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Abbreviations:  ANS, 8-anilino-1-naphtahlene sulfonic acid; CD, Circular dichroism; C-RING1B, C-

terminal region of the Polycomb RING protein 1; IDP, intrinsically disordered protein; ITC, 

isothermal titration calorimetry; MD, molecular dynamics; MSL1, male specific lethal protein; 

NUPR1, nuclear protein 1; NMR, nuclear magnetic resonance; PDAC, pancreatic ductal 

adenocarcinoma; PLA, protein ligation assay; PPI, protein-protein interaction; SAM, sterile alpha 

motif; SLiM, short lineal motif; TFP, trifluoperazine. 
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ABSTRACT 

Background: NUPR1 is a multifunctional intrinsically disordered protein (IDP) involved, among 

other functions, in chromatin remodelling, and development of pancreatic ductal adenocarcinoma 

(PDAC). It interacts with several biomolecules through hydrophobic patches around residues Ala33 

and Thr68. The drug trifluoperazine (TFP), which hampers PDAC development in xenografted mice, 

also binds to those regions. Because of the large size of the hot-spot interface of NUPR1, small 

molecules could not be adequate to modulate its functions. 

Methods: We explored how amphipathic helical-designed peptides were capable of interacting with 

wild-type NUPR1 and the Thr68Gln mutant, inhibiting the interaction with NUPR1 protein partners. 

We used in vitro biophysical techniques (fluorescence, circular dichroism (CD), nuclear magnetic 

resonance (NMR) and isothermal titration calorimetry (ITC)), in silico studies (docking and molecular 

dynamics (MD)), and in cellulo protein ligation assays (PLAs) to study the interaction. 

Results: Peptide dissociation constants towards wild-type NUPR1 were ~ 3 M, whereas no 

interaction was observed with the Thr68Gln mutant. Peptides interacted with wild-type NUPR1 

residues around Ala33 and residues at the C terminus, as shown by NMR. The computational results 

clarified the main determinants of the interactions, providing a mechanism for the ligand-capture that 

explains why peptide binding was not observed for Thr68Gln mutant. Finally, the in cellulo assays 

indicated that two out of four peptides inhibited the interaction of NUPR1 with the C-terminal region 

of the Polycomb RING protein 1 (C-RING1B). 

Conclusions: Designed peptides can be used as lead compounds to inhibit NUPR1 interactions. 

General significance: Peptides may be exploited as drugs to target IDPs. 

Keywords: Cancer, calorimetry, drug design, molecular dynamics, NMR, peptides. 
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1. INTRODUCTION 

Protein-protein interactions (PPIs) are critical for molecular communications and processes 

such as cell division, transcription, signal transduction and programmed cell death. PPIs are also key 

in the development of various diseases and pathological conditions, such as neurodegeneration and 

cancer (1,2). PPIs can occur between two structured proteins (or domains); two IDPs; a well-folded 

protein and an IDP; a folded domain and a short peptide; or between two peptides (3). In those 

interactions, the secondary structural element -helix appears in 62 % of all interfaces (4,5). 

Therefore, drugs inhibiting specific PPIs involving -helices could have an important therapeutic 

potential. However, the use of small molecules targeting PPIs is difficult due to two reasons. First, 

interface regions in PPIs are usually large (700-3000 Å2) (6), with many polar and hydrophobic 

interactions. And second, the interfaces are typically shallow, with lack of a clear pocket to allow 

binding of a small molecule (7). Thus, the chemical space of small molecules deviates from that of 

PPI inhibitors, perhaps explaining the low hit rates of small drugs in PPI inhibition (7,8). Peptides 

and peptidomimetics (i.e., modified peptides) can be used to target PPIs; in fact, 15-40 % of all 

possible PPIs involve a linear peptide (9,10). Peptides can have several advantages against small 

molecules in targeting a protein-protein interface; the most important one is that they can be 

rationally designed on the basis of the protein sequences of their binding partners. Peptidomimetics 

further combine the folding properties of peptides, with the lack of proteolytic and metabolic 

degradation (11,12). In a structure-based approach to drug-design, peptide binding regions derived 

from protein-protein interfaces can be used as a starting point for the design of PPI inhibitors. 

However, if the aim is to target an isolated IDP, which is basically an ensemble of rapidly inter-

converting conformational states, the design of peptides or peptidomimetics capable of hampering its 

biomolecular interactions is even more challenging. 

NUPR1 is an 82-residue-long (8 kDa), highly basic, monomeric IDP that is over-expressed 

during the acute phase of pancreatitis (13). It does not have a stable secondary and tertiary structure 
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in any region of its sequence, as occurs in most of other IDPs (14-16). NUPR1 is believed to function 

during transcription, and it is an essential element in the stress cell response and cell-cycle 

regulation, but its exact functions are not fully understood (17,18). It plays key roles in pancreatic 

tumorigenesis, acting downstream of the KrasG12D oncogene mutation, which is critical for pancreatic 

carcinogenesis (19). Furthermore, NUPR1 is involved in apoptosis by forming a complex with 

prothymosin (20), another IDP, as well as implicated in DNA binding (21) and repair (22), through 

interaction with the male specific lethal protein (MSL1), and in the association to proteins of the 

Polycomb group (23). All these interactions provide the rationale to consider NUPR1 inhibition as a 

clinically feasible strategy to expand the PDAC drug arsenal. 

We have shown that binding to all those biomolecules occurs through two distant regions of 

the NUPR1 sequence (20, 22-24): (i) the hydrophobic patch around Ala33, containing the two 

aromatic rings of the protein, Tyr30 and Tyr36; and, (ii) the region around Thr68, which is a 

polypeptide patch with relatively high hydrophobicity. The Ala33Gln and Thr68Gln mutants have 

both shown impaired binding to NUPR1 protein partners, therefore pinpointing the importance of 

those regions (23). As tested in PDAC-derived cell-based assays (24), both regions also intervene in 

the binding of small molecules capable of inducing cell-growth arrest and senescence, reduced cell 

migration, and decreased chemoresistance, thus mimicking NUPR1-deficiency. In fact, one of those 

drugs, TFP, completely abolishes tumor development in vivo on xenografted PDAC-derived cells in 

mice (24). Therefore, the same hot-spot NUPR1 regions involved in binding to its natural 

biomolecular partners are also implicated in the binding to small compounds with potential 

therapeutic action. Given the importance of -helices in PPIs (4,5), in this work, we investigated the 

use of synthetic peptides, with an improved tendency to form amphipathic -helices in solution, to 

target the same hydrophobic hot-spot regions of NUPR1, and acting as inhibitors of the PPIs of 

NUPR1. Bioactive peptides of different origins have shown anti-cancer properties ((25) and 

references therein), and the possibility of using them in the treatment of tumors, targeting IDPs, is 
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intriguing. It is important to pinpoint that this is the first report of the design of peptides that can bind 

NUPR1. Therefore, we benchmarked the use of helical-designed peptides to target an IDP and 

hamper its protein-protein interactions, and we studied the peptide effects against NUPR1 in vitro, in 

silico, and in cellulo. 

To test this hypothesis, we carried out an in vitro characterization of the binding between a 

series of peptides derived from the wild-type sequence Ac-VKNWMTETLLVQ-NH2. This sequence, 

which was originally obtained from the capsid protein of HIV-1, is highly amphipathic, having an 

intrinsic tendency to adopt helical conformations and to self-associate (26). Three other peptides 

have been designed in silico to have a better helicity than the wild-type sequence (27,28), without 

altering their amphipathic features (26). The four peptides were assayed through spectroscopic 

(namely, fluorescence, CD and NMR) and calorimetric (ITC) techniques against NUPR1. In 

addition, in silico studies were carried out to reveal the key determinants in their binding to NUPR1. 

