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Abstract 

Anode-supported micro-tubular solid oxide fuel cells (mT-SOFCs) using samaria-doped 

ceria (SDC) as electrolyte were fabricated, varying the composition and number of 

anode functional layers (AFLs), by combining the aqueous gel-casting and spray-

coating techniques. Suitable aqueous slurry formulation of NiO-SDC was prepared 

using agarose as a gelling agent for gel-casting of tubular supports. Afterwards, 40:60 

and 50:50 wt.% NiO-SDC as AFLs and SDC electrolyte were deposited by spray-

coating, and subsequently co-sintered. Finally, mT-SOFCs with 2.5 mm outer diameter 

and thicknesses of 380 µm support; 0, 12 and 24 µm AFLs; 15 µm electrolyte; and 30 

µm cathode were obtained. The influence of AFLs on the performance and mechanical 

integrity was investigated for the three cells. For this purpose, electrochemical and 

mechanical tests at both macroscopic and micro-/nanometric scales (at the AFLs 

region) were determined by flexural strength and nanoindentation techniques, 

respectively. The results evidence that the use of AFLs with an adequate composition 

and microstructure in the mT-SOFCs is required to improve the performance and 

mechanical strength of cell. The cell with a single-layer AFL of 50:50 wt.% NiO-SDC 

and 12 µm thickness exhibited the best performance (0.52 W�cm-2) at 650ºC using 

hydrogen as fuel and air as oxidant.   

 

Keywords: Solid Oxide Fuel Cells (SOFCs); Anode-support; Microtubular; Doped ceria; 

Anode Functional Layer (AFL); Mechanical properties. 
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1  Introduction   

In the last decades, a great interest in the development of Solid Oxide Fuel Cells 

(SOFCs) for portable application devices has been generated.(1,2) In order to achieve 

this goal, many configuration designs, materials and processing methods have been 

developed.(3) Among different alternatives, micro-tubular SOFCs (mT-SOFCs) with 

tubular diameters under a few millimeters  (or sub-millimetres) have attracted a 

remarkable attention, as they show high performance on the thermal shock resistance, 

volumetric power density, fast start-up/shut-down and thermal cycling, as well as 

simpler gas manifolds and seals.(4,5,6) The development and advance of the most 

typical techniques for tubular processing, such as cold isostatic pressing,(7,8) slip-

casting,(9,10) extrusion,(11) electro-phoretic deposition,(12) phase inversion,(13,14) 

and gel-casting,(15,16) have been key for the fabrication of smaller diameter supports. 

Recently, new strategies for the synthesis of robust hollow fibers as microtubular 

supports have been reported (17,18,19).Many studies of mT-SOFCs 

(20,21,22,23,24,25,26,27) have demonstrated excellent performance, mechanical 

stability and low degradation at long-term. Furthermore, they present a high potential to 

decrease material cost by reducing cell weight. The reduction in overall system size 

and weight allows micro-tubular SOFCs to be targeted toward smaller scale 

applications such as Auxiliary Power Units (APU) in transport and other devices 

requiring portable power for personnel, submarines, air planes, etc. On the other side, 

enhancing the performance at reduced operation temperatures also allows the use of 

cost-effective materials for interconnects and balance of plant (BoP).(28) For this 

purpose, some common strategies are the decrease of the electrolyte thickness to 

reduce the ohmic resistance losses, and the use of electrolyte materials with high ionic 

conductivity at intermediate temperatures such as gadolinium doped ceria (GDC), 

samarium doped ceria (SDC), and strontium and magnesium doped LaGaO3 

perovskite (LSGM).(29,30,31,32,33) 

 

