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Abstract: Biological systems provide the richest spectrum of sophisticated design for 

materials engineering. We herein provide a paradigm of Au22(SG)18(SG, glutathione 

thiolate)-engineered and hydrogen bonds engaged assemblies for mimicking capsid 

protein self-assembly. The water-evaporation-induced self-assembly method allows 

discrete ultrasmall gold nanoclusters (GNCs) to be self-assembled into super-GNCs 

assemblies (SGNCs) ranging from nano-, meso- to microscale in 

water-dimethylsulfoxide binary solvents in a template-free manner. After removing 

free and hydration layer water molecules, the formation of SGNCs is engaged by the 

collective cohesion of hydrogen bonds between glutathione ligands of gradually 

approaching GNCs. Then, a series of tightly orchestrated cellular events induced by 

the complexes of Au22(SG)18-engineered assemblies and folic acid are demonstrated 

to mimic the invasion of eukaryotic cells by pathogens. Firstly, the activation of 

macropinocytosis mimics the macropinocytic entry used by the pathogens to invade 

host cells. Then the cytoplasmic vacuolization is a mimicry of vacuolating effects 

induced by the oligomeric vacuolating toxins secreted by some bacteria. Lastly, the 

escaping from macropinosomes into cytosol is in a vacuolating toxin’s strategy. The 

findings demonstrate the capabilities of artificial pathogens to emulate the structures 

and functions of natural pathogens. 

Keywords: biomimetic materials, cytoplasmic vacuolization, gold nanoclusters, 

hydrogen bonds, macropinocytosis, self-assembly   
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As both biological processes understanding and material engineering capabilities have 

dramatically increased, the tools from the biology community are enabling the 

bioinspired materials design to mimic biological functionality.1,2 However, how to 

precisely control the interactions between cells and bioinspired materials within a 

concerted design methodology remains a grand challenge.3 Specifically, bacterial and 

viral pathogens have evolved a wealth of distinctive molecular solutions to infiltrate 

into host cells in terms of the structure and functions, representing the biomimetic 

engineering strategies to the design of bioinspired materials.4,5 The bottom-up 

self-assembly strategy, referring to the process of constructing stable and 

hierarchically-ordered aggregates from building units, has been explored at large 

among the biological structures of pathogens.6,7 Some bacterial proteinaceous toxins 

self-assemble multimeric pores on the plasma membrane to invade host cells.8 

Besides, capsids, the protective protein shell of viruses designed to enclose the viral 

genome, are self-assembling structures of capsomeres, relying on the combination of 

weak attractive or repulsive forces that, in concert, provide the capsids with 

noteworthy thermodynamic and mechanical properties.6, 9 Therefore, chemical 

mimicry of capsid self-assembly can be exploited to construct nanostructures with 

biological functionality.1,10 Structurally well-defined gold nanoclusters (GNCs), which 

connects the yawning gap between atoms and colloidal nanoparticles with dimensions 

reaching the Fermi wavelength of an electron (ca. 0.7 nm),11 are ideal building blocks 

to be scaled up into superstructures via self-assembly.12  

Cytoplasmic vacuolization has been widely observed in mammalian cells after 

exposure to bacterial or viral pathogens as well as to a variety of amine-containing 

weakly basic lipophilic substances.4,13-15 Specifically, the actions of inducing 

irreversible cellular vacuolization by Helicobacter pylori vacuolating toxin, 

Mycoplasma pneumoniae CARDS toxin, and Vibrio cholerae haemolysin represent 

important examples to investigate the pleiotropic effects of bacterial toxins on 

mammalian cells.4,13,14 Though different molecular mechanisms of vacuole formation 

have been proposed,4,14 the physicochemical properties of inducers underlie the action 

Page 3 of 29

ACS Paragon Plus Environment

ACS Nano

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



    

4 
 

of transient and irreversible vacuolization. Similarly, insights into the 

physicochemical interactions between nanomaterials and biological systems are of 

paramount importance in the process of laboratory to the clinical practice.16 The 

interactions essentially exemplified by interacting with biological molecules (i.e., 

small biological molecules and biological macromolecules) and cells. To achieve the 

necessary control over the formation of protein coronas, particle membrane wrapping 

and engulfment, internalization pathways, and fate of internalized cargo, fully 

understanding of ‘nano-bio’ interface and establishing fundamental principles of the 

nanomaterial-cell interactions has become critical important and urgent.16 More data 

on the vacuole formation obtained in this work prompt us to revisit working models 

for the vacuolization mechanism. 

In addition to the self-assembled structures, pathogens opportunistically exploit 

some strategies for binding to cell surface and entering the cytosol from endosomes.17 

Macropinocytosis, distinguished by non-selectively bulk uptake of solute 

macromolecules and fluid, is exploited by some pathogens to promote their entry into 

host cells through receptor-dependent means.5 Moreover, by using macropinocytosis, 

the pathogens can escape the endosomal pathways involved in antigen presentation. 

Thus, the macropinocytic pathway can be utilized as an avenue to deliver anti-cancer 

drugs specifically into cytosol.18 After entering the host cells, the limitation arises 

from the translocation of the bacterial toxins and viral genes into the cytosol. 

