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Abstract 

The development of high-efficiency energy systems is a pressing issue nowadays, motivated by economic, 

environmental, and social aspects. Trigeneration systems allow for the rational use of energy by means of 

appropriate energy integration and provide greater operational flexibility, which is particularly interesting 

for buildings, often characterized by variable electricity, heating, and cooling demands. The benefits of 

trigeneration systems can be enhanced by the incorporation of thermal energy storage (TES), which 

decouples production and consumption. This paper analyses the operation of a simple trigeneration system 

including TES. The optimal operation is obtained by a linear programming model that minimizes the total 

variable cost. A thermoeconomic analysis based on marginal cost assessment of the internal flows and final 

products of the system is carried out, allowing to explain the optimal operation of the system and the role 

of the TES in achieving the optimal solution. The analysis unravels the marginal cost formation process, 

presenting a clear route from the final products obtained to the resources consumed. This information can 

aid the design of new plants, the retrofit of existing ones, and the operational management to achieve the 

minimum operational cost. 
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1 Introduction 

Sustainability-related issues, such as the efficient use of energy, the depletion of fossil fuels resources, and 

the increase in greenhouse gas emissions, have become ever-present themes in the design of energy systems 

over the years. Energy process integration not only leads to higher energy efficiency, but also reduces 

environmental burdens and the economic cost of the final products [1,2]. 

The combined production of two or more energy products from the same resource, as a result of appropriate 

energy integration, is a defining characteristic of polygeneration systems. Cogeneration, or Combined Heat 

and Power (CHP), has been successfully applied in the industrial sector for decades. The building sector 

accounts for 40% of the total energy use in the European Union [3]. By combining cogeneration with 

thermally activated technologies, such as absorption chillers, the thermal coverage can be extended to meet 

refrigeration demands. There is a large potential for trigeneration systems (or Combined Cooling, Heat, and 

Power – CCHP) in the building sector, for example of countries in the Mediterranean area. In fact, the 

European Commission’s Energy Performance of Buildings Directive [3] recognizes cogeneration as a 

strategic technology to contribute towards reducing energy dependency. 

In the design of trigeneration systems for buildings, two fundamental issues must be addressed [4]-[6]: (i) 

the synthesis of the plant configuration (installed technologies and capacities); and (ii) the operational 

planning (strategy concerning the operational state of the devices, energy flow rates, purchase/selling of 

electricity, etc.). For existing plants, the only concern is the operational planning; however, in the case of 

new plants, the design procedure is more complex because of the wide variety of commercially available 

technologies, the variability of energy demands (hourly and monthly), and the fluctuations in energy prices 

[7,8]. A common approach to this problem is the single objective model aimed at identifying the minimum 

cost as the objective function. The reviews of [9,10] gather the characteristics of the optimization methods 

for polygeneration systems presented in recent publications, indicating the time scale, the objective 

function, and the solution method employed. 

Thermal energy storage (TES) is playing an increasingly important role in the design of polygeneration 

systems, as demonstrated by several works [11]–[15]. As discussed in [16,17], the incorporation of TES is 
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particularly interesting for systems with: (i) time-varying electricity prices; (ii) low-grade waste heat 

production; and (iii) non-manageable renewable energy sources (RES). As a result, TES ensures energy 

security and environmental quality, reduces operation costs, and enhances overall system performance. 

Furthermore, it allows to reduce installed capacity of equipment, and thus capital costs. 

The fundamental problem of cost allocation can be formulated as follows [18]: Given a system whose limits 

have been defined and a level of aggregation that specifies the constituting subsystems, how to obtain the 

cost of all flows becoming interrelated in such structure. This task is further complicated as energy systems 

become more complex: multiple fuels (each with their prices), multiple products, multiple technologies, 

the incorporation of TES, and the energy integration (in a way that a change in the production of a flow 

may affect others, e.g. production of electricity and recovered heat in a cogeneration module). 

The thermoeconomic analysis of the optimal solution explains the reasons for the operational mode, obtains 

the marginal costs of internal flows and final products, and evaluates the economic impacts of changes in 

the demands or in the operational conditions of the devices [19]. 

The marginal cost corresponds to the cost of producing one more unit of a product. Therefore, it offers a 

clear route to understanding and managing the behavior of costs throughout the system. Because marginal 

costs are directly related to production, marginal cost assessment can [20]: (i) motivate investments in 

infrastructure and equipment, improving efficiency and reducing operational costs; (ii) present variation of 

production costs; and (iii) reflect variations in the market prices of the resources. Marginal costs have been 

used to provide information about the operation of energy systems in the building sector [19], waste 

facilities [21], power plants (site model) [22], site utility systems focusing on steam production [23], and 

district heating facilities [20,24], to name a few examples. Quelhas et al. [25] used marginal costs to analyze 

the influence of the various fuel networks (production, transportation and delivery of fossil fuels to the 

power plants) on the electric network. 

In a previous paper, Lozano et al. [19] have demonstrated the utility of assessing the marginal costs of the 

internal flows and final products of a simple trigeneration system. The incorporation of TES adds a new 

dimension to the cost allocation problem, as it requires determining not only the device that is producing 

the flow, but also the time in which the production took place. Therefore, taking the work developed by 

Lozano et al. [19] as starting point, the present paper aims to contribute by incorporating TES in the simple 

trigeneration system, determining its optimal operation for a day of the year by means of a linear 

programming (LP) model, and using the marginal costs obtained by the model to explain the optimal 

operation of the system and the role of the TES in achieving the optimal solution. It must be noted that the 

purpose of this study is to demonstrate the methodology and the power of marginal cost analysis. As stated 

in the title of the paper, the trigeneration system and the example developed herein are simple, but they 

allow for interesting analyses and conceptual interpretations. 

2 Simple trigeneration system including thermal energy storage 

Trigeneration systems are distinguished by the numerous alternative devices incorporated and existing 

configuration modes [7]. Basically, a trigeneration system is composed of a cogeneration module and a 

thermally activated technology. The cogeneration module consists of a prime mover (e.g. reciprocating 

internal combustion engine, gas turbine), which converts the chemical energy of the fuel into shaft power, 

an electricity generator, and heat recovery system. Thermally activated technologies (e.g. absorption 

chillers, adsorption chillers, desiccant dehumidifiers) are responsible for providing cooling and must be 

chosen to couple with the prime mover [8]. Auxiliary devices commonly incorporated in trigeneration 

systems are boilers and electric chillers. 