In anode-supported mT-SOFCs, volumetric power density depends remarkably on the 

inverse of cell diameter,(34) and the area power density is also strongly affected by the 

wall thickness and the porosity of tubular support.(6,35,36) These devices should also 

require a good strength for handling during their manufacturing of the single-cell and 

assembling the fuel-cell stack.(36) In addition, they must also survive to the typical 

thermal cycles occurring during operation.(6) Therefore, the anode supports should 

possess enough wall thickness and mechanical integrity, as well as sufficient porosity 

for gas diffusion, thus reducing their concentration polarization 
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resistance.(36,37,38,39,40,41,42,43) However, the concentration polarization 

resistance of the anode is inversely related to the activation one, which increases with 

large porosity and pore size. The anode activation is a common problem in the different 

SOFC geometries. In planar anode-supported SOFCs, an effective strategy to 

overcome this issue consists in the use of an anode functional layer (AFL) between the 

support and electrolyte,(44,45,46,47,48) and even a graded anode with several 

compositional sub-layers.(49,50,51) These AFLs maximize the active sites of triple 

phase boundaries (TPBs) and also match thermal expansion coefficients (TECs) 

between anode and electrolyte to facilitate the long-term stability of SOFC. For 

instance, Kagomiya et al.(48) reported the electrochemical results of anode-supported 

cells (60 wt% NiO-40 wt% YSZ) with and without AFLs (65 wt% NiO-35 wt% YSZ) of 

several thicknesses (from 10 to 100 µm). Among the studied cells, that with an AFL 

thickness of ~10 µm exhibited the highest power density. Impedance spectroscopy 

analyses showed that the AFL10 sample effectively decreased both the contact and 

activation polarization resistances. Chen et al.(52,53) also found similar effects with 

AFL thicknesses of approximately 5-15 µm, composed of 60 wt% NiO-40 wt% YSZ. 

The NiO-YSZ weight ratio of AFLs was similar to their anode supports. Park et al.(45) 

reported identical influence in activation polarization resistance, but observing no 

remarkable dependence on AFL thickness for 8, 19, and 24 µm. Some works of mT-

SOFCs, such as Yamaguchi et al.(54), have also reported the influence of 

nanostructured AFL thickness (0, 4, 10 µm) based on Ni-ScSZ (scandia stabilized 

zirconia) on the performance of anode-supported mT-SOFCs at intermediate 

temperatures (600-650ºC). According to the impedance spectroscopy, the 

improvement of both ohmic and polarization resistances was observed by the increase 

of the AFL thickness up to 10 µm, suggesting that the AFL also acts as a better contact 

layer between the electrolyte and the anode support. 

 

Depending on SOFC characteristics, such as geometry, fabrication technique and 

microstructure of support, electrolyte material and operation fuel, the influence of AFL 

on the cell performance may become even more critical than that in the typical planar 

anode-supported cells with YSZ electrolyte. For instance, Ahn et al.(55) reported that 

for cells based on doped ceria as an electrolyte, the addition of an AFL with dispersed 

nanometric GDC particles significantly increased both OCV and performance from 

0.677 V and 407 mW�cm–2 to 0.796 V and 994 mW cm–2, respectively, at 650°C. As 

reported by Chen et al.(56), the development of a low-weight mT-SOFC with high 

performance also requires the use of an optimal AFL. In this cell, the anode support 

composed of a thick highly porous finger like-macrovoids layer (HPFML) near the inner 
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surface, which provide fast gas diffusion channels, have to be combined with a thin 

small pore layer (SPL) near the outer surface with sufficient TPBs to act as an active 

anode functional layer (AFL). Other researchers like Meng et al.(57) presented mT-

SOFCs with a Ni-YSZ/porous YSZ dual-layer hollow fiber structure developed by a co-

spinning-sintering process based on the phase inversion technique. Such dual-layers 

consist of a microporous AFL layer and a macroporous substrate, which was 

impregnated with Cu-CeO2 carbon-resistant catalysts. The mT-SOFC with a 13 µm Ni-

YSZ layer presented the maximum power density of 566 mW�cm-2 at 850ºC using 

methane as a fuel and air as an oxidant.  

