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ABSTRACT 

European tertiary sector represents about 13% of EU-28 final energy consumption. As an 
example, food retail stores sector amounts about 3% of EU members’ electricity consumption. 
Furthermore, currently, fluorinated gases, which are the most used refrigerants for space 
conditioning and refrigeration systems, involve 2% of EU emissions, having risen since 1990 
by 60%. Specifically, commercial refrigeration is responsible for 35% of EU-27 CO2-eq 
emissions related to refrigerants.  

A methodology based on Life Cycle Assessment standards is presented in this study to assess 
the energy and environmental implications of non-residential buildings, adapted to 
particularities of food retail stores buildings, in terms of Primary Energy Demand, carbon 
footprint and water demand. Relying on a reference building, constructive improvements are 
tested and evaluated. Then a sensitivity analysis of several configurations of food retail stores 
are studied considering their building location, refrigerant typology and schedule. Results 
show that electricity and refrigerants are the main contributors and sensitive to potential 
improvements. In fact, static calculations reveal that a food retail store may involve, in terms 
of Global Warming Potential, about 800 kgCO2- eq/m2year, more than 20 times higher than a 
regular building. Thus, future scenarios are estimated through a dynamic calculation 
methodology. Due to optimal dimensioning and configuration of the refrigeration system, 
together with refrigerant replacement, an 80% of Global Warming Potential minimization can 
be reached. Furthermore, temporal dynamic assessment can present a variability of 
environmental impacts estimation from static Life Cycle Assessment of more than 15%, by 
considering a wider approach towards sustainability assessment of non-residential buildings. 
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NOMENCLATURE 

Acronyms 

ALR- Annual Leakage Rate 

CED- Cumulative Energy Demand  

DHW- Domestic Hot Water 

DLCA- Dynamic Life Cycle Assessment 

DX- Direct Expansion 

EMAS- Eco-Management and Audit Scheme 

EOL- End of Life 

EPD- Environmental Product Declaration 

EU- European Union 

EU-27- European Union 27 Member States (from January 2007 to June 2013) 

EU-28- European Union 28 Member States (from 1 July 2013) 

F-gas- Fluorinated gases 

GHG- Greenhouse Gas 

GSHP- Ground Source Heat Pump 

GWP- Global Warming Potential 



HFC- Hydrofluorocarbon 

HVAC&R- Heating, Ventilation, Air Conditioning and Refrigeration 

IIR- International Institute of Refrigeration 

LCA- Life Cycle Assessment 

LCI- Life Cycle Inventory 

MH- Metal Halide 

MT- Medium Temperature 

MS- Member State 

MW- Mineral Wool 

RSL- Reference Service Life 

SCOP- Seasonal Coefficient of Performance 

SEER- Seasonal Energy Efficiency Ratio 

UN- United Nations 



1. INTRODUCTION 

Non-residential buildings represent 25% of European building stock, whereof about one third 

of useful floor space is represented by wholesale and retail buildings [1]. Commerce and 

public services represent about 12.5% of EU-28 final energy consumption, accounting for 

more than 150 Mtoe in 2016 [2]. More in detail, at Spanish level, services sector emitted in 

2015 almost, 15.5 MtCO2- eq related to energy consumption [3] and represented about 30% 

of national electrical intake [4], whereof commercial sector accounted one third. In fact, retail 

sector has been pointed as one of the priority sectors according to Regulation 1221/2009 of 

the European Parliament on the voluntary participation by organisations in a Community Eco- 

Management and Audit Scheme (EMAS) [5], detailed by the Commission Decision 2015/801 

[6]. 

Regarding retail sector, food retail stores are considered the main electricity consumers [7]. 

Moreover, according to Galvez-Martos, J. L., 2013, food retail stores buildings may, at least, 

duplicate other commercial buildings’ final energy intensity, such us office buildings which 

account for 100-200 kWh/m2 year [8]. The main energy-consuming facilities in food retail 

stores are perishable food refrigeration fixtures, being usually responsible for around half of 

the total electricity use, followed by illumination equipment that stands for about 20% of total 

energy consumption [9]. On the other hand, commercial refrigeration represented 13% of 

2012 EU-27 refrigerant bank in terms of weight and was responsible for 22% of total EU-27 

refrigerant emissions, with the release of more than 16,000 tonnes of refrigerants; 

furthermore, it accounted for 45,000 ktCO2- eq, which implied 35% of EU-27 CO2- eq 

emissions related to refrigerants [10]. Hydro-fluorocarbon (HFC) refrigerants R404a and 

R134a, according to the nomenclature specified in ANSI/ASHRAE 34-2013 [11],  

represented, by the year 2012, 66% and 13%, respectively, of the refrigerant bank for 

commercial refrigeration, having become the most commonly used refrigerants in commercial 



refrigeration sector as of R22 and R12 were banned. Nowadays, several alternatives such as 

hydrocarbons, natural refrigerants or lower GWP HFC and HydroFluoroOlefin (HFO) fluids 

are being assessed. Paradoxically, ammonia has been the most used refrigerant in food 

processing industry for 100 years [12] and hydrocarbons were common refrigerants between 

the late XIX century and 1930  [13]. Natural refrigerants such as R744 (CO2) and R717 

(ammonia) represented 4% of the bank in 2012 [10]; but it has been noted that, for example, 

between 2012 and 2015 the number of CO2-based stores in Europe has almost trebled, 

according to market trends [14].  

Spanish retailers’ environmental impact related to refrigerant leakages, per sales area, has 

been in a steady decline in recent years. According to the annual reports disseminated by the 

main hypermarket companies operating in Spain, they have decreased the direct impact 

related to refrigerants refill from more than 300 kgCO2- eq/m2year during 2010  to less than 

150 kgCO2- eq/m2year in the year 2015 [15]. It should be noted that according to Galvez-

Martos, J. L., 2013, refrigerant refill quantity can be read as equal to leakage [8]. Instead, 

retailers who mainly own smaller stores, such as supermarkets, still report over 200 kgCO2- 

eq/m2year direct impact in terms of annual refrigerant refill [15]. Against stand-alone 

commercial refrigeration, where Annual Leakage Rate (ALR) can account for between 1% 

[16]  and 5% [17], supermarkets’ direct and indirect systems ALR can range from 18% and 

12 % respectively [17], or even reach 30% [16]. Refrigerant leakages during building 

operation cannot be completely avoided, although minimization can be achieved. 

