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Highlights

 Bacillus amyloliquefaciens BUZ-14 inhibited major postharvest rots in fruits

 Preventive treatments were effective against Penicillium spp. in oranges and 

apples

 B. amyloliquefaciens exhibited a curative effect against brown rot in stone fruits 

 BUZ-14 survived at cool temperatures making it suitable for postharvest treatment 
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14 ABSTRACT

15 The biocontrol potential of the Bacillus amyloliquefaciens strain BUZ-14 was tested 

16 against the main postharvest diseases of orange, apple, grape and stone fruit. After 

17 characterizing the temperature and pH growth curves of strain BUZ-14, its in vitro 

18 antifungal activity was determined against Botrytis cinerea, Monilinia fructicola, M. 

19 laxa, Penicillium digitatum, P. expansum and P. italicum. Subsequently, in vivo activity 

20 was tested against these pathogens by treating fruit with cells, endospores and cell-free 

21 supernatants. The in vitro results showed that BUZ-14 inhibited the growth of all the 

22 pathogens tested corresponding to the least susceptible species, P. italicum, and the 

23 most susceptible, M. laxa. In vivo tests corroborated these results as most of the 

24 treatments decreased the incidence of brown rot in stone fruit from 100 % to 0 %, 

25 establishing 107 CFU mL-1 as the minimum inhibitory concentration. For the 

26 Penicillium species a preventive treatment inhibited P. digitatum and P. italicum growth 

27 in oranges and reduced P. expansum incidence in apples from 100 % to 20 %. Finally, it 

28 has been demonstrated that BUZ-14 was able to survive and to control brown rot in 

29 peaches stored at cool temperatures, making it a very suitable biocontrol agent for 

30 application during the post-harvest storage and marketing of horticultural products. 

31

32 Keywords: biocontrol, Botrytis cinerea, Monilinia spp., Penicillium spp.
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34 1. Introduction

35 It has been estimated that about 20-25 % of harvested fruits and vegetables 

36 decay by filamentous fungi during postharvest handling even in developed countries, so 

37 control of fungal infections at this stage is critical (Droby, 2006; Singh and Sharma, 

38 2007). Currently control measures of phytopathogens during pre- and post-harvest 

39 practices are primarily based on synthetic chemicals (El-Ghaouth et al., 2004; Ismail 

40 and Zhang, 2004; Droby, 2006; Korsten, 2006; Zhu, 2006; Singh and Sharma, 2007). 

41 However, the use of such chemicals is becoming increasingly problematic due to stricter 

42 legislation (Dir. 91/414/CEE) and growing public pressure resulting from their 

43 toxicological risks to human health (Dir. 2009/128/CE; U.S. National Research Council, 

44 1987), especially children´s health (U.S. National Research Council, 1993) and possible 

45 environmental pollution. A further limiting factor for chemical application is the 

46 development of fungicide-resistant strains for the main phytopathogenic fungi (Kinay et 

47 al., 2007; Zhao et al., 2010; Chen et al., 2013; Panebianco et al., 2015; Vitale et al., 

48 2016). Consequently, researchers are currently looking for alternative methods to 

49 control postharvest diseases (Romero et al., 2007; Dimkic et al., 2013; Oro et al., 2014; 

50 Jiang et al., 2015; Parafati et al., 2015). 

51 Biological control, which includes the use of antagonist microorganisms (BCAs-

52 biological control agents) such as yeast and bacteria, has been a promising alternative to 

53 synthetic fungicides since it is safer for both human health and the ecosystem (Wilson 

54 and Wisniewski, 1994; Janisiewicz and Korsten, 2002; Korsten, 2006). During the last 

55 30 years, over one thousand articles on postharvest biocontrol have been published and 

56 several microorganisms have been tested against various postharvest fungal pathogens 

57 on fruit. However, only few biologicals are commercially available for control of fruit 

58 diseases during the postharvest phase. These include, Bio-Save® 10 LP (Pseudomonas 
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59 syringae; Jet Harvest Solutions, USA) (Janisiewicz and Jeffers, 1997), registered in the 

60 USA by the EPA (Environmental Protection Agency) and used mostly for the control of 

61 sweet potato and potato diseases, BoniProtect® (Aureobasidium pullulans; Bio-Protect 

62 GmbH, Germany) for the control of apple storage diseases and Candifruit (Candida 

63 sake CPA-1, Sipcam Inagra S.A.) (Viñas et al., 1998), commercialized in Spain and 

64 recommended against the major postharvest diseases of pome and citrus fruit.

65 Bacillus species are widely distributed in the rhizosphere. They have high 

66 thermal tolerance, grow rapidly in liquid cultures, readily form spores and are not 

67 phytopathogenic. Their spores are resistant to physical and chemical treatments such as 

68 desiccation, heat, UV irradiation or organic solvents (Leelasuphakul et al., 2008), and 

69 some species are able to produce biofilms. Several strains of the Bacillus genus have 

70 been studied for their production of anti-fungal metabolites, which are potential BCAs 

71 against a wide range of fungal pathogens (Touré et al., 2004; Ongena et al., 2005; 

72 Chung et al., 2008; Arguelles-Arias et al., 2009; Torres et al., 2016). B. subtilis is the 

73 species most extensively used against plant diseases and 4-5 % of its genome is 

74 dedicated to antibiotics´ production (Stein 2005). Some strains have been employed to 

75 develop commercial products such as Subtilex® (B. subtilis MBI 600; BASF), registered 

76 in the USA by the EPA and used for the control of fruit, herb and vegetable diseases, 

77 and Serenade® Max (B. subtilis QST 713, AgraQuest Inc., California, USA and BASF, 

78 Ludwigshafen, Germany), currently registered for the use against B. cinerea, 

79 Pseudomonas spp., Sclerotinia spp. Venturia spp. and Monilinia spp. in more than 20 

80 countries in Europe, Africa, Middle East, Asia and Latin America. B. 

81 amyloliquefaciens, closely related to B. subtilis, dedicates 8.5 % of its genome to 

82 produce several bioactive compounds with high antifungal activity such as lipopeptides 

83 including surfactin (Ahimou et al., 2000; Hsieh et al., 2004) iturin (Hsieh et al., 2008; 
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84 Yu et al., 2002) or fengycin (Lin et al., 1999; Ongena et al., 2007) and several 

85 polyketides such as macrolactin, bacillaene, bacilysin, bacillomycin and difficidin 

86 (Chen et al., 2009). Furthermore, other antibiotics such as plantazolicin or chlorotetaine, 

87 all of which have substantial antimicrobial and antifungal activity, are also secreted 

88 (Scholz et al., 2011; Mudgal et al., 2013; Wang et al., 2016). Recently, Taegro® (B. 

89 amyloliquefaciens FZB24); Novozymes (Copenhagen, Denmark) and Syngenta (Basel, 

90 Switzerland) (Lecomte et al., 2016), recommended for suppressing selected soil-borne 

91 and foliar diseases of fruits and leafy vegetables, cucurbits, and ornamentals, have been 

92 registered in the USA by the EPA.

