, and (H2) historical suburban growth, with clear narrow and large plots aligned along the 

axis with free space at the back of plots. 

x (SF) Single family: (SF1) terraced, in which single buildings are joined by common sidewalls; (SF2) 

irregular, in which single-family houses are organized without clear patterns; (SF3) mixed; (SF4) regular, 

characterized by single-family houses organized around clear street axes and geometries; and (SF5), rustic, 

the main characteristic of which is that single-family houses are organized inside a rustic plot. 

<Figure 2> 

2.1.3 Quantitative characterization 

The envelope surface is characterized from a quantitative approach by developing a geospatial model using 

the GIS software QGIS [49], cadastral vector cartography information from the Spanish Government [50] 

and the associated alphanumeric dataset [51]. For each real building, the model simulates another simplified 

building with the same three basic characteristics: gross living area, coverage and height of living index 

[37,52,53]. The calculation of each variable is defined as follows: 

x Gross living area (G.L.A., m2) is defined as the total living space of a building, including all space that 

has heating, lighting, and ventilation. It is calculated considering the use data for each part of the 

building, obtaining the residential percentage of each building. Hence, using the gross floor area (G.F.A.), 
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which is defined as the total building area, including external walls, it is possible to exclude some non-

living building areas, such as garages and storage, where thermal regulations do not demand special 

thermal requirements. 

x Coverage (C, m2) is defined as the amount of surface area overlaid by a building. It is calculated in QGIS 

considering the area of each building polygon. 

x The height of living index (H, m) is defined as the relation between G.L.A. and C. Once these values are 

calculated, this study considers 3 metres as the average height of each floor [42]. Based on this 

assumption, it is possible to obtain the average height of each living area in each building.  

After the main characteristics have been defined, the geospatial model can be obtained considering 4 phases 

(Figure 3). Table 3 contains the main assumptions considered in this study.  

x First, real building data are obtained from QGIS, including the coverage and the perimeter of each 

building. The cadastral alphanumeric dataset provides G.F.A. (m2) values. 

x Second, the living area and building data are obtained. G.L.A. is calculated from the G.F.A., excluding 

non-living areas. 

x Third, the real geometry is simplified to obtain a simplified G.L.A. for the building. In this step, the study 

idealises a building with the same C and H. 

x Finally, considering hollow surfaces [54], a simplified net building living area is obtained. 

<Table 3> <Figure 3> 

After the simplified net model has been established, the net living envelope surface can be obtained 

considering the external perimeter of the building and H. These values, which are given in m2, are considered 

in defining the retrofit surface in this study. 

2.2 Life cycle assessment 

This portion of the methods is based on the methodology presented by Sierra-Pérez et al. [14] for the 

quantification of environmental impacts during the construction of different façades based on LCA. The 

environmental implications of the retrofitting of façades and roofs are assessed for the envelope determined 

in the quantitative characterization. The environmental impacts of the façade retrofits are obtained from 

Sierra-Pérez et al. [14]. The impacts of roof retrofits are quantified for the first time in this study. 

2.2.1 Boundaries and limits 

This research is based on a cradle-to-site approach. In this approach, the environmental impact analysis 

includes the production (extraction and processing of raw materials, transport to manufacturers and 

manufacturing), distribution to the building site and the installation in the building processes according to the 

European normative EN 15804:2014 [55]. The use, maintenance and end-of-use phases have been excluded 

from the study because this study aims to evaluate the combination of LCA and GIS methods through the 
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assessment of environmental implications in updating the energy efficiency of urban areas. Therefore, the 

different influences of both factors during the use of buildings and the different possibilities for construction 

materials at the end-of-life of buildings can be complex to address. 

Simapro 7.3 software [56] and the Ecoinvent 3.1 database [57] are used to develop the inventory data 

according to an attributional approach. The main impact category assessed is the global warming potential 

(GWP) due to its relevance in the environmental field. Moreover, as in the case of cork as a forest-based 

material, carbon storage must be taken into account; therefore, the GWP results, including those for biogenic 

carbon, are provided. Additionally, as noted above, the embodied energy (EE) is included due to its 

increasing importance in determining the building energy demand. 