Nevertheless, by the means of pore formation on the endosomal membrane, the proton 

sponge effect, as well as the fusion with the endosomal membrane, bacterial and viral 

pathogens provide the richest strategies to the problem of endosomal escape.17 To 

achieve the necessary control over the internalization pathways and the fate of 

endocytosed cargo, developing bio-inspired nanostructures mimicking biological 

functionality are substantially challenging but indispensable in nano-biochemistry.  

Herein, we developed a synthetic control strategy for constructing Au22(SG)18(SG, 

glutathione thiolate)-engineered super-assemblies to mimic capsid protein 

self-assembly. The glutathione (GSH), a naturally occurring and readily available 

Page 4 of 29

ACS Paragon Plus Environment

ACS Nano

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



    

5 
 

tripeptide, has been widely chosen as the thiolate ligand for the synthesis of GNCs 

with broad application prospects in cancer imaging and therapy and some other fields 

of nanomedicine.19-21 However, since the first synthesis of Au22(SG)18 clusters with 

red emission around 665 nm and a quantum yield of ∼ 8% in 2003 by Xie and 

co-workers, very few reports on the applications of Au22(SG)18 clusters are available 

while amount of work are still focused on Au25 clusters.22,23 By controlling the 

dynamic intermolecular forces among Au22(SG)18 clusters, spherical super-assemblies 

with size ranging from nano-, meso- to microscale can be constructed in 

water-dimethylsulfoxide (DMSO) binary solvents in a template-free manner. 

Moreover, the complexes of Au22(SG)18-engineered super-GNCs assemblies and folic 

acid (abbreviated as SGNCs-FA), morphologically being similar to a sphere virion, 

can mimic the virus entry into host cells by macropinocytosis in a receptor-dependent 

manner. Subsequently, the vacuolating effects and the entry to the cytosol from 

macropinosomes are similar to what occurs with oligomeric vacuolating toxins. The 

artificial pathogens constructed from the bottom-up self-assembly strategy can mimic 

the biological structures of pathogens as well as their biological functions.  

Results and Discussion 

Virion-like assemblies formation. Firstly, atomically precise Au22(SG)18 clusters 

were prepared, identified, and characterized (Figures S1-S3). The Au22(SG)18 clusters 

in water luminesce with a maximum at ∼665 nm, and exhibit two characteristic bands 

at 450 and 515 nm in the UV-vis spectrum (Figure 1a). TEM image of the Au22(SG)18 

shows the mean core size distribution around 1.3 nm (Figure 1b). For the sake of 

clarity, the ellipsoidal Au22(SG)18 clusters, consisted of a theoretically predicted 

bitetrahedron Au7 core, an Au6 ring, and three Au3 staple motifs,22, 24 can be 

considered as the subunit of capsid-capsomeres with a molecular weight of 9.8 kDa 

(Figure S3). Inspired by the peptides/proteins-engineered self-assembly, strategies of 

effectively engaging hydrogen bonds (H-bonds) networks among the GSH-capped 

GNCs by obstructing the fierce H-bonds competition to water molecules should be 
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feasible to engineer Au22(SG)18-based biomimetic assemblies.25,26 In this regard, after 

adding widely used cosolvent DMSO to GNCs aqueous solution to disrupt the 

H-bonds networks in water, we apply a vacuum-rotary evaporation procedure to 

control the self-assembly process of GNCs. Under the heating temperature of 50 °C 

and 0.095 MPa vacuum pressure for 40 min, 20 mL of GNCs solution (0.1 and 0.2 

mg/mL, 18 mL H2O + 2 mL DMSO, pH ~7) was concentrated into ~4 mL, 

respectively. Then the samples were collected and examined by transmission electron 

microscope (TEM) and dynamic light scattering (DLS). Highly compact spherical 

super-GNCs assemblies (SGNCs) with diameters of 169.2 ± 39.6 and 490.2 ± 113.9 

nm were formed, respectively (Figure 1c, d). When adjusting the pH values of the 

initial GNCs aqueous solution to 3.5 and 10, the electrokinetic ζ-potential of GNCs 

was ~-0.5 and -26.8 mV, respectively. Subsequently, the SGNCs with diameters of 

1480.0 ± 299.0 and 62.9 ± 14.5 nm were formed, respectively (Figure 1e, f). When 

the lower of the pH value led the greater proportion of protonated carboxyl groups in 

GSH ligands, elevated H-bonds and depressed electrostatic repulsive force among 

GSH ligands contributed to the formation of much larger SGNCs (Figure S4). 

Changing the pH back to 10.0 was followed by a disassembled process into individual 

building blocks-Au22(SG)18 clusters, a similar reversible behavior in formation of 

protein assemblies (Figure S5).27 When compared with core size, the enlarged 

hydrodynamic diameters of SGNCs could be contributed to the extended hydration 

layer (Figure S6).  

Although the molecular arrangement of the hydration layer remains elusive, the 

existence of hydration water surrounding protein surfaces has been universally 

acknowledged.28 Similarly, the high stability of GNCs in high salt aqueous solution 

implies the existence of a short-range hydration force, arising from H-bonds and ion 

hydration of water-interactive groups of GSH ligands (Figure S7). Therefore, the 

water molecules in the above self-assembly system can be subdivided into three 

categories: hydration layer water, free water, and DMSO H-bonded water. In this 

water-evaporation-induced self-assembly process, the preferential evaporation of free 
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water was followed by the hydration water molecules deprived from the GNCs 

surfaces, making the GNCs come in close proximity. Then the H-bonds networks 

were engaged among GSH ligands, starting the self-assembly process (Figure 1g). 