 

As commented above, taking into account the remarkable electrochemical and 

mechanical requirements of mT-SOFCs in their manufacturing and operation 

conditions, and the additional difficulties associated with the use of doped ceria as an 

electrolyte,(6,7,36,43,55) the AFLs may play an crucial role on the cell performance, 

but also in their mechanical integrity. The purpose of this work is to investigate the 

effect of an AFL and a graded anode on the performance of anode-supported mT-

SOFCs with SDC electrolyte. Special attention will be focused, for the first time, on the 

mechanical strength of microtubular cells with different AFLs to analyse their effect in 

the macro-mechanical failure behaviour. For this purpose, following the fabrication 

procedure of mT-SOFCs developed in our previous studies,(15,16) three cell 

configurations have been studied: (1) without AFL, (2) with an AFL (50 wt.% NiO-50 

wt.% SDC) of ~12 µm thickness, and (3) with a graded anode (~25 µm) formed by two 

compositional sub-layers (AFL I: 50 wt.% NiO-50 wt.% SDC; AFL II: 40 wt.% NiO-60 

wt.% SDC). The AFLs were deposited by spray-coating onto optimal microtubular 

supports (60 wt.% NiO-40 wt.% SDC) fabricated by gel-casting technique.(36,43) 

Afterwards, electrochemical properties and flexural strength at macroscopic scale of 

mT-SOFCs were determined. Additionally, the hardness at the scale of the 

microstructure in the electrolyte/AFL/support region of cells was evaluated by 

Nanoindentation technique. The Weibull statistical analyses are also presented to 

understand the reliability of the mechanical properties of cells. The relationships 

between microstructural, electrochemical and mechanical properties are also 

discussed.  
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2 Experimental procedure 

2.1 Cell manufacturing  

mT-SOFCs were fabricated using the process developed in our previous 

studies.(15,16) Compositions and dimensions of the cells were initially based on 

preliminary electrochemical results.(36,43) For this purpose, samarium-doped ceria, 

nickel oxide-samarium doped ceria (60:40, 50:50 and 40:60 wt.%), and lanthanum 

strontium cobaltite powders, with a nominal composition of Sm0.2Ce0.8O1.9 (SDC), NiO-

Sm0.2Ce0.8O1.9 (NiO-SDC) and La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) respectively, were 

synthesized by polyacrylamide gel combustion as described elsewhere.(58,59) The 

composition of the microtubular SOFCs was selected as follows: NiO-SDC (60:40 

wt.%) as the anode tubular support, NiO-SDC (50:50 wt.% and 40:60 wt.%) as the 

anode functional layers (AFL I and AFL II), SDC as the electrolyte and LSCF-SDC 

(70:30 wt.%) as the cathode. Three cell configurations, named as cells-0, -1 and -2, 

varying the number and composition of AFLs were fabricated (Table 1). 

 

Table 1. Characteristics of anode functional layer for the three cell configurations. 

 

Cell AFL I (50:50 wt.% NiO:SDC) AFL II (40:60 wt.% NiO:SDC) 

0  - - 

1  ~12 µm - 

2  ~12 µm ~12 µm 

 

The tubular supports were processed by gel-casting method, employing the same 

procedure that in previous works.(36,43) Afterwards, according to the configuration 

cell, anode functional layers (AFL I: 50:50 and AFL II: 40:60 wt.% NiO-SDC with about 

12 µm thickness for everyone) were deposited by colloidal spray-coating onto the 

tubular substrates. The NiO-YSZ supports were pre-sintered at 1100ºC. Subsequently, 

the SDC electrolyte layer (15 µm thickness) was deposited by colloidal spray-coating. 

