000079150 001__ 79150
000079150 005__ 20200117221631.0
000079150 0247_ $$2doi$$a10.1016/j.jssc.2018.05.015
000079150 0248_ $$2sideral$$a107065
000079150 037__ $$aART-2018-107065
000079150 041__ $$aeng
000079150 100__ $$aGrindi, B.
000079150 245__ $$aM-SrFe12O19 and ferrihydrite-like ultrathin nanoplatelets as building blocks for permanent magnets: HAADF-STEM study and magnetic properties
000079150 260__ $$c2018
000079150 5060_ $$aAccess copy available to the general public$$fUnrestricted
000079150 5203_ $$aMixtures of M-type strontium hexaferrite (M-SrFe12O19) and ferrihydrite-like particles were prepared by a microwave-assisted hydrothermal process at 200 °C with heating rates in the range 40–50 °C min-1. The particles exhibited a platelet shape with a diameter comprised between 20 and 200 nm and a thickness between 2 and 5 nm. HAADF-STEM observations and EDS analysis were carried out for a better understanding of nucleation and growth process. EDS showed that most of the particles contained Sr and HAADF-STEM revealed that very thin particles with a hexaferrite core extending over less than a unit cell and with surface disorder crystallized along with well crystallized hexaferrite and defect free ferrihydrite particles. The symmetric multilayer structures (SRS) of the ultrathin particles suggested that the nucleation step of the hexaferrite particles involved clusters containing Sr atoms. In comparison with the M-SrFe12O19 micrometer sized platelets prepared with heating rate of 25 °C min-1, the mixtures of ultrathin hexaferrite- and ferrihydrite-like particles combined after annealing a higher coercivity reaching 465 kA m-1 thanks to the smaller initial particle size and a high magnetization reaching 65 A m2 kg-1 thanks to a limited amount of hematite.
000079150 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000079150 590__ $$a2.291$$b2018
000079150 591__ $$aCHEMISTRY, INORGANIC & NUCLEAR$$b18 / 45 = 0.4$$c2018$$dQ2$$eT2
000079150 591__ $$aCHEMISTRY, PHYSICAL$$b81 / 148 = 0.547$$c2018$$dQ3$$eT2
000079150 592__ $$a0.594$$b2018
000079150 593__ $$aCeramics and Composites$$c2018$$dQ2
000079150 593__ $$aCondensed Matter Physics$$c2018$$dQ2
000079150 593__ $$aPhysical and Theoretical Chemistry$$c2018$$dQ2
000079150 593__ $$aInorganic Chemistry$$c2018$$dQ2
000079150 593__ $$aMaterials Chemistry$$c2018$$dQ2
000079150 593__ $$aElectronic, Optical and Magnetic Materials$$c2018$$dQ2
000079150 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000079150 700__ $$aBenAli, A.
000079150 700__ $$0(orcid)0000-0002-6761-6171$$aMagen, C.$$uUniversidad de Zaragoza
000079150 700__ $$aViau, G.
000079150 7102_ $$12003$$2395$$aUniversidad de Zaragoza$$bDpto. Física Materia Condensa.$$cÁrea Física Materia Condensada
000079150 773__ $$g264 (2018), 124-133$$pJ. solid state chem.$$tJOURNAL OF SOLID STATE CHEMISTRY$$x0022-4596
000079150 8564_ $$s1178645$$uhttps://zaguan.unizar.es/record/79150/files/texto_completo.pdf$$yPostprint
000079150 8564_ $$s57441$$uhttps://zaguan.unizar.es/record/79150/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000079150 909CO $$ooai:zaguan.unizar.es:79150$$particulos$$pdriver
000079150 951__ $$a2020-01-17-22:00:00
000079150 980__ $$aARTICLE