Finally, in cellulo assays were carried out by means of PLAs. Our hypothesis-driven experiments 

showed that there was binding between wild-type NUPR1 and the helical-designed peptides both in 

vitro and in cellulo, with a dissociation constant of ~ 3 M. The peptide binding region of NUPR1, 

as mapped by NMR spectra, involved: (i) the hydrophobic patch at the 30s region of the protein; and, 

(ii) other residues located at both protein termini. The ITC control experiments with the NUPR1 

Thr68Gln mutant further suggested that this residue was important for peptide binding. Blind in 

silico studies showed that binding occurred through the same NUPR1 hot-spot region detected in the 

NMR studies, providing an anchoring to a specific region of the peptide surface, and suggesting a 

rationale for the experimental lack of binding of the Thr68Gln mutant. The PLAs indicated that the 

interactions of wild-type NUPR1 with C-RING1B were completely abolished in cellulo in the 

presence of two out of the four peptides; the activity of the other two could not be assessed, likely 

due to cytotoxicity or peptide inability to penetrate the cells. Our findings suggest that NUPR1 

interactions with its natural partners can be hampered by the use of designed amphipathic -helical 
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peptides, based exclusively on physico-chemical grounds (amphipathy and helicity). Moreover, our 

results represent a proof-of-concept that peptides can be rationally designed against IDPs to inhibit 

their PPIs. 
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2. MATERIALS AND METHODS

2.1. Materials 

Deuterium oxide was obtained from Apollo Scientific (UK). Sodium trimethylsilyl [2,2,3,3-

2H4] propionate (TSP), imidazole, Trizma base, ANS, deuterated acetic acid and its sodium salt, and 

nickel resin were from Sigma-Aldrich (Spain). Dialysis tubing, with a molecular weight cut-off of 

3500 Da, was from Spectrapor (Spectrum Laboratories, Japan). Amicon centrifugal devices with a 

cut-off molecular weight of 3000 Da were from Millipore. Standard suppliers were used for all other 

chemicals. Water was deionized and purified on a Millipore system. 

2.2. Proteins expression and purification 

Wild-type NUPR1 and the Thr68Gln mutant were produced and purified in Luria-Bertani (LB) 

media as described (21-23) in C41 cells (29). For 15N-labelled wild-type NUPR1 the same cell

growth protocol as in LB was used, with 15NH4Cl (1 gr per litre of media) as the sole source of

nitrogen, with M9 medium, a vitamin mix and a mixture of metal ions to improve bacterial growth. 

The yield of the protein in such minimal medium was roughly 2/3 of that obtained in LB. After 

purification (either from LB or in minimal media), the protein was extensively dialyzed against 

water. Given the poor expression of the Thr68Gln mutant in rich media (23), we did not attempt to 

label it. The mutation at the other hot-spot region of NUPR1, Ala33Gln, resulted in lack of protein 

expression (23). Protein concentration was determined from the absorbance of the two tyrosines in 

the amino acid sequence (30). 

2.3. Design and synthesis of the peptides 

Our initial design for the peptide sequence was Ac-VKNWMTETLLVQ-NH2. This peptide is a 

part of the capsid protein of HIV-1 (residues Val181-Gln192 of the whole sequence); in the intact 

protein, this patch forms an -helix through which the capsid protein dimerizes (31,32). The 

predicted percentage of helical structure for this peptide, according to AGADIR (27,28), was 4.6 %, 

and that obtained experimentally from CD measurements was 6.9 % (26). All the peptides had a 
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tendency to self-associate with dimerization constants in the order of 4 M (26). The other three 

peptides (Table 1) were designed, by using AGADIR, with the aim to improve the helicity of the 

wild-type peptide. The increase of the predicted helicity in the designed peptides was probably due to 

stabilization through a stacking interaction between the two aromatic rings of the natural Trp4 and 

the mutated Tyr8 (located on the same side of the helix), and a capping effect at the C terminus of 

the helix. The experimentally determined helicity was always lower than that predicted. Peptide 

concentrations were determined from the absorbance of aromatic residues (30). 

All the peptides were synthesized by GenScript (New Jersey, USA) with a purity larger than 95 

%, as tested by chromatography and mass spectrometry. 

2.4. Fluorescence 

Fluorescence spectra were collected on a Cary Varian spectrofluorimeter (Agilent, USA), 

interfaced with a Peltier, at 25 ºC. Experiments were carried out at pH 6.8 (20 mM phosphate 

buffer). The samples were prepared the day before and left overnight at 5 ºC. Before experiments 

samples were left for 1 h at 25 ºC. NUPR1 concentration (either wild-type or Thr68Gln mutant) was 

15 M, and the corresponding peptide concentration was 20 M (in protomer units). For experiments 

in the presence of ANS, a final concentration of 100 M of the probe was added; peptide and protein 

concentrations were the same as in the experiments where the intrinsic fluorescence was monitored. 

A 1-cm-pathlength quartz cell (Hellma) was used. 

(a) Steady-state spectra (intrinsic and ANS)- To follow the intrinsic fluorescence of tyrosine 

and/or tryptophan, samples were excited both at 280 and 295. The slit widths were 5 nm for both the 

excitation and emission lights. The spectra were recorded between 300 and 400 nm. The signal was 

acquired for 1 s and the increment of wavelength was set to 1 nm. Blank corrections were made in all 

spectra. 
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The same experimental set-up was used for experiments in the presence of ANS, but the 

excitation wavelength was 370 nm and emission light was collected from 400 to 600 nm. Only 

experiments with the wild-type NUPR1 were carried out with this probe. 

(b) Thermal denaturations- Thermal denaturations were carried out in samples containing ANS 

and wild-type NUPR1, by following the fluorescence at 480 nm, after excitation at 370 nm. The scan 

rate was 60 ºC/h, data were collected every 0.2 ºC and the average time was 1 s. 

(c) Binding experiments- For the titration between the peptides and wild-type NUPR1, 

increasing amounts of NUPR1, in the range 0-10 M, were added to a solution with a fixed 

concentration of the corresponding peptide (2 M, in protomer units). The experimental set-up was 

that described above, except that excitation wavelength was only 295 nm (to avoid subtraction of the 

increasing amount of NUPR1 used during the titration); in that way, we were only monitoring the 

Trp4 of the peptides during the experiment. The experiments were acquired at 25 ºC in phosphate 

buffer, 50 mM (pH 7.4). The samples were prepared the day before and left overnight at 5 ºC; before 

measurements, the samples were incubated 1 hour at 25 ºC. The fluorescence values of a blank 

solution containing only the corresponding peptide were subtracted for each point. The dissociation 

constant of the peptide/NUPR1 complex, KD, was calculated by fitting the plot of the observed 

fluorescence change of Trp4 versus added NUPR1 to (33,34): 

 
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FF  (1), 

where F is the measured fluorescence at any particular concentration of NUPR1  after subtraction of 

the blank; Fmax is the maximal change in the fluorescence of the P-i peptide when all of NUPR1 is 

forming the complex compared to the fluorescence of isolated P-i peptide; F0 is the fluorescence 

intensity when no NUPR1 was added; [P-i]T is the constant, total concentration of the corresponding 

peptide (2 M, in protomer units); and [NUPR1]T is that of NUPR1, which is varied during the 

titration. The titration with each peptide was repeated twice. At all used concentrations, the 
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absorbance of NUPR1 was kept lower than 0.2 units of absorbance (at 280 nm) to avoid inner-filter 

effects, during fluorescence excitation (35). 

2.5. CD spectroscopy 

CD spectra were collected on a Jasco J815 spectropolarimeter (Jasco, Japan) fitted with a 

thermostated cell holder, and interfaced with a Peltier unit. The instrument was periodically 

calibrated with (+) 10-camphorsulphonic acid. The wild-type NUPR1 and the peptide concentrations 

were 15 M and 20 M (in protomer units), respectively for the experiments of complex formation. 

(a) Steady-state spectra: Experiments were acquired at pH 6.8 (20 mM phosphate buffer) with 

a scan speed of 50 nm/min, a response time of 2 s, a band width of 1 nm, and averaged over six scans 

at 25 ºC. All spectra were corrected by subtracting the corresponding baseline. Samples were 

prepared the day before and left overnight at 5 ºC. 

(b) Thermal denaturations- Thermal denaturations were carried out with a band width of 1 nm, 

a response of 8 s and a scan rate of 60 ºC/h. Data were collected every 0.2 ºC, following the raw 

ellipticity at 222 nm. 

