000079113 001__ 79113
000079113 005__ 20190709135517.0
000079113 0247_ $$2doi$$a10.1016/j.fluid.2016.10.026
000079113 0248_ $$2sideral$$a97415
000079113 037__ $$aART-2017-97415
000079113 041__ $$aeng
000079113 100__ $$0(orcid)0000-0002-1610-2285$$aAntón, V.
000079113 245__ $$aThermophysical study of 2-acetylthiophene: experimental and modelled results
000079113 260__ $$c2017
000079113 5060_ $$aAccess copy available to the general public$$fUnrestricted
000079113 5203_ $$aSeveral thermophysical properties have been studied for 2-acetylthiophene: (i) vapour pressure was determined at temperatures within 336.16–445.02 K; (ii) density, speed of sound, static permittivity, refractive index, surface tension, and kinematic viscosity were measured at p = 0.1 MPa and at temperatures from 278.15 K (or 283.15 K for the refractive index) to 338.15 K; (iii) volumetric properties were also determined at temperatures in the (283.15–338.15) K range and at pressures up to 65.0 MPa. From these experimental values, different derivative properties have been calculated such as enthalpy of vaporization, isobaric expansibility, isothermal and isentropic compressibility, dipole moment, entropy and enthalpy of surface formation, and dynamic viscosity. All experimental properties were correlated and the results were explained through the intermolecular interactions. Moreover PC-SAFT EoS was used to model the thermodynamic behaviour of the compound. Finally, this EoS combined with the Density Gradient Theory allowed obtaining the influence parameter for the surface tension of 2-acetylthiophene.
000079113 536__ $$9info:eu-repo/grantAgreement/ES/DGA/E54$$9info:eu-repo/grantAgreement/ES/MINECO/CTQ2013-44867-P
000079113 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000079113 590__ $$a2.197$$b2017
000079113 591__ $$aENGINEERING, CHEMICAL$$b56 / 137 = 0.409$$c2017$$dQ2$$eT2
000079113 591__ $$aTHERMODYNAMICS$$b20 / 59 = 0.339$$c2017$$dQ2$$eT2
000079113 591__ $$aCHEMISTRY, PHYSICAL$$b80 / 146 = 0.548$$c2017$$dQ3$$eT2
000079113 592__ $$a0.95$$b2017
000079113 593__ $$aChemical Engineering (miscellaneous)$$c2017$$dQ1
000079113 593__ $$aPhysics and Astronomy (miscellaneous)$$c2017$$dQ1
000079113 593__ $$aPhysical and Theoretical Chemistry$$c2017$$dQ2
000079113 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000079113 700__ $$0(orcid)0000-0001-8790-8211$$aArtigas, H.$$uUniversidad de Zaragoza
000079113 700__ $$0(orcid)0000-0002-8354-7436$$aMuñoz-Embid, J.$$uUniversidad de Zaragoza
000079113 700__ $$0(orcid)0000-0003-1810-9488$$aArtal, M.$$uUniversidad de Zaragoza
000079113 700__ $$0(orcid)0000-0003-3632-6822$$aLafuente, C.$$uUniversidad de Zaragoza
000079113 7102_ $$12012$$2755$$aUniversidad de Zaragoza$$bDpto. Química Física$$cÁrea Química Física
000079113 773__ $$g433 (2017), 126-134$$pFluid phase equilib.$$tFLUID PHASE EQUILIBRIA$$x0378-3812
000079113 8564_ $$s216402$$uhttps://zaguan.unizar.es/record/79113/files/texto_completo.pdf$$yPostprint
000079113 8564_ $$s61634$$uhttps://zaguan.unizar.es/record/79113/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000079113 909CO $$ooai:zaguan.unizar.es:79113$$particulos$$pdriver
000079113 951__ $$a2019-07-09-11:55:44
000079113 980__ $$aARTICLE