The simple trigeneration system analyzed herein, presented in Fig. 1, consists of a cogeneration module 

CM, consuming natural gas Fc and producing cogenerated electricity Wc and heat Qc, an auxiliary boiler 

AB, consuming fuel-oil Fa and producing heat Qa, an absorption chiller AC that provides cooling Rq, an 

electric chiller EC that provides cooling Re, and a thermal energy storage TES, used to store chilled water. 

The TES can be either charging Rin or discharging Rout; energy losses Rs are proportional to the stored 
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energy Sr and to the TES energy loss factor τTES. It was considered that the devices can operate at partial 

load without affecting their performances. Table 1 presents the technical parameters and capacity limits of 

the system’s devices. 

 

Fig. 1: Diagram of the simple trigeneration system analyzed. 

 

Table 1: Technical parameters and capacity limits of the trigeneration system’s devices 

Device Technical parameters Capacity limits 

Cogeneration Module (CM) 
αw = Wc/Fc = 0.35 

αq = Qc/Fc = 0.40 
Wmax = 350 kW 

Auxiliary Boiler (AB) ηq = Qa/Fa = 0.80 Qmax = 400 kW 

Absorption Chiller (AC) COPq = 0.625 Rq,max = 250 kW 

Electric Chiller (EC) COPe = 5 Re,max = 250 kW 

Thermal Energy Storage (TES) τTES = 0.01 h-1 Vmax = 2000 kWh 

 

The trigeneration system was designed to attend the electricity Ed, heating Qd, and cooling Rd demands of 

a consumer center (e.g. multifamily building). The energy demands are described by 24 consecutive periods 

of 1-hour duration, as presented in Table 2. 

Natural gas and fuel-oil are purchased at prices pfc = 0.025 €/kWh and pfa = 0.020 €/kWh, respectively. 

Electricity can be purchased from the grid Ep at price pep = 0.100 €/kWh and sold Es at a price pes = 0.080 

€/kWh. There is the possibility of wasting cogenerated heat into the environment Qcl and it was considered 

that no cost was associated with such dissipation rqcl = 0 €/kWh. 

Finally, the reasons for including a TES for cooling and not for heat (or both) were that (i) the cooling 

demand presents higher variations throughout the day compared to the heating demand, and (ii) the aim of 

this paper is to demonstrate the methodology and the power of marginal cost analysis; including two or 

more TES devices would hinder the clarity of the analysis. 
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3 Mathematical model 

In a trigeneration system as the one analyzed herein, each energy service can be provided by more than one 

device. For example, heating can be produced by the CM consuming natural gas or by the AB consuming 

fuel-oil. Given the multiple devices of the system, their capacity and performance, the fuel and electricity 

prices, and the energy demanded by the consumer center, several operation strategies are possible. The 

optimal operational planning of the plant that minimizes or maximizes a given objective function can be 

determined by a LP optimization model. 

The LP optimization model developed in the present work minimizes the daily operation cost DC, which 

corresponds to the sum of the hourly operation cost HC(h) for the 24 periods h (NP = 24) of 1-hour duration 

(NHP = 1) that comprise the day: 

𝑀𝑖𝑛 𝐷𝐶 = ∑ 𝐻𝐶(ℎ)

𝑁𝑃

ℎ=1

 (1) 

 

For each hourly period h, HC(h) includes the costs of purchasing electricity, natural gas, and fuel-oil, the 

cost associated with heat dissipation, and the income from selling electricity to the grid, as expressed by 

Eq. (2). 

𝐻𝐶(ℎ) = 𝑁𝐻𝑃 ∙ (𝑝𝑒𝑝(ℎ) ∙ 𝐸𝑝(ℎ) + 𝑝𝑓𝑐(ℎ) ∙ 𝐹𝑐(ℎ) + 𝑝𝑓𝑎(ℎ) ∙ 𝐹𝑎(ℎ) + 𝑟𝑞𝑐𝑙(ℎ) ∙ 𝑄𝑐𝑙(ℎ)          

− 𝑝𝑒𝑠(ℎ) ∙ 𝐸𝑠(ℎ)) 
(2) 

 

The objective function is subject to equipment constraints (capacity limits and production restrictions) and 

balance equations. 

 

Equipment constraints 

For each hourly period h, the productions of the devices are limited to their capacity limits, as expressed by 

Eqs. (3)-(6). In the case of the TES, the energy stored at the end of each period Srf(h) is limited to the 

maximum storage capacity Vmax, according to Eq. (7). 

CM_Wmax: 𝑊𝑐(ℎ) ≤ 𝑊𝑚𝑎𝑥 (3) 

AB_Qmax: 𝑄𝑎(ℎ) ≤ 𝑄𝑚𝑎𝑥  (4) 

AC_Rqmax: 𝑅𝑞(ℎ) ≤ 𝑅𝑞,𝑚𝑎𝑥 (5) 

EC_Remax: 𝑅𝑒(ℎ) ≤ 𝑅𝑒,𝑚𝑎𝑥  (6) 

Srf_Vol: 𝑆𝑟𝑓(ℎ) ≤ 𝑉𝑚𝑎𝑥 (7) 

 

Eqs. (8)-(12) express the equipment efficiency restrictions: 

CM_W: 𝛼𝑤 ∙ 𝐹𝑐(ℎ) − 𝑊𝑐(ℎ) = 0 (8) 

CM_Q: 𝛼𝑞 ∙ 𝐹𝑐(ℎ) − 𝑄𝑐(ℎ) = 0 (9) 

AB_Q: 𝜂𝑞 ∙ 𝐹𝑎(ℎ) − 𝑄𝑎(ℎ) = 0 (10) 

AC_R: 𝐶𝑂𝑃𝑞 ∙ 𝑄𝑟(ℎ) − 𝑅𝑞(ℎ) = 0 (11) 

EC_R: 𝐶𝑂𝑃𝑒 ∙ 𝐸𝑟(ℎ) − 𝑅𝑒(ℎ) = 0 (12) 

 

The energy losses Rs(h) are equal to the energy stored at the end of the previous period Srf(h-1) multiplied 

by the TES energy loss factor τTES: 

𝑅𝑠(ℎ) = 𝜏𝑇𝐸𝑆 ∙ 𝑆𝑟𝑓(ℎ − 1) (13) 

 

Given the daily regularity of the energy demands, the TES was considered to return to its initial state, which 

means that the energy stored at end of the day Srf(24) must be the same as the energy stored at the beginning 
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of the day Sri(1) (Eq. (14)). Because of the continuous operation of the TES, it follows that the energy stored 

at the beginning of an hourly period Sri(h) must be the same as the energy stored at the end of the previous 

period Srf(h-1) (Eq. (15)). 