2.6. NMR spectroscopy 

The NMR experiments were acquired on a Bruker Avance DRX-500 spectrometer equipped 

with a triple resonance probe and z-pulse field gradients. Experiments were acquired at 25 ºC and pH 

4.5 (acetate buffer, 50 mM), by adding the corresponding amount (50 L) of a stock solution of 0.5 

M deuterated acid in D2O; probe temperature was calibrated with a methanol NMR standard (36). 

We carried out the experiments at that pH to allow for the detection of the largest possible number of 

cross-peaks, since at pH 7.0 only 10 residues are observed (23). The pH of the samples was 

measured before and after the experiments with an ultra-thin electrode (Sigma-Aldrich); for all the 

peptides during the titrations the pH at both measurements was 4.5  0.2. 

The peaks in the 2D 
1
H,

15
N-HSQC (37) NMR spectra of NUPR1 were identified by using

previously determined assignments at pH 4.5 (22). The HSQC was acquired by using sensitivity 
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enhancement with echo-antiecho-TPPI and gradient selection (36), with the carrier proton frequency 

at 8.00 ppm, and a spectral width in the 
1
H dimension of 6.00 ppm. With this spectral width and the

phase cycling used in the corresponding sequence from the Bruker library (hsqcetgp) the water signal 

was not observed. A concentration of wild-type 
15

N-labelled NUPR1 of 190 M was used, and the

corresponding amount of peptide (in the concentration range from 200 to 400 M, in protomer units) 

was added. Experiments to determine which residues were first affected upon addition of the 

corresponding peptide were carried out at specific peptide concentrations (indicated in Table 2). 2D 

1
H,

15
N-HSQC spectra were also acquired at 115 M of NUPR1 with increasing concentrations of

each of the peptides in the range 7 to 50 M (in protomer units). In this case, the spectra were 

acquired with the TPPI method (36) with the carrier proton frequency at the water frequency, which 

was removed by presaturation. In these titration experiments, a fresh sample of 
15

N-labelled NUPR1

was prepared for each peptide concentration. 

The spectra at each particular peptide concentration were typically acquired with 2 K complex 

points in the 1H dimension, 128 (or 200 for the titration experiments) complex points in the 15N

dimension, with 64 scans per increment (or 128 scans for the titration experiments). Typical spectral 

widths for all experiments were 6000 (1H) and 1500 (15N) Hz. The resulting matrix of each

experiment was zero-filled to double the number of original points in each dimension and shifted 

squared sine-bell apodization functions were applied, prior to Fourier transformation. NMR data 

were processed and analyzed using TopSpin 2.1 (Bruker). Signal intensities in the NMR experiments 

in the presence of a fixed amount of the peptides were measured by using the same program, by 

comparison with the cross-peak intensity of the C-terminal residue, Arg82. For the titration 

experiments, intensities were reported as absolute values, after correction for the receiver gain value. 

Spectra were referenced with external TSP for 
1
H, and for the indirect dimension as described (36).

2.7. ITC 
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Peptide binding to either wild-type NUPR1 or Thr68Gln mutant was determined with a high 

sensitivity isothermal titration calorimeter Auto-iTC200 (MicroCal-Malvern Instruments, Malvern 

UK), with reference power of 10 µcal/s, initial delay of 60 s, spacing between injections of 150 s. 

Protein and peptide concentrations were estimated by using their theoretical absorption extinction 

coefficients (30).  

Protein samples and reference solutions were properly degassed to avoid bubble formation 

during stirring. Experiments were performed with freshly prepared protein solutions, at 15 °C in 50 

mM Tris pH 7.4, with 2 % DMSO, to improve peptide solubility. A 20 M solution of either wild-

type or Thr68Gln NUPR1 was titrated into the calorimetric cell with 300-400 µM peptide solution 

from the injecting syringe. NUPR1 did not show any evidence of aggregation at these concentrations 

used (nor, at least, up to a concentration of 2 mM, where protein assignment was carried out (22)). A 

sequence of 19 injections of 2 L volume was programmed with a stirring speed of 750 rpm. The 

heat evolved after each ligand injection was obtained from the integral of the calorimetric signal. 

Control experiments (peptide injected into buffer) were performed under the same experimental 

conditions. The association constant (Ka) and the enthalpy change (H) of the binding reaction were 

obtained through non-linear regression of experimental data to a model for a protein with a single 

ligand binding site. Experiments were performed in replicates and data were analyzed using in-house 

developed software implemented in Origin 7 (OriginLab, Northampton, MA). We analyzed the 

titrations including a parameter accounting for the background injection heat effects (which are not 

much larger than the heat effect due to the interaction), and, therefore, we estimated the dissociation 

constants and the binding enthalpies with sufficient reliability. The background injection heat effects 

represent the reference heat in the absence of the interaction along the titration; therefore, the 

departure from that reference value (in our case, upward or endothermically), whatever the value of 

the background injection heat effect, reflects the heat effect due to the molecular interaction. Blanks 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 

14 

or controls injecting titrant into buffer were performed in order to rule out any potential artifacts or 

the possible effect from titrant self-dissociation.  

2.8. Molecular modeling and dynamics 

The structures of the peptides, including the capping at their termini, were built by using the 

chemical editors Avogadro (38) and VMD (39). The complete structure of each peptide was refined 

through MD simulations in water, to obtain a representative ensemble of eight different 

conformations. The simulation package GROMACS (40) was used in combination with the AMBER 

ff99SB-ILDN force field (41) and the TIP3P water model (42). For the two charged peptides, P-1 

and P-3, a chloride counterion was added to obtain an overall neutral system. The peptides were first 

equilibrated for 1 ns, and then a production run was carried out for other 2 ns at room temperature 

and pressure. Simulation conditions, including reference values and coupling times for the 

thermostat and barostat, modeling of the electrostatics and van der Waals interactions, as well as 

treatment of atomic distance constraints and periodic boundary conditions, were as described 

(43,44).  

An ensemble of structures of NUPR1, either from wild-type or Thr68Gln mutant, was obtained 

following a protocol previously reported for IDPs (45, 46), with the protein structure initially built in 

extended conformation and then collapsed in a long-term run (40 ns) performed in the presence of 

explicit water molecules. Simulation of peptide/NUPR1 complexes were built starting from unbound 

NUPR1 with equilibrated gyration radius (2.2 nm), as it was experimentally measured (24). To 

assess potential artifacts due to overcompaction of the IDP structure, additional control simulations 

were performed using the TIP4P-D water model (47) which is specifically suited to address such 

deficiency. Water topology was built in the required GROMACS format by using as a starting model 

the one of TIP4P/2005 (48) which shares the same geometry, and modifying charges and Lennard-

Jones parameters as required (47). 

2.9. Molecular docking 
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The binding affinity of NUPR1 and each peptide was evaluated by performing a systematic 

molecular docking. Portions of the NUPR1 sequence containing seven consecutive protein residues 

were considered, with the rest of the backbone truncated and capped when necessary (by using an 

acetyl and amide group at the N and C terminus, respectively). The graphical interface AutoDock 

Tools 1.5.6 (49) was used to prepare the system, and molecular docking was performed by using 

AutoDock Vina (50) at high exhaustiveness (eight times larger than the default value).  