93 The main objective of this study is to evaluate the potential of the B. 

94 amyloliquefaciens strain BUZ-14 for controlling postharvest diseases in orange, apple, 

95 grape and stone fruit. Our study has four phases: (1) to characterize the strain growth at 

96 different temperature and pH values; (2) to determine its in vitro antifungal activity 

97 against several postharvest pathogens; (3) to establish the efficacy of cells, endospores 

98 and cell-free supernatants against the main postharvest pathogens in fruit models; and 

99 (4) to assess its survival rate and antifungal activity under cold storage temperatures. 

100 2. Materials and methods

101 2.1. Pathogens

102 Penicillium expansum CECT 20140 and Monilinia fructicola ATCC 44557 were 

103 obtained from the respective culture collections. Botrytis cinerea VG 1, Penicillium 

104 digitatum VG 20, Penicillium italicum VG 101, and Monilinia laxa VG 105 were 

105 obtained from the Plant Food Research Group culture collection at Zaragoza University 

106 (Spain). All pathogens were incubated on potato dextrose agar (PDA) (Oxoid Ltd; 

107 Basingstoke, Hampshire, England) Petri dishes supplemented with 1 % acetone in the 

A
C

C
E
P
TE

D
 M

A
N

U
S
C

R
IP

T



ACCEPTED MANUSCRIPT

6

108 case of M. fructicola and M. laxa to induce conidia production (Pascual et al., 1990). 

109 Periodically, the strains were transferred to fresh fruit to induce infection and spore 

110 production. 

111 2.2. Bacillus strain and inoculum production

112 The strain BUZ-14 used in this study was obtained from the Plant Food 

113 Research Group Collection at Zaragoza University. It was isolated from the surface of 

114 peach fruit from an orchard in Zaragoza and tested for its preliminary antifungal 

115 potential against M. fructicola (data not shown). A partial 16s rRNA sequence from the 

116 BUZ-14 strain was conducted by the Spanish Type Culture Collection (CECT).  It was 

117 identified as a member of the B. amyloliquefaciens species complex. Cultures were 

118 stored at 5 ºC and subcultured on tryptose soy agar (TSA, Oxoid Ltd) supplemented 

119 with 0.6% yeast extract at 30 ºC for 24 h when required. Criobilles (Deltalab, 

120 Barcelona, Spain) were used for long-term storage at -80 ºC. To prepare the initial fresh 

121 cell suspension of BUZ-14, the 24 h-old culture on TSA was transferred to 7 mL of 

122 tryptose soy broth (TSB, Oxoid Ltd). This initial suspension was incubated for 24 h at 

123 30 ºC and adjusted to 40 ± 5 % transmittance at 700 nm with a spectrophotometer, 

124 corresponding to 2 x 108 colony forming units (CFU) per milliliter. 100 L of this 

125 suspension was transferred to 250 mL conical flasks containing 50 mL of 863 medium 

126 (10 g L-1 peptone, 10 g L-1 yeast extract and 20 g L-1 glucose; pH 7) (Yánez-Mendizábal 

127 et al., 2010) to obtain the initial cultures. Cultures were always incubated on a rotary 

128 shaker at 150 rpm.

129 2.3. BUZ-14 growth temperature, pH curves and endospore production

130 Three Erlenmeyer flasks containing 50 mL of 863 medium inoculated with 100 

131 L of the initial suspension were disposed per time, temperature and pH on a rotary 
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132 shaker at 150 rpm.

133 BUZ-14 strain growth (log10 CFU mL-1) at 4, 10, 20, 30 and 37 ºC at 150 rpm 

134 was determined by subsampling bacterial cultures every 2 h from 0 to 24 h, and at 36, 

135 48, 72, 96 and 120 h. Besides, its growth at different pH values at 30 ºC was studied 

136 (3.0, 4.0, 4.5, 5.0 and 7.0) using citric acid (Merck) to adjust the medium. In this case 

137 BUZ-14 growth was determined by subsampling bacterial cultures at 0, 10, 24, 48 and 

138 120 h. Endospore production at 30 ºC was determined from 24, 48, 72, 96 and 120 h old 

139 BUZ-14 strain cultures. Bacterial cells (vegetative cells + endospores) were separated 

140 from the supernatant (antifungal metabolites) by centrifugation for 10 min at 9000 x g at 

141 10 ºC (Beckman Coulter™). The pellet obtained was resuspended in buffered peptone 

142 water and vegetative cells were killed by heat treatment at 80 ºC for 12 min. The entire 

143 experiment was repeated three times. Bacteria and endospores counting (CFU mL-1) 

144 were done by dilution and plated on TSA. 

145 2.4. In vitro antifungal activity

146 Cultures (vegetative cells + endospores + supernatant), endospores and cell-free 

147 supernatant from the B. amyloliquefaciens strain BUZ-14 were tested against B. 

148 cinerea, M. fructicola, M. laxa, P. digitatum, P. expansum, and P. italicum. An agar 

149 plug (5 mm diameter) from actively-growing margins of fungal colonies (7 day-old 

150 culture on PDA) was placed at the center of PDA dishes for each M. fructicola and M. 

151 laxa. For B. cinerea, P. digitatum, P. expansum and P. italicum, the inoculum was 

152 obtained from a 7-day old culture in potato dextrose broth (PDB) (Oxoid Ltd). The 

153 concentrations of CFU units were determined using a haemocytometer and a Leica 

154 microscope (Leica Microsystems, Germany) and the suspensions were adjusted to 105 

155 CFU mL -1 and inoculated at the center of PDA dishes using a sterile needle. Then, 
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156 BUZ-14 strain obtained from a 24 h-old culture on 863 broth (109 CFU mL-1) was 

157 inoculated using a sterile needle in three equidistant parts from the center of the plate (3 

158 cm) where the fungal pathogens was previously placed. The fungal pathogens with slow 

159 growth (M. fructicola and M. laxa) were inoculated 24 h prior to the bacteria. To test the 

160 efficacy of the endospores 30 L aliquots of endospore suspension from 72, 96 and 120 

161 h-old cultures in 863 medium, adjusted to 107 endospores mL-1 by decimal dilution, 

162 were dispensed in 3 wells (6 mm diameter) made in the gel medium with a sterile 

163 scalpel before placing the fungal inoculum. Supernatant samples obtained by 

164 centrifugation at 9000 x g from 72, 96 and 120 h-old BUZ-14 cultures in 863 medium at 

165 30 ºC were mixed with PDA in proportions of 1:1, 1:4 and 1:10. Each mixture was then 

166 sterilized at 121 ºC for 15 min and poured into 90 mm diameter Petri plates. After 

167 solidification, single agar plugs of M. fructicola and M. laxa 7 day-old cultures were 

168 placed on each plate, whereas B. cinerea, P. digitatum, P. expansum and P. italicum 

169 inocula from PDB liquid culture (105 conidia mL-1) were punctured at three equidistant 

170 places from each other and at 3 cm from the center of the plate. The control samples 

171 consisted of PDA Petri dishes with only the fungal inoculum. The PDA Petri dishes 

172 were incubated for 7 days at 25 ºC under aerobic conditions. Fungal growth inhibition 

173 was evaluated by measuring the diameter of the fungal colony and expressed as the 

174 percentage of fungal growth inhibition compared to that of the control plates. Mean 

175 values and standard errors of the mean were calculated from five PDA dishes for each 

176 pathogen and treatment. 

