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Abstract

Active SLAM (Simultanous Localisation and Mapping) refers to the problem of
controlling the movement of a robot while performing SLAM, so as to minimize
the map representation and robot localisation’s uncertainty. This problem has
traditionally been solved by filtering methods or other frameworks that involve
Markov decision processes or reinforcement learning algorithms. In those solu-
tions, it is necessary to (i) identify the possible actions to take, (ii) compute
the expected future value of each one (e.g. via utility functions) and (iii) select
the optimal action.

In this Master’s Thesis, we analyse the resolution of the problem by using
deep neural networks, a currently booming field where supervised learning
is the preferred learning form par excellence, outshinning other methods in
the literature. Active SLAM nature, however, makes it necessary to use a
different machine learning method: deep reinforcement learning. We analyse
the potential and limitations of this framework, usually executed on simple
simulation environments in which also the difference between exploration and
navigation and generalisation issues are frequently ignored.

Several reinforcement and deep reinforcement learning approaches based
on Q-learning have been implemented on top of Gazebo simulator. Both lear-
ning processes and the agent’s ability to generalise are deeply studied, achieving
trained agents capable of navigating on unseen environments. Moreover, the
inclusion of covariance matrix metrics in the algorithm’s reward function is
proposed, achieving a gradual entropy decrease during exploration and encou-
raging much more optimal actions in terms of uncertainty reduction.
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Resumen

El SLAM (Simultanous Localisation and Mapping) activo hace referencia al
problema de controlar el movimiento de un robot que esta realizando SLAM,
de forma que se minimice la incertidumbre del mapa creado y de su localiza-
cion. Tradicionalmente ha sido resuelto mediante filtros u otras aproximaciones
que involucran procesos de decision de Markov o algoritmos de aprendizaje por
refuerzo. En éstos, es necesario (i) identificar las posibles acciones, (ii) calcu-
lar el valor futuro esperado de cada una de ellas (e.g. mediante funciones de
utilidad) y (iii) ejecutar la accién 6ptima.

En este Trabajo Fin de Master se analiza la resolucion del problema me-
diante redes neuronales profundas, un campo de gran auge en la actualidad
donde el aprendizaje por excelencia es el supervisado, que atrae la mayoria
de investigaciones y aplicaciones de la literatura. La naturaleza del problema
abordado, sin embargo, hace necesario el uso de otra forma de aprendizaje
automatico: el aprendizaje por refuerzo profundo. Se ha analizado el poten-
cial y las limitaciones de este marco de trabajo, empleado normalmente en
entornos de simulacion sencillos, donde la diferencia entre exploracién y nave-
gacion y el problema de generalizacion (clave en el SLAM activo, puesto que
la informacion a priori del entorno es nula) son habitualmente obviados.

Se han implementado distintas aproximaciones de aprendizaje por refuer-
zo y refuerzo profundo basadas en )-learning sobre el entorno de simulacion
Gazebo. Ambos aprendizajes y su capacidad de generalizacién a escenarios
desconocidos se estudian en profundidad, consiguiendo que agentes entrenados
naveguen por entornos totalmente desconocidos. Ademés, se propone la inclu-
sion de una métrica de la matriz de covarianza en la funcién de recompensa,
consiguiendo una reduccién de entropia paulatina durante la exploracion y
favoreciendo acciones mucho mas 6ptimas en términos de reducciéon de la in-
certidumbre.
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Capitulo 1

Introduccion

En este capitulo se presentan la motivacion, el alcance, los objetivos contem-
plados, la metodologia seguida y la estructura de este Trabajo Fin de Master.