2.10. PLA  

HeLa cells were seeded in 12-well plates on coverslips and transfected with 2 µg of DNA 

(NUPR1-FLAG and RING1B-HA) and 2 L of Lipofectamine 3000 Transfection Reagent (Thermo 

Fisher Scientific) per well. Cells were assayed after 28 h post-transfection. To transport the peptides 

or FITC-antibody (as control) into HeLa-transfected cells, Pro-JECTTM Protein Transfection Reagent 

Kit (Thermo Fisher Scientific) was used following manufacturer’s recommendations. Briefly, 

peptide solution (in DMSO) was added to a tube containing a dry film of Pro-JECT reagent and 

incubated for 5 minutes. Then, Opti-MEM medium was added to bring the final delivery volume to 

500 L. Finally, regular culture media was aspirated from the wells and the delivery mix was 

transferred to the cells. The cells were incubated for 4 h. After that, cells were washed twice in 

phosphate buffer solution (PBS), fixed, washed twice again, permeabilized in PBS/0.1% Triton X-

100 and saturated with Blocking Solution for 30 min before immune-staining with Duolink® by 

using PLA® Technology (Sigma-Aldrich) following the manufacturer’s protocol. Slides were 

processed for in situ PLA by using sequentially the Duolink® In Situ Detection Reagents Red, 

Duolink® In Situ PLA® Probe Anti-Mouse MINUS, and Duolink® In Situ PLA® Probe Anti-

Rabbit PLUS. The following antibodies were used: mouse monoclonal anti-HA (12CA5, Santa Cruz 

Biotechnology) and rabbit anti-human NUPR1 antibody chemically synthesized (Neosystem, France) 

following previously described methods (22,23). In these experiments, monitored red fluorescence 

corresponds to the PLA positive signal, and it indicates that the two molecules belong to the same 
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protein complex. Blue fluorescence corresponds to nuclei (the so-called DAPI staining). To check 

the specificity of the PLA signal, negative control experiments omitting one of the primary 

antibodies were performed. Unspecific binding was optimized by using the proper antibodies and 

optimizing the transfection times. Protein over-expression during the experiments was used to obtain 

a clearer and better signal. 

Preparations were mounted using Prolong Gold antifade reagent (Invitrogen) and image 

acquisition was carried out on a Nikon Eclipse 90i fluorescence microscope. 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 

17 

3. RESULTS  

3.1. The design of the peptides  

Our initial wild-type sequence for the peptide was Ac-VKNWMTETLLVQ-NH2. This peptide 

was derived from the all--helical wild-type capsid protein of HIV-1 (residues Val181-Gln192 of the 

whole sequence) (Table 1); the peptide sequence is highly amphipathic, and it self-associates to 

favour contact among the different subunits in the viral capsid. Therefore, it could be a good lead 

peptide to test amphipathy and helicity in the design of peptides capable of targeting NUPR1. The 

original sequence (hereafter, named P-4) was modified by using AGADIR software (27,28) to 

improve its helicity; the rationale behind the chosen substitutions of residues has been described 

previously, and it is briefly described in section 2.3. (26). Experimental measurements on the three 

derived peptides (the two single mutants P-1 and P-2, and the double mutant P-3), performed by 

using far-UV CD and measurements of the ellipticity at 222 nm and titration in the presence of 

organic co-solvents, revealed that the helicity value was lower than that theoretically predicted (26) 

(Table 1); probably the peptides are populating in aqueous solution several conformations involving 

helix- or turn-like structures. The peptides have also a self-association tendency with affinities in the 

order of ~4 M (26). This tendency precluded their NMR characterization in aqueous solution. 

3.2. The peptides interacted with wild-type NUPR1 in vitro  

To test whether the peptides and wild-type NUPR1 interacted in vitro we followed a three-part 

approach. As a control, we used the mutant Thr68Gln, which does not show binding to some of the 

protein partners of NUPR1 (23). First, we tried fluorescence experiments with the four peptides and 

with wild-type NUPR1 and the Thr68Gln mutant either by acquiring steady-state spectra (in the 

absence and in the presence of 8-anilino-1-naphtahlene sulfonic acid (ANS)) or by acquiring thermal 

denaturations of the complexes. We used the steady-state fluorescence spectra to determine whether 

there were rearrangements in the binding pocket occupied by ANS or, alternatively, in the 

neighborhood of the sole Trp in the peptides, upon binding of the two biomolecules (NUPR1 only 
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has two tyrosine residues). The use of ANS to monitor binding deserves an explanation, because it 

usually binds to hydrophobic patches in proteins. That is why, usually, ANS shows low binding (and 

small fluorescence emission) to a folded protein, and high binding (and large fluorescence emission) 

to an unfolded one; therefore, it can be used as an extrinsic fluorescent probe to monitor protein 

unfolding. However, ANS does not always follow that behavior: there are some proteins displaying 

higher ANS binding (or, at least, larger fluorescence emission) when they have a larger amount of 

structure, such as prothymosin nucleobindin (Calcnuc) and Tim15 (51-53). From our experience, 

we have also observed ANS binding to IDPs. For example, NS3 protease from hepatitis C virus is 

partially unstructured in the absence of its zinc metal cofactor; this protein binds ANS when partially 

unstructured, and then increases ANS binding as it unfolds completely along a temperature 

denaturation (54-56). The same behavior was observed in NUPR1 when it is bound to small drugs 

(24). On the other hand, we have also observed that ANS (and other fluorescent probes) sometimes 

does not work as an extrinsic probe with some folded proteins, contrary to the usual expectation. 

Our results show that, when both peptide and NUPR1 were present together in solution, the 

environment around ANS (Fig. 1 A) and that around Trp4 (Fig. 1 B) of the peptides changed (Fig. 1 

shows, as a representative example, the data for P-3; data for the rest of the peptides are shown in 

Fig. S1). As it can be observed, NUPR1 showed variation in the amount of solvent-exposed 

hydrophobic regions in the presence of the peptides. Experiments with the Thr68Gln mutant and P-3 

suggest the absence of binding (Fig. S2), following the intrinsic fluorescence of the protein, the 

peptide and the complex. The finding that there are differences between the spectrum of the intrinsic 

fluorescence of the complex formed and that obtained from the sum of the spectra of both isolated 

macromolecules suggests that the environment around Trp4 of the peptides, or that of the two 

tyrosines of NUPR1, are being affected by binding (Fig. 1 B). A similar conclusion can be drawn 

from the fluorescence spectrum of ANS: the environment around the probe (and thus solvent-

exposed hydrophobic patches) changes in the presence of both molecules (Fig. 1 A).  
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In addition, we suspected that those protein-peptide interactions, detected by steady-state 

spectra of intrinsic fluorescence or ANS, may promote some limited, small structural rearrangements 

in wild-type NUPR1, resulting in a different fluorescence thermal-denaturation pattern compared to 

that of the unbound protein. To elucidate whether there were changes in the conformational 

ensemble of wild-type NUPR1 upon peptide binding, we carried out thermal denaturations in the 

presence of ANS, whose fluorescence changes seem to be larger than those of the intrinsic 

fluorescence of the peptide/NUPR1 complex; we did not carry out experiments with the peptides and 

Thr68Gln mutant with ANS because of the absence of binding (Fig. S2). Thermal denaturations in 

the presence of ANS followed a different pattern for isolated P-3, isolated wild-type NUPR1, and the 

P-3/NUPR1 complex (Fig. 1 C), but for none of the three solutions a sigmoidal behavior was 

observed in the unfolding traces. This different behavior for several polypeptide chains or complexes 

during thermal denaturations, monitored by ANS, has been observed in other proteins. As explained 

above, ANS (and other fluorescent probes) does not always follow the usual expected behavior when 

monitoring thermal denaturations of folded proteins by the extrinsic ANS fluorescence (57). From 

our experience, we have observed ANS binding to IDPs, such as NS3 protease from hepatitis C virus 

(see above). A similar tendency is observed in NUPR1 (24) when is bound to small drugs. Even if 

the protein is completely unfolded, it may show some weak ANS binding; on the other hand, the 

same protein when interacting with a molecule may show a different ANS binding. In addition, both 

free- and bound- protein may display a different unfolding profile monitored by ANS along the 

temperature denaturation. This observation can be employed for observing interaction between 

binding partners, as well as for identifying binding compounds in IDPs or well-folded proteins. 

Therefore, we could conclude from the fluorescence results that there were interactions between the 

peptides and wild-type NUPR1, and that these interactions were not present with the Thr68Gln 

mutant. 

The fluorescence changes induced by the peptides in the wild-type NUPR1 spectrum are an 

indirect piece of evidence of the interaction, as variations in thermal denaturations and steady-state 
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spectra may be the result of unspecific interactions between the peptides and NUPR1. Then, at a 

second stage, we used ITC (58) to determine the dissociation constants, KDs, of the peptides for 

NUPR1. The KDs for the peptide/NUPR1 complexes were in the low micromolar range, indicating 

that the peptides bound specifically to NUPR1 and they would represent a good starting point for 

further affinity optimization to obtain binders with a higher specificity (Table 1, Fig. 2). We further 

used ITC to determine the importance of Thr68 on the binding properties of NUPR1. Since we have 

already observed that this mutation decreases the affinity of NUPR1 for C-RING1B (23), we decided 

to test by ITC whether the peptides were bound to Thr68Gln mutant. No binding was observed with 

the mutant protein for any of the peptides under the same conditions explored for wild-type NUPR1 

(Fig. S3), and thus, we conclude that Thr68 is a key residue to achieve peptide association. 