Thus, the integrated structural system of SGNCs in final binary solvents can be 

rationalized by arranging hydration layer to surround SGNCs and the outermost 

1DMSO:2H2O layer to stabilize hydration layer (Figure S8).29  

Considering the substantial influence of the water-DMSO binary solvents on the 

formation of SGNCs, we envision that regulating the composition range of binary 

solvents through dialysis could constitute an alternative. Specifically, the SGNCs with 

diameters of 1092.8 ± 224.8 and 228.6 ± 40.1 nm were formed when GNCs aqueous 

solution was dialyzed against DMSO and N,N-dimethylformamide (DMF), 

respectively (Figure 2). Previous investigations have confirmed that the dielectric 

constant values of water-DMSO cosolvents are larger than those of water-DMF 

cosolvents at the same fractions over the entire composition range.30 Thus, a larger 

dielectric constant value could more efficiently screen the repulsive electrostatic 

forces between negatively charged GNCs, so the SGNCs formed in water-DMSO 

cosolvents are much larger than those formed in water-DMF cosolvents. The dialysis 

induced self-assembly accords substantially with water-evaporation-induced 

self-assembly on the engagement of H-bonds among GSH ligands by displacement of 

hydration water molecules.  

To impart the Au22(SG)18-engineered SGNCs with a biological identity, modulation 

of surface characteristics of SGNCs (core size around 62.9 nm) with folic acid (FA) 

was carried out. As an amphiphilic molecule, the hydrophobic pteroate moiety of FA 

forms H-bonds and hydrophobic interactions with folate receptors (FR), whereas the 

extremely hydrophilic glutamate moiety engages H-bonds with FR.31 In the 

as-prepared non-covalent bonds combined SGNCs-FA complexes, the extremely 

hydrophilic glutamate moiety of FA forms H-bonds with SGNCs, whereas the 

hydrophobic pteroate moiety tends to stick out. The SGNCs-FA complexes exhibited 

the characteristic absorption peak of FA at 280 and 350 nm,32 as well as the 
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characteristic absorption peak of GNCs at 515 nm (Figure S9). 

Cytoplasmic vacuolization induced by SGNCs-FA complexes. Folate receptor α 

(FRα), typically over-expressed in cancerous cells, mediates the entry of FA into cells 

through endocytosis.33 Human gastric (MGC-803), breast (MCF-7) and lung (A549) 

cancer cell lines with different FRα expression levels were studied for interactions 

with the SGNCs-FA complexes (Figure 3a). When exposed to the SGNCs-FA 

complexes, nascent vacuoles initially originated from peri-nuclear region and 

increased in size over time (Figure S10). However, neither FA nor SGNCs or the basic 

mixtures of GNCs + FA induce cytoplasmic vacuoles (data not shown). Then, the 

neutral red uptake (NRU) assay, mainly based on the amounts of the neutral red 

(acidotropic dye) accumulated within cells,34 was performed to depict the extent of 

vacuolization. As shown in Figure 3b, the staining of vacuoles indicated their acidic 

environment. More specifically, the uptake amounts of SGNCs-FA complexes 

indicated by flow cytometry and the extent of vacuolization at indicated time points 

were coincident with the expression levels of FRα (Figure 3c, d). These results 

identified the decisive role of FRα-mediated endocytosis in determining vacuolating 

effects. 

To explore the ultrastructure of cytoplasmic vacuoles and the intracellular 

trafficking pathways of SGNCs-FA complexes, the time- and space-detailed analysis 

was performed by Bio-TEM. As shown in Figure 4a-c, the vacuoles were mostly 

round and electron-clear at TEM. Additionally, ultrastructure observation 

demonstrated that a substantial number of SGNCs-FA complexes were internalized in 

the endocytic vesicles in proximity of the plasma membrane after 30 min of 

co-incubation (Figure 4d). Subsequently, endocytic vesicles moved deeper into the 

cytosol towards nucleus at 1 h (Figure 4e). Meanwhile, the SGNCs-FA complexes 

appeared to be fleeing from the intra-lumen into the cytosol by permeabilizing the 

membrane of endocytic vesicles, at which point the transformation from endocytic 

vesicles into inclusion-free vacuoles took place. And then vacuole-vacuole fusion 

became widespread, giving rise to larger vacuoles at 2 h (Figure 4f). In contrast, gold 
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nanoparticles and nanorods were mainly endocytosed in endosomes and eventually 

accumulated in endolysosomes incapable of reaching cytosol.35,36  

Activation of macropinocytosis by the SGNCs-FA complexes. Given the huge 

size and irregular shape of the endocytic vesicles, macropinocytosis may already be 

occurring.37 To elucidate whether macropinocytosis, characterized by internalizing 

large quantities of solute and fluid phase,38,39 is the primary endocytosis mechanisms 

of SGNCs-FA complexes, lucifer yellow (LY) uptake assay was performed.40 As 

shown in Figure 5a and Figure S11, the extracellular fluid-phase tracers LY, once 

co-ingested into the cells, was clearly discernible within vacuoles with no signs of 

leakage into the cytosol. Furthermore, pharmacological inhibition studies 

demonstrated that the uptake of SGNCs-FA complexes and cytoplasmic vacuoles 

formation was greatly suppressed when the cells were pretreated with cytochalasin D 