Then, both anode and electrolyte were co-sintered at 1450ºC for 5. Afterwards, the 

70:30 wt.% LSCF-SDC cathode was sprayed onto the half-cell and sintered at 1050°C 

for 2 h in air. Before electrochemical testing, the anode of mT-SOFCs was reduced at 

700ºC for 1 h in pure humidified H2 atmosphere. Final cell dimensions are: 2.4 mm 

outer diameter, 380 µm wall thickness, 80-100 mm length, and a cathode active area of 

1.50 cm2. Microstructures of the cells were studied by field emission scanning electron 

microscope (Merlin FE-SEM, Carl Zeiss). 
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2.2 Electrochemical characterization 

The electrochemical performance of the cells was tested using H2 as fuel in the anodic 

compartment and air in the cathodic chamber. Electrical connections were made using 

four Ag wires. Ag meshes were used as current collectors at the cathode and anode 

(inner part of the tube). The tube was sealed using Ceramabond 503 sealant (Aremco, 

US) into alumina tubes and finally the system was introduced into a quartz tube, and 

sealed again to separate both chambers. Additional details of the experimental setup 

can be found in a previous work.(60,61) The cell was heated up to 700ºC in a small 

tubular furnace under nitrogen (80 ml min-1) at the anode chamber and static air at the 

cathode side. At this temperature, RT humidified hydrogen (97% H2 and 3% H2O, 80 ml 

min-1) was introduced to reduce the anode and subsequently characterize the cells. 

Electrochemical measurements were carried out in the temperature range between 600 

and 700ºC. j-V (current density-voltage) and AC EIS (Electrochemical Impedance 

Spectroscopy) measurements were recorded using a VSP Potentiostat/Galvanostat 

(Princeton Applied Research, Oak Ridge, US). Potentiodynamic measurements were 

performed from OCV down to 0.2-0.3 V at 0.25 mA�s-1, and EIS experiments were 

conducted at OCV conditions using amplitude signal voltage of 20 mV.  

 

2.3 Mechanical testing  

2.3.1 Flexural strength tests of mT-SOFCs 

The mechanical strength of the cells (with and without AFLs) was performed by three-

point bending test. Flexural strength, also well-known as modulus of rupture (MOR), 

was determined using an uniaxial dynamic test equipment (INSTRON 8032). The 

samples were fixed on the sample holder set at a span length of 30 mm. Each MOR 

value presented for each cell configuration is an average of at least 20 measurements. 

A detailed description of the test procedure is given in our previous work.(36) In order 

to understand the reliability of the flexural strengths, their variability was analysed using 

the Weibull statistical method.(36,62)  

 

2.3.2 Hardness at the electrolyte/AFL/support region  

The cross-sectional half-cells consisted of electrolyte/AFL/support were polished with 

diamond suspensions of 3 and 1 µm size, and finally with colloidal silica of 0.25 µm 

size to achieve a flat surface.(63) The Nanoindentation tests were performed using a 

Nanoindenter XP MTS system with a three-sided pyramid Berkovich diamond indenter. 

The area function of the indenter was calibrated using a standard fused silica with a 

well-known Young modulus (72 GPa) (64) The indentation depth curves were 
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continuously monitored, up to apply a maximum load of 10 mN, and the load time 

history of indentation recorded. The different values of hardness (H) have been 

obtained from the corrected analysis of load displacement curves, employing the Oliver 

and Pharr method.(64) Each H value presented in this study is an average of 50 

measurements performed on four different zones of the same sample in order to 

achieve results with statistical significance. More details of the Nanoindentation 

experiments have been reported by the authors of the present work elsewhere.(65,66)  

 

3 Results and discussion 

3.1 Electrochemical performance  

For electrochemical tests, the microtubular cells were reduced under pure H2 at the 

anode chamber and synthetic air at the cathode chamber. Relatively high hydrogen 

fluxes were employed in order to avoid problems of fuel conversion, related to the gas 

flow dynamics, along the cell length (80 ml min-1 for all the cells). After a few minutes 

under reduction process, the OCV of cells-1 and -2 reaches the steady state 

conditions, keeping a stable value close to 0.75 V at 700ºC. In contrast, the OCV of 

cell-0 drops drastically to 0.54 V. All cells were kept under OCV conditions for one hour 

at 700ºC. Afterwards, the operation temperature was decreased from 700ºC to 650ºC, 

achieving a monotonically increase of OCV from 0.75 V to 0.80 V for both cells-1 and -