We also measured the KD of the peptides by using fluorescence; in that experiment we were 

certain that upon binding to NUPR1 the environment around Trp4 in the peptides was modified upon 

binding to NUPR1. In all cases, the measured affinity constants were similar to those reported by 

ITC (Table 1, Fig. S4). These experiments confirm that the binding was specific and that it occurred 

around the sole tryptophan of the peptides. 

As the peptides partially self-associate (26), if they were bound to NUPR1 in monomeric form, 

then the dimerization equilibrium of the peptide would be coupled to the binding equilibrium 

towards NUPR1. Because the binding to NUPR1 implies binding of the monomeric species or 

dissociation of the dimeric species of the peptide, then, the apparent dissociation constant for the 

peptide/NUPR1 interaction, KD
app, will be larger than the intrinsic dissociation constant for the

peptide/NUPR1 interaction, KD (i.e., the dissociation constant if all peptide molecules are in 

monomeric form). In particular, the apparent dissociation constant for the peptide/NUPR1 interaction 

is given by: 
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where KsD,pep is the self-dissociation constant for the peptide monomer-dimer equilibrium 

(KsD,pep=[L]2/[L2]). From the above expression, we can conclude that if the peptide self-association

equilibrium is displaced towards the monomer (KsD,pep very high and 2[L2]/[L]<<1), then KD
app is

roughly equal to KD (the observed affinity is similar to the intrinsic affinity for the monomeric 

peptide). However, if the peptide self-association equilibrium is displaced towards the dimer (Ksd,pep

very low and 2[L2]/[L]>>1), then KD
app is much larger than KD (i.e., the observed affinity is much

lower than that of the monomeric peptide). 

And at a third stage, we carried out far-UV CD experiments of the peptide/NUPR1 complexes. 

For all the peptides, there were no changes in the addition spectrum (obtained from the sum of those 

of the two isolated polypeptides) and that of the corresponding peptide/NUPR1 complex (Fig. S5 A), 

indicating that the conformational ensemble of the peptide and/or wild-type NUPR1 remained the 

same after binding. Furthermore, the absence of a sigmoidal behavior in the thermal denaturations 

(Fig. S5 B) suggests that wild-type NUPR1 remained disordered upon peptide binding. 

To sum up, the three techniques (fluorescence, ITC and CD) showed that peptides and wild-

type NUPR1 interacted in vitro with a low affinity constant in the range of 4 M. This interaction 

was hampered in the Thr68Gln mutant. 

3.3. The peptide binding mapped to a hydrophobic region located at the 30s of NUPR1 sequence 

To characterize the molecular bases behind the formation of the peptide/NUPR1 complexes, 

we sought to determine the NUPR1 regions involved in binding. Since we have previously reported 

the NMR assignment of all residues of wild-type NUPR1 (22) (BMRB number 19364), we used 2D 

1
H,

15
N-HSQC spectra of wild-type NUPR1 to monitor changes upon peptide addition.

At pH 4.5, upon addition of any of the peptides, the NUPR1 cross-peaks broadened (Fig. 3 

shows as a representative example the data for P-2, whereas the rest of the HSQC spectra for the 

other peptides are shown in three panels in Fig. S6); the changes were larger in P-2 (Table 2), for 

which many of the NUPR1 resonances disappeared. It could be thought that the intrinsic self-

association of P-2 could be responsible for this general broadening of most of NUPR1 cross-peaks; 
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however, the fact that the self-association constants for the four peptides is the same (~4 M, (26)) 

and that the assayed concentration of the peptides was nearly the same (Table 2), suggest that there 

were other factors affecting peptide binding to NUPR1. In P-1, P-3 and P-4 peptides, only the 

relative intensity of several cross-peaks were affected, suggesting that the binding was specific (as 

further pinpointed by ITC and fluorescence). In general, the most affected regions of NUPR1 upon 

addition of any of the four peptides were: (i) around Ala33, where the two aromatic residues of 

NUPR1 are located (Tyr30 and Tyr36); and, (ii) the C-terminal region (close to Asn72) (Table 2). In 

some of the peptides, the relative intensities of residues close to the N terminus of the protein were 

also affected (Table 2). It is interesting to note that the relative intensity of the cross-peak of Thr68 in 

the presence of any of the peptides did not show a variation larger than 15 %, whereas it has been 

shown to change during the binding of NUPR1 to small molecules (24). However, the relative 

intensities of cross-peaks of nearby residues (Glu63, Asn72 and Ser73) were largely affected upon 

peptide binding (Table 2). 

As there were changes only in the intensities of the cross-peaks (and not in their chemical 

shifts), the equilibrium-exchange between the peptide- free and bound wild-type NUPR1 must be 

intermediate-to-slow within the NMR time scale. It could be thought that those variations in the 

spectral intensity were due to a larger solution viscosity (which may be altered by the presence of the 

peptides) (59); however, at the maximal total biomolecular concentration used in this work (~500 

M), we have not observed broadening in the spectra of isolated NUPR1 (22). In fact, NUPR1 does 

not aggregate up to concentrations of 2 mM, where its NMR assignment has been carried out (22). In 

addition, it could be suspected that the pH increased during the experiment (or upon addition of the 

peptide), resulting in signal-broadening due to solvent-exchange. However, the pH measurements 

before and after spectra acquisition indicate that the pH remained constant during the experiments 

(see section 2.6). The fact that signal broadening was only observed upon peptide addition suggests 

that the binding between NUPR1 and the peptides was responsible for that broadening. 
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Furthermore, the titration experiments carried out by following the HSQC spectra at different 

peptide concentrations suggest that the decrease in intensity of the cross-peaks of NUPR1 spectra 

was peptide-dependent (Fig. S7). This decrease was larger for P-2, in agreement with the larger 

affinity constant determined by ITC (Table 1), the gold-standard in determining thermodynamic 

parameters of binding reactions (58). Moreover, the fact that the decrease in intensity does not occur 

at the same pace for all the residues indicate that the binding was not a two-state process, as it could 

be inferred from the results in Table 2 at a single peptide concentration: different cross-peaks show 

several changes in their relative intensities. It could be thought that a KD could be obtained from the 

fitting of the decrease in absolute intensities of each of the different cross-peaks for each of the 

peptides; however, a reliable value for a dissociation constant cannot be obtained from the changes 

in intensities for intermediate-to-slow exchange rates within the NMR time scale, as it has been 

widely discussed (60). 

In conclusion, the NMR experiments further confirm that there was binding between the 

peptides and wild-type NUPR1, involving, at least at a first stage, mainly residues around the 30s 

region of the NUPR1 sequence. 

3.4. In silico calculations predicted the regions involved in the peptide binding 

A systematic search was performed to study in silico the binding of NUPR1 with the peptides. 

To overcome the computational limitation in treating large numbers of torsional degrees of freedom 

of IDPs, molecular docking was carried out using seven-residue-long fragments spanning the whole 

sequence of wild-type NUPR1, and an ensemble of the structures of the peptides as hosts. Although 

the scoring obtained provides only an empirical approximation of the association affinity, molecular 

docking has already proved to be effective with NUPR1 to identify binding to other small 

compounds (24). Furthermore, an accurate determination of the conformational ensemble of the IDP 

is not a prerequisite for the findings presented below, because docking is applied considering only 

isolated fragments of the primary structure of NUPR1. 
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Figure S8 shows the binding scores obtained for the segments of NUPR1, calculated as a 

function of the protein sequence. The energy differences among the four peptides were comparable 

with those observed in the docking of the fragments with different structures of the same peptide (~ 

0.3 kcal/mol, on average); therefore, all the data for each peptide were combined to increase their 

statistical significance. The predicted segments of the NUPR1 sequence that contribute the most to 

the binding correspond to minima in the curve (Fig. S8), and include: the 30s region; the polypeptide 

patch around Thr54; and the two protein termini (with the lowest values found for Thr8 and 

Asn72/Ser73, which are close to the N and C terminus, respectively). These regions agree nicely with 

those observed to experience the larger broadening changes in all peptides by NMR (Table 2, see 

section 3.3). On the other hand, those values of the theoretical binding energies (Table 1) were 

slightly less favorable than the experimental ones (-5.5 kcal/mol versus -7.2 kcal/mol for P-3). 