(Cyto D) for perturbing actin filament polymerization and amiloride for interfering 

actin remodeling (Figure S6).40 On the basis of the above data, we elucidated that the 

vacuoles were derived from macropinosomes and the membranes integrity was 

preserved in this transformation process. Considering the intraluminal acidic pH, the 

ontogeny of the vacuoles might be closely connected with acidic 

endosomal-lysosomal organelles. Therefore, the distribution of organelle markers in 

vacuolated cells was examined. Immunofluorescent staining results indicated that 

membranes of vacuoles were enriched in Rab7 (Figure 5b and Figure S12), a late 

endosome marker in regulating early-to-late endosomal maturation.41 In contrast, the 

early endosomes marker EEA1 was not co-localized well with vacuolar membranes 

(Figure S13).42 These results demonstrated that the macropinosomes recruit protein 

from late endosomes during maturation process.  

The connection between macropinosomal escape and cytoplasmic 

vacuolization. Furthermore, immunostaining of vacuolated cells confirmed the 

enrichment of the vacuolar-type H+-ATPase (V-ATPase) around the vacuolar 

membranes (Figure 5b and Figure S14). Accordingly, pharmacological inhibition 

study demonstrated that the selective V-ATPase inhibitor bafilomycin A1 (Baf-A1) 
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can effectively suppressed the cytoplasmic vacuolization (Figure S15).43 We 

concluded that V-ATPase was responsible for the intraluminal acidic environment and 

a pH gradient was necessary for the formation of vacuoles. Interestingly, the 

formation of vacuoles was also efficiently blocked by chloride anions (Cl-) channel 

inhibitor (Figure S15). The most likely explanation was that endocytosed SGNCs-FA 

complexes would promote the influx of Cl-, thereby stimulating the H+ pumping 

activity of the V-ATPase to maintain the acidic conditions of vacuoles.44 In this case, 

the entry of Cl- and H+ represents the driving force for transport of Na+ or K+ and leads 

to a net uptake of NaCl or KCl, resulting in a high intraorganellar osmotic pressure 

and driving water move into the vacuoles.44 Furthermore, to identify the role of water 

influx in the cytoplasmic vacuolization, the co-localization of aquaporins (AQP), 

specific regulators of water homeostasis in crossing biological membranes,45 with 

vacuoles was examined. Immunostaining of vacuolated cells showed that aquaporin-1 

(AQP1) was present on the membranes of vacuoles (Figure 5b). Additionally, 

vacuoles formation was almost completely suppressed by a potent AQP1 inhibitor 

HAuCl4, whereas the uptake efficacy of SGNCs-FA complexes was not affected 

(Figure 6).46 We reasoned from these data that the V-ATPase, Cl- channel, and AQP-1 

were co-responsible for water diffusion into the vacuoles.  

To further investigate the connection between macropinosomal escape and water 

influx-induced cytoplasmic vacuolization, we again used ultrastructure observation 

after pharmacological inhibition studies. Ultrastructures of V-ATPase, Cl- channel, 

and AQP-1 inhibitors pretreated MGC-803 cells indicated no apparent signs of water 

influx into the macropinosomes. Meanwhile, the SGNCs-FA complexes were still 

entrapped within the macropinosomes (Figure S16). These data favor the possibility 

that the influx of water into the macropinosomes facilitates the macropinosomal 

escape. However, irreversible vacuolization resulted cell death through 

hyper-activated macropinocytosis is mainly observed in a variety of secreted protein 

toxins of bacteria and enveloped virus.47 But the notable elevated reactive oxygen 

species (ROS) level after exposure to the SGNCs-FA complexes had no appreciable 
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cytotoxicity (Figure S17). Collectively, we depicted the process of how the 

SGNCs-FA complexes mimicking pathogenic invasion (Figure 7). The promoted 

cytosolic cargo delivery by the transient vacuolization of the SGNCs-FA complexes 

indicates the development of applicable therapeutic approaches.  

Conclusions 

In summary, by using the water-DMSO binary solvents to control the dynamic 

intermolecular interactions among GSH-capped GNCs, we have constructed 

Au22(SG)18-engineered spherical super-assemblies with size spanning three orders of 

magnitude in a template-free manner. The self-assembly process relies on the 

engagement of multiple H-bonds among GSH ligands via displacing hydration water 

molecules surrounding Au22(SG)18 clusters, which will provide insights into the 

natural protein self-assembling mechanism when the molecular basis for how proteins 

detect specific stimuli and assemble into protein self-assemblies are still poorly 

understood. More specifically, by transferring biological molecules FA on the surface 

of SGNCs to obtain a biological identity, the complexes of SGNCs-FA activate 

FRα-mediated macropinocytosis in cancer cells, analogous to the endocytosis 

mechanism exploited by some viruses to invade host cells. Subsequently, as the 

macropinosomes rapidly mature into phase-lucent cytoplasmic vacuoles, the 

endocytosed SGNCs-FA complexes are escaping from macropinosomes into the 

cytosol, which can be paralleled with the cytoplasmic vacuolization induced by the 

oligomeric vacuolating toxins. The biomimetic approaches revealed in our work could 

aid future ‘architecture-by-design’ nanomedicine with configurable geometries and 

functions. Although we accomplished this work by using SGNCs with core size 

around 62.9 nm, some other nano to micron-sized SGNCs can be harnessed to extend 

biomimetic design including protein-, exosome-, leukocyte-, erythrocyte-, and 

platelet-like nanomaterials to explore basic biological mechanisms and cellular 

therapies. 