Current trends are encouraging non-residential buildings’ managers and more specifically 

retail stores managers to adapt their outlets to low energy buildings and rethink their running 

patterns. On the one hand, worldwide environmental situation has been promoting, in terms of 

regulation: i) international agreements, such as Montreal protocol [18]; ii) European 

decarbonisation directives towards 20-20-20 goals achievement, like 2012/27/EU regarding 



energy efficiency [19]; iii) EU Circular Economy Strategy facing 2030 [20]; iv) Best 

environmental management practices for commercial retail sector, consolidated by the 

voluntary participation by organisations in a EMAS Community, as defined in the 

Commission Decision (EU) 2015/801[6] and v) European F-gas regulation to reduce high 

Global Warming Potential (GWP) refrigerants, among other issues [21]. On the other hand, 

consumers’ awareness has encouraged food retail companies to develop environmental 

friendly strategies [22]. As a result, for example, six of the principal food retail enterprises 

that operate in Spain have enrolled Global Compact initiative fostered by United Nations 

(UN), undertaking their social and environmental responsibility and facing innovative 

commitment plans [23]. As an example, the food retailer with the biggest market share in 

Spain declared to provide energy efficiency training to staff in every supermarket [24], which, 

according to Carbon Trust [25], can lead to higher CO2- eq potential savings than other 

solutions such as doors on cabinets and LED lighting technology. At building level, there are 

many types of building certifications, such as Building Research Establishment 

Environmental Assessment Methodology (BREEAM) or Leadership in Energy and 

Environmental Design (LEED), contributing to the energy management improvement and the 

minimization of Greenhouse Gas (GHG) emissions, e.g., BREEAM certification achieved by 

Lidl Växjö in Sweden [26]. LEED certification has similar mandatory requirements to current 

European legislation regarding refrigerants and as an optional criterion, the use of 

environmental-friendly refrigerants can account for about 2% of total score [27]. 

Even so, available studies related to the application of global methodologies for 

environmental impact assessment of particular non-residential buildings, such as food retail 

stores buildings, have restricted scope and/or approach. In 2011, Target Zero programme 

published five guides in order to give advice on the ‘Design and construction of sustainable, 

low and zero carbon buildings in the UK’. One of them focused on supermarkets, 



investigating operational carbon, modelled according to National Calculation Methodology 

(NCM), BREEAM assessments and embodied carbon, calculated following LCA Standards 

ISO 14040 and 14044 [28]. Nevertheless, this approach left out food refrigeration energy 

implications and refrigerants direct and indirect impacts. In terms of operational energy 

consumption, there are comprehensive studies, empirical and simulated, such as Braun et al., 

2014 [29] and Spyrou et al., 2014 [30]. Furthermore, refrigeration fittings and refrigerants 

have been deeply analysed by specialized groups like the International Institute of 

Refrigeration (IIR), developing further assessment methodology [17].  

Hence, this article presents a methodology based on LCA standards in order to estimate 

environmental implications of particular non-residential buildings, such as food retail stores 

buildings. The approach considers potential typological, temporal and spatial variables 

relevance evaluation in order to gauge the role of electricity consumption and refrigerant 

leakages. Thus, it is possible to perform a sensitivity analysis of environmental impact 

calculations of non-residential buildings and ease decision support towards their sustainability 

assessment, considering the relevance of the main impact contributors’ variability within a 

dynamic approach. 

2. METHODOLOGY 

Standards ISO 14040:2006 [31] and 14044:2006 [32] stablish LCA framework, which has 

been adapted to buildings’ specific evaluation through CEN/TC 350, developing EN 15643-

1[33], -2[34], -3[35], -4[36], EN 15804 [37] and 15978 [38]. According to building stages 

standard classification, this study develops a cradle to grave approach. A methodological 

proposal for non-residential buildings’ life cycle stages, adapted to food retail stores 

particularities, is described in Figure 1. From the stages shown in Figure 1, the following 

aspects have been considered: i) building materials (including thermal envelope and 



structure), HVAC&R system and refrigerant’s A1-A4 modules; ii) estimated resources 

consumption of construction process regarding module A5; iii) annual refrigerant leakages 

and consequent refrigerant refill within modules B1 and B2; iv) building materials and 

HVAC&R systems replacement by products with the same features and technical 

specifications, in B4; v) operational energy and water use, in B6 and B7, respectively; vi) 

building materials and HVAC&R systems EOL transport and processing within C2 and C3 

modules and vii) EOL refrigerant leakages in C4. Figure 2, appends externalities and 

variables affecting building’s performance in order to conduct calculations over the 

methodological approach proposed in Figure 1. 

2.1. Goal and scope definition 

This study aims to evaluate the environmental implications and potential relevance of 

variability among the current main impact contributors to food retail stores buildings, e.g., 

electricity and refrigerant leakages. The food retail store building becomes the functional unit 

considered and it is assessed for 50 years of Reference Service Life (RSL), fulfilling the 

design, space thermal conditions and edible refrigerated food conservation requirements for 

the year 2016. In order to obtain comparable results, calculations are presented related to sales 

area surface (m2), the usual unit for indicators comparison in retail trade sector. 

2.2. Reference building selection and energy modelling 

The methodology described is deemed appropriate for non-residential buildings, particularly 

for food retail stores. A hypothetical representative stand-alone, single storey supermarket has 

been developed as reference building, relying on current building regulation and practices. 

The reference building has been modelled in Design Builder1 software (v.4.7) [39] in order to 

1 Design Builder Software Limited, www.designbuilder.co.uk 

                                                 



perform the energy simulation through Energy Plus2 engine [40]. It should be noted that total 

energy consumption corresponds to electricity. The operational energy consumption 

breakdown (kWh/m2year) has been obtained: i) refrigeration fittings and electronic devices, 

ii) lighting, iii) space heating, iv) space cooling and v) Domestic Hot Water (DHW). In order 

to achieve reliable results on energy loads considering the variables involved and heat transfer 

related, simulations have been performed and the values obtained verified with enterprises’ 

reports and scientific literature consulted for further analysis. Moreover, the reference 

building simulation has enabled to test the improvement opportunities potential. 

2.3. Boundaries of the system 

In accordance to the methodological approach presented in Figure 1, this study considers the 

main building materials, the heat pump and DHW boiler, refrigerant charge and leakages and 

the illumination system, as well as, operational energy and water consumption. Due to the 

variability and abundant literature available regarding refrigeration and air conditioning 

configuration systems, e.g., Cecchinato (2012) [41], this study does not accomplish a 

comprehensive study on HVAC&R layout or configuration. Consequently, it assumes the 

minimization of heating and cooling demand, as well as, refrigeration thermal losses and the 

improvement of the lighting equipment, leaving out specific considerations on HVAC&R 

configuration. In addition, related to display cabinets, it has been assumed a potential 

reduction of 20% of refrigeration thermal losses, which could be achieved reducing air 

infiltrations, e.g., through optimum air curtains [42] or even better results could be met with 

glass doors on vertical multi-deck shelves [43]. Refrigerated cabinets and shelves’ embodied 

carbon, between 280 and 620 kgCO2- eq/m regarding length of display case [44], is not taken 

2 www.energyplus.net 

                                                 



into account in this study due to: i) it has been demonstrated that their use phase represents 

more than 90% of their environmental impacts (approx. 93% [45], 95% [46])  and ii) they 

may represent less than 0.04% of building’s total GWP. Furthermore, the embodied primary 

energy corresponding to the addition of glass doors would possibly represent less than 2% of 

the energy savings related [43]. There are other solutions to reduce refrigeration energy 

consumption, e.g., evaporative condenser, floating head pressure, suction pressure control, 

among others [25], but they are not included in the boundaries of the system. In a similar way, 

pipe network and other conditioning systems have been omitted. 