Importantly enough, such predicted regions did not include the polypeptide patch around residue 

Thr68, which was important for the anchoring of small compounds (24), whereas they still include 

the other key region of relatively high hydrophobicity around Ala33, which was important for the 

interaction of NUPR1 with the other binding partners (20,22-24). 

Once we had identified the NUPR1 region centered around Ala33 as that contributing most to 

the binding affinity of the peptides, we sought to use this information to pinpoint the preferred 

binding region in the latter. To this aim, we mapped the binding poses of the seven-residue fragment 

centered on Ala33 onto the structure of each of the peptides (Fig. 4). The results clearly indicate that 

only about half of the helical surface of the peptide was involved in the binding, and this interacting 

region was common to all of them. Interestingly, the binding patch was on the same side where 

residue 11 is placed, and regardless whether it is an Arg (as in P-1 and P-3) or a Val residue (P-2 and 

P-4). More importantly, the binding patch did not overlap with the most hydrophobic region of the 

helical peptides, suggesting that hydropathy is not the sole determinant of the peptide/NUPR1 

association. This binding patch (formed among others by Val1, Trp4, Met5 and Leu9) is the same 

involved to form the self-associated helical region in the intact capsid protein of HIV-1; thus, the 
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peptides use the same region to interact with other biomolecules (NUPR1) or with themselves (26). 

These results support the experimental fluorescence experiments (see section 3.2.), in which the 

environment around Trp4 in the peptides was affected upon binding to NUPR1. 

The findings above are apparently difficult to reconcile with the experimental observation that 

the Thr68Gln mutant (which disrupts the hydrophobicity pattern in that specific region of the 

NUPR1 sequence) did not bind to the peptides (Figs. S2 and S3). To investigate this aspect, MD 

simulations were performed of both wild-type NUPR1 and the Thr68Gln mutant, with peptide P-2, 

for which the largest changes were observed (Table 2, Fig. 3), placed on the protein surface in 

correspondence to Ala33. For wild-type NUPR1, we observed a capture mechanism of the peptide 

(Fig. 5), where P-2 appeared to maintain a stable -helical conformation at the end of the binding 

process. The protein had a more compact N-terminal region and an extended C-terminal patch, 

which possesses a higher amount of positively charged residues. The presence of Thr68 provides a 

slightly higher hydrophobicity and favors the collapse of the protein C terminus on the helical 

peptide, allowing the flanking residues Glu63 and Asn72 to approach the ligand surface. Thus, the 

gradient of hydrophobicity along the NUPR1 sequence plays a crucial role in the binding 

mechanism, although it is not a main factor in maintaining the anchoring of the peptides. 

Although our simulations were performed starting with the hydrodynamic radius of the 

NUPR1 ensemble close to the experimental value measured by NMR (24, 45) possible artifacts due 

to overcompaction of an IDP are usually a concern during MD simulations. To exclude a potential 

influence on the binding mechanism described above, additional control simulations were performed 

using the TIP4P-D water model (47), which avoids disordered protein ensembles less expanded 

compared to the experiment. As a result, we observed (Fig. S9) for wild type NUPR1 an interaction 

with the peptide analogous to the one described in Fig. 5. In particular, Ala33 maintained the binding 

with the helical peptide while Thr68 favored the approach of the protein C terminus, driving the 

nearby residues Glu63 and Asn72 towards the ligand surface. Besides being an independent 

validation under simulation conditions that do not favor the complex formation (because solute-
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solvent interactions are increased with the use of the TIP4P-D water model (47)), we point out that 

this effect does not involve an overcompaction of NUPR1 structure, which would involve a stable 

interaction of the Thr68 residue with the peptide. In contrast, the mechanism described explains why 

mutation of Thr68 affects the binding without this residue being listed in a binding patch. 

In summary, although the docking procedure could not eventually discriminate among the 

quantitative differences in the binding of the four peptides (Table 1), it provided an accurate 

identification of the critical regions for the binding to NUPR1. Furthermore, the MD simulations 

clarified the molecular details in the peptide association. 

3.5. Evidence for the interaction of peptides with NUPR1 within an intracellular environment 

To test whether the interaction between the peptides and wild-type NUPR1 occurred within 

cells and the peptides were capable of inhibiting the binding of NUPR1 with one of its natural 

partners, we carried out studies in cellulo. Our previous results showed that C-RING1B efficiently 

and specifically interacted with wild-type NUPR1 (23). Subsequently, we sought to detect whether 

the peptides interacted with NUPR1 and blocked its interaction with C-RING1B by using the 

Duolink in situ assay, which resolves the binding of proteins that occurs at distances lower than 16 

Å. We performed controls experiments transfecting a FITC-antibody, as a control peptide included in 

the kit (Fig. S10), in order to monitor the internalization of the peptides, and the possible effect in the 

interaction between the two proteins. The control peptide did not change the interaction between the 

two proteins in cellulo. 

When interaction between the two proteins takes place, red fluorescent spots appear, 

corresponding to the positive PLA signal. Our results show that only peptides P-1 and P-3 efficiently 

interacted with wild-type NUPR1 (Fig. 6) and blocked the interaction between the two proteins, 

diminishing the red fluorescent spots, corresponding to the PLA signals. Different attempts to 

replicate this behaviour with P-2 and P-4, by using several transfection times, were always 

unsuccessful. We believe that the presence of the Arg (and its positive charge) adjacent to the C-

terminal residue of the peptides (Table 1) allows cell insertion, as the two peptides with such residue 
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at this position led to successful PLAs. For the rational design of further peptides inhibiting PPIs of 

NUPR1, the presence of this residue should be ensured. 

Thus, taken together, these results demonstrate that a specific peptide/NUPR1 complex forms 

within cultured cells. These findings confirm the biological relevance of our simulations and the in 

vitro biophysical and biochemical experiments. 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 

28 

4. DISCUSSION  

4.1. Peptides as inhibitors of NUPR1 functions 

The importance of the network of interactions between proteins (known as interactome) for 

understanding the functioning of living organisms and the development of diseases is widely 

acknowledged (7). Despite this, drugs designed to target PPIs are relatively rare (when compared to 

other designed small molecules aiming to specific polypeptide binding sites). Moreover, drug design 

is particularly challenging when some of the macromolecules involved in the PPIs are IDPs. NUPR1 

exerts several functions by specific interactions with other biomolecules (DNA or proteins). We have 

recently found a small drug, TFP, capable of binding to NUPR1 and inhibiting its functions, thus 

mimicking the cellular effects observed in the absence of this protein (24). However, the hot-spot 

region of NUPR1 is a discontinuous epitope (8) involving two distant polypeptide patches: (i) that at 

the 30s in the NUPR1 sequence; and, (ii) a region close to Thr68 and the C terminus. TFP shows a 

proximity to both Ala33 and Thr68 in the NMR experiments and in MD simulations of the complex 

(24). Mutations at those key positions (Ala33 and Thr68) have resulted in impaired NUPR1 mutants 

where binding to its natural partners is severely decreased (23). 

We and others have designed small molecules against IDPs capable of interfering with their 

PPIs or nucleic-acid interactions (24, 61-68), and there are a few examples in the literature where 

peptides are used as inhibitors of PPIs involving IDPs (69-71), or several approaches for folded 

proteins (see 2 and references therein). In these examples, the peptides are designed based on either 

similarity with the sequence of the partner protein or, alternatively, fitting with the disordered 

region(s) of the IDP. In all of them, the protein (or protein region involved in the binding) remained 

basically disordered, with changes in the conformational ensemble of the protein (64). Furthermore, 

several -helix peptidomimetics have also been designed based on the -helix scaffold of the 

original protein sequence that the IDP binds to (72). In NUPR1, we have not designed peptides based 

on the sequence of one of its partners neither on any homologous sequence to NUPR1, but rather we 

have carried out hypothesis-driven experiments by exploiting physico-chemical principles based on 
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the amphipathy and helicity of a series of peptides with a natural tendency to adopt helical structures. 