1.1. Motivacién, Alcance y Objetivos

En los ultimos anos, el aprendizaje automatico mediante redes neuronales cada
vez mas profundas ha tenido un crecimiento asombroso y ha comenzado a apli-
carse en la mayoria de areas de investigacion, incluida la robotica. Ejemplos de
ello son la deteccion de lazos en SLAM (Simultaneous Localisation and Map-
ping), la eliminacion de elementos dindmicos de imagenes, o incluso soluciones
end-to-end de SLAM monocular basado en redes convolucionales. En medio de
este auge de las redes profundas entrenadas mediante aprendizaje supervisa-
do, cabe preguntarse si podrian ser empleadas en problemas menos preparados
para ello, como la toma de decisiones, donde otros tipos de aprendizaje menos
estudiados toman protagonismo y en donde la capacidad de generalizacion es
imprescindible.

Este Trabajo Fin de Master surge para analizar el potencial y las limita-
ciones de las redes profundas en un éarea de la robética que ha sido estudiada
durante décadas: el SLAM activo, donde los conocimientos adquiridos por el
agente han de extrapolarse a entornos distintos al de entrenamiento cuyo cono-
cimiento a priort es nulo, donde debe aprenderse mediante la interaccién con
el propio entorno y donde ademas el estado del agente puede no ser completa-
mente observable. Estas premisas hacen que la resoluciéon del problema no sea
trivial y que el aprendizaje supervisado, el area més estudiada del aprendizaje
automatico, no tenga cabida.

En primer lugar, se pretende entender los conceptos de SLAM activo y
aprendizaje profundo, asi como analizar el estado del arte de las técnicas de
aprendizaje profundo aplicadas al problema de exploracién roboética hasta el
momento. Este analisis permitira explorar el potencial y las limitaciones de



las redes neuronales en este contexto y proponer algunas lineas de trabajo e
implementaciones. Pese a que el trabajo contiene un amplio capitulo de imple-
mentacion de algoritmos de aprendizaje por refuerzo profundo ejecutados sobre
Gazebo, su niicleo principal ha sido el analisis de las estrategias empleadas en
la actualidad.

1.2. Estructura

El documento restante esta estructurado de la siguiente manera. El capitulo
2 contiene una breve introduccion al SLAM activo y las funciones de utilidad,
las redes neuronales artificiales y el aprendizaje profundo; conceptos clave que
se usaran en adelante. En el tercer y cuarto capitulos se desarrolla la idea
principal de este trabajo, analizar el uso de Deep Learning en SLAM activo.
El capitulo 3 expone una amplia revision bibliografica sobre ésta, mientras que
en el 4 se implementan y evaltan distintas soluciones. Finalmente, se presentan

las conclusiones del trabajo realizado e ideas de trabajo futuro en el capitulo
5.

Ademas, se incluyen los siguientes anexos a la memoria:

= Anexo A: descripcion de dos de los algoritmos basicos de Reinforcement
Learning: @Q-learning y Policy Gradient.

= Anexo B: descripcion y detalles de algoritmos de Deep Reinforcement
Learning: Deep @Q-Networks.



Capitulo 2

Antecedentes

En este capitulo introductorio, se presentan teéricamente los dos conceptos
sobre los que trata este Trabajo Fin de Master: el SLAM activo y las redes
neuronales profundas. El capitulo esté estructurado como sigue:

= En primer lugar se presentan los conceptos de SLAM y SLAM activo,
incidiendo de manera especial en los procesos de decision de Markov y
en las funciones de utilidad (seccion 2.1).

= Tras esto, se presenta la teoria sobre redes neuronales artificiales, asi como
una breve resena de su evolucién. Se explican en mayor profundidad las
redes convolucionales (seccion 2.2).

= Finalmente se introducen los conceptos de de backpropagation, aprendi-
zaje profundo y los tipos de aprendizaje mas comunes (seccion 2.3).

2.1. SLAM Activo

El mapeo y localizacion simultaneos, SLAM (Simultaneous Localisation and
Mapping), consiste en la determinacion de la posicion de un robot mévil en un
entorno desconocido a la vez que se crea un mapa de este entorno de forma
incremental o recurrente.