2.2.2 Declared unit 

A declared unit (DU) is established according to the environmental product declaration (EDP) for 

construction products EN 15804:2014 [55] to compare the environmental impacts of construction solutions 

based on the different insulation materials. In this study, the DU is the production, transport, and installation 

of the quantity of materials required to construct 1 m2 of the selected construction systems, where the amount 

of insulation required is variable depending on the geographic location, construction system, and thermal 

insulation material. However, in a retrofit scenario, the year of construction must be included as a variable 

because the transmittance values of existing buildings influence the results. 

Geographic location 

The definition of environmental impact is related to geographic location and climate conditions. The Spanish 

Technical Building Code [45] includes 6 different climate zones in Spain. However, in this case study, the 

climate variable is constant because all of the Barcelona metropolitan area is included in the same climate 

zone, “C” in this case. 

Construction system 

This section explains the selected construction systems, façades and roofs most commonly used in Spain for 

retrofitting. The development of these systems is based on the Spanish catalogue of construction elements 

[58,59]. According to the established DU and the building technical considerations, the supplementary data 

indicate the materials and energy content for 1 m2 of the various façades and roof systems. Figure 4 shows 

the selected façade systems: ventilated façades, external thermal insulation composite systems (ETICS) and 

internal insulation façades. These façade construction systems are not invasive and permit retrofitting without 

having to interrupt the use of the building. An increase in thermal insulation is guaranteed with these three 

options, whereas only a ventilated façade and ETICS eliminate thermal bridges. Although internal insulated 

façades are appropriate for specific retrofits, recent studies have suggested that this construction system could 

modify the current living conditions and reduce the floor area [60]. Detailed façade construction system 

descriptions were given by Sierra-Pérez et al. [14]. 
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<Figure 4> 

As Figure 5 shows, the roof systems selected include a flat roof, sloping roof and sloping ventilated roof. 

These construction systems are not invasive and permit retrofitting without having to interrupt the use of the 

building. Thus, the expenses associated with temporary relocation are reduced, and the quality of life of 

residents is improved during the installation. Additionally, an increase in thermal insulation is guaranteed. 

<Figure 5> 

Thermal insulation 

Two types of thermal insulation have been included, expanded polystyrene (EPS), which is one of the most 

common non-renewable insulation materials in Europe [15,61], and cork, a natural and renewable insulation 

material that is concentrated in the Iberian Peninsula [62]. The objective of this comparison is to identify the 

environmental implications of selecting insulation materials with different origins in retrofitting actions. 

It is important to note that cork is a forest-based material that is extracted from the outer bark of the cork oak. 

The carbon fixed by the tree is transferred to the cork material, meaning that this material has the potential to 

mitigate climate change by storing carbon for long periods [63–65]. In the context of this study, from a 

cradle-to-grave approach, the biogenic carbon remains in the product, so there is no emission of biogenic 

carbon. 

Year of construction 

According to a recent study conducted by the IDAE, the year of construction is useful for defining 

transmittance values in the Spanish context [42]. It is possible to estimate the transmittance values by 

considering the year of construction and the construction system variables. Table 4 shows these values for 

climate zone “C”. 

Second, the study defines an objective value of transmittance towards which the building stock should tend. 

To define this objective, the latest version of the Spanish Technical Building Code is considered [45]. As 

Table 4 shows, this document defines U=0.29 (W/m  K) as the maximum value of façade transmittance in 

climate zone “C”, and that for roofs is U=0.23 (W/m  K). 

<Table 4> 

Inventory data 

After the geographic location, construction system, thermal insulation material and year of construction are 

defined, as given in Table 5 and Table 6, it is possible to calculate the quantity of materials required to 

construct 1 m2 of the selected construction system and define the DU, which includes the production, 

transport, and installation phases. The inventory data for the production of materials used in the construction 
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and installation of the roofs and the transport of these materials to the building location were collected from 

different sources. The supplementary data section contains the specific data for each process and the 

reference from which the data were collected. In the case of façades, all the information was taken from 

Sierra-Pérez et al. [14]. The main assumptions for the LCA are described in Table 3.  

<Table 5> <Table 6> 

2.3 Extrapolation 

After the envelope surface is characterized at the urban scale (m2), the LCA is developed to obtain the impact 

per m2 of the DU. Therefore, it is possible to extrapolate both results at the urban level and determine the 

associated environmental effects at the urban scale. The results are presented directly and through scenarios 

to fully understand the scope of these impacts. 