177 2.5. Antifungal activity of B. amyloliquefaciens BUZ-14 strain on fruit

178 2.5.1 Fruit

179 The fruit used in this study were obtained from local packinghouses and were 
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180 grown in different areas of Spain (La Almunia de Doña Godina, Tarragona, and Teruel). 

181 Fruit free of visible wounds and rot and homogeneous in size and maturity were stored 

182 at 1 ºC and used for experiments within 3 days of collection. Prior to the experiments, 

183 all fruit were surface-disinfected by immersion for 2 min in 1 % sodium hypochlorite, 

184 rinsed with tap water, and allowed to air-dry at room temperature (20 ºC). 

185 2.5.2 Phytopathogenic fungal and bacteria inocula preparation

186 The pathogenic fungal inocula consisted of aqueous conidial suspensions 

187 prepared from 7 day-old cultures of B. cinerea, P. digitatum, P. expansum and P. 

188 italicum grown on PDA at 25 ºC and 80 % RH. M. fructicola and M. laxa isolates were 

189 inoculated onto peaches or nectarines in order to obtain a high conidia production 

190 (Casals et al., 2010). Fruit were wounded with a sterilized steel rod (1 x 2 mm) and 

191 conidia and mycelium were transferred to the wound site with a sterile pipette tip. Fruit 

192 were then incubated at 25 °C and 80 % RH for 7 days. Conidia were loop-washed from 

193 the PDA plates or from the surface of infected fruits, filtrated through four layers of 

194 sterile cheesecloth and transferred to a test tube with 9 mL of sterile distilled water with 

195 0.01 % Tween 80. The suspensions were adjusted at 105 conidia (CFU) mL -1 for B. 

196 cinerea, P. digitatum, P. expansum and P. italicum and at 104 CFU mL -1 for Monilinia 

197 spp. 

198 Cultures (vegetative cells + endospores + supernatant), cells (vegetative cells + 

199 endospores), at different concentrations (108,107, 106 CFU mL-1), endospores (107 CFU 

200 mL-1) and cell-free supernatant undiluted and 1:10 diluted were prepared from cultures 

201 at different incubation times (24, 28, 72, 96 and 120 h). To obtain the cell suspensions, 

202 the supernatant was separated by centrifugation at 9000 x g for 10 min at 10 ºC and the 

203 pellet obtained was resuspended in buffered peptone water. Endospores and cell-free 
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204 supernatants were obtained as described in sections 2.3. and 2.4, respectively. Cultures 

205 and cells were adjusted by spectrophotometry to 108 CFU mL-1 and subsequent 

206 concentrations were obtained by dilution and verified via viable counts on TSA. 

207 2.5.3. Efficacy of cultures, endospores and cell-free supernatant curative treatments 

208 against the main postharvest pathogens

209 The efficacy of cultures (108 CFU mL-1), endospores (107 CFU mL-1), and cell-

210 free supernatant (undiluted and 1:10 diluted) from 72, 96 and 120 h-old cultures were 

211 determined on fruit. For this purpose, oranges (cv. Valencia) were inoculated with P. 

212 digitatum and P. italicum, apples (cv. Golden Delicious) with P. expansum, grapes (cv. 

213 Sultanina) with B. cinerea and cherries (cv. Lapins) with M. fructicola and M. laxa. 

214 Apples and oranges were inoculated by making two wounds (3 x 3 mm width and 

215 depth) on the fruit surface with a sterile micropipette tip, but only one wound was made 

216 in the case of cherries and grapes. Each wound was inoculated with 10 L of 105 

217 conidia mL-1 for B. cinerea, P. digitatum, P. expansum and P. italicum and 10 L of 104 

218 conidia mL-1 for M. fructicola and M. laxa prior to bacterial treatment. The fruits were 

219 stored for 1 hour at room temperature to permit the absorption of the conidia 

220 suspension. After that, 10 L of bacterial treatment was inoculated in each wound. Fruit 

221 with only fungal inocula served as control treatments. All the samples were stored at 20 

222 ºC and 80 % RH for 7 days. Incidence (percentage of rotted wounds) and severity were 

223 measured to compare the treatments. In the case of small fruits (grapes and cherries) the 

224 severity rating scale of infected wounds was: 0 = no symptoms; 1 = 1-25 % of the fruit 

225 infected; 2 = 25-50% of the area infected; 3 = sporulation cover 50-75 %; 4 > 75% of 

226 the fruit infected. In addition, the lesion diameter (mm) around the wound was 

227 measured for the rest of the fruits to determine the severity. Ten fruits were used for 
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228 each treatment and pathogen. The entire experiment was repeated three times. 

229 2.5.4. Efficacy of BUZ-14 curative and preventive treatments against B. cinerea and 

230 Penicillium species

231 In the case of B. cinerea and Penicillium species, the effects of curative and 

232 preventive treatments using 24 h-old cultures were tested. Oranges (cv. Valencia) were 

233 inoculated with P. digitatum and P. italicum, apples (cv. Golden Delicious) with P. 

234 expansum and grapes (cv. Sultanina) with B. cinerea as previously described. For the 

235 preventive treatments, the strain BUZ-14 was first inoculated. Thus, 10 L from a 24 h-

236 old culture in 863 medium (108 CFU mL-1) were transferred to each wound and fruits 

237 were placed at 20 ºC and 80 % RH for 24 h. Afterwards, 10 L from 105 conidia mL-1 

238 suspension of the pathogen was inoculated to the fruits and stored at 20 ºC and 80 % 

239 RH for 7 days. For the curative treatment, fruits were inoculated with 10 L of conidia 

240 suspensions (105 conidia mL-1) 1 h prior to the bacterial treatment (10 L from a 24 h-

241 culture at 108 CFU mL-1) and incubated at 20 ºC and 80 % RH for 7 days. In both cases, 

242 a control treatment with only pathogen conidia (controls) was included. Incidence and 

243 severity were measured to compare the treatments as described above. Ten fruits were 

244 used for each treatment and pathogen. The entire experiment was repeated three times. 

