000084149 001__ 84149
000084149 005__ 20230622083308.0
000084149 0247_ $$2doi$$a10.1039/c8tc03170c
000084149 0248_ $$2sideral$$a108809
000084149 037__ $$aART-2018-108809
000084149 041__ $$aeng
000084149 100__ $$aHakouk, K.
000084149 245__ $$aPlasmonic properties of an Ag@Ag2Mo2O7 hybrid nanostructure easily designed by solid-state photodeposition from very thin Ag2Mo2O7 nanowires
000084149 260__ $$c2018
000084149 5060_ $$aAccess copy available to the general public$$fUnrestricted
000084149 5203_ $$aA new Ag@m-Ag2Mo2O7 plasmonic hybrid nanostructure was designed by an easy two-step synthesis method. Firstly, very thin photosensitive monoclinic m-Ag2Mo2O7 nanowires (NWs) were synthesized under ambient pressure and at low temperature by using Ag2Mo3O10·2H2O NWs as a pre-nanostucturated starting material. This innovative soft chemistry route offers some precise control over the purity, the structure and the nanostructuration of the m-Ag2Mo2O7 NWs that exhibit a very thin diameter of around 100 nm and a superior specific surface area compared to previously reported synthesis methods. Secondly, the plasmonic hybrid nanostructure Ag@m-Ag2Mo2O7 was easily in situ obtained via an all solid-state photodeposition method, by irradiating the m-Ag2Mo2O7 NWs under low energy and low-power UV-light. The composition, morphology and plasmonic properties of the nanocomposite were investigated by a combination of energy-dispersive X-ray spectroscopy, high-resolution scanning transmission electron microscopy, X-ray photoelectron spectroscopy and Auger spectroscopy, and near-infrared, Raman and UV-vis spectroscopies as well as spatially-resolved electron energy-loss spectroscopy. A plausible mechanism explaining the formation of the nano-heterostructure under irradiation was also discussed. The Ag@m-Ag2Mo2O7 nanostructure manifests interesting plasmonic properties particularly high surface-enhanced Raman scattering (SERS) sensitivity probed using 2, 2'-bipyridine.
000084149 536__ $$9info:eu-repo/grantAgreement/ES/DGA/E26$$9info:eu-repo/grantAgreement/EC/H2020/642742/EU/Graphene-based nanomaterials for touchscreen technologies: Comprehension, Commerce and Communication/Enabling Excellence$$9This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No H2020 642742-Enabling Excellence$$9info:eu-repo/grantAgreement/ES/MINECO/MAT2016-79776-P
000084149 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/
000084149 590__ $$a6.641$$b2018
000084149 591__ $$aPHYSICS, APPLIED$$b20 / 148 = 0.135$$c2018$$dQ1$$eT1
000084149 591__ $$aMATERIALS SCIENCE, MULTIDISCIPLINARY$$b44 / 293 = 0.15$$c2018$$dQ1$$eT1
000084149 592__ $$a1.885$$b2018
000084149 593__ $$aMaterials Chemistry$$c2018$$dQ1
000084149 593__ $$aChemistry (miscellaneous)$$c2018$$dQ1
000084149 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000084149 700__ $$0(orcid)0000-0001-6152-6784$$aLajaunie, L.
000084149 700__ $$aEl Bekkachi, H.
000084149 700__ $$aSerier-Brault, H.
000084149 700__ $$aHumbert, B.
000084149 700__ $$0(orcid)0000-0002-2071-9093$$aArenal, R.$$uUniversidad de Zaragoza
000084149 700__ $$aDessapt, R.
000084149 7102_ $$12003$$2395$$aUniversidad de Zaragoza$$bDpto. Física Materia Condensa.$$cÁrea Física Materia Condensada
000084149 773__ $$g6, 41 (2018), 11086-11095$$pJ. mater. chem. C$$tJOURNAL OF MATERIALS CHEMISTRY C$$x2050-7526
000084149 8564_ $$s2981555$$uhttps://zaguan.unizar.es/record/84149/files/texto_completo.pdf$$yPostprint
000084149 8564_ $$s125624$$uhttps://zaguan.unizar.es/record/84149/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000084149 909CO $$ooai:zaguan.unizar.es:84149$$particulos$$pdriver
000084149 951__ $$a2023-06-21-14:58:59
000084149 980__ $$aARTICLE