Direct extrapolation is performed considering urban morphologies. On one hand, absolute extrapolation is 

useful for measuring the extent of the LCA at the urban scale, where the total environmental impacts of 

retrofits can exhibit significant differences between construction systems. On the other hand, relative 

extrapolation shows the relations between environmental impacts and urban morphologies.  

Relative extrapolation is directly connected to the relation between the envelope surface and urban 

morphologies. Therefore, this study calculates not only the relative environmental impacts for each urban 

morphology divided by the total number of dwellings but also the previously considered relations between 

the envelope surface and urban morphologies.  

3. Results and Discussion 
3.1 Urban characterization of the Barcelona metropolitan area 

As urban characterization of AMB shows that more than 69.7% of the envelope surfaces of dwellings were 

built before 1981 (without any thermal regulation), and the other 27.4% were built between 1981 and 2007 

(the first period of thermal regulation), indicating that up to 2.9% of the envelope surfaces of dwellings were 

built between 2008 and the implementation of the Spanish Technical Building Code. The data obtained are 

similar to those in related studies using different methodologies [36] and exhibit some small differences 

because the data used here are more current. Moreover, if location is considered (Figure 6-7), older dwellings 

are mainly located in the Barcelona municipality and small metropolitan centres, whereas newer buildings 

are further away from the urban centre. The urban morphology distribution exhibits a characteristic pattern 

where multi-family units are located in central areas. The growth of single-family urban morphologies 

mainly occurred in the outskirts of urban areas from 1981-2007. Moreover, the new multi-family buildings 

were built during the past few decades, and most were constructed along the inner peripheries of 

metropolitan centres. Detailed results obtained with the bottom-up building-by-building approach can be 

viewed in the Supplementary Material. These results focus on the relevance of energy retrofits in this 

scenario and the determination of the environmental implications of such retrofits at the urban scale.  
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<Figure 6> <Figure 7> 

3.2 LCA by type of construction system  

The analysis of the environmental implications of building retrofits in the Barcelona metropolitan area is 

conducted following the methodology proposed by Sierra-Pérez et al. [14]. In the case of the LCA results for 

façade and roof retrofits obtained in this study, the presented results are original. In this paper, the results for 

roof construction systems are presented with the results for façades to provide a comparative perspective on 

both types of systems. 

The previous section presents the results by the construction system type, year of construction and type of 

insulation material installed. The type of construction system is relevant considering the LCA approach. In 

the case of façades, ETICS has a lower environmental impact in all categories than ventilated façades (VFs) 

or internal insulated façades (IIFs). However, in the case of roof retrofits, flat roofs (FR) have lower 

environmental impacts than sloping roofs (SRs) and sloping ventilated roofs (SVRs) for both the GWP and 

EE. However, considering the GWP and including biogenic carbon, SR and SVR have lower environmental 

impacts because these construction systems include natural materials, such as wood, that store carbon during 

their growth. 

Another variable to consider is the year of construction. As Figure 8 shows, the newer a building is, the less 

impact the system will have, which is logical. As Table 4 indicates, the values of the estimated transmittance 

generally decreased when insulation regulations were implemented. 

<Figure 8> 

Moreover, the selection of thermal insulation materials is also relevant, and the results allow for the 

identification of different key factors. On one hand, the use of natural thermal insulation materials does not 

necessary imply a low environmental impact due to the low level of technological development in the 

manufacturing processes of cork boards [66]. Considering the GWP and EE, Figure 8 shows that the use of 

cork increases the environmental impact compared to EPS in all construction systems. On the other hand, if 

the GWP results include biogenic carbon, the use of cork reduces the environmental impact of all 

construction systems. Thus, according to Sierra-Pérez et al. [66], biogenic carbon is one of the greatest 

advantages of natural materials and can help mitigate the GWP increase caused by building retrofits.  
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3.3 Absolute extrapolation 

From an absolute approach, the environmental impact results by type of construction system and year of 

construction are compared to the urban characterization results, and the different types of insulation material 

are assessed. The results of the geospatial analysis reflect the quantitative impacts (Table 7) of retrofits and 

the spatial distribution of these impacts (Figure 9). 

Table 7 shows the environmental implications of different retrofit scenarios for twelve construction systems 

(six façades and six roofs) in terms of the GWP, GWP biogenic and EE. Based on the GWP results, the 

differences between the absolute impacts of constructed façade systems reaches 1.85x109 kg CO2 eq. ETICS 

with EPS is the most recommended system, and internal insulation with cork is the least recommended, with 

a relative difference of up to 182% between these systems. In the case of roof construction systems, the 

highest difference is 3.24x109 kg CO2 eq., with a relative difference of 471% between the most 

recommended solution (FR with EPS) and the least recommended solution (SR with cork). 