245 2.5.5. Efficacy of different concentrations of culture, cell and cell-free supernatant 

246 treatments against M. fructicola and M. laxa on wounded stone fruit

247 Cultures (vegetative cells + endospores + supernatant in 863 medium) adjusted 

248 to 108, 107 and 106 CFU mL-1, cells (vegetative cells + endospores resuspended in 

249 buffered peptone water) adjusted to 108, 107 and 106 CFU mL-1 and cell-free supernatant 

250 treatments (undiluted and 1:10 diluted) from 24, 48 and 72 h-old culture of the B. 

251 amyloliquefaciens strain BUZ-14 were tested against both Monilinia species on stone 
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252 fruit (peaches cv. Calante). Treatment with Serenade® Max at the commercial dose of 

253 2.5 g L-1 (approximately 1.8 x 107 CFU mL-1), with the fungicide Scholar at the 

254 recommended dose of 2 mL L-1, and a control treatment with only distilled water were 

255 also included. Bacterial concentrations were verified after the application by plate count 

256 on TSA. Peaches were inoculated by making two wounds (3 x 3 mm width and depth) 

257 on the fruit surface with a sterile micropipette tip. Each wound was inoculated with 10 

258 L of M. fructicola and M. laxa (104 conidia mL-1) 2 h prior to bacterial treatment. After 

259 that, 10 L of bacterial treatments was inoculated in each wound. Fruits with only 

260 fungal inocula served as control treatments. Treated peaches were stored at 20 ºC, 80 % 

261 RH for 7 days. Incidence (percentage of rotted wounds) and severity (lesion diameter 

262 (mm)) were measured to compare the treatments. Ten peaches were used for each 

263 treatment and pathogen. The entire experiment was repeated three times. 

264 2.5.6. Survival and efficacy against brown rot of B. amyloliquefaciens in wounded fruit 

265 at cool and room temperatures

266 Peaches cv. Calante inoculated with M. fructicola or M. laxa and treated with B. 

267 amyloliquefaciens BUZ-14 were used to determine bacterial survival and efficacy 

268 against brown rot at cool and room temperatures.

269 For the bacterial survival experiment, peaches were inoculated by making two 

270 wounds (3 x 3 mm width and depth) on the fruit surface with a sterile micropipette tip. 

271 Each wound was inoculated with 10 L of 104 conidia mL-1 of M. fructicola and M. laxa 

272 prior to bacterial treatment. The fruits were stored for 2 hours at room temperature to 

273 favour the absorption of the conidia suspension. After that, 10 L (107 CFU mL-1) 

274 obtained from a 24 h-old culture (vegetative cells + endospores + supernatant) was 

275 inoculated in each wound. Then, one batch of fruits were stored for 10 days at 1 ºC 
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276 followed by a shelf-life period of 3 days at 20 ºC and another batch was disposed at 

277 room temperature (4 days at 20 ºC). BUZ-14 counts were determined on days 0, 5 and 

278 10 at cool temperature and daily during the shelf-life period. At room temperature the 

279 counts were conducted daily during the four days of the experiment. A plug sample (10 

280 x 5 mm, diameter and depth) of the wound previously inoculated with bacterial 

281 inoculum was removed with a sterile scalpel. The peach plugs were placed in filter 

282 blender bags with 0.1 % sterile peptone water. The mixture was homogenized in a 

283 laboratory blender Stomacher 400 Circulator (Seward Laboratory, London, England) for 

284 120 s at 260 rpm and the resulting suspension was diluted, plated on TSA plates and 

285 counted after 24 h at 30 ºC. Three peaches (2 wounds per peach) were analyzed at each 

286 sampling point and the results were expressed as CFU Bacillus per wound (CFU wound-

287 1). The entire experiment was repeated three times. 

288 The antifungal activity was studied in parallel to the BCA survival experiments. 

289 For that purpose, ten peaches for each Monilinia species and storage conditions were 

290 wounded and inoculated retracing the steps described above, and stored at cool and 

291 room temperatures. The entire experiment was repeated three times.

292 2.6. Statistical analysis

293 The data were statistically analyzed using an SPSS software package for 

294 Windows version 19.0 (SPSS Inc., Chicago, IL, USA). Differences in the mean values 

295 of parameters were tested by one-way analysis of variance and separated by Tukey's 

296 honestly significant difference test (P < 0.05).

297 3. Results and discussion

298 3.1. Characterization of B. amyloliquefaciens strain BUZ-14 growth 
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299 Characterization of the growth of the B. amyloliquefaciens strain BUZ-14 at 

300 different temperatures and pH values is necessary to ascertain whether this strain will be 

301 able to survive in the intrinsically acidic conditions of the fruit and at the cool 

302 temperatures employed during postharvest storage, distribution and commercialization. 

303 These tests were conducted previously on laboratory media and subsequently on fruit as 

304 described in section 2.5.6.

305 3.1.1. Growth temperature and pH curves and endospore production

306 The growth temperature curve of B. amyloliquefaciens (Figure 1A) showed that 

307 the population increased from 4.1 to 5.0 log10
 CFU mL -1 in only 2 h at 37 ºC. At this 

308 temperature, the lag phase was almost inexistent and the maximum population of 9.1 

309 log10
 CFU mL -1 was reached after 16 h. At 20 ºC the lag phase was prolonged during 8 

310 h of incubation, after which logarithmic growth was observed to reach the stationary 

311 phase after 48 h. This means that the BUZ-14 strain at 20 ºC needs around 40 hours to 

312 attain the stationary phase, keeping large differences with higher temperatures. It can 

313 also be observed that the population decreased 1-1.5 log units after 120 h of incubation 

314 at cool temperatures (4 and 10 ºC).

315 The growth curves of the B. amyloliquefaciens strain BUZ-14 at different pH 

316 values are shown in Figure 1B. At pH 7, used as control, the population increased from 

317 4.8 to 9.0 log10
 CFU mL -1 in the first 24 h whereas at pH 5 the same maximum 

318 concentration was achieved after 48 h of incubation following a lag phase of 24 h. At 

319 lower pH values (4.5, 4.0 and 3.5) the counts decreased by 2 log units in just 12 h of 

320 incubation, the final counts after 120 h being about 2-2.5 log10
 CFU mL-1. It is clear that 

321 a pH below 5 has an inhibitory effect on BUZ-14 growth, decreasing the initial 

322 populations by almost 3 log units. Although it would be expected that the concentration 
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323 of BUZ-14 in acid fruits such as strawberry or oranges should be significantly reduced, 

324 its survival was observed instead. However, its growth can be assured in fruits with 

325 higher pH such as such as ripe peaches used in this study (section 3.4).