Related to the lifespan, a report conducted on British supermarkets’ service life, resulted that 

the average age of supermarkets demolished studied was under 25 years old; some of them 

were just 15 years old and none of them had reached design buildings’ life span (50 years). In 

fact, from almost 600 existing, and still trading, supermarkets analysed, only a 2% were over 

45 years old [47]. Still, this study considers reference building’s service life optimization in 

accordance to design life span: 50 years. However, some products installed have a shorter 

expected lifespan, and consequently their replacement will be considered. In this sense, in 

general terms, it is assumed that facilities and installations have an expected service life of 20 

years, while, most part of building materials may operate 50 years, except for some products, 

such as gypsum coating and windows, which have an expected service life of 25 years [48]. 

2.4. Life Cycle Inventory (LCI) and quality data 

A food retail store building is a complex product composed by construction materials and 

fittings. The materials inventory is developed relying on European averages of the Ecoinvent 

v2.0 database (2007), one of the available databases, which best accomplishes expected 

features according to [49].  Specific fittings or components, that are not available in Ecoinvent 

v2.0 database (2007), are assessed relying on EN-15804-compilant Environmental Product 

Declarations (EPD) which include products’ cradle to gate and, in some cases, cradle to grave 



impact divided into life cycle stages covered. With regard to refrigerant, in terms of GWP, 

direct emissions relative to CO2-eq for 100 years integration are based on “IPCC Fourth 

Assessment Report/IPCC07/ and Scientific Assessment/WMO10/” as contained in 2010 Report 

of the Refrigeration, Air Conditioning and Heat Pumps Technical Options Committee [50]. 

Furthermore, refrigerant manufacturing impacts refer to [51] in accordance with [50]. 

A comprehensive analysis on food retail stores average features has been performed relying 

on: i) the public ‘Sustainable Development report’ and ‘Annual report’ released by the main 

Spanish food traders, as well as, ii) national statistics, iii) existing regulation, iv) future 

market expectations and v) scientific bibliography on food retail stores. According to actual 

data consulted, it has been found that hypermarkets, in Spain, may have an average energy 

intensity between 350 [52] and 500 kWh/m2year [15] whereas, supermarkets can amount 

about 610 kWh/m2year [15].  

2.5. LCI Impact Assessment 

The impact categories evaluated in this study have been chosen in accordance with European 

2020 targets, regarding energy consumption and environmental concerns. Thus, this study 

considers: i) Primary energy demand (MJ- eq), ii) Global Warming Potential (GWP) (kgCO2- 

eq) and iii) Water demand (l). Primary energy demand is evaluated following Cumulative 

Energy Demand (CED) methodology v1.08 [53], which assesses demand related to 

production, use and disposal of a product, in this case the food retail store building. GWP 

indicator is calculated relying on IPCC v.1.02 characterisation factors with a time horizon 

consideration of 100 years [53]. For water demand throughout the complete life cycle, despite 

of the lack of methodology for desiccation potential integration into LCA, this study considers 

freshwater extractions (rivers, lakes, soils and wells) and excludes water used in turbines in 

hydraulic power production. Building components calculations of life cycle impacts have 

been conducted through the software tool SimaPro v7.3.2 [54]. It has to be highlighted that 



electricity mix emission factors used in this study, cover, besides energy generation direct 

emissions, other stages such as raw material acquisition, facilities manufacturing, transport, 

construction and dismantling [55]. In detail, for the reference building, Spanish electricity mix 

has been calculated in accordance to Ecoinvent v2.0 database (2007), corresponding to the 

year 2000.   

3. CASE STUDY DESCRIPTION 

European food retail accounted for almost 100,000 km2 of sales area by the year 2011, 44% 

more than in 2000 [56]. These can be located in stand-alone buildings or business premises. 

According to Galvez-Martos, J.L., 2013, energy intensity (kWh/m2 year) is higher in smaller 

shops because bigger sales areas have lower refrigerated fittings density, 2 to 5 m and 6 to 12 

m of display case per 100 m2 of sales areas in large supermarkets and small supermarkets, 

respectively [8], which are the most energy consuming items in food retail stores [57]. In 

addition, there can be defined three main refrigeration systems according to their 

configuration: i) stand-alone or plug-in systems, ii) condensing units and iii) centralized 

systems, which can be direct or indirect. In turn, food refrigeration fittings can be classified in 

terms of temperature provided: i) Medium Temperature (MT) and ii) Low Temperature (LT), 

which may have a length display cases ratio of 2:1 (MT: LT) [8]. There may be also 

variations on stores’ energy consumption profile depending on services provided, such as, 

cafeteria, additional food preparation services, bakery and non-edible goods supply, among 

others. It has to be highlighted that all the processes involved in supermarket buildings are 

closely related to each other, e.g., lighting contributes to heat loads, refrigeration fittings 

density has consequences on heat recovery rates, just as, building’s geometry and enclosures 

design, e.g., skylights affect Heating, Ventilation and Air Conditioning (HVAC) and lighting 

consumption. Furthermore, inappropriate or insufficient maintenance and cleaning works 

concerning refrigerant leakages can also entail rise on building’s energy consumption. 



The case study is based on a hypothetical building, located in Zaragoza (Spain) with a gross 

surface of 2,500 m2 and a sales area of 1,625 m2. It is assumed a sales area containing 

Medium Temperature (MT), multi-deck open shelves, with night curtains, and storage coolers 

connected to a centralized system, with a refrigerated fittings density of 5 m per 100 m2 [8] 

and refrigeration heat released to sales area of   -25 W/m2. It must be noted that space thermal 

loads implications caused by refrigeration fittings may have significant variations regarding 

sales distribution, goods restocking and general thermostat location, among others. Stand-

alone retail buildings are usually light-weighted with poor insulated enclosures. Traditionally, 

only roofs contain insulating materials. In addition, they hardly have any interior partitions, 

except for private areas. While a common dwelling may have a Partition surface: Gross 

surface rate of 1:1 [58], a relation 1:3 is considered for a food retail store, even though it has a 

greater height. Table 1 shows the main characteristics considered for the reference building, 

including the Seasonal Energy Efficiency Ratio (SEER) of the HVAC system. 