There were poor linear relationships between each of these isolated properties and the values of the 

measured KD (Table 1) with linear regression coefficients no larger than 60 %. Thus, it is the 

interplay of both physico-chemical properties, helicity and amphipathy, which seems to allow the 

specific binding to NUPR1, and not a single property. However, since we have a rough estimation of 

the percentage of -helix- or turn-like structures from the CD measurements, we cannot rule out 

other factors determining the KD values, such as the entropic contribution due to the solvent or the 

shape of the peptides, with their corresponding structured conformation. 

4.2. Molecular basis of peptide/NUPR1 complex formation 

We experimentally observed that the assayed peptides bound in vitro to NUPR1 (Table 2, Figs. 

3 and S6) at the same regions involved in binding to other biomolecules: the 30s region and the 

neighbourhood of Thr68. In fact, the region around Thr68 was critical for the binding of the peptides, 

since experiments with the Thr68Gln mutant did not yield any binding (Figs. S2, S3). This residue 

did not contribute energetically very much to the binding (as suggested by the simulation, Figs. 4 and 

S8), but it was critical in directing the binding mechanism (Fig. 5). Therefore, we can conclude that 

NUPR1 uses the same discontinuous epitopes (or “short lineal motifs”, SLiMs), which facilitate 

multivalent interactions with other molecules (73) to bind to any partner. Some SLiMs in other IDPs 

have also been shown to function as high promiscuous binders: for instance, the transactivation 

domain of p53 interacts with multiple proteins, by using the same motif with structurally distinct 

binding modes upon engagement with its several partners (74). In the case of the peptides, other 

SLiMs of NUPR1 (together with the regions around Thr68 and Ala33) appeared to be involved in the 

binding, probably due to the larger size of the peptides compared to that of small drugs (24).  

Upon binding to the peptides, NUPR1 remained disordered, as judged by the absence of 

changes in chemical shifts in most of the cross-peaks in the NMR spectra (Fig. 3 and Fig. S6), and 

the lack of sigmoidal behaviour in the thermal denaturations measured by CD (Fig. S5) and 

fluorescence. The cross-peaks of residues, that became broadened, might indicate that the 
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corresponding amino acids are involved in other conformations where they could form more local 

structured regions, but these local structures must not be very rigid due to the lack of sigmoidal 

transitions in thermal denaturations. In the particular case of P-2, since most of the signals became 

broadened and disappeared (Fig. 3), we could not rule out the presence of more structured 

conformations, although they cannot be very stable due to: (i) the features of the thermal 

denaturation curves of the complexes; and, (ii) the absence of large changes in the CD spectrum of 

the complex when compared to that of isolated NUPR1 (as it happens with P-3, Fig. S5). The fact 

that the cross-peaks of different residues became broadened before those of other amino acids (Fig. 

S7, Table 2) suggests also that the binding is not a two-state process, and it must involve several 

populations of peptides with helix-like conformations, or, alternatively NUPR1 conformations with 

several local residual structure. We suggest that peptide binding must involve a change of NUPR1 

conformational ensemble from a random set in the isolated protein to a particular subset of 

conformers (and that is why only a subset of cross-peaks were broadened in each peptide). This shift 

must require a reduction in the entropy of the whole system (peptide and protein) caused by steric, 

hydrophobic or electrostatic effects. The persistently disordered conformation of NUPR1 seems to be 

a general feature (20, 22-24): whatever molecule (synthetic small molecule, DNA, protein and 

peptide) binds to the IDP, it is not capable of altering its disordered nature. Furthermore, in all these 

molecules, the binding equilibrium seems to have an intermediate-to-slow exchange rate within the 

NMR time-scale (22-24, 60).  

At this stage, we do not know the structure acquired by the peptides upon binding to NUPR1, 

but from MD simulations, the structure seems to be -helical (Figs. 4, 5). The helical propensity of 

the peptide was decreased in the control runs performed with the TIP4P-D water model (Fig. S9), but 

it is not clear whether this is a cost of increasing the solute-solvent dispersion interactions that 

improve the disorder propensity in the IDP (47). Furthermore, based on two pieces of evidence, we 

believe that the helical structure acquired by the peptides upon binding, as suggested by the MD 

simulations, is weak. First, we did not observe sigmoidal, co-operative thermal denaturations 
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monitored by CD or fluorescence for the complexes (Fig. 1C, Fig. S5 B). And second, the binding of 

NUPR1 to the peptides is not a two-state process as concluded from the different decrease regimes in 

NMR cross-peaks intensities for several residues (Fig. S7); it is likely that the peptides, upon binding 

to NUPR1, shift the equilibrium towards more populated helical conformations, but all of those 

helical conformations are capable, to a larger or lesser extent, of binding to NUPR1. Finally, it is 

important to note that the peptides interacted with NUPR1 through residues located in the proximity 

of Trp4 (Fig. S4), as it has been observed when these peptides are bound to other proteins or in their 

own self-association (26); thus, peptides also employ the same (hydrophobic) residues to interact 

with different molecules. 

4.3. Energetic and thermodynamic determinants of the peptide/NUPR1 interaction  

The measured KD of NUPR1 for interacting with the peptides (Table 1) was similar to that 

observed for MSL1 (~3 M) (22), for prothymosin  (~6 M) (20), C-RING1B (~12 M) (23) and 

for different drugs capable of inhibiting the binding between NUPR1 and MSL1 (~5 M) (24). Such 

affinity is relatively small, but it allows a proper regulation of the several pathways where NUPR1 is 

involved (18), achieving a high specificity despite a moderate binding energy. Moderate affinities 

(i.e., in the range 1-10 M) are not rare for other IDPs, and they have been measured during the 

formation of “fuzzy” complexes, where the partners remain disordered after complex formation (75, 

76); these fuzzy complexes facilitate fast binding since no disorder-to-order transition is happening. 

Thus, binding between both molecules goes beyond the classical archetypes of conformational 

selection or induced fit since both are sampling a range of conformations continuously. 

It is important to note that our peptides self-associate in solution (with a self-association 

constant of ~4 M) (26); therefore, peptide binding to NUPR1 would be coupled to peptide 

dissociation, and the apparent dissociation constant (KD, Table 1) for the peptide/NUPR1 complex 

will contain an energetic penalty associated with the peptide dissociation event. Thus, the intrinsic 

dissociation constant for the peptide/NUPR1 interaction would be lower (i.e. more favorable binding 
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affinity, see section 3.2.). The effect of the peptide self-association has not been considered 

quantitatively and explicitly in the interaction experiments (fluorescence and ITC). For that, we 

would need to know the peptide self-dissociation constant (in the range of ~4 M, as measured by 

CD titrations (26)) and the self-dissociation enthalpy. However, from the measured apparent 

dissociation constant for the peptide/NUPR1 interaction (Table 1), we can state that the intrinsic 

dissociation constant for the peptide/NUPR1 interaction would be somewhat smaller. Other 

biomolecules interacting with NUPR1 are either monomeric (prothymosin (20)) or oligomeric (C-

RING1B (23) and MSL1 (22)), although in the MSL1 case, we do not know its exact self-association 

state. 

4.4. Perspectives in the design of helical peptides for inhibition of IDPs 

Although there are several FDA approved peptides for therapeutic use (77) and the future holds 

promising for others to be approved (78), in general, the current therapeutic application of peptides is 

limited due to low cell penetration and marked propensity to proteolysis and metabolic degradation. 

We observed some of these features in our design: only peptides P-1 and P-3 were able to hamper the 

interaction of C-RING1B and NUPR1 in cellulo. Although we cannot rule out the cytotoxicity of 

peptides P-2 and P-4, we suggest that cell-permeation was facilitated in P-1 and P-3 by the presence 

of an Arg residue at the second-to-last position in peptide sequence (Table 1). An alternative 

explanation could be that this residue provides critical electrostatic interactions in a surface patch 

that is key for binding to the 30s region of NUPR1, as pointed out by our docking results. In either 

case, future designs of the peptides will probably require a positive charge at this position of the 

sequence. At this stage, it is tempting to speculate that P-1 and P-3 might be even particularly 

effective in conjunction with TFP to prevent PPIs of NUPR1. 