326 Endospore production (Figure 1A) reached 4.3 log units after 24 h and increased 

327 by more than 1 log unit per day until the fourth day of incubation, achieving 8.5 log 

328 units after 120 h of incubation. The BUZ-14 spore production (3.2 x 108 spores mL-1) 

329 and sporulation efficiency (33 %) on 683 culture media were in the range reported for 

330 other Bacillus strains, with densities from 1.0 x 105 spores mL-1 (Cayuela et al., 1993) to 

331 3.0 x 109 spores mL-1 (Warriner and Aites, 1999) and typical efficiencies of 30-100% 

332 (Nicholson and Setlow, 1990). Industrial exploitation of spores requires high cell 

333 density bioreaction and good sporulation efficiency. For that purpose the cultivation 

334 parameters (pH, dissolved oxygen concentration, and media composition) have to be 

335 optimized. Monterio et al. (2005) for B. subtilis strain MB24 established an optimal pH 

336 value of 7.5, no significative influence of the dissolved oxygen concentration within the 

337 studied range (10-50% of the oxygen saturation concentration) and that as nutrient 

338 depletion is the main stimulus for sporulation, it is very important to achieve glucose 

339 depletion at the end of the exponential growth phase.

340 3.2. In vitro antifungal activity of B. amyloliquefaciens strain BUZ-14  

341 The strain BUZ-14 was able to inhibit mycelium growth of all the tested 

342 postharvest fungal pathogens in vitro (Table 1). Vegetative cells (24 h-old cultures) 

343 reduced fungal growth between 39 %, for P. italicum, and 73 %, for M. laxa, in 

344 comparison with the untreated pathogen control. Endospores also showed strong 

345 antifungal activity, those obtained from 96 and 120 h-old cultures being the most 

346 effective. BUZ-14 cell-free supernatants obtained after 72, 96 and 120 h of incubation 

347 completely inhibited the growth of all tested pathogens, except for P. digitatum and P. 
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348 italicum. Total inhibition of P. digitatum was obtained with metabolites 1:1 and 1:4 

349 diluted obtained after 72 h, and at any concentration in the case of 96 and 120 h of 

350 incubation. The worst results were observed for P. italicum as total reduction was only 

351 achieved with 1:1 and 1:4 supernatant dilutions obtained from 96 and 120 h cultures. 

352 Vegetative cells, endospores and cell-free supernatants of BUZ-14 have shown 

353 strong in vitro antifungal activity against B. cinerea, M. fructicola, M. laxa, P. 

354 digitatum, P. expansum, and P. italicum. The activity of cells and endospores was 

355 associated with white precipitates surrounding the bacterial colonies inwards from the 

356 zone of mycelium inhibition. Touré et al. (2004) observed these white precipitates when 

357 testing the in vitro activity of B. subtilis GA1 endospores against B. cinerea and 

358 suggested that they were related with the excretion of fungitoxic compounds which 

359 precipitate in contact with the acidified medium induced by the mold growth. This 

360 hypothesis was exemplified by testing filter-sterilized crude supernatants and verifying 

361 their high antifungal activity. Several studies with different strains of B. subtilis 

362 suggested that antibiosis could be the principal mode of action in postharvest disease 

363 suppression and some of them have identified the presence of powerful antifungal 

364 metabolites, in special lipopeptides of surfactin, iturin and fengycin families (Touré at 

365 al., 2004; Ongena et al. 2005; Stein 2005; Chung et al., 2008; Joshi et al., 2008; 

366 Waewthomgrak et al., 2015; Torres et al., 2016). The ability to produce a wide range of 

367 antifungal compounds has also been reported for B. amyloliquefaciens strains (Yoshida 

368 et al., 2001; Arguelles-Arras et al., 2009; Arrebola et al., 2010; Hao et al., 2011; Ben 

369 Ayed et al., 2015; Torres et al., 2016). Chen et al. (2006) revealed the capacity of B. 

370 amyloliquefaciens FZB42 to produce several lipopeptides such as surfactin, 

371 bacillomycin, fengycin and bacillibactin with antifungal, antibacterial and even 

372 nematocidal activity. Subsequently, Schneider et al. (2007) detected that this strain was 
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373 also able to produce some polyketides with high antifungal activity such as difficidin 

374 and bacylisin. The in vitro antifungal activity of BUZ-14 cell-free supernatants, that 

375 equal or better that of cells and endospores, supported the role of these antifungal 

376 compounds in the biocontrol activity of the strain. However, there are some bacteria that 

377 produce great amounts of antibiotics in vitro, but cannot always do so in fruit (Droby et 

378 al. 1992, Bull et al., 1997; Touré et al. 2004; Kim et al., 2007; Lai et al., 2012). 

379 Consequently, in vitro assays should be followed by in vivo assays to check that the 

380 mechanism of action does not change.

381 3.3 In vivo assays of B. amyloliquefaciens strain BUZ-14 to control postharvest 

382 incidence and severity of representative postharvest diseases

383 3.3.1 Efficacy of cells, endospores and cell-free supernatant curative treatments against 

384 postharvest pathogen molds

385 The efficacy of cultures (vegetative cells + endospores + cell-free supernatant), 

386 endospores and cell-free supernatant treatments at 72, 96 and 120 h of incubation 

387 against postharvest pathogenic fungi is shown in Figure 2. B. amyloliquefaciens 

388 treatments did not significantly reduce the incidence (% of rotted wounds) or severity 

389 (lesion diameter) of the diseases caused by Penicillium species, neither by P. digitatum 

390 or P. italicum in oranges neither by P. expansum in apples. Nevertheless, P. expansum 

391 decreased its growth from 23 mm to 17 mm with undiluted cell-free supernatant 

392 obtained after 120 h of incubation. Similar results were obtained against gray mold on 

393 grapes in terms of incidence, although the severity reduction was higher. The best 

394 reduction was provided by undiluted cell-free supernatants, since the severity decreased 

395 from 2.5 (untreated samples) to 1.2. These data show that BUZ-14 treatments were not 

396 effective in controlling previous Penicilia and Botrytis fruit infections. Our results are 

397 consistent with those found by Yánez-Mendizábal et al. (2011) that testing the activity 
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398 of B. subtilis CPA-8 against P. digitatum and P. italicum found minimal or no efficient 

399 control of green and blue mold decay on orange, despite the good results achieved in the 

400 in vitro assays. In this study the inoculation of the pathogens was prior to that of the 

401 BCA. It seems that in the case of Bacillus species the preventive application of the BCA 

402 is crucial to achieving a good control of Penicillia and Botrytis infections. 

403 Leelasuphakul et al. (2008) with B. subtilis 155 endospores applied prior to P. digitatum 

404 spores in citrus fruit obtained better results in terms of decay incidence and severity than 

405 when the two microorganisms were inoculated together. Hang et al. (2005) detected that 

406 a pre-application of Bacillus subtilis S1-0210 before B. cinerea inoculation was more 

407 effective in controlling gray mold in strawberry than a post-application, concluding that 

408 the pre-colonization of antagonistic agents on host plants can be a critical factor in 

409 protecting the host from infection of fungal pathogens. Lai et al. (2012) also detected 

410 that the control of postharvest green mold on citrus fruit improved when the period 

411 between the treatment with Paenibacillus polymyxa strain SG-6 and the inoculation 

412 with the fungal pathogen was increased. In view of these results, the effect of preventive 

413 treatments with BUZ-14 cultures, 108 CFU mL-1 applied 24 h prior to Penicillium 

414 species and B. cinerea, was investigated (section 3.3.2).