Figure 3 displays the building’s layout considered. The model has been defined considering 

habitual construction systems observed in current Spanish retail buildings and building 

regulation [59], (materials are detailed in Table 2), in order to evaluate environmental thermal 

loads related. In addition, it has been elaborated an occupation profile regarding current 

shopping habits and schedule perceived. Moreover, internal gains within, illumination and 

fittings are considered, including plausible programming for each type of space inside the 

food retail store. This is, the heat release caused by the illumination technology and electric 

devices, such as computers and cash registers (e.g., 5 W/m2 in sales area and 12 W/m2 in the 

office area), and refrigeration heat release previously mentioned (e.g., -25 W/m2 within sales 

area and -5 W/m2 in the warehouse).  

The main LCI for Production, Construction and Use phases are specified in Table 2, Table 3, 

Table 4, respectively. The EOL inventory has been elaborated considering transport of solid 



waste products by 20-28 tonnes-truck to the treatment plant located 26 km far from the 

building site. The main part of the materials is assumed to be landfilled, except for openings 

and metal items, which around 80-90% of their components may be separated and recycled. 

4. RESULTS  

Table 5 summarizes the LCA results obtained for the reference building, disaggregated by 

phases regarding CED, GWP and Water demand. Due to the high-energy intensity of food 

retail stores and the refrigerants typology used thus far, use phase accounts more than 90% of 

total impacts, as detailed in Table 5, but energy efficiency current practices will enlarge 

production phase significance. Furthermore, it must be highlighted that, consequently, the use 

phase results obtained for the reference building involve between 20-100 times Global 

Warming Potential of habitual building’s LCA results. Figure 4 presents production phase 

breakdown for the reference building. Refrigerant manufacture, considering use phase 

refilling, may exceed roofing embodied carbon, while total refrigerant leakages may double 

electricity consumption’s environmental impact during operational use phase. In fact, within 

use phase, refrigerant may stand for more than 60% of GWP, whereas electricity consumption 

represents one third. The fact that, in terms of energy consumption, electricity is the main 

contributor to the food retail sector’s buildings, is evidenced in the environmental impacts 

(mainly CO2- eq), which are highly influenced by the supply mix’s characterisation factor 

considered, in this case, 0.60 kgCO2- eq/kWh, from Ecoinvent v.2.0 for Spanish electricity 

mix. Consequently, given the importance of electricity as input and the dependency of its 

environmental impact to the supply mix, results are sensitive to the assumptions considered, 

e.g., from the same database, French characterisation factor may imply, in terms of GWP, less 

than half of the environmental impact related, mainly due to high contribution of nuclear 

power in this country. 



4.1. Scenario assessment 

Even though the broad variability of stores attributes precludes the definition of a unique 

profile type, an approach to these types of buildings’ performance has been developed in 

relation to the following main variables: geometry, construction systems, fittings technology 

and schedules. In this sense, improvement opportunities and prioritisation criteria can be 

evaluated in accordance with results. In addition, the scenarios proposed allow to estimate 

and/or evaluate potential variations on the results obtained. 

Hence, in order to validate the methodology, as well as, evaluate the potential scatter of 

environmental implications, the study is articulated within three types of scenarios as 

summarized in Figure 5. From a static point of view, three improvement proposals are raised 

in line with EMAS criterion in order to evaluate improvement potential. Besides, in order to 

conduct a sensitivity analysis of the building typology selected, three scenarios compare: i) 

different location of the food retail store, ii) schedule and iii) different refrigerant options and 

management. Table 6 summarizes the variables considered for building typology sensitivity 

analysis. Beyond these scenarios, a dynamic approach is also proposed to evaluate 

prospective results accuracy and potential spatial and temporal variability. Due to the 

relevance of refrigerant and electricity in terms of GWP, sensitivity analysis at building and 

dynamic levels is conducted with regard to this impact category.  

4.1.1. Energy consumption optimization 

Commission Decision (EU) 2015/801 of 20 May 2015 defines a benchmark of excellence [6], 

that applied to the reference building would imply an averagely total consumption under 300 

kWh/m2year. In order to build up decision support for the implementation of environmental 

management practices, three improvement proposals have been developed based on the 

reference building. The variables considered for the improvement proposals calculations are 



detailed in Table 7. They have been defined following a progressive improvement, regarding 

energy consumption and building materials choice, in order to achieve HVAC consumption 

excellence benchmark defined in Best Environmental Management Practices in Retail Trade 

Sector and halving operational energy consumption when reaching Proposal 3.  

The results for the improvement proposals considered, in terms of Primary Energy Demand, 

Global Warming Potential and Water demand, are presented in Table 8 as the environmental 

net benefits of the subsequent scenarios, based on the methodology described by Dylewski et 

al., 2014 [60], translated to this specific case studies conditions; this is, the reduction of the 

impacts associated to the minimization of the energy demand taking into account the resulting 

environmental load in other stages e.g. product stage and transportation. These benefits are 

presented with regard to the reference building. 

In terms of CED, the improvement achieved by the development of the scenarios proposed, 

can almost reach 50%, in accordance with building’s energy intensity reduction. In addition, 

the decrease of energy consumption can lead to almost 40% of water demand minimization 

without intervening on operational water demand. Nevertheless, GWP mitigation 

accomplished stands for 20% of reference building’s environmental impact inasmuch as 

refrigerant charge and leakages represent more than 60% of this impact. Consequently, 

proposal 3 involves throughout the reference service life assessed around 3,500 MJ 

eq/m2year, implying less than 600 kgCO2- eq/m2year of GWP and almost 10 m3/m2year of 

water demand. 

4.1.2. Location of the store alternative 

Table 9, unlike Table 8, presents the results regarding GWP of a food retail store located in a 

premise integrated in a larger structure, instead of the potential benefits regarding the 

scenarios proposed for the reference stand-alone building presented in the latter. Towards 



LCA results for a supermarket located in a premise, it has been developed and fully modelled 

with Energy Plus engine a food retail store maintaining the same internal layout and adapting 

its enclosures and environmental conditions to a feasible situation of a commercial premise. It 

has been assumed a commercial place located on the ground floor of a block, remaining the 

central part of the supermarket’s hood as the block’s courtyard (with dimensions 40.0 x 32.5 

meters). In addition, it has been considered to be located within the urban fabric with 20 

meters street width delimiting two of its sides. 