Furthermore, our studies suggest that helicity was not the sole factor governing peptide affinity 

of the peptides, since there was not a clear relationship between the helicity experimentally measured 

(or the value theoretically calculated) and the measured affinities (Table 1). Although we cannot rule 
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out that peptide self-association could mask a clear relationship between those physico-chemical 

parameters, it seems that there are other additional factors governing the peptide binding to NUPR1. 

In fact, our in silico results pinpoint a specific peptide region (that marked in Fig. 4) that may be 

improved through a rational design, to modulate the binding to NUPR1. However, a delicate balance 

in the sequence should be maintained to preserve the amphipathic properties of the peptides, since 

the presence of a hydrophobic patch on their surface appears to be equally important to drive the 

binding of the C-terminal region of NUPR1. 

5. CONCLUSIONS  

Our results represent a proof-of-concept for the use of peptides with tuned physico-chemical 

properties to bind an IDP, and without any homology of sequence with respect to the target IDP. 

Furthermore, they show that peptides can be effectively used in cellulo as inhibitors of PPIs essential 

for IDPs biological functions. These findings open the possibility to use designed peptides (or 

peptidomimetics) as regulators of these challenging "druggable-targets". 
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SUPPLEMENTARY INFORMATION 

There are ten figures describing: the interaction of P-1, P-2 and P-4 with wild-type NUPR1 

followed by ANS fluorescence (Fig. S1); the interaction of P-3 with Thr68Gln mutant by 

fluorescence (Fig. S2) and ITC (Fig. S3); the fluorescence titrations of P-1 and P-4 (Fig. S4); the 

interaction of wild-type NUPR1 with P-3 monitored by CD (Fig. S5); the 2D 
1
H, 

15
N-HSQC NMR 

spectra of NUPR1 when P-1, P-3 and P-4 are added (Fig. S6); the decrease in absolute intensity for 

selected residues measured in the HSQC cross-peaks for the four peptides (Fig. S7), as their 

concentration was increased; the energetic results obtained by molecular docking (Fig. S8); the 

capture mechanism of a helical peptide by NUPR1 in simulation under conditions favouring a 

relatively less compacted protein state (Fig. S9); and the control experiment with the test peptide kit 

for the in cellulo experiments (Fig. S10).  
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Table 1: Sequences, percentage of helical structure and thermodynamic parameters in the NUPR1 binding of the peptides 
a
. 

Peptide % of helical structure 

(AGADIR)
b
 

% of helical structure 

(from CD measurements)
 b

 

Ka (M
-1

)
c 

KD (M)
c 

H (kcal mol
-1

)
c 

KD (M)
d
 

Ac-VKNWMTETLLRQ-NH2 (P-1) 13.90 8.4 9.4 x 10
5
 1.1 1.3 2.3 ± 0.8 

Ac-VKNWMTEYLLVQ-NH2 (P-2) 24.80 5.7 1.8 x 10
6
 0.57 1.7 1.6 ± 0.7 

Ac-VKNWMTEYLLRQ-NH2 (P-3) 52.88 8.2 3.1 x 10
5
 3.2 1.2 2 ± 1 

Ac-VKNWMTETLLVQ-NH2 (P-4) 4.59 6.9 4.4 x 10
5
 2.2 1.5 0.4 ± 0.2 

a
The P-4 is the wild-type sequence. Errors in the calorimetric measurements are estimated to be 15-20 % for Ka and KD and 5% for H. 

b
Data from (26). 

c
Determined from ITC measurements. Measurements were carried out at 15 ºC. 

d
Determined from fluorescence titrations. Errors are fitting errors to Eq. 1. Measurements were carried out at 25 ºC. 

 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 

 

46 

 

 

Table 2: Resonances of NUPR1 residues, whose relative intensities (with respect to Arg82) were affected by the presence of the peptide 
a 

Peptide Resonances
b
  

Ac-VKNWMTETLLRQ-NH2 (385 μM) (P-1) Thr8 (+); Glu18; Ala33 (+); Gly39; Gly44; Ala50 (+); Glu63; Asn72; Ser73 

Ac-VKNWMTEYLLVQ-NH2 (385 μM)
c
 (P-2) All cross-peaks broadened 

Ac-VKNWMTEYLLRQ-NH2 (405 μM) (P-3) Thr3; Thr8 (+); Glu18; Gly39; Gly44; Ala50; Thr54; Glu63; Asn72 

Ac-VKNWMTETLLVQ-NH2 (230 μM) (P-4) Thr8 (+); Glu18; Ala33 (+); Gly39; Gly44; Glu63; Asn72 

a
Only residues whose signals could be unambiguously integrated (that is, non-overlapping cross-peaks) are indicated. The peptide concentration 

used is indicated within parenthesis beside each peptide sequence. NUPR1 concentration was 190μM. Experiments were carried out at pH 4.5 

and 25 ºC. 

b
Residues with “+” sign indicate that the intensity variation was ~45 % of the relative intensity of the same cross-peak in the spectrum of the 

isolated NUPR1. Residues that showed variations in the relative intensity of cross-peaks (when compared to that in isolated NUPR1) larger 

than 15 % are indicated. 

c
P-2 was also tested at 430 μM concentration. 
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FIGURE LEGENDS 

FIGURE 1: Intrinsic and ANS-fluorescence characterization of the binding between P-3 and wild-

type NUPR1: (A) Fluorescence spectrum after excitation at 370 nm, in the presence of ANS, of the 

complex P-3/NUPR1 (15: 20 M) and that obtained by the addition of the spectra of each isolated 

molecule. (B) Fluorescence spectrum, after excitation at 280 nm, of the complex P-3/NUPR1 and that 

obtained by the addition of the spectra of each isolated molecule. (C) Fluorescence thermal denaturations 

followed by the emission at 480 nm, after excitation at 370 nm (in the presence of ANS) of the isolated 

NUPR1 (green, blank circles), P-3 (blue line) and of the complex (black line).  

 

FIGURE 2: ITC of wild-type NUPR1 and the peptides: Calorimetric titrations for (from left to right): 

P-1, P-2, P-3 and P-4. Thermograms (top) and binding isotherms (bottom) are shown. Non-linear fittings 

according to a model considering a single ligand binding site (continuous lines) are shown for each 

peptide. 

 

FIGURE 3: Interaction of wild-type NUPR1 and P-2 mapped by 2D 
1
H, 

15
N-HSQC spectra: Overlay 

of wild-type NUPR1 spectra at 0 (black); and 385 (red) M (in protomer units) of P-2. The same low 

contour level was used for both spectra. Experiments were acquired at pH 4.5 and 25 ºC. 

 

FIGURE 4: Preferred binding poses of the seven-residue-long NUPR1 sequence fragment centered 

on Ala33 onto the peptides. Binding modes calculated by using the AutoDock Vina (50) docking engine 

for the protein segment 30-36 of NUPR1 are mapped onto the ideal helical structure of the peptides 

(superimposed by rototranslation on the C
α
 atoms, and represented as a solid tube with the position of 

amino acids 1-7 shown as transparent volumes). The wheel scheme corresponding to an ideal -helix is 
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also displayed on the left, with the region showing the highest hydrophobicity indicated with a black line 

on top. 

FIGURE 5: Capture mechanism of an -helical peptide by NUPR1. The protein is oriented with the 

more compact N-terminal region at the bottom and the extended C-terminal region on top, with selected 

residues labeled. The P-2 peptide (in orange) is shown using a surface representation of the backbone. 

FIGURE 6: In situ PLA of peptides and wild-type NUPR1. Mouse anti-HA and rabbit anti-human 

wild-type NUPR1 were used to reveal the interaction between the C-RING1B and NUPR1 in HeLa 

cells. PLA was carried out as described (22,23) after cells were treated with the peptides (170 µM) for 4 

h.
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