2, and the cell-0 from 0.54 V to 0.59 V. In all cases, the OCV values are lower than 

those predicted from the Nernst equation, as also observed by other authors using 

doped ceria electrolytes.(67) The cobalt oxide, used as a sintering aid at the doped 

ceria, could introduce n-type electronic conductivity (additional to the reduction from 

Ce4+ to Ce3+) with increasing temperature and decreasing oxygen partial pressure. In 

addition, the decrease in the OCV is probably also caused by small gas leakages 

between anode and cathode chambers, which are more evident in the cell-0 without 

AFL, as small pores are detected at the electrolyte layer that was already observed in 

previous works.(36,43) As observed in Fig. 1, j-V measurements of cells exhibit a 

slightly unstable behaviour with small oscillations, due to the presence of small pores in 

the electrolyte. Despite this phenomenon, maximum power densities of 0.21, 0.35 and 

0.52 W�cm−2 at 650°C are reached for cells-0, -1 and -2, respectively. These 

performances are close to those of anode-supported microtubular SOFCs with 

diameters of 0.8-6.0 mm and doped-ceria electrolyte layers reported in previous works, 

(34)  which achieved 0.3-0.6 W�cm−2 operating between 500ºC and 650ºC. As 

hydrogen excess was used to ensure a dynamic gas flow for all the cells, a fuel 

utilization of about 9% was achieved at 1.0 A cm-2 (0.5 V) for cell-2. Lower fuel 

utilizations, 2% and 6%, were reached at 0.5 V for cells-0 and -1, respectively. From 
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those experiments, the positive effect of the AFL I and the graded anode (with AFL I 

and II) on the cell performance is evident (Fig. 1). Cell-2 exhibits a lower output power 

than that of cell-1, as probably the thicker graded anode limits the rapid diffusion of fuel 

gas and the reactant out from the reaction zone. It seems that the enlargement of TPB 

in the cell-1 is adequate for the improvement of the catalytic reaction of the electrode. 

In addition, according to the measured OCV values, gas leakages between anode and 

cathode chambers are avoided by using AFLs. It may be attributed to the formation of 

micro-cracks and small pores at the electrolyte layer (for the cell-0) generated during 

the co-sintering process and NiO reduction, which can be minimized by using 

optimized AFLs.  

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 j-V curves of the cells-0, -1 and -2 at 650ºC. 

 

3.2 Impedance analysis  

In Fig. 2, EIS results of cells-1 and -2 under OCV conditions at 650ºC are presented. 

Unfortunately, the EIS results of cell-0 (without AFL) could not be determined with a 

suitable electrochemical stability in operation, due to the remarkable effect of gas 

leakages, and the low OCV. EIS recorded for cells-1 and -2, was slightly noisy, 

especially at lower frequencies. The experimental data was fitted using the equivalent 

circuit L-Ro-(R1CPE1)-(R2CPE2)-(R3CPE3), where L is an inductance, Ro is the ohmic 

resistance, and (R1CPE1), (R2CPE2), (R3CPE3) are three resistance-constant phase 

elements. A summary of the obtained parameters is shown in Table 2. Firstly, Rohm 

values are slightly higher than those expected for a 15 µm thick SDC electrolyte. This 

contribution was improved in comparison with our previous generation of cells possibly 

attributed to a better adhesion, due to the optimized use of AFLs. In addition, Rohm 

value for cell-1 is lower than that of cell-2, which may be due to the extra contribution of 