𝑆𝑟𝑖(1) = 𝑆𝑟𝑓(24) (14) 

𝑆𝑟𝑖(ℎ) =  𝑆𝑟𝑓(ℎ − 1) (15) 

 

Balance equations 

The energy balances in the junctions and distributors of the system are expressed by Eqs. (16)-(20). 

S: 𝑊𝑐(ℎ) − 𝐸𝑠(ℎ) − 𝑊𝑐𝑐(ℎ) = 0 (16) 

P: 𝑊𝑐𝑐(ℎ) + 𝐸𝑝(ℎ) − 𝐸𝑟(ℎ) − 𝐸𝑑(ℎ) = 0 (17) 

L: 𝑄𝑐(ℎ) − 𝑄𝑐𝑐(ℎ) − 𝑄𝑐𝑙(ℎ) = 0 (18) 

Q: 𝑄𝑎(ℎ) + 𝑄𝑐𝑐(ℎ) − 𝑄𝑟(ℎ) − 𝑄𝑑(ℎ) = 0 (19) 

R: 𝑅𝑞(ℎ) + 𝑅𝑒(ℎ) + 𝑅𝑜𝑢𝑡(ℎ) − 𝑅𝑖𝑛(ℎ) − 𝑅𝑑(ℎ) = 0 (20) 

 

Energy balance in the TES yields the following expression: 

TS: 𝑆𝑟𝑖(ℎ)/𝑁𝐻𝑃 + 𝑅𝑖𝑛(ℎ) − 𝑅𝑜𝑢𝑡(ℎ) − 𝑅𝑠(ℎ) − 𝑆𝑟𝑓(ℎ)/𝑁𝐻𝑃 = 0 (21) 

 

It should be noted that the model could be more complex by considering more detailed operation conditions 

(e.g. minimum capacity limits of the devices, cost of heat dissipation, performance variations with load, 

time changing electricity tariffs). However, in accordance with [19], increasing the complexity of the model 

would not provide more relevant conclusions and would hide, to some extent, the clarity of the analysis. 

Furthermore, this evaluation only considers the operational costs of the system; however, capital costs could 

be easily incorporated in the analysis 

4 Optimal operation 

Given the technical parameters and capacity limits of the system’s devices, energy prices, and demand data, 

the optimal operation model was solved using the software LINGO [26]. The main flows of the optimal 

operation are presented in Table 2, in which Egrid represents the net electricity exchanged with the electric 

grid (negative values mean selling, positive values mean purchase) and RTES indicates whether the TES is 

charging (positive values) or discharging (negative values). 

The optimal operation of the system brings a total cost of 660.8 €/day. The production of electricity and 

heat in the optimal operation of the trigeneration system and the respective energy demands are presented 

in Fig. 2. The CM operates at full load throughout the day (load factor of 100%), providing electricity for 

the consumer center Ed and for internal consumption in the electric chiller Er. Natural gas consumption in 

the CM totals 600.0 €/day. In the morning (from hours 1 to 8) and in the night (hours 23 and 24), the system 

sells surplus electricity to the grid; 9.4% of the electricity produced is sold, resulting in an income of 63.3 

€/day. On the other hand, from hours 9 to 13 and 17 to 22, the system purchases electricity; 13.2% of the 

electricity consumed (Ed + Er) comes from the electric grid, leading to a purchasing cost of 115.6 €/day. 

Hours 14 to 16 are characterized by a match between electric production and consumption (Egrid = 0 kW). 

Regarding the heat production, 96.6% of the heat produced by the system is provided by the CM; the 

remaining 3.4% is produced by the AB. As can be seen in Fig. 2, the AB operates marginally (load factor 

of 4%) in order to cover heat peak demands of the consumer center, e.g. hours 10, 11, and 20. Fuel-oil 

consumption in the AB totals 8.6 €/day. Energy integration allows the produced heat to be used in the AC 

for cooling production. In this way, it is possible to cover part of the cooling demand with cogenerated heat. 
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Table 2: Optimal operation of the system. Energy flows in kWh and cost in € 

Hour Ed Qd Rd Egrid Fc Wc Wcc Qc Qcc Qcl Fa Qa Qr Rq Er Re RTES Rs Srf Cost 

1 253.6 168.4 0.0 -96.4 1000 350 253.6 400 400 0 0.0 0.0 231.6 144.8 0.0 0.0 144.8 2.4 385.7 17.3 

2 247.0 0.0 0.0 -103.0 1000 350 247.0 400 400 0 0.0 0.0 400.0 250.0 0.0 0.0 250.0 3.9 631.9 16.8 

3 241.7 0.0 0.0 -108.3 1000 350 241.7 400 400 0 0.0 0.0 400.0 250.0 0.0 0.0 250.0 6.3 875.6 16.3 

4 237.7 0.0 0.0 -112.3 1000 350 237.7 400 400 0 0.0 0.0 400.0 250.0 0.0 0.0 250.0 8.8 1116.8 16.0 

5 253.6 0.0 0.0 -96.4 1000 350 253.6 400 400 0 0.0 0.0 400.0 250.0 0.0 0.0 250.0 11.2 1355.6 17.3 

6 262.9 0.0 0.0 -87.1 1000 350 262.9 400 400 0 0.0 0.0 400.0 250.0 0.0 0.0 250.0 13.6 1592.1 18.0 

7 286.8 168.4 0.0 -63.2 1000 350 286.8 400 400 0 0.0 0.0 231.6 144.8 0.0 0.0 144.8 15.9 1720.9 19.9 

8 324.0 244.0 0.0 -6.1 1000 350 343.9 400 400 0 0.0 0.0 156.0 97.5 19.9 99.4 196.9 17.2 1900.6 24.5 

9 377.1 378.0 0.0 27.1 1000 350 350.0 400 400 0 0.0 0.0 22.0 13.7 0.0 0.0 13.7 19.0 1895.3 27.7 