Historicamente, el problema se ha resuelto empleando la odometria visual
(Visual Odometry, VO) en el entorno de, habitualmente, un filtro extendido
de Kalman (Ezxtended Kalman Filter, EKF) en el que ambos problemas de
localizacion y mapeado se resuelven conjuntamente en un proceso iterativo
que consta de: (i) extraccion de caracteristicas del entorno (features), (i) aso-
ciacion de datos entre mediciones, (iii) estimacion y actualizacion del estado
y (iv) actualizacion de caracteristicas (Thrun et al., 2005; Piniés-Rodriguez,
2009; Vinal-Pons, 2012). Otras aproximaciones también basadas en filtros han
proliferado desde entonces, como los filtros de particulas, los filtros de infor-
macion o Unscented Transforms.



De manera maés reciente y en contraste a las aproximaciones anteriores,
se ha comenzado a usar no sélo la informaciéon visual sino también la iner-
cial en un marco de optimizacién no lineal, integrando el problema de VIO
(Visual-Inertial Odometry) en SLAM. Ejemplos de ello son (Burusa, 2017) o
(Mur-Artal & Tardos, 2017b), donde se propone la integracion de la informa-
cion visual-inercial bajo el marco de ORB-SLAM2, formulado por los mismos
autores en (Mur-Artal et al., 2015; Mur-Artal & Tardés, 2017a). El aumento de
la capacidad computacional ha favorecido el crecimiento de estas aproximacio-
nes basadas en la minimizaciéon de una funcién que incluye el error fotométrico
o el de reproyeccion y, habitualmente, una métrica de la informacion inercial
(i.e. tightly-coupled methods). Ver (Leutenegger et al., 2015; Concha et al.,
2016; Usenko et al., 2016; Forster et al., 2017).

La exploracion roboética fue definida por Thrun et al., (2005, cap. 17)
como el problema de controlar un robot de forma que su conocimiento sobre el
entorno sea 6ptimo. Para ello, parece 16gico pensar que es necesaria una buena
estimacion de la pose del robot y, por ende, una reconstruccion certera del mapa
del entorno. El SLAM activo (active SLAM), a veces denominado SPLAM
(Simultaneous Planning, Localisation and Mapping), resuelve el problema de
la exploracién robotica empleando técnicas de SLAM. De acuerdo a Carrillo-
Lindado (2014, cap. 3), puede definirse como:

“... the problem of controlling the movements of a robot performing
SLAM so as to mazimize the accuracy of its map representation
and localization.”

2.1.1. Procesos de decision de Markov

Por las caracteristicas del problema de toma de decisiones, el SLAM activo esté
englobado dentro del marco matematico de los procesos de decision de Mar-
kov parcialmente observables (Partially Observable Markov Decision Process,
POMDP); que formalmente estan definidos por la 7-tupla (S, A, 7, R, 2, O, v),
donde S es el conjunto finito de estados, A el de acciones, T : S x A > I1(S)
el conjunto de probabilidades condicionales entre estados (i.e. la probabilidad
de terminar en el estado s’ tras haber ejecutado la acciéon a en el estado s),
R:S x A— R la funcién de recompensa, ) el conjunto finito de observacio-
nesy O : 8 x A~ II(Q) sus probabilidades condicionales (i.e. la probabilidad
de realizar la observacion o tras haber ejecutado la acciéon a y haber termi-
nado en el estado s), y v € [0, 1] el factor de descuento que permite trabajar
siempre en un horizonte temporal finito. El objetivo del agente es actuar de
forma que se maximice una métrica de la recompensa a largo plazo. La funciéon
de recompensa empleada habitualmente es la recompensa futura descontada
esperada:

Ry = rep + o + 727"t+3 + .= Z Yrip = ZVtR<St, a) (2.1)
t=0 t=0
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Figura 2.1: Estructura de (a) un MDP, donde se modela la interacciéon entre un
agente y el entorno; y (b) un POMDP. De (Kaelbling et al., 1998).