Materials and Methods 
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Materials. Gold (III) chloride trihydrate (HAuCl4·3H2O, 99%), folic acid (FA) 

were obtained from Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China). 

Neutral red, Baf-A1, Cyto D, amiloride hydrochloride hydrate (≥98%), DMSO, and 

DMF were purchased from Aladdin Reagent Co. Ltd. (Shanghai, China). 

Borane tert-butylamine complex (97%) was obtained from Energy Chemical Reagent 

Co. Ltd. (Shanghai, China). Lucifer Yellow CH dipotassium salt, 

4′,6-diamidino-2-phenylindole (DAPI), 5-Nitro-2-(3-phenylpropylamino)benzoic acid 

(NPPB), and 2',7'-dichlorofluorescein diacetate (DCFH-DA) were purchased from 

Sigma-Aldrich(St. Louis, MO, USA). Rabbit monoclonal anti-EEA1 antibody (2411) 

and anti-Rab7 antibody (2094) were purchased from Cell Signaling Technology 

(Danvers, MA, USA). Rabbit polyclonal anti-AQP1 antibody (ab15080) was 

purchased from Abcam (Cambridge, UK). Rabbit polyclonal anti-folate receptor alpha 

antibody and anti-V-ATPase antibody were purchased from Abgent (San Diego, 

California, USA). Human gastric (MGC-803), breast (MCF-7) and lung (A549) 

cancer cell lines were available in the Cell Bank of Type Culture Collection of 

Chinese Academy of Sciences. All solutions were prepared using highly purified 

water (18.2 MΩ m) taken from an ELGA LabWater system (PURELAB™ ELGA 

LabWater, UK).  

Preparation, purification, and separation of Au22(SG)18 clusters. The 

red-emitting GNCs were synthesized from a modified method reported by our 

group.32 The details of synthesis procedures, purification by fractional precipitation, 

and native PAGE separation of the Aun(SG)m compounds were demonstrated in 

supporting information. 

Self-assembly of gold nanoclusters. A. Vacuum-rotary water-evaporation-induced 

self-assembly. Self-assembly reaction was conducted in 50 mL round-bottom flasks 

on a vacuum-rotary evaporator. Firstly, 18 mL GNCs aqueous solution (containing 2 

mg or 4 mg Au22(SG)18 NCs) and 2 mL DMSO were mixed together and sonicated for 

5 min, followed by adjusting the pH to 7 by 1M HCl. Thus, the concentration of 

GNCs in water-DMSO binary solvents was 0.1 and 0.2 mg/mL, respectively. 

Afterward, the sample flasks are swirled at 100 rpm on a water bath at 50 °C under 

0.095 MPa vacuum pressures. An external recirculating chiller was used to cool the 

trap and was controlled to -5°C. At indicated time points (∼40 min), when the total 

volume was reduced to about 4 mL, the evaporation procedure was stopped and let 

the samples restore to room temperature (RT) before next treatment. The pH values of 

water-DMSO binary solvents had great influence on the size of super-assemblies. For 
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samples (GNCs, 0.1 mg/mL) with the pH values of initial water-DMSO solution were 

adjusted to 3.5 and 10 with 1N HCl or 1N NaOH, the use of a rotary evaporator in this 

process was identical as mentioned earlier. B. Dialysis-induced self-assembly. Firstly, 

the 2 mL of the Au22(SG)18 NCs aqueous solution (1 mg/mL, pH∼7) was placed in a 

regenerated cellulose dialysis bag (MWCO: 1.0 kDa) and dialyzed against 200 mL of 

DMSO or DMF at 25 °C for 1 h, respectively. Within about 1 h, the solution in the 

dialysis bag became turbid with some precipitate precipitated out. Then the solution 

and precipitate in the dialysis bag was collected and resuspended in water. The 

formation of SGNCs in the dialysis process against DMSO or DMF was confirmed by 

electron microscopy characterization and DLS. 

Formation of SGNCs-FA complexes. The final volume of as-assembled SGNCs 

(with core size around 62.9 nm) solution was about 4 mL (containing 2 mL DMSO). 

Then 0.5 mg FA (50 mg/mL, dissolved in DMSO) was added to the SGNCs solution 

followed by stirring overnight at RT. The mixture solution was transferred into a 

dialysis bag (MWCO 3500) and dialyzed against ultrapure water for two days. The 

final product was precipitated out by addition a certain amount of NaCl (to 20 mM) 

and methanol (to 60%, v/v). The SGNCs-FA complexes were dissolved in water at a 

concentration of 4 mg/mL. 