10 468.7 570.5 0.0 118.7 1000 350 350.0 400 400 0 213.1 170.5 0.0 0.0 0.0 0.0 0.0 19.0 1876.3 41.1 

11 494.0 446.8 0.0 144.0 1000 350 350.0 400 400 0 58.5 46.8 0.0 0.0 0.0 0.0 0.0 18.8 1857.6 40.6 

12 454.1 309.3 0.0 104.1 1000 350 350.0 400 400 0 0.0 0.0 90.7 56.7 0.0 0.0 56.7 18.6 1895.7 35.4 

13 369.1 202.8 0.0 19.1 1000 350 350.0 400 400 0 0.0 0.0 197.2 123.3 0.0 0.0 123.3 19.0 2000.0 26.9 

14 325.3 405.5 719.8 0.0 1000 350 350.0 400 400 0 6.9 5.5 0.0 0.0 24.7 123.4 -596.4 20.0 1383.6 25.1 

15 313.4 319.6 644.0 0.0 1000 350 350.0 400 400 0 0.0 0.0 80.4 50.2 36.6 183.2 -410.6 13.8 959.1 25.0 

16 338.6 299.0 698.2 0.0 1000 350 350.0 400 400 0 0.0 0.0 101.0 63.1 11.4 57.0 -578.0 9.6 371.5 25.0 

17 414.3 240.6 614.4 112.4 1000 350 350.0 400 400 0 0.0 0.0 159.4 99.7 48.1 240.7 -274.0 3.7 93.7 36.2 

18 468.7 299.0 359.0 168.7 1000 350 350.0 400 400 0 0.0 0.0 101.0 63.1 50.0 250.0 -45.8 0.9 47.0 41.9 

19 452.8 405.5 296.5 152.8 1000 350 350.0 400 400 0 6.9 5.5 0.0 0.0 50.0 250.0 -46.5 0.5 0.0 40.4 

20 455.5 508.6 243.3 154.1 1000 350 350.0 400 400 0 135.8 108.6 0.0 0.0 48.7 243.3 0.0 0.0 0.0 43.1 

21 418.3 405.5 247.9 117.8 1000 350 350.0 400 400 0 6.9 5.5 0.0 0.0 49.6 247.9 0.0 0.0 0.0 36.9 

22 361.2 319.6 177.0 36.5 1000 350 350.0 400 400 0 0.0 0.0 80.4 50.2 25.3 126.7 0.0 0.0 0.0 28.7 

23 308.1 240.6 0.0 -41.9 1000 350 308.1 400 400 0 0.0 0.0 159.4 99.7 0.0 0.0 99.7 0.0 99.7 21.6 

24 273.5 168.4 0.0 -76.5 1000 350 273.5 400 400 0 0.0 0.0 231.6 144.8 0.0 0.0 144.8 1.0 243.4 18.9 

Day 8400.0 6100.0 4000.0 364.3 24000 8400 7608.8 9600 9600 0 428.0 342.4 3842.4 2401.5 364.3 1821.5 223.0 223.0 22302.0 660.8 
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Fig. 2: Electricity (left) and heat (right) flows in the optimal operation. 

Fig. 3 shows the cooling production and demand, and the energy stored at the end of each hourly period in 

the optimal operation of the trigeneration system. Even though cooling is only required by the consumer 

center between hours 14 and 22, its production also takes place at other hours to charge the TES. 

Considering all the cooling produced by the system, 56.9% corresponds to the production in the AC (load 

factor of 40%), while 43.1% corresponds to the production in the EC (load factor of 30%). Charging of the 

TES begins at hour 23 of the previous day. By the time cooling demand starts (hour 14), the TES is fully 

charged with 2000 kWh. Discharging takes place from hour 14 to 19; considering the daily cooling demand, 

almost half of it is supplied by the TES, meaning that it was produced at a different previous hour. 

 

Fig. 3: Cooling flows (left) and energy stored at the end of each hourly period (right) in the optimal operation. 

The thermal energy storage unit allows to decouple production from consumption. For this reason, the 

excess heat produced by the CM (hours 1 to 9, 12 ,13, 23 and 24) can be fully exploited in the AC for 

cooling production and storage instead of wasted to the environment. In fact, there is no dissipation of 

cogenerated heat to the environment (Qcl = 0 kWh). The stored cooling will displace the operation of the 

EC, reducing the internal electricity consumption and thus resulting in more electricity available for selling 

or less electricity required to purchase. 

5 Marginal cost analysis 

Thermoeconomics combines thermodynamic principles with economic analysis, aiming at revealing 

opportunities of energy and cost savings in the analysis, diagnosis, and optimization of energy conversion 

systems that are not available through conventional methods [27], [28]. Obtaining unit costs of internal 

flows and final products of energy systems is a cornerstone of several thermoeconomic methodologies that 

have been presented in the literature [19]. 

Three different approaches to determine the unit costs of internal flows and final products of a simple 

trigeneration system were presented in [29], namely marginal cost analysis, valuation of products according 

to their market prices, and internal costs calculation. It was concluded that the calculation method must be 

selected based on the specific objectives of the analysis. 

It is important to distinguish between unit (or average) and marginal costs: Unit cost is the total cost divided 

by the total quantity produced, while marginal cost is the additional cost associated with an additional 
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quantity of something. The issue is that unit costs do not explain the reasons for the optimal operation mode 

of the plant, nor do they provide information about the behavior of the system’s operation given a change 

in external circumstances (e.g. energy demand changes). Furthermore, unit cost calculation in energy 

systems with joint production, such as trigeneration systems, can only be achieved by stablishing arbitrary 

cost allocation rules. 

On the other hand, marginal costs can give valuable insight into process optimization, indicating constraints 

that could be changed to improve the objective function, product pricing as well as business decisions [19], 

[22]. Because marginal costs are intrinsically related to the operation of the system, a “marginal path” can 

be traced, linking the point at which the marginal change is required (e.g. consumer center’s energy 

demand), via one or more items of the system’s equipment, to the system boundary where changes in the 

fuel and/or electricity purchases can be evaluated; the term “marginal path” is generally reserved to the one 

which incurs the smallest marginal cost [30]. 

Marginal costs are difficult to calculate given the several possibilities of production paths, especially in 

systems with high level of energy integration. Computational tools facilitate the calculation of marginal 

costs and the analysis of the influences of changes in the input data. 