However, if the ability of cork oak to fix CO2 is considered, i.e., biogenic carbon is transferred to the 

material, the difference between the most recommended façade system (ETICS with cork) and the least 

recommended system (IIF with EPS) is 1.7x109 kg CO2 eq., and the relative difference is 277%. In the case 

of roofing solutions, the difference is even larger between the most (FR with EPS) and least (SR with cork) 

recommended systems at 1.99x109 kg CO2 eq. 

Similar results are obtained for the GWP, and the results suggest that cork is not as competitive as EPS. In 

this case, a difference of up to 4.33x1010 kg CO2 eq., or 218% in relative terms, is obtained between ETICS 

with EPS and VF with cork. In the case of roofs, this value is 1.21x1011 kg CO2 eq., or 607% in relative 

terms. 

The results show the importance, especially the environmental importance, of considering LCA approaches 

in retrofit policies at territorial scales. The absolute differences in the data reflect the significance of these 

approaches. For instance, considering the GWP, the difference between the most and least recommended 

retrofit option (up to 5.10x109 kg CO2 eq.) represent savings of up to 16% of the CO2 production in the 

energy sector of Catalonia (Spain) in 2012 [67]. 

<Table 7> 

The proposed methodology allows for georeferencing environmental impacts, as shown in Figure 9. As an 

example, the figure indicates the most recommended combination of construction systems considering the 

GWP and biogenic GWP. The GWP map, which represents a combination of ETICS and FR, both with EPS, 

exhibits a concentration of impacts around multi-family morphologies. The main reason for this distribution 

pattern is that the larger the envelope surface an urban morphology has, the greater the GWP impact a retrofit 

will have. The areas with less impacts in absolute terms are single-family morphologies, which are located on 

the outskirts of metropolitan areas. However, considering the biogenic GWP based on the combination of 

ETCIS and SR with cork, the results exhibit some differences. In this case, the greater the envelope surface a 
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morphology has, the more recommended a construction system will be. The distribution of impacts shows 

that the inner-city areas, which have more multi-family buildings, exhibit less concentrated biogenic GWP 

impacts than outskirt areas. The generated maps are presented in the Supplementary Material. These 

metropolitan maps allow for the georeferencing of critical retrofit areas based on the impact scenario 

considered.  

<Figure 9> 

3.4 Relative extrapolation 

From a relative approach, the relationship between urban forms and their retrofitting impacts has been 

obtained. These results are presented based on the relationship between the envelope surface and number of 

dwellings (Figure 10) and based on georeferenced data (Figure 11). 

When the relationship between the envelope surface and the number of dwellings is analysed, significant 

differences between urban morphologies are identified (Figure 10). Morphologies corresponding to multi-

family residential areas, which represent more than 80% of the envelope surface, have average values of 

approximately 67 m2/dwelling. Among these dwellings, the more representative morphologies, S1, P2, P3 

and H2, exhibit values ranging from 57 m2/dwelling to 73 m2/dwelling. In contrast, the morphologies of 

single-family dwellings have an average value of 260 m2/dwelling. Although the relative difference is high, 

the total surface area represented by these morphologies does not exceed 19%. Undoubtedly, the results show 

that morphology is a key factor in characterizing the building stock, with relative differences reaching 574%. 

Notably, the more intense and compact an urban form is, the smaller the envelope surface per dwelling will 

be, and the fewer environmental impacts the retrofit will generate.  

<Figure 10> 

Focusing on Figure 11, which represents the most recommended scenario considering the GWP and biogenic 

GWP, it can be noted that the relative results differ from the distribution of impacts according to the 

geospatial model. First, considering the GWP, the combination of ETICS and FR with EPS is shown. The 

map illustrates, in general terms, the smallest impacts on multi-family morphologies. However, in detail, we 

can observe some multi-family buildings that, individually, have high impacts. Influenced by the number of 

dwellings in these buildings, the methodology is able to describe the behaviour of each building in a unique 

way. Considering the biogenic GWP, the more recommended combination is ETICS with an SR with cork. 