AFL II in the cell-2, as also observed in other works (44,47,48,53,54). According with 
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previous studies,(68,69) intermediate frequency component (R2), with capacitance 

values of about 10-3 F�cm-2, is assigned to the cathode activation, as this component 

was kept about constant for the different cells, and also present the same value for 

previous cells using the same LSCF-SDC cathode.(43) Low frequency component (R3), 

with capacitance values of about 100 F�cm-2, is assigned to the hydrogen diffusion 

through the Ni-SDC support, which is also about constant for the studied cells. Finally, 

assignation of the high frequency component (R1) is tentatively associated with anode 

activation.(70,71) The observed capacitance values (in the range of 10-4 F�cm-2) do not 

suffer significant variation for both studied cells, although the resistance is significantly 

lower for cell-1 as a consequence of the optimized AFL. It is believed that the 

increased value of R1 for cell-2 is a consequence of the low amount of Ni particles at 

the electrolyte/AFL II interface. Finally, it is remarkable that very low ASR values were 

obtained for both cells: 0.53 and 0.78 Ω�cm2 for cell-1 and cell-2, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 Impedance spectrum and scheme of the equivalent circuit for the cells at 650ºC 

under OCV conditions. 

 

 

 

 

Table 2 EIS data for cell-1 and cell-2 obtained from equivalent circuit fitting. The error 

of the fitting is shown in brackets, and it corresponds to the second decimal. 

Cell 
Rohm 

(ΩΩΩΩ�cm2) 

R1 

(ΩΩΩΩ�cm2) 

R2 

(ΩΩΩΩ�cm2) 

R3 

(ΩΩΩΩ�cm2) 

ASR 

(ΩΩΩΩ�cm2) 
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Cell-1 0.22(1) 0.09(1) 0.16(2) 0.06(1) 0.53(5) 

Cell-2 0.25(1) 0.24(2) 0.22(2) 0.07(1) 0.78(6) 

 

In the light of the EIS results, the AFL I microstructure of cell-1 is more effective in 

terms of the electrode overpotential than a combination of AFL I and II for cell-2. The 

electrochemical reaction of hydrogen oxidation takes place at the TPBs of the anode 

region close to electrolyte, and generally the AFLs reduce the electrode polarization 

resistance by increasing TPBs, thereby enhancing the electrochemical reaction rate, 

which leads to a better anode performance.(72) Currently, an electrode with a larger 

TPB length shows a lower electrode overpotential.(73,74,75) However, the electrode 

overpotential of cell-2 with AFL I and II is higher than that of cell-1 with only the AFL I. 

In principle, more potential reaction sites are produced with two AFLs (AFL I and II) in 

comparison to only one (AFL I), as the total AFL thickness increases. Comparing the 

microstructures exhibited in Fig. 3, the low porosity of AFL II in cell-2 and the slight 

enhancement of gas diffusion path associated with the increase of total AFL thickness 

may limit the diffusion of gases across the AFLs, and so the gas transport between the 

support and TPBs. In this case, the AFL II of cell-2, in addition to a slight increase on 

the gas diffusion resistance (0.06 to 0.07 Ω�cm2), will also decrease the density of 

TPBs (due the higher fraction of SDC), and thus the activation resistance will be also 

increased (0.16 to 0.22 Ω�cm2). In summary, the microstructure of the AFL I in the cell-

1 satisfied the requirements for achieving anode performance better than the cell-2 with 

graded anode. In addition, a good anode microstructure (AFL) should also result in 

matched thermal expansion coefficients (TEC) between the support and the electrolyte 

to facilitate the reduction process of NiO, heating and long-term stability of SOFC. 