Together with the optimal operation of the system, the LINGO solution report provides a dual price figure 

for each constraint of the model. This dual price figure indicates the amount by which the objective function 

(in this case, the daily operation cost) would change as the constant term of the constraint is increased by 

one unit. If a constraint expresses the production of a flow, then its dual price can be interpreted as the 

marginal cost λ of this flow. 

Table 3 presents for each hourly period the dual prices of selected constraints from the mathematical model 

described in Section 3, namely equipment constraints CM_Wmax (Eq. (3)), CM_W (Eq. (8)), CM_Q (Eq. 

(9)), AC_R (Eq. (11)), and EC_R (Eq. (12)), and balance equations P (Eq. (17)), Q (Eq. (19)), and R (Eq. 

(20)). The following sections present a detailed interpretation of the dual prices associated with the system’s 

constraints and final products. 

5.1 Marginal costs of the final products 

The dual prices of constraints P, Q, and R can be interpreted as the marginal costs of the electricity λEd, 

heat λQd, and cooling λRd, respectively, as can be seen in Table 3. Examples of the interpretation of the 

marginal costs for selected hours are presented in the following paragraphs. 

Figures 4, 5, and 6 graphically explain the “marginal paths” of the final products of the trigeneration system 

for hours 8, 9, and 15, respectively. In the three Figures, the “marginal paths” of the electricity, heat, and 

cooling are represented by bold, dashed, and dotted lines, respectively. It should be noted that marginal 

costs are evaluated individually, therefore the Figures 4, 5, and 6 present the marginal costs of each of the 

final products and not of the production of all three at the same time. 

 

Hour 8: Of simultaneous energy service production and supply 

At hour 8 electricity is sold to the electric grid, the CM is operating at full load, and cooling is produced in 

both the AC and EC. The marginal cost of the electricity is λEd = 0.080 €/kWh, which indicates that if an 

additional unit of electricity is required, one less unit will be sold to the market; thus, λEd can be interpreted 

as the selling price pes (λEd = 1⸱pes = 0.080 €/kWh). The marginal cost of the heat λQd = 0.010 €/kWh can 

be interpreted as follows: If an additional unit of heat is required, one less unit will be directed to the AC, 

resulting in 1∙COPq = 0.625 kWh less of cooling produced; the depletion will be covered by the EC with 

0.625/COPe = 0.125 kWh less of electricity available to be sold to the electric grid (λQd = 0.125⸱pes = 0.010 

€/kWh). The marginal cost of cooling is λRd = 0.016 €/kWh, which means that the additional unit of cooling 

will be provided by the EC with 1/COPe = 0.200 kWh of electricity at selling price (λRd = 0.200⸱pes = 0.016 

€/kWh). 
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Table 3: Dual prices of selected constraints, in €/kWh 

Hour 
Constraints 

CM_Wmax CM_W CM_Q AC_R EC_R P (λEd) Q (λQd) R (λRd) 

1 -0.0192 0.0608 0.0093 0.0149 - 0.0800 0.0093 0.0149 

2 -0.0193 0.0607 0.0094 0.0151 - 0.0800 0.0094 0.0151 

3 -0.0194 0.0606 0.0095 0.0152 - 0.0800 0.0095 0.0152 

4 -0.0195 0.0605 0.0096 0.0154 - 0.0800 0.0096 0.0154 

5 -0.0197 0.0603 0.0097 0.0155 - 0.0800 0.0097 0.0155 

6 -0.0198 0.0602 0.0098 0.0157 - 0.0800 0.0098 0.0157 

7 -0.0199 0.0601 0.0099 0.0158 - 0.0800 0.0099 0.0158 

8 -0.0200 0.0600 0.0100 0.0160 0.0160 0.0800 0.0100 0.0160 

9 -0.0401 0.0599 0.0101 0.0162 - 0.1000 0.0101 0.0162 

10 -0.0571 0.0429 0.0250 - - 0.1000 0.0250 0.0163 

11 -0.0571 0.0429 0.0250 - - 0.1000 0.0250 0.0165 

12 -0.0405 0.0595 0.0104 0.0167 - 0.1000 0.0104 0.0167 

13 -0.0406 0.0594 0.0105 0.0168 - 0.1000 0.0105 0.0168 

14 -0.0542 0.0429 0.0250 - 0.0194 0.0970 0.0250 0.0194 

15 -0.0406 0.0574 0.0123 0.0196 0.0196 0.0980 0.0123 0.0196 

16 -0.0417 0.0573 0.0124 0.0198 0.0198 0.0990 0.0124 0.0198 

17 -0.0429 0.0571 0.0125 0.0200 0.0200 0.1000 0.0125 0.0200 

18 -0.0430 0.0570 0.0126 0.0202 0.0200 0.1000 0.0126 0.0202 

19 -0.0571 0.0429 0.0250 - 0.0200 0.1000 0.0250 0.0204 

20 -0.0571 0.0429 0.0250 - 0.0200 0.1000 0.0250 0.0200 

21 -0.0571 0.0429 0.0250 - 0.0200 0.1000 0.0250 0.0200 

22 -0.0429 0.0571 0.0125 0.0200 0.0200 0.1000 0.0125 0.0200 

23 -0.0190 0.0610 0.0091 0.0146 - 0.0800 0.0091 0.0146 

24 -0.0191 0.0609 0.0092 0.0148 - 0.0800 0.0092 0.0148 

 

Alternative production paths can be identified in Fig. 4 and proved to be more costly than their respective 

“marginal paths”. For example, the additional unit of heat could be supplied by the AB with the 

consumption of 1/ηq = 1.250 kWh of fuel-oil valued at price pfa = 0.020 €/kWh, thus resulting in a marginal 

cost of 0.025 €/kWh, which is more than double the λQd. The additional cooling could be supplied by the 

AC with 1/COPq = 1.6 kWh of heat from the AB, which requires 1.6/ηq = 2 kWh of fuel-oil at price pfa = 

0.020 €/kWh, thus resulting in a marginal cost of 0.040 €/kWh, which is more than double the λRd; this 

shows that cooling production in the EC with electricity (either at purchasing or selling price) is more 

profitable than in the AC with heat from the AB. This is why whenever cooling is required at hour 8 it is 

produced in the EC rather than in the AC. 

