000084384 001__ 84384
000084384 005__ 20210902121559.0
000084384 0247_ $$2doi$$a10.3390/en12183476
000084384 0248_ $$2sideral$$a114004
000084384 037__ $$aART-2019-114004
000084384 041__ $$aeng
000084384 100__ $$aRangel-Hernández, V.H.
000084384 245__ $$aThe exergy costs of electrical power, cooling, and waste heat from a hybrid system based on a solid oxide fuel cell and an absorption refrigeration system
000084384 260__ $$c2019
000084384 5060_ $$aAccess copy available to the general public$$fUnrestricted
000084384 5203_ $$aThis paper applies the Exergy Cost Theory (ECT) to a hybrid system based on a 500 kWe solid oxide fuel cell (SOFC) stack and on a vapor-absorption refrigeration (VAR) system. To achieve this, a model comprised of chemical, electrochemical, thermodynamic, and thermoeconomic equations is developed using the software, Engineering Equation Solver (EES). The model is validated against previous works. This approach enables the unit exergy costs (electricity, cooling, and residues) to be computed by a productive structure defined by components, resources, products, and residues. Most importantly, it allows us to know the contribution of the environment and of the residues to the unit exergy cost of the product of the components. Finally, the simulation of different scenarios makes it possible to analyze the impact of stack current density, fuel use, temperature across the stack, and anode gas recirculation on the unit exergy costs of electrical power, cooling, and residues.
000084384 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000084384 590__ $$a2.702$$b2019
000084384 591__ $$aENERGY & FUELS$$b63 / 112 = 0.562$$c2019$$dQ3$$eT2
000084384 592__ $$a0.635$$b2019
000084384 593__ $$aControl and Optimization$$c2019$$dQ2
000084384 593__ $$aElectrical and Electronic Engineering$$c2019$$dQ2
000084384 593__ $$aRenewable Energy, Sustainability and the Environment$$c2019$$dQ2
000084384 593__ $$aEnergy Engineering and Power Technology$$c2019$$dQ2
000084384 593__ $$aFuel Technology$$c2019$$dQ2
000084384 593__ $$aEnergy (miscellaneous)$$c2019$$dQ2
000084384 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000084384 700__ $$0(orcid)0000-0002-6360-1159$$aTorres, C.$$uUniversidad de Zaragoza
000084384 700__ $$aZaleta-Aguilar, A.
000084384 700__ $$aGómez-Martínez, M.A.
000084384 7102_ $$15004$$2590$$aUniversidad de Zaragoza$$bDpto. Ingeniería Mecánica$$cÁrea Máquinas y Motores Térmi.
000084384 773__ $$g12, 18 (2019), [15 pp.]$$pENERGIES$$tEnergies$$x1996-1073
000084384 8564_ $$s1201007$$uhttps://zaguan.unizar.es/record/84384/files/texto_completo.pdf$$yVersión publicada
000084384 8564_ $$s519389$$uhttps://zaguan.unizar.es/record/84384/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000084384 909CO $$ooai:zaguan.unizar.es:84384$$particulos$$pdriver
000084384 951__ $$a2021-09-02-08:34:29
000084384 980__ $$aARTICLE