Conversely, in Figure 9, a lower biogenic impact is exhibited by those morphologies that encompass more 

surface per dwelling, such as single-family dwellings or isolated multi-family buildings that have fewer 

dwellings. The metropolitan area maps are presented in the Supplementary Material. These maps display the 

impact distribution, which is closely related to the urban morphologies. In general, the distribution of most 

multi-family morphologies close to the inner city and metropolitan centres and the single-family 

morphologies around them determine the distribution of impacts for each scenario. Moreover, each single 

building can be analysed based on the building-by-building approach. 
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<Figure 11> 

The proposed methodology permits the fast and reliable compilation and quantification of retrofit data. 

Compared with previous studies, this study uses the Spanish open dataset. Second, using cadastral data 

allows for a detailed description of the G.L.A. instead of making assumptions, as in previous studies. Third, 

different construction systems have been considered in this study. Finally, considering urban morphologies in 

an aggregated context reveals significant patterns. It is convenient to note that this methodology can be useful 

in political decision making regarding retrofits and urban regeneration strategies. Moreover, impact maps 

facilitate not only the measurement of retrofit impacts but also the determination of the distribution of these 

impacts across the city. Illustrating the results using maps allows for the geolocalization of critical areas at 

the urban level. In fact, this presentation can help in the decision-making process by cross-referencing these 

results with other data and adding nuance during decision making in the prioritization of building stock 

retrofits. For instance, the results could be combined with other multidisciplinary approaches, such as urban 

vulnerability criteria [68], energy poverty [69,70], and other environmental criteria [71]. 

3.5 Current methodological limitations 

The methodological limitations and the model calibration of this study are reported in this section. In the 

development of the geospatial model, some geometrical aspects must be considered during the simplification 

processes of each building. It is important to note three main considerations that are unavoidable at the urban 

scale: 1) some complex buildings can be affected during the simplification process as a consequence of their 

complex geometry; 2) the average height is considered according to the Spanish context; and 3) the 

percentage of hollow areas is assumed considering a recent methodology proposed in the Spanish context. A 

sensitivity analysis  has been carried out, in which the influence of both different average height and 

percentage of hollow areas has been studied. Results indicate a direct relation of both factors. The directly 

proportional relationship implies that, although there was a significant error assumed in the absolute 

quantification of the model, the relative location of the impacts in the geospatial model would be 

proportional. For this reason, the model could be useful for the detection of areas of interest.  

Moreover, a comparison between real building and simplified model building has been carried out, 

considering one of the most representative archetypes of each urban morphology under study. The real 

buildings have been the main source to re-draw the envelope surface. Moreover, it is important to consider 

that the plan of the buildings have been obtained from the Cadastre source. Results present high correlation 

values (R2=0.96), indicating the simplified geometry and the percentage of hollow areas is representative. 

However, the archetypes could introduce errors in a building-by-building approach. In order to understand 

better the influence and the limitations of the geospatial model future research could develop deeply 

comparisons between different methodological approaches. 

In the qualitative characterization, the year of building construction is the primary variable. Recent studies 

[72] have noted some uncertainty in this variable. The error, quantified as 8%, must be assumed because the 

cadastral dataset is the only currently available source for Spain.  
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As qualitative data at building-by-building approach would be available in the Spanish context. This 

methodology could improve considering another variables such as use pattern of dwellings (main residence, 

holiday residence, etc.), or occupancy rate. At this point, it is interesting to check some experiences on the 

collection and accessibility of these data in other countries  [73,74]. 

One of the limitations of this LCA study is the reliability of results because the majority of the data in the 

environmental database are not collected in Spain and the distance from the manufacturer to the building site 

could vary. Moreover, although the construction solutions studied are among the most common in Spain, the 

use of other systems could change the overall results. 

4. Conclusions 

The study investigates a possible application resulting from the combination of LCA and GIS and presents 

the potential applications for complex LCA inventories. The proposed GIS-based LCA methodology allows 

for the effective assessment of the environmental implications of thermal upgrades to buildings in a specific 

urban area based on an extensive and complete inventory. The considered case study, the Barcelona 

metropolitan area, is a functional area with a population of approximately 3 million inhabitants, and only 

2.9% of the buildings meet the current Spanish Technical Code. Therefore, retrofitting buildings to increase 

the level of insulation is one of the most effective solutions for reducing building energy consumption.  