415 M. fructicola and M. laxa were the most susceptible species as the incidence 

416 obtained with undiluted cell-free supernatant at any incubation times and 72 and 96 h-

417 old cultures treatments was reduced to 0 % in comparison with 100 % for the untreated 

418 sample. For endospores, the best result was achieved with those collected after 96 h of 

419 incubation as M. fructicola growth was totally inhibited and the incidence and severity 

420 of M. laxa was reduced to 10 % and 1.2, respectively. These results confirm the 

421 potential of cultures, endospores and cell-free supernatants of BUZ-14 to control decay 

422 by M. fructicola and M. laxa already reported in previous studies for other Bacillus 
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423 strains (Pusey and Wilson, 1984; Altindag et al., 2006; Yañez-Mendizabal et al., 2010; 

424 Liu et al., 2011; Rungjindamai et al., 2013; Gao et al., 2016). The high efficacy against 

425 brown rot of BUZ-14 endospores is very interesting as they are more stable than 

426 vegetative cells maintaining their viability for years and far more resistant to drying 

427 processes for powder formulations (Brannen and Kenney, 1997), all of them being 

428 crucial aspects to develop a commercial formulation. In addition, the cell free 

429 supernatant, composed by bioactive compounds, such as lipopeptides and polyketides, 

430 with low toxicity, high biodegradability and environmentally friendly characteristics, 

431 show great potential for future applications, being an effective alternative to the 

432 chemical pesticides usually applied to control brown rot. In section 3.3.3. the 

433 relationship between the number of cells and the protection level is elucidated and 

434 compared to those of BUZ-14 cell-free supernatants, fungicide Scholar® and Serenade® 

435 Max.

436 3.3.2 Efficacy of curative and preventive treatments against B. cinerea and Penicillium 

437 species

438 The results of preventive and curative treatments from 24 h-old cultures against 

439 B. cinerea and Penicillium species are shown in Figure 3. Preventive inoculation 

440 avoided P. digitatum and P. italicum growth in oranges and reduced P. expansum 

441 incidence in apples from 100 % to 20 %. For B. cinerea, only a 20 % of incidence 

442 reduction was observed, although the severity decreased by 40 %. Curative treatments 

443 using 24 h-old cultures had no effect on the incidence and slighty reduced the severity, 

444 showing similar results to those obtained with 72, 96 and 120 h-old cultures, except in 

445 the gray mold severity that was greater (Fig. 2). These data confirmed that BUZ-14 

446 cultures have a limited curative effect on P. expansum, P. digitatum and P. italicum 

447 infections and, as has been discussed in the previous section, preventive inoculation of 
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448 the BCA is crucial to achieve a good disease control. For these species, the bacterial 

449 tissue colonization and a certain level of antifungal compounds production that protect 

450 the fruit against the pathogen infection could be necessary (Arrebola et al., 2010, Hang 

451 et al., 2005). 

452 However, Arrebola et al. (2010) demonstrated that the effectiveness of the 

453 treatments with the antagonist B. amyloliquefaciens PPCB004 applied 1 day after or 1 

454 day before pathogen application depends on the pathogen tested. For example, to 

455 control Alternaria citri or Penicillium crustosum the antagonist treatment 1 day before 

456 showed promise; however, for Colletotrichum gloeosporioides the antagonist 

457 application 1 day after was more effective so the efficacy of curative and preventive 

458 treatments should be determined for each antagonism and pathogen. Hao et al. (2011) 

459 and Hong et al. (2014) obtained good control of citrus green and blue mold and sour rot 

460 inoculating the pathogens almost immediately after the BCA (B. amyloliquefaciens HF-

461 01) and three hours later, respectively. So, another aspect to study is the determination 

462 of the optimal interval of time between the BCA and the pathogen inoculation (also in 

463 reverse order of inoculation) to obtain the maximum postharvest disease control.  

464 3.3.3 Efficacy of different concentrations of culture, cell and cell-free supernatant 

465 treatments against M. fructicola and M. laxa on wounded stone fruit

466 Since our previous data show that M. fructicola and M. laxa are most susceptible 

467 to BUZ-14 applications, these fungi were chosen for subsequent bioassays in Calante 

468 peaches. The activity of 24, 48 and 72 h-old cultures were tested in this assay to shorten 

469 incubation times, which are always preferred when obtaining BCAs. The results of the 

470 culture, cells and cell-free supernatant treatments are shown in Figure 4. Cultures and 

471 cells at 108 and 107 CFU mL-1 and cell free supernatant obtained from 24 h-old cultures 
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472 reduced the incidence of brown rot to 0 %, compared to 100 % in the untreated control. 

473 However, 106 CFU mL-1 treatments were ineffective since the disease incidence was 

474 similar to that of untreated samples although the lesion diameter was reduced. A notable 

475 decrease of efficacy was detected with treatments obtained from 48 h-old cultures since 

476 only cultures and cells at 108 CFU mL-1 and undiluted cell free supernatant reduced 

477 disease incidence to 0% for both species. Cultures and cells obtained from a 72 h-

478 culture were also unable to control the disease and only the cell free supernatant 

479 obtained a total inhibition of M. laxa growth. The BUZ-14 treatments were compared 

480 with two commercial standards, Serenade® Max, a biocontrol product formulated with 

481 Bacillus subtilis QST-713, and Scholar®, a postharvest treatment based on fludioxonil. 

482 No evidence of disease was detected with Scholar®. Serenade® Max (1.7 x 107 CFU 

483 mL-1) significantly reduced the incidence and severity compared to untreated control 

484 samples but did not fully control the disease.

485 For both species the experimental data show that concentrations of 108 and 107 

486 CFU mL-1 of cultures and cells obtained after 24 h of incubation of the BCA provided a 

487 total control of brown rot in peaches. Data reported by Zhang and Dou (2002), Touré et 

488 al. (2004) and Yánez-Mendizábal et al. (2010) using B. subtilis to green mold, brown 

489 rot and gray mold control indicated that >107 CFU mL-1 was the appropriate 

490 concentration for bacterial treatments. An evident decrease in efficacy was detected 

491 with the reduction of the number of cells in the treatment and with the increasing of 

492 previous incubation times of the BUZ-14 cultures. Touré at al. (2004) suggested that 

493 antibiosis could play a major role in the inhibition of the disease since the protection 

494 level by the bacterium increased proportionally with the number of bacterial cells used 

495 for treatment although competition for nutrients cannot obviously be ruled out. 