Measures regarding HVAC, such as façade insulation or heat recovery systems implemented 

in Proposals 2 and 3 may have minor consequences on total energy consumption, as shown in 

Table 9. Production phase result does not reveal significant changes in absolute terms, but the 

distribution of the impacts related to each building component does. On the one hand, external 

walls surface is reduced, as well as, the branding metal top of the walls avoided, while 

adiabatic walls surface is increased. On the other hand, aerated concrete slabs with acoustic 

insulation to separate the premise with upper spaces substitute part of the metal deck roofing. 

In terms of total LCA, the reference building located in a premise involves around 1% less of 

the impacts, while the benefits of energy efficiency strategies developed in the scenarios are 

gradually less effective and even involving greater impacts than stand-alone building when 

analysing scenario 3. 

4.1.3. Schedule alternative 

Opening hours is a tool that food retail companies use to differentiate themselves from 

competitors [61] and to attract additional demand when these are closed [62]. Thus, where 

there is deregulation of opening hours some retailers are extending their schedule. Due to 

perishable refrigerated goods require of continuous refrigeration, extended opening hours, 

may become a cost-effective decision in terms of energy consumption, when energy-

consuming items are optimized through energy efficiency solutions. Results in terms of GWP 



for the scenarios related to opening 24 h a day-7 days a week are presented in Table 10. This 

variation, although extends opening hours, does not increase working hours regarding other 

services such as office work or food preparation. It should be noted that the energy 

consumption is not just a multiplying factor applied to the overall consumption. The energy 

consumption resulted from the simulation of the building has been adapted to the expected 

activity, schedule and fittings modifications. Spaces attached to sales area are assumed to 

become voided and their illumination and electric devices turned off after regular opening 

hours. In addition, commercial area occupation profile is adapted to the schedule, as well as, 

HVAC setting. 

Analysing the results, regarding opening hours, the reference building could involve a 25% 

energy intensity increase and meet a GWP benefit of 0.1 kgCO2- eq/m2 per opening hour. 

Applying energy efficiency measures within the scenarios assessed, GWP net benefit may 

almost duplicate. 

4.1.4. Refrigerant charge alternative 

Lately, the environmental impact regarding refrigerants has become a major issue, 

overcoming at times GWP associated to operational energy consumption. It can be 

constrainted: i) reducing refrigerant charge due to the refrigeration system configuration, e.g., 

decreasing refrigerant charge, from  R404a 4 kg/kW in direct centralized systems to 0.4 

kg/kW for indirect configurations with R404a/R744 [57] ; ii) minimizing leakage rates, e.g., 

annual (from 20% to 15%) and End-Of-Life (EOL) (from 15% to 10%), [17]; and iii) by the 

refrigerant choice – e.g. R404a involves 3,700 kgCO2- eq/kg, whereas R744 1 kgCO2- eq/kg 

[17]. According to HVAC&R equipment suppliers [63], similar energy efficiency values to 

DX systems,  running with R404a, can be achieved within R404a/R744 cascade layout. 

Consequently, this study’s scenario only focuses on the refrigerant charge and not on energy 



consumption implications related. Table 11 presents the GWP results of three approaches 

suggested to reduce the environmental impact.  

Developing a more exhaustive control over leakages, can lead to 10% GWP minimization. 

Furthermore, the partial or total substitution of HFCs by environmental friendly refrigerants 

involve the reduction of more than half of total building’s CO2- eq emissions. Consequently, 

within use phase, electricity consumption becomes the main impacting issue, accounting more 

than 90% of the emissions. As a result, the combination of improvement proposal 3 and the 

refrigerant replacement achieves an 80% of GWP reduction throughout the complete 

building’s life span. 

4.1.5. Dynamic assessment of relevant impact contributors 

Buildings’ long lifespan intensifies time-related variability [64]. These uncertainties and 

potential changes can be coped with a dynamic modelling approach [65]. Hence, in order to 

address potential running patterns and systems changes and/or spatial variability, a dynamic 

life cycle assessment is conducted in this study. DLCA approach is modelled from a double 

perspective, evaluating time-dependent and spatial variations regarding buildings’ main 

environmental impact contributors (energy consumption and refrigerant leakages) figured in 

static LCA. For this purpose, beyond static LCA approach, [64] proposes a simplified 

mathematical model for temporal variations considering four parameter categories for 

buildings, namely: i) building operations, as for example, changes in energy consumption; ii) 

supply chain dynamics, such as, changes in efficiency of the electricity grid; iii) inventory 

dynamics, as the effect of environmental regulation on efficiency and emissions, among 

others, and iv) environmental system dynamics, like emission fates affected by changes in 

environment conditions. Supply chain functions have been accounted without time gap; this 

is, no time differences have been assumed between processes and emissions. In line with 

these parameters, the dynamic proposal in this paper considers: i) influence of refrigerant 



leakages on energy consumption, ii) electricity mix variation and iii) change on refrigerant 

choice. 

Table 12 compiles, based on [64] DLCA parameters, the variables proposed for the scenario. 

Regarding DLCA parameters for buildings classified by [64], variations on building 

operations, supply chain dynamics and inventory dynamics are considered according to EU 

trends. Nevertheless, possible changes in background environmental systems are not taken 

into consideration, therefore characterization factors are not time-adjusted. Figure 6 represents 

variables and main causes related within building’s life cycle. It has to be noted that future 

scenarios approach is always uncertain, due to: i) internal variables, such as actual operation, 

and ii) external variables, like the background [64]. However, these scenarios present 

sensitivity to future time-depending changes. Changes regarding site do not refer to building’s 

displacement, but allow comparing environmental impacts differences between the same 

building with different electricity supply mix. 

Within HVAC&R systems, refrigerant leakages effects can be classified as direct and indirect 

impacts. Direct impacts refer to the consequence on climate change of the release of 

refrigerant substances to the atmosphere due to their Global Warming Potential. Indirect 

impact may have a double dimension. On the one hand, it refers to refrigerants embodied 

impacts, such as, manufacturing impacts [17]. On the other hand, it relates to systems’ energy 

consumption [17]. Furthermore, undercharged systems may incur on electricity consumption 

rise and cooling capacity reduction [16]. Carbon Trust (2012) [25] estimates that energy 

consumption can escalate between 10% and 15% due to refrigerant-undercharged systems; 

less refrigerant flowing into the evaporator, reduces saturated evaporating temperature and so, 

efficiency. As an example, in a small system with no liquid receiver, electricity consumption 

increases by 2-4% as evaporation temperature drops of 1ºC [16]. In addition, in some cases, 

system overcharging can become counterproductive too. Hence, annual refrigerant leakages 

https://www.linguee.es/ingles-espanol/traduccion/counterproductive.html


cause energy consumption rise if not efficiently refilled. Several studies have previously been 

conducted to evaluate the impacts of refrigerant charge on heat pumps performance at small-

scale systems, such as residential air conditioners as summarized in Table 13 [66],  [67],  [68],  

[69]. It has to be noted that CO2 systems are expected to be more sensitive to undercharged 

situations. In order to compare long term effects of not refilling of losses, static LCA, which 

considers energy consumption is not affected by leakages, is contrasted with every two years 

refilling works. This means, as reflected in Table 14 that the first year finishes with 80% of 

refrigerant charge and the following year at 60%. No further undercharge is considered 

possible, in this case, due to cooling capacity required for perishable food conservation may 

not be achieved or compressor failure may occur. Energy consumption increase has been 

explored based on previous experiences and averages considering leakages as a continuous 

and successive process that affect energy efficiency progressively. Besides, the study does not 

cover potential energy consumption increase due to other materials and facilities deterioration 

or loss of performance.  