Observation of cell ultrastructure. For the TEM sample preparation, three types 

of cells were seeded on 35 mm culture dish. The cells were grown to 80% confluence 

and exposed to 0.3 mg/mL SGNCs-FA dissolved in serum-free DMEM medium for 

30 min, 1.5 h, 2 h, and 3 h. At the indicated time points, cells were washed three times 

with 0.01M PBS and harvested using trypsin-EDTA, centrifuged, and fixed in 2.5% 

(wt/vol) glutaraldehyde in 0.01 M PBS (pH 7.4) overnight at 4°C. Cells were next 

rinsed in 0.01M PBS and centrifuged. Pellets were post-fixed in 1% (wt/vol) osmium 

tetroxide in 0.01M PBS (pH 7.4) for 2 h. Dehydration was achieved by sequential 

treatments with 25, 50, 75, 95 and 100% ethanol followed by acetone. The samples 

were then transferred to propylene oxide, and embedded in epoxy resin. Ultrathin 

sections were prepared by a Leica EM UC 6 ultramicrotome and stained with uranyl 

acetate followed by lead citrate. Then the ultrathin sections were mounted on copper 

grids and examined with FEI Tecnai G2 Spirit BioTwin electron microscope at 120 

kV using Gatan 832 CCD camera. 

Lucifer yellow staining of cytoplasmic vacuoles. Localization of extracellular 

fluid-phase marker lucifer yellow (LY) was monitored by incubating cells in the 
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presence of 0.15 mg/mL SGNCs-FA and 0.5 mg/mL lucifer yellow in serum-free 

DMEM medium for 3 h at 37°C. Cells were washed twice with 0.01M PBS, fixed in 

4% paraformaldehyde, and visualized with inverted microscope (IX 71, Olympus) 

equipped with a 100× objective and Rolera-MGI Plus back-illuminated EMCCD 

camera and an Olympus U-MWIBA3 filter set (BP460-495, DM505, BA510-550). 

Immunofluorescent staining of vacuolated cells. Cells were plated in 4-chamber 

glass-bottom 35 mm dish at 60% confluence per chamber 24 h before treatment. Then, 

cells were incubated with 0.3 mg/mL SGNCs-FA in serum-free DMEM medium for 3 

h at 37°C. After washing twice with 0.01 M PBS, cells were fixed in 4% 

paraformaldehyde for 10 min at 37°C, and then permeabilized in PBS containing 

0.2% Triton-X-100 for 5 min and blocked with PBS containing 10% goat serum for 1 

h at RT. Next, cells were incubated with primary antibodies diluted to 1:150 (EEA1, 

Rab7, V-ATPase, and AQP1) in PBS with 1% goat serum overnight at 4°C. Cells were 

washed twice with PBS containing 1% goat serum, incubated with secondary 

antibodies diluted to 1:250 (Alexa Fluor 488 goat anti-rabbit) in PBS with 1% goat 

serum for 1 h at RT. The nuclei of the cells were stained with DAPI (1 µg/mL in PBS) 

for 5 min at RT. Finally, the cells were observed with Confocal Quantitative Image 

Cytometer CQ1 (Yokogawa Electric Corporation, Tokyo, Japan). The blue channel 

(excitation 405 nm, emission 447/60 nm) was used for the acquisition of DAPI, green 

channel (excitation 488 nm, emission 525/50 nm) was used for the acquisition of 

immunofluorescence. Images were processed using CQ1 software and ImageJ 1.50 

(NIH, Bethesda, ML). 

Flow cytometry analysis. All flow cytometry analyses were performed on a BD 

FACSCalibur (BD Biosciences, Mountain View, CA) and the data were processed 

with FlowJo 7.6 software. To analyze the uptake of SGNCs-FA complexes in cells, 

the cells were plated in 6-well plates and then allowed to adhere overnight. The cells 

were incubated with 0.3 mg/mL SGNCs-FA complexes in serum-free DMEM medium, 

then collected and immediately analyzed by flow cytometry at 3 h. FL-3 (λem, 

650-700 nm) channel was selected to collect the fluorescence signal of cells using an 

488 nm argon laser as an excitation source.  

Pharmacological inhibition studies. To evaluate the pharmacological inhibition 

effects of vacuolization, the cells were by pretreated with macropinocytosis inhibitors 

(amiloride 100µg/mL + Cyto D 2 mM, 2 h), AQP1 inhibitor (HAuCl4 200 µM, 6 min), 

V-ATPase inhibitor Baf-A1 (100 nM, 30 min), and chloride ion (Cl-) channel blocker 
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NPPB (100 µM, 1 h), respectively. Subsequently, the cells were co-incubated with 0.3 

mg/mL SGNCs-FA complexes for 3 h and then analysed by NRU assay and flow 

cytometry. Cells without inhibitors pretreating were taken as control groups. 

Statistical Analysis. The statistical analysis was performed in quintuplicate unless 

otherwise indicated. The data were expressed as mean values ± standard deviation 

(SD). Statistical difference was calculated with paired sample using Student's t-test 

comparison at a significance level of p < 0.05. 
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Figure 1. Water-evaporation-induced Au22(SG)18 clusters self-assembly. (a) UV-vis 

absorption and photoluminescence (PL) spectra of Au22(SG)18 clusters. (b)TEM image 

and core size distribution of Au22(SG)18 clusters. (c-f) TEM images of four SGNCs 

samples formed in the water-DMSO binary solvents at 50 °C under 0.095 MPa 

vacuum pressures for 40 min with different conditions: (c) 0.1 mg/mL GNCs, pH ~7; 

(d) 0.2 mg/mL GNCs, pH ~7; (e) 0.1 mg/mL GNCs, pH ~10; (f) 0.1 mg/mL GNCs, 

pH ~3.5. (g) Schematic representation of the dynamic water-evaporation-induced 

GNCs self-assembly process in the water-DMSO binary solvents. 