First, this methodology allows for the characterization of the residential buildings stock from a bottom-up 

perspective with a building-by-building approach using a GIS methodology. The methods are based on open 

data to facilitate the updating of data and the reduction of the minimum data scale: the building scale. In 

addition, working at the building scale rather than census level or municipality level allows for the 

development of flexible aggregated models. Urban morphologies are considered in this case because they are 

directly related to the physical forms of cities and their spatial configurations. The patterns detected during 

the study confirm the relevance of this aggregation model.  

Second, georeferencing the results and obtaining maps improves the communication with stakeholders and 

policy makers, helping them to localize the critical retrofit areas at the urban level. Whereas the 

quantification of environmental impacts shows the potential to introduce LCA frameworks in municipal 

policies, mapping helps to identify the most critical areas.  

Third, this study facilitates the understanding of the environmental impacts of thermal retrofits to buildings at 

the urban scale. As the previous sections have shown, the magnitudes of the differences in the absolute 

extrapolation results indicate that the environmental implications of retrofits should be considered to 

minimize a variety of impacts at the urban scale.  

Last, in this study, potential future research topics are identified. First, future studies should extend this LCA 

approach to other life cycle stages, such as the use and end-of-life stages. In addition, analysing the operative 

energy would be useful for understanding whether construction systems improve the environmental impacts 
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during this stage. Second, it would be convenient to conduct an economic analysis of the chosen construction 

systems and compare the results at the urban scale. In addition, by relating these results to the generated 

impacts of retrofits, the broader concept of sustainability can be considered from a holistic perspective 

(environmental, economic, and social). Finally, in the assessment of retrofit scenarios, the data obtained 

could be cross-referenced with data from other studies related to urban vulnerability, energy poverty or other 

environmental indicators. 
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 Variable Regulations Source Coverage 
Year construction (i) Built before 1981 - Cadastre National 

(Spain) (ii) Built between 1981 - 2007 NBE-CT-79 (Ministerio de 
Obras Públicas y Urbanismo 
1979) 

(iii) Built between 2008-2014 CTE-DB-HE (Ministerio de 
Vivienda 2006) 

(iv) Built after 2015 CTE-DB-HE (Ministerio de 
Fomento 2013) 

Urban Morphology 
(as per Cadastre) 

(Ca) Slab RD 1020/1993 (BOE 1993) Cadastre 
(Cb) Perimeter block 
(Cc) Detached house 
(Cd) Terraced house 

Urban Morphology 
(as per Barcelona 
Metropolitan Area 
Master Plan) 

(S)  
Slab 

(S1) Grouped  Urban Master 
plan  
(Crosas 2015) 

Specific urban 
area 
(Barcelona 
Metropolitan 
Area) 

(S2) Aligned 
(S3) Disaggregated 

(P) 
Perimeter 
block 

(P1) Axial 
(P2) Irregular 
(P3) Regular 
(P4) Cerdà 

(H) 
Historical 

(H1) Centre 
(H2) Suburban 

(SF) Single 
Family 

(SF1) Row 
(SF2) Irregular 
(SF3) Mixed 
(SF4) Regular 
(SF5) Rustic 

 

Table 1: Qualitative characterization of the envelope surface at



Source  Main categories Sub categories Main categories Source 
Cadastre Multi-family (Ca) Slab (S1) Grouped (S) Slab Multi-family AMB 

(Barcelona 
Metropolitan 
Area Master 
Plan) 

(S2) Aligned 
(S3) Disaggregated 

(Cb) Perimeter 
block 

(P1) Axial (P) 
Perimeter 
block 

(P2) Irregular 
(P3) Regular 
(P4) Cerdà 
(H1) Old town (H) 

Historical (H2) Suburban growth 
Single-family (Cd) Terraced house (SF1) Terraced (SF) Single-

family 
Single-family 

(Cc) Detached 
house 

(SF2) Irregular 
(SF3) Mixed 
(SF4) Regular 

Rustic   (SF5) Rustic 

 

Table 2: Relationships between urban morphology variables based 



GIS assumptions Inventory data Reference 
Height between floors 3 metres (IDAE 2012) 

Hollows surface  

Multi-family urban 
morphologies 
S1, S2, S3, P1, P2, P3, 
P4, H1, H2 

30% 

(Rodríguez-Soria et al. 2015) 

