000079643 001__ 79643
000079643 005__ 20230914083230.0
000079643 0247_ $$2doi$$a10.3389/fenrg.2019.00034
000079643 0248_ $$2sideral$$a112255
000079643 037__ $$aART-2019-112255
000079643 041__ $$aeng
000079643 100__ $$0(orcid)0000-0002-7114-3506$$aAzuara, Manuel
000079643 245__ $$aUse of ni catalysts supported on biomorphic carbon derived from lignocellulosic biomass residues in the decomposition of methane
000079643 260__ $$c2019
000079643 5060_ $$aAccess copy available to the general public$$fUnrestricted
000079643 5203_ $$aIn this work, we present the results of production of carbonaceous nanomaterials by decomposition of methane on a catalyst of Ni supported on a Biomorphic Carbon. The catalyst was prepared by thermal decomposition in a reductive atmosphere of vine shoots previously impregnated with the Ni precursor. In order to optimize the reaction productivity and selectivity, the effect of the main operational conditions (reaction temperature and feed composition) has been studied in a thermobalance. The main textural properties, BET area of 63 m(2)/g and 56% of microporosity, of the catalyst synthesized indicates that these materials are suitable for gas-phase reactions even in harsh conditions. Thus, the catalyst has proved to be active in the synthesis of carbon nanofibers and graphene related materials at elevated temperatures. The productivity, type, and quality of the carbonaceous nanomaterials obtained are deeply dependent on the operating conditions during the reaction. As an important fact, is has been obtained that the reaction temperature strongly affects the type of the nanomaterial produced. Thus, it is produced CNFs of bamboo type at temperatures until 850 degrees C. Above this critical temperature, it is mainly obtained nanolayers of graphitic nature. The characterization results indicate that the highest quality graphenic materials were obtained operating at 950 degrees C with 14.3% of CH4 and 14.3% of H-2. The kinetic model used to analyze the experimental data is based on the more relevant stages of the mechanism of reaction.
000079643 536__ $$9info:eu-repo/grantAgreement/ES/MINECO-FEDER/ENE2013-47880-C3$$9info:eu-repo/grantAgreement/ES/MINECO-FEDER/ENE2017-82451-C3
000079643 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000079643 590__ $$a2.746$$b2019
000079643 591__ $$aENERGY & FUELS$$b62 / 112 = 0.554$$c2019$$dQ3$$eT2
000079643 592__ $$a0.641$$b2019
000079643 593__ $$aEconomics and Econometrics$$c2019$$dQ2
000079643 593__ $$aRenewable Energy, Sustainability and the Environment$$c2019$$dQ2
000079643 593__ $$aFuel Technology$$c2019$$dQ2
000079643 593__ $$aEnergy Engineering and Power Technology$$c2019$$dQ2
000079643 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000079643 700__ $$0(orcid)0000-0001-6360-4475$$aLatorre, Nieves$$uUniversidad de Zaragoza
000079643 700__ $$0(orcid)0000-0003-4055-1512$$aVillacampa, José I$$uUniversidad de Zaragoza
000079643 700__ $$0(orcid)0000-0002-6873-5244$$aSabastián, Víctor$$uUniversidad de Zaragoza
000079643 700__ $$0(orcid)0000-0001-9220-9909$$aCazaña, Fernando$$uUniversidad de Zaragoza
000079643 700__ $$0(orcid)0000-0002-2363-2735$$aRomeo, Eva$$uUniversidad de Zaragoza
000079643 700__ $$0(orcid)0000-0002-7836-5777$$aMonzón, Antonio$$uUniversidad de Zaragoza
000079643 7102_ $$15005$$2555$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Ingeniería Química
000079643 773__ $$g7 (2019), [12 pp]$$tFrontiers in Energy Research$$x2296-598X
000079643 8564_ $$s360167$$uhttps://zaguan.unizar.es/record/79643/files/texto_completo.pdf$$yVersión publicada
000079643 8564_ $$s11454$$uhttps://zaguan.unizar.es/record/79643/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000079643 909CO $$ooai:zaguan.unizar.es:79643$$particulos$$pdriver
000079643 951__ $$a2023-09-13-10:44:00
000079643 980__ $$aARTICLE