Some cracks at the SDC electrolyte can be formed in the co-sintering process and/or 

heating process during measurement. In fact, the reduction of NiO may initiate stress at 

the interface between electrolyte, AFL and support.(36,76) As previously mentioned, 

the microtubular cells, especially in the case of cell-0 presented a low OCV, due to the 

formation of micro-cracks at electrolyte layer generated during the reduction process of 

NiO, which can be minimized by using optimized AFLs. Then, the influence of AFL on 

the mechanical properties of cells at macroscopic and micro-/nanoscopic scales is of 

great importance and it will be described in the next section. 
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Fig. 3 SEM images of electrolyte/AFL/support microstructures for the cells: (a) 0, (b) 1, 

and (c) 2, and the corresponding hardness in the region from electrolyte to support, 

before reduction process. The bright grey phase corresponds to SDC and the 

dispersed grains are the NiO phase. 
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3.3 Flexural strength of the cells 

The results of MOR for the mT-cells-0, -1 and -2, after reduction process, are shown in 

Table 3. Both cells-1 and -2 with one and two AFLs present MOR values significantly 

larger than those of cell-0 without AFL, which evidences the positive effect of AFL on 

the mechanical strength of the cells. In addition, the graded anode-supported cell with 

two AFLs presents a slight improvement in MOR and lower scatter than the cell with 

one AFL. Similar trends are also evidenced in terms of Weibull parameters (Table 3 

and Fig. 4). Therefore, the maximum Weibull modulus value is obtained for cell-2, 

indicating that the degree of scatter in the measured data is quite lower compared to 

the other cells, especially with respect to the cell-0. It may be attributed to the thermo-

mechanical stress generated between the electrolyte layer and support, during the co-

sintering, NiO reduction, and in operation. As concluded in previous works,(77,78,79) 

the support composition has a significant influence on its thermo-mechanical 

properties, which is a decisive factor for the thermo-mechanical stability of mT-cells. 

The relationships between elastic modulus (E), Poisson ratio (ν) and the anode Ni 

volume fraction at room temperature showed small variations with the increase of Ni 

composition, due to similar elastic moduli and Poisson ratios between Ni and YSZ. In 

the present work, these relationships of Ni-SDC elastic properties should present a 

similar behaviour to Ni-YSZ, as E = 212 GPa and ν = 0.33 for a dense SDC,[80] which 

are very close to those of Ni (E = 219 GPa, ν = 0.32) and YSZ (E = 215 GPa, ν = 

0.32).[78] In contrast, a significant rise of the support thermal expansion coefficient 

(TEC) with the increase of Ni volume fraction was promoted, due to that the TEC of Ni 

is much larger than YSZ [78]. The TEC mismatch between electrolyte and support was 

the main cause of thermo-mechanical stress, and the Ni volume fraction presented a 

strong effect on the mT-SOFC stress. An estimation of the TECs should be determined 

to evaluate the TEC mismatch between components. According to the literature [29], 

the TECs for Ni and SDC are 16.5�10-6 and 11.8�10-6 K-1, respectively. Using these 

reference values for calculating the TEC of a cermet material [77], the values for the 

different Ni-SDC compositions are 14.1�10-6 K-1 for support (48-52% vol.), 13.6�10-6 K-1 

for AFL I (38-62% vol.), and 13.2�10-6 K-1 for AFL II (29-71% vol.). The remarkable 

difference of TEC between support and electrolyte reveals that the absence of AFL 

may induce higher stress at the electrolyte/support interface, which may promote the 

delamination and micro-cracks in this region. However, the cells with AFLs possess a 

gradual Ni composition between the support and electrolyte that should help to mitigate 

the thermo-mechanical stress.  
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On the other hand, the MOR values in the cells-1 and -2 are about 10-30% lower than 

those reported in previous studies for Ni-YSZ/YSZ tubular half-cells also tested by 

three- or four-point bending.(37,38) These differences may be attributed to the 

variations in composition, thickness and microstructure of tubular support, AFL and 

electrolyte. From the cathode effect point of view, MOR for the cell-1 is very close to 

that reported for an half-cell with identical electrolyte and support, and an AFL of 

slightly smaller thickness.(36) Taking into account this comparative, the cathode 

influence on the flexural strength of cell is quite limited, which is in concordance with 

the results of other works.(77,78,79)  In conclusion, the mechanical strength for the 

studied cells with AFLs may be suitable for their implementation in robust 

stacks.(6,37,38) 

 

Table 3. Characteristic values of the flexural strength (modulus of rupture, MOR), and 

the corresponding Weibull modulus data of the cells, after reduction process. 