On the other hand, electricity relevance among buildings’ life cycle is sensitive to electricity 

generation mix. Significant differences can be found due to location. Furthermore, carbon 

intensity indicators are expected to be improved towards 2050 being averagely reduced by 

80% for EU-28 considering 2000 as base year and reaching 88% in some countries like Spain 

[70]. Even so, from an LCA approach, electricity generation emission factor may double 2050 

regular characterisation factors forecast.  Figure 7 presents calculated LCA emission factors 

for electricity generation in accordance to expected gross electricity generation by source [71] 

and life cycle GHG emissions of each source expressed as kgCO2-eq per kWh, as estimated 

by [55] and summarized by [72].  

Additionally, EU aims to reduce by 60% Fluorinated gases (F-gases) emissions by the year 

2030 [24]. F-gas regulation will encourage the use of more environmental friendly 



refrigerants. As an example, as performed in Scenario 2 of the static analysis devoted to 

refrigerant substitution, CO2 will be considered involving higher energy consumption rise due 

to leakages.  

DLCA results are presented in Table 15. Despite of dynamic approach considers energy 

consumption rise due to refrigerant leakages, long-term improvement on electricity mix 

reduces life cycle environmental impact calculations. 

4.1.6. Sensitivity analysis 

Food retail stores buildings’ GWP present a wide variation of figures, as observed in Figure 8, 

from more than 800 kgCO2-eq/m2year to less than 200 kgCO2-eq/m2year. The improvement 

proposals can achieve a GWP reduction of about 150 kgCO2-eq/m2year on the reference 

building and almost 200 kgCO2-eq/m2year in the case of opening 24h-7d per week. From a 

static point of view, the major difference is observed on refrigerants choice. 

It can be appreciated that electricity mix, from a spatial approach, has a significant relevance, 

accounting, in this case, for an environmental impact difference between Spanish and EU-28 

average of about 10% (Figure 9 ii). Introducing temporal dimension, the scenario compares 

Spanish electricity mix obtained from Ecoinvent v2.2 towards Spanish calculated LCA 

emission factor evolution unto 2050. Figure 9 iii and iv present results obtained. It can be 

observed the influence of energy efficiency loss due to inappropriate refill works, the 

influence of refrigerant and expected variations within electricity mix. If R404a is used, 

results differ about 20% with regard to reference static LCA. Despite of energy consumption 

rise due to inadequate maintenance, electricity consumption environmental impact may be 

halved. If environmental friendly refrigerant is considered for complete building’s life cycle, 

electricity consumption becomes the main contributor to environmental impact, representing 

more than 90% of total impact. Hence, energy efficiency loss due to refrigerant leakages may 



represent about 18% of total impacts, almost doubling energy consumption increase of DLCA 

with R404a. Furthermore, the difference between the static and dynamic approach of R744 

case stands between 20 and 30%.  

5. DISCUSSION AND CONCLUSIONS 

Food refrigeration has a significant role, both in terms of energy consumption and refrigerant 

emissions. Furthermore, the habitual lightness of stand-alone food retail buildings together 

with the high operational energy demand confers use phase the major part of the 

environmental impact. Nevertheless, they present noteworthy cost-effective improvement 

opportunities, underscoring thermal loads, fittings performance and refrigerant choice. 

However, due to long lifespan of buildings and desired future changes on electricity 

generation, DLCA approach reveals significant changes on figures obtained, reaching a 

difference between 15-30% of final environmental impact. As electricity weight is increased 

with regard to total environmental impact, more sensitiveness to electricity consumption 

and/or generation mix variations is expected. Furthermore, the role of energy managers and 

energy management systems becomes relevant in order to optimize energy efficiency 

strategies and/or obtain real-time impact assessment data. 

According to static results obtained, combining the use of environmental friendly refrigerants, 

together with energy efficiency measures regarding lighting and HVAC&R systems there can 

be achieved environmental impact savings of 80%. Moreover, heat recovery systems, can 

sometimes meet total heating demands or even recover excess heat, enabling to sell the extra 

heat in a city district network. Regarding opening hours, extension of commercial schedule 

may lead to better exploitation of energy consumption, due to the habitual main energy-

consuming system in a food retail store, refrigeration fittings, requires continued power 

supply. However, it should be noted, that in terms of economic and social impact of 



commercial schedule, other variables may be taken into account, such as night shift 

implications. 

Analysing dynamic approach, when high-GWP refrigerants are used, electricity consumption 

and so, energy efficiency strategies, loose their relevance towards refrigerant leakages impact. 

In fact, it moves from a estimated Electricity:Refrigerant impact rate of 2:3 to 2:4.6 rate. 

However, when low-GWP refrigerants operate, specifically CO2 whose leakages involve 

higher loss of performance, electricity consumption becomes the main contributor to 

environmental impact. 

Then, it can be concluded, that non-residential buildings, and particularly food retail stores 

buildings, demand a LCA temporal and spatial dynamic apporach. The fact that electricity 

and refrigerant emissions involve most part of these building typology’s environmental 

impacts in terms of CO2-eq together with its sensitiveness to spatial and/or temporal 

variations, illustrates the relevance of taking into consideration potential future scenarios 

regarding electricity mix improvement, energy consumption increase due to refrigerant 

undercharge conditions and refrigerant substitution. In addition, as refrigerant emissions are 

reduced due to F-gas regulation, energy consumption acquires a mayor role. Hence, the 

methodological approach proposed results suitable for non-residential buildings 

environmental evaluation and, furthermore, it is able to gauge environmental implications of 

the particular case of food retail stores buildings. 