Less obvious production paths can be traced by including the TES and connecting the system’s operation 

at hour 8 to other hourly periods. However, these would also prove to be more costly than the “marginal 

paths” obtained. Examples of how and why production should be advanced or postponed by using the TES 

to supply cheaper energy services are given below for hours 9 and 15. 
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Fig. 4: Marginal paths for hour 8. 

 

Hour 9: Of why energy service production should be advanced 

Even though the TES is charging at hour 8, it does not directly affect the marginal costs of the final products 

of the trigeneration system at that hour, i.e. it is not included in the “marginal path”. By contrast, Fig. 5 

shows that the “marginal paths” of the heat and cooling supplied at hour 9 are linked to the system’s 

operation at hour 8 through the TES. 

 

Fig. 5: Marginal paths for hour 9. 

At hour 9, the marginal cost of the electricity is λEd = 0.1000 €/kWh, which indicates that if an additional 

unit of electricity is required, it will be purchased from the electric grid at purchasing price (λEd = 1·pep = 

0.1000 €/kWh). In this case, both the purchase and the supply of the marginal electricity take place within 

hour 9. 

On the other hand, the “marginal paths” of the heat and cooling include the TES, meaning that production 

is displaced in time. The marginal cost of the heat λQd = 0.0101 €/kWh can be interpreted as follows: If an 

additional unit of heat is required, one less unit will be directed to the AC, resulting in 1∙COPq = 0.625 kWh 

less of cooling produced; because the TES is being charged at hour 9, 0.625 kWh less of cooling will be 
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stored. The depletion must be offset at hour 8, when cooling can be produced in the EC with electricity at 

selling price pes. However, because of energy losses in the TES, more than 0.625 kWh of cooling must be 

produced and stored at hour 8. Given the required discharge at hour h, Rout(h), Eq. (22) allows to determine 

how much cooling must be produced and stored at hour k, Rin(k). 

𝑅𝑜𝑢𝑡(ℎ) = 𝑅𝑖𝑛(𝑘) ∙ (1 − 𝜏𝑇𝐸𝑆)(ℎ−𝑘) (22) 

 

It follows that to compensate for the lack of 0.6250 kWh of cooling at hour 9, 0.6313 kWh of cooling must 

be produced and stored at hour 8 with the consumption of 0.1263 kWh of electricity at selling price (λQd = 

0.1263⸱pes = 0.0101 €/kWh). The same reasoning can be applied to the marginal of cooling λRd = 0.0162 

€/kWh: Supplying an additional unit of cooling at hour 9 reduces storage in the same amount, which must 

be compensated by producing 1.0101 kWh of cooling (1 kWh + energy losses) at hour 8 with 0.2020 kWh 

of electricity at selling price (λRd = 0.2020⸱pes = 0.0162 €/kWh). 

Alternative (and more costly) production paths can be identified in Fig. 5, similarly to those explained for 

hour 8 (Fig. 4). It becomes clear that even though at hour 9 the devices AB, AC, and EC are able to supply 

the marginal energy services, production must be advanced to hour 8 in order to achieve lower costs. 

 

Hour 15: Of why energy service production should be postponed 

As shows Fig. 6, the “marginal paths” of electricity, heat, and cooling supplied at hour 15 are linked to the 

system’s operation at hour 17 through the TES. 

 

Fig. 6: Marginal paths for hour 15. 

At hour 15, the CM operates at full load, both AC and EC operate at partial load, and the TES is discharging 

(discharging takes place from hours 14 to 19). Moreover, there is neither purchase nor selling of electricity. 

The marginal cost of the electricity λEd = 0.0980 €/kWh can be interpreted as follows: If an additional unit 

of electricity is required at hour 15, the system will reduce EC consumption by 1 kWh and compensate the 

lack of 1⸱COPe  = 5 kWh of cooling by increasing the discharge from the TES. Consequently, there will be 

less cooling stored in the following hours, which will ultimately affect the system’s operation at the end of 

the discharging period (hour 19). Therefore, that is the most appropriate time for the compensation to take 

place. Nevertheless, at hour 19 the EC operates at full load and thus its production cannot be increased. The 

same is true for hour 18. Finally, the production in the EC must take place at hour 17 with electricity 

purchased from the grid. It is interesting to notice that, because now storage time has reduced from five 

hours (from 14 to 19) to two (from 17 to 19), the production will be smaller than the corresponding 

consumption. The exact figure can be determined by Eq. (22), whose application in this particular case of 

postponed production gives how much energy must be produced at hour k Rin(k) in order to compensate for 

a discharge at a previous hour h Rout(h). 
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It follows that to compensate for the discharge Rout(15) = 5 kWh at hour 15, Rin(17) = 4.9050 kWh of cooling 

must be produced at hour 17; the corresponding electricity consumption in the EC 4.9050/COPe = 0.9810 

kWh valued at purchasing price gives the marginal cost of the electricity supplied at hour 15 (λEd = 

0.9810⸱pep = 0.0980 €/kWh). 

Thus, the correct interpretation of the arrows in Fig. 6 is that production is being postponed by increasing 

the discharge of energy that is already stored, and not that energy is being stored from hour 17 to hour 15. 

The marginal costs of the heat λQd = 0.0123 €/kWh and cooling λRd = 0.0196 €/kWh can be understood 

following the same logic. By consuming an additional unit of heat at hour 15, 1∙COPq = 0.625 kWh less of 

cooling is produced, which must be compensated by increasing the discharge from the TES. At hour 17, 

0.6125 kWh of cooling must be produced in the EC with 0.1225 kWh of purchased electricity (λQd = 

0.1225⸱pep = 0.0123 €/kWh). Similarly, the additional consumption of 1 kWh of cooling at hour 15 increases 

consumption of purchased electricity in the EC at hour 17 by 0.1960 kWh (λRd = 0.1960⸱pep = 0.0196 

€/kWh). 

5.2 Cyclical view of the operation with TES 

Both hours 9 and 15 use the TES to shift marginal production in time. However, while the shift that takes 

place from hour 9 to hour 8 advances production, the one from hour 15 to 17 postpones it. There lies a 

fundamental difference. By advancing production the storage time increases and so do the energy losses. 