Este framework no es mas que un proceso de decision de Markov (MDP)
en el que el agente es incapaz de observar el estado actual — o parte de él —,
y que ha de tomar decisiones con incertidumbre en el estado real. Mediante la
interaccion con el entorno, el agente puede actualizar su estimacion (belief ) del
estado real actualizando la distribucién de probabilidad del estado actual. En
la figura 2.1 se pueden observar las diferencias entre un MDP y su homoélogo
parcialmente observable, que ha de contener un bloque de estimacion (state
estimation, SE).

La creencia o belief de un estado sera la probabilidad de distribucion sobre
S. Sea b(s) la probabilidad de que b € B sea el estado real s € S, entonces

0<b(s) <1 (2.2)
D b(s)=1 (2.3)
seS

Y este belief puede ser actualizado a partir de la estimacion anterior siguiendo
la teoria de probabilidad como:

O(0,a,s") Y csT(s,a,5")b(s)
Plo|a, b]

V(s') =Pls|o,a,b] =...= (2.4)

La resolucion de estos problemas se vera en detalle en el capitulo 3, donde
se analizaran distintas aproximaciones clasicas y las basadas en redes neuro-
nales y se explicaran otros conceptos importantes como las funciones de valor
v las reglas de comportamiento.



2.1.2. Funciones de utilidad

En términos generales, el SLAM activo consta de tres fases (Carrillo-Lindado,
2014; Rodriguez-Arévalo, 2018): (i) la identificacién de las posibles localizacio-
nes a explorar, (ii) el calculo de la recompensa o ventaja que genera cada una
de las acciones que conducen a estas localizaciones de interés, y (iii) la ejecucion
de la accién méas ventajosa. La eleccion de puntos de interés (vantage points)
puede realizarse de forma aleatoria, basandose en las localizaciones vecinas,
en la frontera entre zonas conocidas y desconocidas, etc. Tras identificarlos, se
debe crear un conjunto de posibles acciones que conduzcan al robot a dichos
puntos, donde cada accién tendra asociada una cuantificacion de su utilidad
que, en ultima instancia, no serd mas que una cuantificaciéon de la incertidum-
bre del mapa y/o de la pose del robot. Finalmente, basta con escoger la accion
més ventajosa mediante la optimizacion de la funciéon de utilidad.

En funcién de como estén formuladas, las funciones de utilidad se divi-
den en dos grupos: las orientadas a la tarea (task-driven) y las orientadas a la
informacion (information-driven). Las primeras también se denominan crite-
rios de optimalidad y emplean funciones escalares de la matriz de covarianza
para cuantificar la incertidumbre. Pueden verse como una cuantificacion del
volumen de la (hiper)elipsoide correspondiente a la matriz de covarianza. Los

criterios de optimalidad mas empleados son los siguientes (Carrillo-Lindado,
2014; Rodriguez-Arévalo, 2018):

= Criterio de optimalidad A: cuantifica la traza de la matriz de covarianza
—i.e. la suma de sus valores propios (A-opt, eq. (2.5)).

s Criterio de optimalidad D: cuantifica el determinante de la matriz de
covarianza — i.e. el producto de sus valores propios (D-opt, eq. (2.6)).

» Criterio de optimalidad E: cuantifica el mayor de los valores propios (£-
opt, eq. (2.7)).

t@)i%i& (2.5)

@w)ﬂmGZm@o (2.6)
max(\;) (2.7)

Donde ¥ € R™™" es la matriz de covarianza, A; son los valores propios de dicha
matriz y n la dimension del vector de estado.

Habitualmente se emplea uno de estos tres criterios, y aunque los criterios
A-opt y E-opt requieren de una menor capacidad de computacion, es facil notar
que el criterio D-opt es el tinico capaz de capturar la incertidumbre global, como
ya expuso Kiefer (1974), puesto que actia sobre todos los elementos de .