Future research may be conducted on different refrigeration systems configuration and other 

non-residential buildings typologies, such as offices. Also, temporal variations with regard to 

climate change characterization factors or energy costs may be considered. In addition, 

towards sustainability assessment, environmental impact results should be aggregated to 

economic and social dimensions evaluation in order to obtain a holistic approach. Certainly, 

on the road to sustainability, a structured a comparable system is required, taking into account 



stakeholders’ perception and form of interaction within the building from environmental, 

social and economic point of view, and including building management issues. 
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Figure 8. Static sensitivity analysis  



 

  
i) Cumulative static LCA Reference 
(ES-Ecoinvent v2.2 electricity mix) 

ii) Cumulative time-static LCA results  
(Spatial variation: EU LCA electricity mix) 

  
iii) Cumulative dynamic LCA results  
(ES electricity mix trend, energy efficiency loss due to 
leakages, R404a) 

iv) Cumulative dynamic LCA results  
(ES electricity mix trend, energy efficiency loss due to 
leakages,CO2) 

Figure 9. Dynamic sensitivity analysis 

 



Table 1. Reference building data 
Characteristic Value Units 
Façades E-W 875 m2 

Façades N-S 560 m2 
Indoor height 3.50 m 

Max. gable height 5.80 m 
Glazing < 10 % 

Main roofing typology Pitched roof - 
External wall average U-value 1.89 W/m2K 

Roof average U-value 0.33 W/m2K 
Glazing U-value 3.10 W/m2K 

Air tightness 0.70 arch 
Opening schedule 09:00-22:00 h 

Refrigerant charge (R404a) 4.00 kg/kW 
HVAC system typology Centralized DX - 

SCOP- Heating 2.00 - 
SEER- Cooling 2.50 - 

Illuminance 500 lux 
Illumination technology Metal Halide (MH) - 

Service life 50 Years 
 



Table 2. Production phase main LCI 
Component Materials Amount Units 

External wall Concrete block 215,457 kg 
Cement for bricklaying 35,597 kg 
Gypsum plaster board 18,727 kg 
Laminated steel profiles 390 kg 
Metal sheet 6,967 kg 
Cement mortar coat 7,634 kg 
Ceramic tiles 10,992 kg 

Adiabatic wall Hollow brick (double) 13,156 kg 
Gypsum 4,068 kg 
Cement for bricklaying 3,607 kg 

Internal wall Gypsum 2,160 kg 
Concrete block 62,762 kg 
Cement for bricklaying 16,753 kg 
Stainless steel sheet 2,275 kg 
PUR 576 kg 
Mortar coat 14,140 kg 
Ceramic block 35,162 kg 
Stoneware coating 5,966 kg 
Adhesive mortar 4,203 kg 

External and internal openings Glass 4.6.4 (windows) 71.75 m2 
Glass 6+6 (doors) 7.00 Units 
Aluminium 7.50 m2 
Roller door 142.00 kg 
Timber 16.80 m2 

Ground foundation  Stoneware 41,250 kg 
Adhesive mortar 29,062 kg 
Reinforced concrete slab 1,150,000 kg 
Poor concrete 275,000 kg 
Stone (gravel and sand) 1,000,000 kg 

Pitched roof Metal sheet 17,775 kg 
Waterproofing layer 24,750 kg 

Rock wool 15,750 kg 
Laminated plaster 27,000 kg 

Flat roof Stoneware 6,250 kg 
Adhesive mortar 4,125 kg 
Lightweight concrete 12,000 kg 
Waterproofing layers 5,500 kg 
Rock wool 1,750 kg 
Concrete slab 62,000 kg 
Gypsum 3,750 kg 

Structure and foundations Vertical structure HEB-240 21,565 kg 
Laminated steel beams 14,490 kg 
Footings 79,200 kg 

Installations DHW electric boiler 50 l 
Heat pump (DX) 200 kW 
Initial refrigerant charge R404a 800.00 kg 

 



 
Table 3. Construction phase main LCI 

Item Value Unit1 
Electricity, low voltage 6.73 kWh/m2 
Diesel, burned in building machine 23.4 MJ/m2 

Tap water 120 kg/m2 

Transport to site (Depending on material) tkm 

 

 

1 m2  in construction phase refers to gross surface 
                                                 



Table 4. Use phase main LCI 
Item Value Unit 

Electricity, low voltage 511 kWh/m2 year 
Tap water 2,000 l/m2 year 
Annual Refrigerant Leakage 20 % 
HVAC&R EOL refrigerant leakage 15 % 

 



 

Table 5. LCA results for the reference building 

 

 

 Primary energy 
demand 

Global Warming 
Potential Water demand 

 MJ eq/m2year kgCO2 -eq/m2year l/m2year 
Production phase 1.48E+02 1.23E+01  1.73E+02 

Construction phase 6.31E+00 3.49E-01  7.21E+00 
Use phase 6.24E+03 6.91E+02  1.61E+04 
EOL phase 1.54E+01 2.89E+01  1.29E+01 

Total 6.41E+03 7.32E+02  1.63E+04 



Table 6. Variations proposed 
 Reference building  Variation 

Location of the store Stand-alone building > Premise in a building 

Opening hours 13 h/day- 6 days a week  
(4,056 hours/year) > 24 h/day- 7 days a week  

(8,760 hours/year) 

Refrigerant 

Charge: 4 kg/kW > Charge: 0.4 kg/kW 
Annual leakage (20%) and  
EOL leakage (15%)  > Annual leakage(15%) and  

EOL leakage (10%)   
R404a > R744 



Table 7. Scenarios considered 

 Reference 
Building 

Proposal 
1 

Proposal 
 2 

Proposal 
 3 

Metal deck with bitumen coating x    
Metal deck without bitumen coating  x x x 

Metal Halide lighting x    
Fluorescent lighting  x   

LED technology lighting   x x 
Skylights and dimming control    x 

-25 W/m2 refrigeration thermal losses x    
-20 W/m2 refrigeration thermal losses  x x x 

No wall insulation x x   
Wall insulation (MW 0.080 m)   x x 

Air tightness (0.700 ach) x x x  
Air tightness (0.500 ach)    x 

Heat recovery   x x 
Free cooling   x x 

Ground Source Heat Pump (GSHP)    x 



Table 8. Environmental net benefits of the scenarios proposed 

 Primary energy 
demand 

Global Warming 
Potential Water demand 

 MJ eq/m2year kgCO2 eq/m2year l/m2year 

Benefits 
Proposal 1 1.03E+03 5.19E+01 2.25E+03 
Proposal 2 1.80E+03 8.98E+01 3.96E+03 
Proposal 3 2.98E+03 1.48E+02 6.58E+03 

 

Comentado [BGF1]: Revisar valores 



Table 9. LCA results for supermarket located in a premise (kgCO2-eq/m2year) 

 

 Reference 
building 

Location  
(Base) 

Location  
(Proposal 1) 

Location  
(Proposal 2) 

Location  
(Proposal 3) 