Single-family urban 
morphologies 
SF1 

19% 

Single-family urban 
morphologies 
SF3 

18% 

Single-family urban 
morphologies 
SF2, SF4, SF5 

15% 

LCA assumptions  Reference 
Transmittance values See Table 4 in detail (IDAE 2012) 

The lifespan of buildings 50 years (Monteiro & Freire 2012; Sharma et al. 2011; 
Sartori & Hestnes 2007) 

The distance for transport from 
factory to the building location 100 km (Sanjuan-Delmás et al. 2014; Zabalza Bribián et 

al. 2011; Oliver-Solà et al. 2009) 

 

Table 3: Main assumptions of the study



 

 Variable U estimated (W/m2K) U objective (W/m2K) 

Façades 
Built before 1981  3.00 

0.29 Built between 1981 - 2007  1.80 
Built between 2008-2014  0.73 

Roofs 

Built before 1981 – Flat 2.50 

0.23 Built before 1981 – Sloping 3.80 
Built between 1981 - 2007  1.40 
Built between 2008-2014  0.41 

Source  (IDAE 2012) (Ministerio de Fomento 2013) 

Table 4: Transmittance values for façades and roofs based on the



   Unit per m2 
Geographic 

location U objective (W/m2K) (Climate zone "C") 0.29 

Year of 
construction 

Period before 1981 1981-2007 2008-2014 
U estimated (W/m2K) 

(Climate zone "C") 3.00 1.80 0.73 

Thermal 
insulation type 

Material EPS Cork EPS Cork EPS Cork 
Thermal conductivity (λ) (W/m K) 0.035 0.042 0.035 0.042 0.035 0.042 

Density (kg/m3) 35.00 171.00 35.00 171.00 35.00 171.00 

Façade system 

ETICS 
U refurbishment (W/m2 K) 0.33 0.33 0.35 0.35 0.49 0.49 

Thickness (m) 0.11 0.13 0.10 0.12 0.07 0.09 
Weight (Kg) 3.75 22.00 3.48 20.41 2.48 14.56 

Ventilated 
façade 

U refurbishment (W/m2 K) 0.34 0.34 0.36 0.36 0.51 0.51 
Thickness (m) 0.10 0.13 0.10 0.12 0.07 0.08 
Weight (Kg) 3.66 21.44 3.38 19.84 2.39 13.99 

Internal 
insulation 

façade 

U refurbishment (W/m2 K) 0.34 0.34 0.37 0.37 0.53 0,53 
Thickness (m) 0.10 0.12 0.09 0.11 0.07 0.08 
Weight (Kg) 3.58 21.01 3.31 19.41 2.31 13.56 

 

Table 5: Declared unit (kg) of each façade system required to pr



   Unit per m2 
Geographic 

location U objective (W/m2K) (Climate zone "C") 0.23 

Year of 
construction 

Period before 1981 1981-2007 2008-2014 
U estimated (W/m2K) 

(Climate zone "C") 2.5 (Flat) / 3.80 (Sloping) 1.40 0.41 

Thermal insulation 
type 

Material EPS Cork EPS Cork EPS Cork 
Thermal conductivity (λ) (W/m K) 0.035 0.042 0.035 0.042 0.035 0.042 

Density (kg/m3) 35.00 171.00 35.00 171.00 35.00 171.00 

Roof system 

Flat roof 
U refurbishment (W/m2 K) 0.26 0.26 0.28 0.28 0.54 0.54 

Thickness (m) 0.14 0.16 0.12 0.15 0.06 0.08 
Weight (Kg) 4.75 27.82 4.36 25.57 2.25 13.18 

Sloping roof 
U refurbishment (W/m2 K) 0.25 0.25 0.28 0.28 0.54 0.54 

Thickness (m) 0.14 0.17 0.13 0.15 0.06 0.08 
Weight (Kg) 4.93 28.91 4.38 25.67 2.27 13.28 

Sloping ventilated 
roof 

U refurbishment (W/m2 K) 0.26 0.26 0.29 0.29 0.58 0.58 
Thickness (m) 0.14 0.16 0.12 0.15 0.06 0.07 
Weight (Kg) 4.80 28.12 4.24 24.88 2.13 12.49 

 

Table 6: Declared unit (kg) of each roof system required to prov



    GWP  
(kg CO2 eq.) 

Biogenic GWP 
(kg CO2 eq.) 