Por otra parte, existen funciones de utilidad basadas en la Teoria de la
Informacion, siendo la entropia es la mas empleada. Sea P una distribucion



Figura 2.2: Composicién de poses empleando la representacion (a) absoluta y (b)
diferencial. De (Rodriguez-Arévalo et al., 2018).

Gaussiana, entonces su entropfa de Shannon seréa:

H(P) = 7 (1 +log(2m) + flog(det()) (2.8)

|3

Y dado que ‘H X det(X), su comportamiento sera similar al del criterio D-opt.

Ambos grupos de funciones de utilidad se basan en la cuantificacion de
la incertidumbre de la pose del robot, por lo que su representacion es de vital
importancia. Existen dos formas de representar esta incertidumbre: absoluta y
diferencial. La incertidumbre absoluta asigna una funciéon de distribuciéon a la
pose absoluta del robot respecto a una cierta referencia (z4p); mientras que
la incertidumbre diferencial supone una pose aproximada (estimacion, Zap) y
asigna la funcion de distribucion al error de dicha aproximacion (dg), como
se muestra en la figura 2.2. En (Rodriguez-Arévalo, 2018) se prueba analitica-
mente que la propiedad de monotonia se mantiene en todas las funciones de
utilidad —y en la entropia de Shannon— cuando la incertidumbre es representada
de forma diferencial; comportamiento de gran importancia en tanto en cuanto
el sistema escogera aquellas acciones que generen una menor incertidumbre en
la estimacion de la pose.



2.2. Redes Neuronales Artificiales

2.2.1. Contexto historico

El uso de neuronas como modelos matematicos fue propuesto por primera vez
por McCulloch y Pitts (1943), empleando estas unidades como funciones logicas
(e.g. AND, OR, XOR) donde las entradas eran senales binarias. Dos décadas
después, seria Rosenblatt (1961) quien, basandose en el modelo de McCulloch-
Pitts y las investigaciones de Hebb (1949), acunase el concepto de perceptron.
Se trata una neurona artificial similar a la propuesta por sus predecesores en
la que cada senal de entrada estd ponderada con un factor w, y la funciéon
de activacion es la funciéon signo. La red, formada por una sola capa, podia
entrenarse calculando la salida a partir de una entrada dada y comparandola
con la salida esperada. De esta forma, se podian ajustar las ponderaciones para
que ambas coincidiesen (aprendizaje supervisado).

Este modelo fue duramente criticado en (Minsky & Papert, 1969), donde
se demostro su limitacion a la hora de modelar problemas linealmente no sepa-
rables (e.g. funcion XOR). Ademas, demostraron que el método de aprendizaje
de McCulloch no funcionaba para las redes con multiples capas (Multilayer
Perceptron, MLP), necesarias para modelar este tipo de problemas.

El desarrollo del campo de las redes neuronales se paralizé hasta la dé-
cada de 1980, cuando hitos como el uso de las redes neuronales recurrentes
de Hopfield (1982), las redes convolucionales de LeCun en 1989, o el “redes-
cubrimiento” del algoritmo de backpropagation por Rumelhart et al., (1986)
incitaron a numerosos cientificos a continuar la investigacion en este campo.
Mediante este método de minimizaciéon de errores basado en el gradiente des-
cendente, se podian entrenar redes multicapa.

Tras estos avances, la investigacion se extendié también al aprendizaje
no supervisado (autoencoders), las redes profundas (Deep Neural Networks,
DNN), las redes convolucionales ( Convolutional Neural Networks, CNN) o las
redes de creencia profunda (Deep Belief Networks, DBN), entre otros.

2.2.2. Redes neuronales artificiales

Una red neuronal artificial (Artificial Neural Network, ANN) es una red for-
mada por nodos (neuronas) conectados entre si, de tal forma que la salida de
unos sea la entrada de otros. Las neuronas son capaces de recibir senales de
entrada, cambiar su estado interno (activacion) y producir senales de salida,
de igual forma que ocurre en el cerebro. El potencial de esta herramienta para
modelar sistemas complejos reside en la agrupaciéon de neuronas en distintas
capas dentro de la red, de forma que la informacién de entrada se propaga
(habitualmente hacia delante) por sucesivas transformaciones de caracter no
lineal.