Production 
phase 1.23E+01 1.18E+01 1.17E+01 1.18E+01 1.18E+01 

Construction 
phase 3.49E-01 3.23E-01 3.21E-01 3.67E-01 3.67E-01 

Use  
phase 6.91E+02 6.86E+02 6.34E+02 6.01E+02 5.51E+02 

EOL 
 phase 2.89E+01 2.84E+01 2.80E+01 2.80E+01 2.80E+01 

Total 7.32E+02 7.27E+02 6.74E+02 6.42E+02 5.91E+02 



 
Table 10. LCA results for supermarket opened 24h per day- 7days per week (kgCO2-

eq/m2year) 

 

 Reference 
building 

Schedule 
( Base ) 

Schedule 
(Proposal 1) 

Schedule 
(Proposal 2) 

Schedule 
(Proposal 3) 

Production 
phase 1.23E+01 1.23E+01 1.21E+01 1.22E+01 1.22E+01 

Construction 
phase 3.49E-01 3.49E-01 3.46E-01 3.31E-01 3.31E-01 

Use 
phase 6.91E+02 7.62E+02 6.93E+02 6.37E+02 5.71E+02 

EOL 
phase 2.89E+01 2.89E+01 2.82E+01 2.82E+01 2.82E+01 

Total 7.32E+02 8.04E+02 7.34E+02 6.78E+02 6.12E+02 



Table 11. LCA results for supermarket with refrigerant modifications. (kgCO2- 
eq/m2year) i) Indirect system. (R404a charge: 0.4 kg/kW; R744 charge: 4.0 kg/kW); ii) 
Leakages minimization (ALR= 15%; EOL= 10%); iii) Refrigerant substitution. R744 

charge: 4.0 kg/kW  

 

 Reference 
building 

Refrigerant i 
(Base) 

Refrigerant i 
 (Proposal 1) 

Refrigerant i 
(Proposal 2) 

Refrigerant i 
(Proposal 3) 

Production 
phase 1.23E+01 1.11E+01 1.09E+01 1.10E+01 1.11E+01 

Construction 
phase 3.49E-01 3.49E-01 3.46E-01 3.31E-01 3.31E-01 

Use  
phase 6.91E+02 3.49E+02 2.98E+02 2.60E+02 2.01E+02 

EOL  
phase 2.89E+01 4.31E+00 3.59E+00 3.59E+00 3.59E+00 

Total 7.32E+02 3.64E+02 3.12E+02 2.74E+02 2.16E+02 

 Reference 
building 

Refrigerant ii 
(Base) 

Refrigerant ii 
 (Proposal 1) 

Refrigerant ii 
(Proposal 2) 

Refrigerant ii 
(Proposal 3) 

Production 
phase 1.23E+01 1.63E+01 1.61E+01 1.62E+01 1.63E+01 

Construction 
phase 3.49E-01 3.49E-01 3.46E-01 3.31E-01 3.31E-01 

Use  
phase 6.91E+02 5.97E+02 5.46E+02 5.08E+02 4.49E+02 

EOL  
phase 2.89E+01 1.98E+01 1.91E+01 1.91E+01 1.91E+01 

Total 7.32E+02 6.33E+02 5.81E+02 5.43E+02 4.85E+02 

 Reference 
building 

Refrigerant 
iii 

( Base) 

Refrigerant 
iii 

 (Proposal 1) 

Refrigerant 
iii 

(Proposal 2) 

Refrigerant 
iii 

(Proposal 3) 
Production 

phase 1.23E+01 1.09E+01 1.08E+01 1.08E+01 1.09E+01 

Construction 
phase 3.49E-01 3.49E-01 3.46E-01 3.31E-01 3.31E-01 

Use  
phase 6.91E+02 3.11E+02 2.59E+02 2.21E+02 1.63E+02 

EOL 
 phase 2.89E+01 1.57E+00 8.60E-01 8.60E-01 8.60E-01 

Total 7.32E+02 3.23E+02 2.71E+02 2.34E+02 1.75E+02 



Table 12. DLCA selected variables 

Level Category Variable Cause 

LCI Building operation Energy consumption 
Annual refrigerant 

leakages and maintenance 
operation 

LCI Supply chain dynamics Electricity generation mix 

EU trends and objectives 
towards 2020, 2030, 2050 

Site 

LCI Inventory dynamics Type of refrigerant F-Gas regulation 

LCIA Environmental system 
dynamics Not evaluated Not evaluated 

 



Table 13. Review of energy consumption rise due to refrigerant leakages 

Source Refrigerant Energy efficiency  Undercharge 
level Conditions 

[60] R-22 SEER 

-5/-10% -10% 5 systems with and 
without accumulator 

(Dry) Outdoor temp=35ºC 
(Dry) Indoor temp= 27ºC 

-10/-20% -20% 
-15/-20% -30% 
-30/-40% -40% 

[61] R404a 
 COP 

-5% -25% Small chiller. 
Condenser coolant temp= 

30-35ºC -45% -50% 

[62] R410 
&R134 COP 

-10% -4% Cascade system. 
Ambient temp= 7ºC;  
Compressor speed=  

2700 rpm 
-20% -8% 

[63] 

R22 

COP 

-2% -10% 

CO2 transcritical. 
Outdoor temp= 35/24ºC 
Indoor temp= 27/19.5ºC 

-4% -20% 

R407c 
-5% -10% 
-8% -20% 

CO2  
-10% -10 % 
-25% -20% 

[25] General Energy 
consumption -10/-15% 

Average 
annual 

supermarket 
leakages 

- 

 



Table 14. Refrigerant undercharge assumptions 
Annual 

refrigerant 
leakage 

Refill Refrigerant 
typology 

Refrigerant 
undercharge 

Energy 
consumption 

increase 

20% Every two years 
R404a 

year 1 20% + 10% 
year 2 40% + 30% 

CO2 
year 1 20% + 20% 
year 2 40% + 50% 

 



Table 15. DLCA results (kgCO2-eq/m2year) 

 

Electricity mix 
Non-time-
dependant 

Time-
dependant  

Time-
dependant   

Time-
dependant   

Time-
dependant   

EU average Spain EU average Spain EU average   
Refrigerant R404a R404a R404a R744 R744 
Production  

phase 1.23E+01 1.23E+01 1.23E+01 1.10E+01 1.10E+01 

Construction 
phase 3.49E-01 3.49E-01 3.49E-01 3.49E-01 3.49E-01 

Use  
phase 6.24E+02 5.49E+02 5.81E+02 1.84E+02 2.19E+02 

EOL  
phase 2.89E+01 2.89E+01 2.89E+01 1.57E+00 7.38E-03 

Total 6.65E+02 5.90E+02 6.23E+02 1.96E+02 2.31E+02 
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