 
 

Figure 2. Dialysis-induced and solvent-dependent SGNCs formation. TEM images of 

the formed SGNCs when GNCs aqueous solution dialyzed against (a) DMSO and (b) 

DMF, respectively. (c-d) The core size distributions (histogram and Gaussian fitting) 

from TEM measurements of (a) and (b), respectively. Scale bars, 1 µm (a); 200 nm (b). 

(e) Schematic representation of the dialysis process of GNCs aqueous solution against 

DMSO solvent: (1) solvents diffusion, (2) H-bonds engaged, (3) SGNCs formed, (4) 

SGNCs aggregated. When the turbid solution in the dialysis bag was collected, 

precipitated, and resuspended in water, the SGNCs rehydrated and dispersed in water. 
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Figure 3. (a) Western blot analysis of FRα expression in MGC-803, MCF-7, and 

A549 cells. (b) Neutral red accumulated in MGC-803, MCF-7, and A549 cells after 

exposure to 0.15 mg/mL SGNCs-FA complexes for 2 h, respectively. Arrowheads 

point at vacuoles completely stained with the neutral red. (c) Flow cytometry analysis 

of the cellular uptake of SGNCs-FA complexes. Red and cyan histograms represent 

fluorescence signals of the untreated cells, the cells treated with 0.15 mg/mL 

SGNCs-FA complexes for 2 h, respectively. (d) The dose-response and time-course of 

cytoplasmic vacuolization induced by SGNCs-FA complexes. Neutral red 

accumulated in cells was quantified by OD550 nm. The extent of cellular vacuolization 

was expressed as percent of the maximal observed uptake within the same experiment 

at the indicated time. All values shown were the average of quintuplicates ± SD. 

 

Figure 4. Ultrastructure observation of cytoplasmic vacuoles in (a) MGC-803, (b) 

MCF-7, and (c) A549 cell after co-incubation with 0.3 mg/mL SGNCs-FA complexes 

for 3 h, respectively. The formation process of cytoplasmic vacuoles in MGC-803 

cells at (d) 30 min, (e) 1 h, and (f) 2 h after co-incubation with 0.3 mg/mL SGNCs-FA 

complexes. Red arrows in (a-c) point at the vacuoles; red triangles in (d) point at 

endocytic vesicle; red and blue arrows in (e) indicate the endocytic vesicles which are 

transforming into vacuoles and SGNCs-FA complexes which are escaping from 

vesicles into cytosol, respectively; red arrows in (f) indicate the fusion behaviors of 

cytoplasmic vacuoles. Abbreviation: N, nucleus. Scale bars, 1000 nm (a-c); 2 µm (d); 

1 µm (inset of d, e, f). 

 

Figure 5. Fluorescent analysis of the cytoplasmic vacuoles. (a) Localization of LY in 

vacuolated MGC-803 cells induced by SGNCs-FA complexes. Arrowhead points at a 

subpopulation of LY-containing vacuoles. (b) Immunofluorescent staining of 

vacuolated MGC-803 cells for Rab7, AQP1, and V-ATPase. From right to left panel, 

representative DAPI blue fluorescence images of the nucleus, green fluorescence 
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images of specific protein markers, brightfield microscopy images, and the merged 

images are presented. Arrowheads points at vacuoles. Scale bars, 20 µm. 

Abbreviations: LY, lucifer yellow; V-ATPase, vacuolar H+-ATPase; AQP1, 

Aquaporin 1; DAPI, 4′-6-diamidino-2-phenylindole. 

 

Figure 6. Pharmacological inhibition of macropinocytosis and AQP1. (a) 

Flow-cytometry-based analysis of the cellular uptake of SGNCs-FA complexes after 

pretreated with inhibitors. The red, green, cyan, and orange histograms represented 

fluorescence signals of the untreated cells, the cells with macropinocytosis inhibitors 

(amiloride 100 µg/mL + Cyto D 2 mM, 2 h) pretreating and subsequent SGNCs-FA 

complexes exposure, the cells with AQP1 inhibitor (HAuCl4 200 µM, 6 min) 

pretreating and subsequent SGNCs-FA complexes exposure, and the cells with 

SGNCs-FA complexes exposure. (b) The extent of SGNCs-FA-induced vacuolization 

in cells with or without inhibitors pretreating was determined by NRU assay. Cells 

without inhibitors pretreating but expose to SGNCs-FA complexes were taken as the 

control groups (set as 100% vacuolization efficiency). The pharmacological inhibitors 

pretreating and SGNCs-FA complexes exposure conditions in (b) were the same as 

used in (a). All values shown were the average of quintuplicates ± SD. Statistical 

differences were determined by Student’s t-test, * significant against the control group, 

P < 0.001. 