EE  
(MJ) 

    EPS Cork EPS Cork EPS Cork 

Façade 
ETICS 2.27E+09 3.80E+09 2.27E+09 9.58E+08 3.68E+10 5.65E+10 

VF 2.48E+09 3.97E+09 2.48E+09 1.20E+09 6.09E+10 8.01E+10 
IIF 2.65E+09 4.12E+09 2.65E+09 1.41E+09 4.87E+10 6.76E+10 

Difference Absolute 1.85E+09 1.70E+09 4.33E+10 
Relative 182% 277% 218% 

Roof 
FR 8.74E+08 2.00E+09 8.74E+08 -8.01E+07 2.40E+10 3.84E+10 
SR 2.96E+09 4.12E+09 -1.43E+08 -1.12E+09 9.98E+10 1.15E+11 

SVR 2.39E+09 3.51E+09 1.60E+08 -7.93E+08 1.31E+11 1.45E+11 

Difference Absolute 3.24E+09 1.99E+09 1.21E+11 
Relative 471% 78% 607% 

    
max min 

      

Façade – roof 
Combination 

Most recommended 
combination 3.14E+09 

ETICS 
EPS - FR 

EPS 
-1.62E+08 

ETICS 
Cork - SR 

Cork 
6.07E+10 

ETICS 
EPS  - 

FR EPS 
Least recommended 

combination 8.24E+09 IIF Cork -  
SR Cork 3.53E+09 IIF EPS -  

FR EPS 2.26E+11 VF Cork -  
SVR Cork 

Difference Absolute 5.10E+09 3.69E+09 1.65E+11 

 

Table 7: Global environmental implications of improving the ener



Envelope surface characterisation 

at urban scale

Data collection

Qualitative Characterization

Quantitative characterisation

Life Cycle Assesment 

Extrapolation

Absolute

m²

According to Spanish Dataset

Year of  construction and morphology

Geospatial model

Boundaries and limits

Façades

Roofs

Cradle-to-site

ETICS / Ventilated / Internal

Flat / Sloping / Sloping ventilated

impact

m² D.U.

Relative impact

Figure 1: Schematic diagram of the proposed methodology
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Figure 2: Existing urban morphologies in the Barcelona metropoli



Phase 1 Phase 2 Phase 3 Phase 4 

Real building Gross living Building 
Simplified gross 

living building 

Simpflified net 

living building
 

    

Gross floor area 

Coverage = C m
2
 

Height 

Gross living area = G.L.A. m2   

Coverage = C m
2
 

Heated Height = H 

Gross living area = G.L.A.’ m2  

Coverage = C m
2
 

Heated Height index = H’ 

  

Coverage = C m
2
 

Heated Height index = H’ 

Net living area = N.L.A.’ m2

Figure 3: Schematic diagram of the process of obtaining the geos



biogenic GWP (kg CO2 eq)

0

200

400

600

800

1000

1200

1400

Embodied Energy (MJ)

0

10

20

30

40

50

60

70

EPS Cork EPS Cork EPS Cork
before 1981 1981 - 2007 2008 - 2014

EPS Cork EPS Cork EPS Cork
before 1981 1981 - 2007 2008 - 2014

EPS Cork EPS Cork EPS Cork
before 1981 1981 - 2007 2008 - 2014

EPS Cork EPS Cork EPS Cork
before 1981 1981 - 2007 2008 - 2014

GWP (kg CO2 eq)

ETICS VF IIF

0

10

20

30

40

50

60

70

EPS Cork EPS Cork EPS Cork
before 1981 1981 - 2007

- 2007

2008 - 2014

ETICS VF IIF

EPS Cork EPS Cork EPS Cork
before 1981 1981 2008 - 2014

ETICS VF IIF

- 40

- 20

0

20

40

60

80

100

120

- 40

- 20

0

20

40

60

80

100

120

GWP (kg CO2 eq)

Flat roof Sloping roof Sloping ventilated roof

Flat roof Sloping roof Sloping ventilated roof

Flat roof Sloping roof Sloping ventilated roof

biogenic GWP (kg CO2 eq)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Embodied Energy (MJ)

RoofsFaçades

Figure 8: Environmental results in terms of GWP, biogenic GWP an
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Figure 9: Absolute extrapolation maps. The recommended GWP scena
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Figure 10: Relationship between the envelope surface and number 
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Figure 11: Relative extrapolation maps. The recommended GWP scen