Therefore, the production that takes place at hour 8 is higher than the corresponding supply at hour 9 

(production at hour 8 = marginal supply at hour 9 + energy losses). This situation can only be profitable if: 

(i) the energy resource is cheaper enough at a previous hour than at the hour of supply as to compensate for 

energy losses (e.g. hour 8 pes versus hour 9 pep), or (ii) it is more profitable to support a higher operation 

cost due to energy losses than to increase installed capacity. On the other hand, by postponing production 

the storage time decreases and so do the energy losses. Therefore, production at hour 17 will be smaller 

than the corresponding supply at hour 15 (production at hour 17 = marginal supply at hour 15 - energy 

losses), and so λ(15) < λ(17). 

With these key hours explained, a more general approach to the marginal costs of the 24-hour operation of 

the system can be taken. Fig. 7, Fig. 8, and Fig. 9 present the marginal costs from Table 3 of the electricity, 

heat, and cooling, respectively, and highlight the interconnection between the hourly periods through the 

TES. The enclosed numbers represent the operation hours, while the numbers on the outside express the 

corresponding marginal costs in €/kWh. 

In each Figure, gray scales are used to represent different origins of the marginal final products of the 

trigeneration system. In the case of the electricity (Fig. 7), periods in white are those in which the marginal 

electric demand is covered by internal production at the same hour, that is, there is no shift in production. 

Therefore, following the same logic as explained for hour 8, the marginal cost of electricity in such periods 

can be interpreted as the selling price pes = 0.080 €/kWh. In black periods the marginal cost of the electricity 

can be interpreted as the purchasing price pep = 0.100 €/kWh because the marginal electricity comes from 

the electric grid, as explained for hour 9. Lastly, light gray periods are those in which it is possible to 

postpone production to hour 17, as explained for hour 15. It can be seen that the marginal costs of the 

electricity increase from hours 14 to 17, as the time difference between the supply and the corresponding 

production shortens. 
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Fig. 7: Hourly marginal costs of the electricity, in €/kWh. 

 

Regarding the heat production (Fig. 8), the same concepts as described for the white and light gray periods 

in Fig. 7 apply. In the case of white periods, the marginal cost varies according to the different resources 

consumed: (i) at hour 8, the marginal cost of the heat is related to the production of cooling in the EC with 

electricity at selling price pes = 0.080 €/kWh; (ii) hours 17 and 22 follow the same logic as hour 8 but with 

electricity purchased from the electric grid at pep = 0.100 €/kWh; (iii) for the rest of the white periods, the 

marginal heat is produced by the AB at pfa/ηq = 0.025 €/kWh. The marginal cost of the heat in periods that 

postpone production (light gray periods) or advance it (dark gray periods) are related to the price of the 

resource consumed in the period in which the production takes place. For example, hours 1 to 7, 23, and 24 

postpone production to hour 8, in which electricity is sold at pes = 0.080 €/kWh, so their marginal costs will 

be lower than λQd(8) = 0.0100 €/kWh. Likewise, hours 15 and 16 advance consumption from hour 17, when 

the system purchases electricity at pep = 0.100 €/kWh, so their marginal costs will be lower than λQd(17) = 

0.0125 €/kWh. The same considerations are valid for the marginal costs of cooling (Fig. 9). 

 

Fig. 8: Hourly marginal costs of the heat, in €/kWh. 
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Fig. 9: Hourly marginal costs of the cooling, in €/kWh. 

It becomes clear that even though only a TES for cooling is included, the thermal integration in the 

trigeneration system allows to extend the benefits of the storage to the other utilities, e.g. electricity and 

heat. 

 

5.3 Internal constraints 

The marginal costs of the internal flows can be obtained by interpreting the dual prices corresponding to 

constraints (3)-(21) of the optimization model. The following paragraphs provide examples of interpretation 

of the dual prices obtained, some of which are shown in Table 3. 

 

Capacity limits 

Capacity limits impose an upper limit to the device’s production. Increasing the right-hand side of the 

constraint (or the constant term) allows the device to increase its maximum production. Therefore, the 

associated dual price can be interpreted as the marginal cost of producing an additional unit of product. Of 

course, only active restrictions present non-zero dual prices (i.e. only when the corresponding device 

operates at full load, otherwise it would make no difference to increase installed capacity). In fact, dual 

prices of constraints AB_Qmax (Eq. (4)) and AC_Rqmax (Eq. (5)) are always zero because neither device 

reaches its maximum capacity. Moreover, it should be noted that the analysis carried out in this paper only 

considers operation costs and not capital costs. 

Constraint CM_Wmax (Eq. (3)) limits the production of electricity Wc in the CM to a maximum Wmax. 

Increasing Wmax by one unit leads to: 

• An increase in the production of electricity of 1 kWh; 

• An increase in the consumption of natural gas of 1/αw = 2.8570 kWh; 

• An increase in the production of cogenerated heat of αq/αw = 1.1428 kWh. 

While the additional consumption of natural gas increases the total operation cost, producing more 

electricity and cogenerated heat creates savings that can be valued at the marginal costs of electricity and 

heat, respectively. For each hourly period, the marginal cost associated with restriction CM_Wmax can be 

interpreted as the economic impact that the three effects have on the objective function: 

𝜆𝐶𝑀_𝑊𝑚𝑎𝑥(ℎ) = 2.8570 ∙ 𝑝𝑓𝑐 − 1 ∙ 𝜆𝐸𝑑(ℎ) − 1.1428 ∙ 𝜆𝑄𝑑(ℎ) (23) 
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For example, at hour 8 the cost associated with the increase in the consumption of natural gas is 2.8570⸱pfc 

= 0.0714 €/kWh, the increase in electricity and cogenerated heat productions allow for savings of 1⸱λEd(8) 

= 0.0800 €/kWh and 1.1428⸱λQd(8) = 0.0114 €/kWh, respectively. This results in a decrease of 0.0200 

€/kWh in the total operation cost. The negative sign in λCM_Wmax(8) = -0.0200 €/kWh shows that an 

increase in the capacity limit Wmax would lead to an improvement in the objective function (i.e., reduction 

of the total operation cost). 

The EC operates at full load at hours 18 and 19. At these hours, the dual prices associated with constraint 

EC_Remax (Eq. (6)) are -0.0002 €/kWh and -0.0004 €/kWh, respectively. The interpretation is that, 

because hours 18 and 19 advance production to hour 17, increasing cooling production in the EC by 1 kWh 

at such hours would decrease production at hour 17. For example, at hour 18 the additional cooling would 

be produced with 0.2000 kWh of purchased electricity at pep = 0.1000 €/kWh, thus reducing the purchase 

of electricity at hour 17 by 0.2020 kWh. Therefore: 

𝜆𝐸𝐶𝑅𝑒𝑚𝑎𝑥(18) = 0.200 ∙ 𝑝𝑒𝑝 − 0.202 ∙ 𝑝𝑒𝑝 = −0.0002 €/𝑘𝑊ℎ (24) 

 

As can be seen, this change results in a reduction of 0.0002 €/kWh in the total operation cost, which is equal 

to the marginal cost associated with restriction EC_Remax at hour 18. 