 

Cell MOR    (MPa) 
Weibull parameters 

σ0 m 

Cell-0 147.2 ± 25.2 160.4 5.7 

Cell-1 179.6 ± 10.3 183.6 18.5 

Cell-2 190.2 ± 9.0 194.8 21.1 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4 Weibull plots for the flexural strength of the cells, after reduction process. 
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3.4 Hardness at the electrolyte/AFL/support region 

The microstructure at the region between electrolyte and support, and the 

corresponding local hardness (H) in this zone for each cell, before reduction process, 

are shown in Fig. 3. H values of cell-2 progressively decrease from the electrolyte to 

the support. SEM images of electrolyte/AFLs/support region reveal a continuous 

gradation of both the porosity and the composition of NiO and SDC. Thus, SDC phase 

forms a well-distributed ceramic skeleton where nickel grains are connected with each 

other. As observed, good adhesions between support/AFL I, AFL I/AFL II and AFL 

II/electrolyte are achieved. While the interface of AFL I and II can be clearly observed, 

the one of AFL I and support is difficult to distinguish, because of their close 

compositions and also due to a good integration. Compared to the cell-2, a similar 

tendency is observed for cell-1, but the H drop from electrolyte to AFL I is sharper than 

that of electrolyte-AFL II for cell-2. SEM images confirm the significant microstructural 

differences between the electrolyte and AFL I. In contrast, H strongly decreases at the 

electrolyte-support interface of the cell without AFL, which is attributed to the 

remarkable difference in porosity and composition of the SDC electrolyte and the NiO-

SDC support, and also by the stress generated at this interface during the co-sintering 

and reduction processes. These H values for the SDC electrolyte and the NiO-SDC 

support are close and in concordance with those reported in previous studies for GDC 

(81) and NiO-YSZ.(82) Therefore, these results confirm the important role of AFL, 

contributing not only to increase the TPB to enhance the electrochemical reactions, but 

also to improve the mechanical integrity of mT-SOFCs.  

 

4 Conclusions 

The influence of anode functional layers (AFLs) on the electrochemical and mechanical 

properties in mT-SOFCs, using SDC as the electrolyte and fabricated by aqueous gel-

casting, was investigated by analysing three cell configurations with different number of 

AFLs. Electrochemical tests showed the highest power density (0.52 W�cm-2 at 650ºC) 

for cell-1, presenting a single-layer AFL I of 12 µm thickness and 50:50 wt.% Ni-SDC. 

Probably, the characteristics of AFL I allowed to achieve an effective balance between 

the increased number of TPBs and the amplified gas diffusion path as a consequence 

of the reduced porosity at the AFL. In contrast, cell-2 with double-layer AFL (AFL I and 

II of 25 µm thickness, 50:50 wt.% and 40:60 wt.% NiO-SDC, respectively) presented a 

lower performance (0.35 W�cm-2 at 650ºC). It was attributed to the low amount of Ni 

particles at the electrolyte/AFL II interface, due the higher proportion of SDC. The 

relatively low OCVs of the cells are probably attributed to the current leakage related to 
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the electronic conduction and the presence of small gas leakages through micro-pores 

and micro-cracks at the electrolyte layer. It was remarkably critical in the cell-0 without 

AFL that presented a low OCV and a modest flexural strength, probably due to the 

thermo-mechanical stress generated at the electrolyte-support interface, during the co-

sintering and reduction processes. As a summary, the use of AFLs with an adequate 

composition and microstructure in the mT-SOFCs is required to minimize the formation 

of micro-cracks and pores at the electrolyte layer, as well as to improve the 

electrochemical performance and mechanical strength of cell.  
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