 

 

Figure 7. Schematic representation of how the SGNCs-FA complexes mimicking 

pathogenic invasion by the activation of macropinocytosis, the use of 

macropinosomal escape and inducing cytoplasmic vacuolization. 
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Figure 1. Water-evaporation-induced Au22(SG)18 clusters self-assembly. (a) UV-vis absorption and 
photoluminescence (PL) spectra of Au22(SG)18 clusters. (b)TEM image and core size distribution of 

Au22(SG)18 clusters. (c-f) TEM images of four SGNCs samples formed in the water-DMSO binary solvents at 

50 °C under 0.095 MPa vacuum pressures for 40 min with different conditions: (c) 0.1 mg/mL GNCs, pH ~7; 
(d) 0.2 mg/mL GNCs, pH ~7; (e) 0.1 mg/mL GNCs, pH ~10; (f) 0.1 mg/mL GNCs, pH ~3.5. (g) Schematic 
representation of the dynamic water-evaporation-induced GNCs self-assembly process in the water-DMSO 

binary solvents.  
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Figure 2. Dialysis-induced and solvent-dependent SGNCs formation. TEM images of the formed SGNCs when 
GNCs aqueous solution dialyzed against (a) DMSO and (b) DMF, respectively. (c-d) The core size 

distributions (histogram and Gaussian fitting) from TEM measurements of (a) and (b), respectively. Scale 

bars, 1 µm (a); 200 nm (b). (e) Schematic representation of the dialysis process of GNCs aqueous solution 
against DMSO solvent: (1) solvents diffusion, (2) H-bonds engaged, (3) SGNCs formed, (4) SGNCs 

aggregated. When the turbid solution in the dialysis bag was collected, precipitated, and resuspended in 
water, the SGNCs rehydrated and dispersed in water.  
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Figure 3. (a) Western blot analysis of FRα expression in MGC-803, MCF-7, and A549 cells. (b) Neutral red 
accumulated in MGC-803, MCF-7, and A549 cells after exposure to 0.15 mg/mL SGNCs-FA complexes for 2 
h, respectively. Arrowheads point at vacuoles completely stained with the neutral red. (c) Flow cytometry 
analysis of the cellular uptake of SGNCs-FA complexes. Red and cyan histograms represent fluorescence 

signals of the untreated cells, the cells treated with 0.15 mg/mL SGNCs-FA complexes for 2 h, respectively. 
(d) The dose-response and time-course of cytoplasmic vacuolization induced by SGNCs-FA complexes. 
Neutral red accumulated in cells was quantified by OD550 nm. The extent of cellular vacuolization was 

expressed as percent of the maximal observed uptake within the same experiment at the indicated time. All 

values shown were the average of quintuplicates ± SD.  
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Figure 4. Ultrastructure observation of cytoplasmic vacuoles in (a) MGC-803, (b) MCF-7, and (c) A549 cell 
after co-incubation with 0.3 mg/mL SGNCs-FA complexes for 3 h, respectively. The formation process of 
cytoplasmic vacuoles in MGC-803 cells at (d) 30 min, (e) 1 h, and (f) 2 h after co-incubation with 0.3 

mg/mL SGNCs-FA complexes. Red arrows in (a-c) point at the vacuoles; red triangles in (d) point at 
endocytic vesicle; red and blue arrows in (e) indicate the endocytic vesicles which are transforming into 

vacuoles and SGNCs-FA complexes which are escaping from vesicles into cytosol, respectively; red arrows in 
(f) indicate the fusion behaviors of cytoplasmic vacuoles. Abbreviation: N, nucleus. Scale bars, 1000 nm (a-

c); 2 µm (d); 1 µm (inset of d, e, f).  
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Figure 5. Fluorescent analysis of the cytoplasmic vacuoles. (a) Localization of LY in vacuolated MGC-803 
cells induced by SGNCs-FA complexes. Arrowhead points at a subpopulation of LY-containing vacuoles. (b) 
Immunofluorescent staining of vacuolated MGC-803 cells for Rab7, AQP1, and V-ATPase. From right to left 

panel, representative DAPI blue fluorescence images of the nucleus, green fluorescence images of specific 
protein markers, brightfield microscopy images, and the merged images are presented. Arrowheads points 
at vacuoles. Scale bars, 20 µm. Abbreviations: LY, lucifer yellow; V-ATPase, vacuolar H+-ATPase; AQP1, 

Aquaporin 1; DAPI, 4′-6-diamidino-2-phenylindole.  
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Figure 6. Pharmacological inhibition of macropinocytosis and AQP1. (a) Flow-cytometry-based analysis of the 
cellular uptake of SGNCs-FA complexes after pretreated with inhibitors. The red, green, cyan, and orange 

histograms represented fluorescence signals of the untreated cells, the cells with macropinocytosis inhibitors 
(amiloride 100 µg/mL + Cyto D 2 mM, 2 h) pretreating and subsequent SGNCs-FA complexes exposure, the 

cells with AQP1 inhibitor (HAuCl4 200 µM, 6 min) pretreating and subsequent SGNCs-FA complexes 
exposure, and the cells with SGNCs-FA complexes exposure. (b) The extent of SGNCs-FA-induced 

vacuolization in cells with or without inhibitors pretreating was determined by NRU assay. Cells without 
inhibitors pretreating but expose to SGNCs-FA complexes were taken as the control groups (set as 100% 

vacuolization efficiency). The pharmacological inhibitors pretreating and SGNCs-FA complexes exposure 
conditions in (b) were the same as used in (a). All values shown were the average of quintuplicates ± SD. 

Statistical differences were determined by Student’s t-test, * significant against the control group, P < 
0.001.  
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Figure 7. Schematic representation of how the SGNCs-FA complexes mimicking pathogenic invasion by the 
activation of macropinocytosis, the use of macropinosomal escape and inducing cytoplasmic vacuolization.  
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