Abstract: Resumen. Este artículo, se centra en la predicción de la irradiación solar global diaria horizontal, por ser el caso más interesante en la meteorología agrícola, por ejemplo, en las previsiones de necesidades de riego, utilizando la técnica de las redes neuronales artificiales (RNAs) de la inteligencia computacional, a partir de variables accesibles en las estaciones agrometeorológicas. El lugar donde fueron medidos los datos, utilizados para entrenar las RNAs, caracterizan donde se pueden volver a utilizar este tipo de modelos, en este estudio fueron las estaciones meteorológicas de la red SIAR en Castilla y León, en concreto la situada en Mansilla Mayor (León), durante los años 2004-2010. Los modelos RNAs se construyeron en la entrada con los datos medidos de irradiación solar global diaria de uno, dos y tres días anteriores, añadiendo el día del año J(t)=1..365, para predecir su valor el día siguiente. Los resultados obtenidos, validados durante el año 2011 completo RMSE=3,8012 MJ/(m2d), concluyen que las RNAs estudiadas mejoran los métodos clásicos comparados: 1) año típico CENSOLAR RMSE=5,1829 MJ/(m2d), 2) media móvil ponderada con la autocorrelación parcial de 11 días de retardo RMSE=3,9810 MJ/(m2d), 3) regresión lineal sobre el valor del día anterior RMSE=4,2434 MJ/(m2d), 4) año típico Fourier utilizado el 1er armónico RMSE=4,2747 MJ/(m2d), y 5) las matrices de transición de Markov para 33 estados posibles RMSE=4,3653 MJ/(m2d). Durante los días de cambio brusco en el nivel de irradiación solar, se observan los mayores errores de predicción. Se plantea utilizar en la entrada otras variables para mejorar la eficacia del modelo RNA. Una de las variables probadas fue el índice de claridad diario Kt=H/H0, resultando una mejora RMSE=3,7703 MJ/(m2d).Palabras clave: insolación, evapotranspiración, agrometeorología, inteligencia computacional.

Idioma: Español

DOI: 10.26754/c_agroing.2019.com.4229

Año: 2019

En: X Congreso Ibérico de Agroingeniería = X Congresso Ibérico de Agroengenharia : Libro de actas = Livro de atas


Creative Commons You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. You may not use the material for commercial purposes. If you remix, transform, or build upon the material, you may not distribute the modified material.


Este artículo se encuentra en las siguientes colecciones:
Communications and papers



 Record created 2019-11-06, last modified 2019-11-06


Fulltext:
Download fulltext
PDF

Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)