496 Treatment of fruits with BUZ-14 cell free supernatants also provided a strong protective 
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497 effect against brown rot that was similar to, or higher than the one observed with live 

498 cells. This indicated the important role of the antifungal compounds in the biocontrol 

499 activity of BUZ-14. However, the maximum inhibition of supernatants (that is, no 

500 evidence of disease detected with undiluted and 1:10 diluted treatments) was obtained 

501 with extracts from different times of incubation, 48 h-old cultures for M. fructicola and 

502 72 h-old cultures for M. laxa. This could be due to the different amounts and types of 

503 antifungal compounds in the supernatant and the different susceptibility of each species. 

504 Although several authors have revealed the major role of fengycnin-like lipopeptides in 

505 the biological control of Bacillus species against fungal pathogens (Ongena et al., 2005; 

506 Romero et al., 2006; Hu et al., 2007; Alvarez et al., 2012) including M. fructicola (Lui 

507 et al., 2011; Yánez-Mendizábal et al., 2012), the activity of other lipopeptides such as 

508 iturins (Yu et al., 2002; Arrebola et al., 2010) or other antimicrobial compounds such as 

509 plantazolicin (Scholz et al., 2010) or chlorotetaine (Wang et al., 2016) and the presence 

510 of synergistic effects (Maget-Dana et al., 1992; Lui et al., 2011; Tao et al., 2011) could 

511 not be ruled out. Thus, the characterization of the bioactive compounds produced by 

512 BUZ-14 in terms of identity, antifungal activity using non-producing mutants, total and 

513 individual amounts, relative proportions and progressive accumulation both in culture 

514 media and in fruit are key aspects to understand the mechanism of action of this BCA 

515 against both fungal pathogens. 

516 3.4. B. amyloliquefaciens survival and efficacy against brown rot on wounded stone 

517 fruit stored at room and cool temperatures

518 Our experimental data show that BUZ-14 was more effective than Serenade® 

519 Max in reducing brown rot caused by M. laxa and M. fructicola in peaches, providing 

520 opportunities for the use of a new Bacillus strain to develop commercial formulations. 

521 However, given that fruits are usually stored and distributed at cool temperatures (1-10 

A
C

C
E
P
TE

D
 M

A
N

U
S
C

R
IP

T



ACCEPTED MANUSCRIPT

23

522 ºC), the BCA strain must be able to grow in this temperature range or at least not 

523 decrease during the postharvest storage period. Thus, it is important to establish the 

524 survival and antifungal activity of BUZ-14 in fruit stored at cool temperatures. These 

525 data were compared with those obtained at room temperature. Bacterial populations of 

526 B. amyloliquefaciens BUZ-14 on wound inoculated peaches (pH 5.1) at 20 ºC was 

527 characterized by a 24 h lag-phase followed by a constant increase of cell population 

528 from 3.2 x 105 CFU wound-1 to values up to 108 CFU wound-1 from the 48 h and 

529 onwards (Figure 5) indicating a good bacterial survival and growth. BUZ-14 bacterial 

530 concentration after 10 days of storage at 1 ºC and 80 % RH decreased from 1.3 x 105 to 

531 2.5 x 104 CFU wound-1. When the fruits were transferred to room temperature 

532 conditions (20 ºC) in order to simulate a period of commercialization, the populations 

533 recovered after 48 h reached 4 x 106 CFU wound-1 in 72 h (Figure 5). Compared with 

534 the initial concentration (105 CFU wound-1), the bacterial population only decreased by 

535 0.7 log units after 10 days at cool temperature. These data coincide with those obtained 

536 previously in 863 medium at 4 ºC, where bacterial growth decreased by around 0.8 log 

537 units. No symptoms of decay were detected in any of the inoculated and treated peaches 

538 so we can be sure that BUZ-14 survived and colonized the injured fruit tissue and 

539 maintained its antifungal activity even after a cool storage period of 10 days.

540 4. Conclusions

541 The results obtained in this study have demonstrated that B. amyloliquefaciens 

542 BUZ-14 is a promising BCA for major postharvest fruit diseases. Its relevance in 

543 curative treatments against M. fructicola and M. laxa and preventive treatments against 

544 P. expansum, P. digitatum and P. italicum should be highlighted. In addition, the BUZ-

545 14 strain survives at cool temperatures, as low as 1 ºC, which make it suitable for 

546 postharvest application. Its mode of action, antibiotics´ production and activity, and 
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547 biotechnological issues of production and formulation are the subjects of ongoing 

548 research.  
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799 Figure Captions

800

801 Fig. 1. Growth of B. amyloliquefaciens BUZ-14 in 863 medium. Effect of the 

802 temperature: 4 (▲), 10 (), 20 (■), 30 (□) and 37 (●) ºC and endospore production at 

803 30 ºC () (A). Effect of the pH: 3.0 (▲), 4.0 (), 4.5 (■), 5.0 (□) and 7.0 (●) (B). Each 

804 value is the mean of three separate replicates of three Erlenmeyer flasks each and 

805 vertical bars represent the standard error of the mean.

806 Fig. 2. Effect of B. amyloliquefaciens BUZ-14 curative treatments from 72, 96 and 

807 120 h-old cultures against fruit postharvest rots caused by several mold pathogens. 

808 Incidence as % of rotted wounds (□) and severity as lesion diameter (mm) for apples 

809 and oranges and % of the single fruit rotted referred to 0-to-4 scale for grapes and 

810 cherries (■). Golden delicious apples infected with P. expansum (A);  Sultanina 

811 seedless grapes infected with B. cinerea (B); Valencia oranges infected with P. 

812 digitatum (C) and P. italicum (D); Lapins cherries infected with M. fructicola (E) and 

813 M. laxa (F).  Fruit were stored at 20 ºC for 7 d. Cont: untreated pathogen control; Cul: 

814 vegetative cells + endospores + supernatant (108 CFU mL-1); End: endospores at 107 

815 CFU mL-1; CF Sup.: cell-free supernatant undiluted and 1:10 diluted. Each value is the 
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816 mean of three replicates of ten fruits each, 30 fruits per treatment. For each pathogen, 

817 different letters above the columns (capital letters for rot incidences and lower-case 

818 letters for lesion severities) indicate statistical difference at P < 0.05. Incidence columns 

819 for A, B, C and D are omitted since their values are similar (about 100%) without 

820 statistical differences.

821 Fig. 3: Curative and preventive effect of B. amyloliquefaciens BUZ-14 treatments 

822 from 24 h-old cultures on fruit. Golden delicious apples infected with P. expansum 

823 (A); Sultanina seedless grapes infected with B. cinerea (B) and Valencia oranges 

824 infected with P. digitatum (C) and P. italicum (D). Incidence as % of rotted wounds (□) 

825 and severity as lesion diameter (mm) for apples and oranges and % of the single fruit 

826 rotted referred to 0-to-4 scale for grapes (■). Fruit were stored at 20 ºC for 7 d. Control: 

827 untreated pathogen control; Cur 24 h: 24 h-old culture (vegetative cells + endospores + 

828 supernatant (108 CFU mL-1)) inoculated 1 h after pathogen infection; Prev 24 h: 24 h-

829 old culture inoculated 1 day prior to pathogen infection. Each value is the mean of three 

830 replicates of ten fruits each, 30 fruits per treatment. For each pathogen, different letters 

831 above the columns (capital letters for rot incidences and lower-case letters for lesion 

832 severities) indicate statistical difference at P < 0.05.  