The constraint Sri_Vol (Eq. (7)) only has a non-zero dual price at hour 14, when the TES is fully charged. 

At that hour, it would be profitable to be able to store an additional unit of energy, which would allow to 

increase cooling production and storage at hour 8 (with electricity at pes = 0.080 €/kWh) and reduce cooling 

production at hour 17 (with purchased electricity at pep = 0.100 €/kWh). 

 

Production constraints 

Production constraints are associated with the efficiency of production in each device. By increasing the 

right-hand side of the constraint, either the device consumption increases in order to keep the production 

unchanged or the production decreases to maintain consumption. Unlike capacity constraints, the marginal 

cost associated with production constraints have a negative impact on the objective function (i.e. increase 

the total operation cost). 

The constraint CM_W (Eq. (8)) is associated with the efficiency of electricity production in the CM. By 

increasing the right-hand side of Eq. (8) by one unit, either Wc is kept unchanged and Fc is increased or Wc 

is decreased and Fc is kept constant. It can be demonstrated that the former alternative is more profitable 

because (i) the electricity from the CM is cheaper than the purchase and selling prices of electricity (if the 

cost of fuel consumption were allocated entirely to the electricity production, its unit price would be 0.0714 

€/kWh, which is lower than pep and pes), so reducing its production would incur in a greater cost; and (ii) 

by increasing fuel consumption by 1/αw = 2.8570 kWh, the production of cogenerated heat increases 

accordingly αq/αw = 1.1428 kWh, displacing production in another device. 

For each hourly period, the marginal cost of constraint CM_W can be interpreted as the economic impacts 

of the consumed fuel 2.8570 kWh, valued at pfc = 0.025 €/kWh, and the produced heat 1.1428 kWh, valued 

at the corresponding marginal cost λQd(h). For example, at hour 8: 

𝜆𝐶𝑀_𝑊(8) = 2.8570 ∙ 𝑝𝑓𝑐 − 1.1428 ∙ 𝜆𝑄𝑑(8) = 0.0600 €/𝑘𝑊ℎ (25) 

 

Constraint CM_Q (Eq. (9)) is associated with the efficiency of production of cogenerated heat in the CM. 

By increasing the right-hand side of Eq. (9) by one unit, the cogenerated heat Qc would decrease by the 

same amount. This happens because the consumption of natural gas is defined by the electric production 

Wc, which, as explained, remains constant. The lack of cogenerated heat must be compensated by 

production elsewhere at the corresponding marginal cost λQd(h). 

Whenever the AB operates, the dual price associated with restriction AB_Q (Eq. (10)) will be that of 

producing 1 kWh of heat Qa, that is (1/ηq)⸱pfa = 0.0250 €/kWh. The interpretation is that by increasing the 

right-hand side of Eq. (10) by one unit, the AB increases fuel-oil consumption accordingly. 

Regarding constraints AC_R (Eq. (11)) and EC_R (Eq. (12)), it can be seen in Table 3 that dual prices are 
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only provided when the device operates, as it makes no sense to evaluate the effect of production efficiency 

in a non-operating device. 

Increasing the right-hand side of restriction AC_R by one unit leads to a reduction in the cooling production 

Rq, which would have to be compensated by production elsewhere at the corresponding marginal cost 

λRd(h). This situation takes place because, as explained earlier, it is more profitable to produce cooling in 

the EC than in the AC. However, by increasing the right-hand side of restriction EC_R by one unit, the 

production Re is kept constant, while the consumption of electricity is increased by 1/COPe = 0.200 kWh. 

The marginal cost associated with restriction EC_R can be interpreted as the economic impact of the 

increase in electricity consumption valued at the marginal cost of the electricity (λEC_R(h) = 0.200⸱λEd(h)). 

Eq. (13) expresses the energy loss in the TES for each hourly period. The corresponding dual price can be 

interpreted as the marginal cost of wasting energy in the TES, which will bring the same marginal cost as 

that of the cooling λRd(h). 

 

Balance constraints 

The dual prices associated with balance constraints can be interpreted as the marginal cost of the 

corresponding internal product or energy service. Therefore, the dual prices of junctions S (Eq. (16)) and P 

(Eq. (17)) correspond to the marginal cost of electricity λEd(h), the dual prices of junctions L (Eq. (18)) and 

Q (Eq. (19)) correspond to the marginal cost of heat λQd(h), and the dual price of junction R (Eq. (20)), 

corresponds to the marginal cost of cooling λRd(h). Further, the dual prices associated with the energy 

balance in the TES (Eq. (21)) can be interpreted as the marginal cost of cooling λRd(h). 

6 Conclusions 

The optimal operation of a trigeneration system with TES was analyzed in the present paper, aiming at 

understanding the role of the TES in achieving the optimal solution. The trigeneration system analyzed 

herein was designed to attend the electricity, heating, and cooling demands of a consumer center. The 

optimal operation of the system for a representative day composed of 24 hourly periods was obtained by a 

linear programming model that minimizes the total variable cost. A thermoeconomic analysis based on 

marginal cost assessment was carried out. 

The marginal costs of the internal flows and final products of the system allowed to explain the reason for 

the operational strategy. Furthermore, it was possible to unravel the marginal cost formation process, 

tracing the production costs back to the resource consumption. The incorporation of TES added a new 

dimension to the cost allocation problem: by decoupling production and consumption, it becomes necessary 

to know not only the device in which production takes place, but also the time. By studying the 

interconnection between the hourly periods through the TES, it was possible to identify periods in which 

the system takes advantage of its ability to store energy to achieve a more interesting economic result; 

namely, there were periods in which consumption was advanced and periods in which consumption was 

postponed. Despite presenting fundamentally different concepts, both types of periods result in lower 

operation costs. Understanding the effects of varying production and/or demand in an hourly period is 

crucial to improving the operational management of the system and, thus, achieving the minimum 

operational cost. 
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