833 Fig. 4: Efficacy of several concentrations of culture, cell and cell-free supernatant 

834 curative treatments of B. amyloliquefaciens BUZ-14 from 24, 48 and 72 h-old 

835 cultures against Monilinia species in Calante peaches. Incidence (% of rotted 

836 wounds): □ and severity (lesion diameter (mm)): ■. M. fructicola (A) and M. laxa (B). 

837 Peaches were stored at 20 ºC for 7 d. Cont: untreated pathogen control (104 conidia mL-

838 1); Cul: vegetative cells + endospores + supernatant at 108, 107 and 106 CFU mL -1; Cel: 

839 Cell suspensions at 108, 107 and 106 CFU mL -1; CF sup: Cell-free supernatant; CF sup 

840 1:10: CF sup 1:10 diluted; Com. Stand.: Commercial standards (Ser: Serenade® Max 
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841 (1.8 x 107 CFU mL -1), Scho: Scholar® (2 mL L-1)). Each value is the mean of three 

842 replicates of ten fruits each, 30 fruits per treatment. For each pathogen, different letters 

843 above the columns (capital letters for rot incidences and lower-case letters for lesion 

844 diameters) indicate statistical difference at P < 0.05.  

845 Fig. 5: B. amyloliquefaciens BUZ-14 growth in wounded Calante peaches during 

846 cold storage and at ambient temperature. 10 days at 1 ºC followed by a shelf life 

847 period of 3 days at 20 ºC (●) and 4 days at 20 ºC (○). Each value is the mean of three 

848 replicates (3 fruits with 2 wounds per peach per replicate) and vertical bars correspond 

849 to standard deviation.
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850 Tables

851 Table 1

852 Antifungal activity of B. amyloliquefaciens strain BUZ14 on PDA plates against several postharvest mold pathogens. 

853

854 a Data are expressed as percentage of fungal growth inhibition compared with control plates without bacteria or supernatant and represent mean values of five plates 

855 (replicates) ± standard errors.

 Percentage of inhibitiona against:

Treatment
Botrytis 
cinerea

Monilinia 
fructicola

Monilinia
 laxa

Penicillium 
digitatum

Penicillium 
expansum

Penicillium italicum

Veg. cellsb 24 h
Endc 72 h
End 96 h
End 120 h
CF Supd 1:1 24 h
CF Sup 1:4 24 h
CF Sup 1:10 24 h
CF Sup 1:1 72 h
CF Sup 1:4 72 h
CF Sup 1:10 72 h
CF Sup 1:1 96 h
CF Sup 1:4 96 h
CF Sup 1:10 96 h
CF Sup 1:1 120 h
CF Sup 1:4 120 h
CF Sup 1:10 120 h

52.0 ± 10.9ab,ABe

65.4 ± 7.2b,A
97.0 ± 2.4c,A
92.1 ± 4.7c,A
100.0 ± 0.0c,A
62.0 ± 6.1ab,A
50.3 ± 6.1a,A
100.0 ± 0.0c,A
100.0 ± 0.0c,A
100.0 ± 0.0c,A
100.0 ± 0.0c,A
100.0 ± 0.0c,A
100.0 ± 0.0c,A
100.0 ± 0.0c,A
100.0 ± 0.0c,A
100.0 ± 0.0c,A

66.6 ±  0.7a,AB
66.4 ±  2.2a,AB
60.0 ±  3.9b,B

57.0 ±  1.2b,BC
100.0 ±  0.0c,A
80.9 ±  1.7d,B
76.0 ±  2.5e,B
100.0 ± 0.0c,A
100.0 ± 0.0c,A
100.0 ± 0.0c,A
100.0 ± 0.0c,A
100.0 ± 0.0c,A
100.0 ± 0.0c,A
100.0 ± 0.0c,A
100.0 ± 0.0c,A
100.0 ± 0.0c,A

73.1 ±  4.2a,B
81.5 ±  2.1b,C

89.6 ±  1.2c,AC
88.2 ±  0.9c,AD
100.0 ±  0.0d,A
100.0 ±  0.0d,C
45.5 ±  6.7e,A
100.0 ± 0.0d,A
100.0 ± 0.0d,A
100.0 ± 0.0d,A
100.0 ± 0.0d,A
100.0 ± 0.0d,A
100.0 ± 0.0d,A
100.0 ± 0.0d,A
100.0 ± 0.0d,A
100.0 ± 0.0d,A

54.5 ±  2.5a,AB
76.5 ±  1.8bcd,BC
81.9 ±  0.7d,CD
80.9 ±  4.4cd,D
77.4 ±  6.6bcd,B
73.2 ±  7.7bc,B
70.9 ± 8.4b,B
100.0 ± 0.0e,A
100.0 ± 0.0e,A
92.4 ± 0.8e,B

100.0 ± 0.0e,A
100.0 ± 0.0e,A
100.0 ± 0.0e,A
100.0 ± 0.0e,A
100.0 ± 0.0e,A
100.0 ± 0.0e,A

56.8 ±6.3a,AB
59.5 ±  1.3a,A
79.2 ±  2.0b,D
51.6 ±  1.7a,B

32.11 ± 0.82c,C
8.65 ± 0.78d,D
1.29 ± 0.46d,C
100.0 ± 0.0e,A
100.0 ± 0.0e,A
100.0 ± 0.0e,A
100.0 ± 0.0e,A
100.0 ± 0.0e,A
100.0 ± 0.0e,A
100.0 ± 0.0e,A
100.0 ± 0.0e,A
100.0 ± 0.0e,A

39.3 ±  7.5a,A
36.3 ±  1.2a,D
68.5 ±  1.2bc,B
63.8 ±  2.8b,C
84.8 ±  7.6de,D
79.7 ±  10.2cd,B

2.8 ±  2.4f,C
96.6 ±  0.8eg,B
88.4 ±  1.9de,B
84.3 ±  1.4de,C
100.0 ± 0.0g,A
100.0 ± 0.0g,A
81.7 ±  0.8de,B
100.0 ± 0.0g,A
100.0 ± 0.0g,A
92.6 ±  1.6eg,B
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856 b Cells at 109 CFU mL-1.

857 c Endospores at 107 CFU mL-1.

858 d Cell-free supernatant.

859 e Values in the same colum followed by different lower-case letters show significant differences between treatments for the same fungal pathogen (P < 0.05). Values in the 

860 same line followed by different capital letters show significant differences between fungal pathogens for the same treatment (P <0.05).
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