Considérese una ANN con una capa de entrada, una capa de salida, n
capas intermedias (hidden layers) y un cierto ntimero de neuronas en cada
capa (hidden units). Puesto que la conexion entre neuronas de distintas capas
transfiere la salida de una de ellas (predecesora) como entrada a la siguiente
(sucesora) y cada una de estas conexiones tiene asignada una ponderacion w,
se tratard de un grafo dirigido ponderado.

Cuando una neurona dentro del grafo recibe senales de entrada de neuro-
nas predecesoras, se computa la suma ponderada de todas las entradas (cono-
cida como funcién de propagacion o excitacion). Ademads, para conseguir un
comportamiento no lineal en la red, debe existir una segunda operacién, co-
nocida como funcién de activaciéon (ver figura 2.3). Esta acttia como una capa
adicional entre capas ocultas, transformando la salida de cada neurona por una
funcién no lineal que permite acotar la salida. Las funciones de activacion més
comunes son la funcion sigmoide, el rectificador (Rectified Linear Unit, ReLU)
o la tangente hiperbélica, definidas respectivamente como (ver figura 2.4):

y(r) = ﬁ (2.9)
y(x) = max(0, z) (2.10)
y(z) = % (2.11)

Cada capa puede estar totalmente conectada (Fully Connected Layer,
FCL) con la capa predecesora (capa densa, i.e. en la entrada de cada neurona
de la capa estan consideradas las salidas de todas las neuronas de la capa ante-
rior) o parcialmente conectada. Las ventajas en cuanto al coste computacional
de conectar las capas localmente entre si es clara, y por ello estas capas son
comunmente empleadas en aplicaciones con grandes volimenes de informacion
(e.g. reconocimiento de imégenes, reconocimiento de audio, procesamiento de
lenguaje, clasificacion de texto...). Un ejemplo de capas parcialmente conecta-
das son las capas convolucionales.

Y —> salida

Funcién de Funcién de
propagacién  activacién

Entradas

Figura 2.3: Modelo de una neurona artificial.
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Figura 2.4: Funciones de activacion mas habituales: sigmoide (amarillo), tangente
hiperbolica (azul), ReLU (rojo) y softmax (violeta).

Una red neuronal convolucional (Convolutional Neural Network, CNN) es-
ta formada por capas convolucionales apiladas. Esta arquitectura favorece que
cada neurona se especialice en una region de la capa predecesora, reduciendo
la necesidad computacional (e.g. sea méas sensitiva a ciertas caracteristicas una
imagen, como lineas o esquinas). Las CNN estéan habitualmente formadas por
combinaciones de:

(a) capas convolucionales que aplican filtros de un cierto tamano a la entrada
completa (habitualmente una imagen)

(b) capas de reducciéon de muestreo (pooling): se produce una reduccioén pro-
gresiva del tamano espacial de la representacion, disminuyendo asi el na-
mero de parametros y la necesidad de computacion de la red (y por tanto
ayudando a evitar el sobreajuste)

(c) capas densas (normalmente a la salida)

En la figura 2.5 puede verse la estructura tipica de una CNN con los tres tipos
de capas mencionados.

Por ejemplo, en una aplicaciéon de procesamiento de imégenes, las capas
convolucionales aplican un cierto ntimero de filtros o kernels de convolucion a
las iméagenes (e.g. 64 filtros de tamano 5 x 5 pixeles). Para cada una de estas su-
bregiones de tamano 5 X 5, se genera un tnico valor de salida al que se aplica la
funcion de activacion para introducir no linealidades en el modelo (habitual-
mente ReLU). Sucesivas capas convolucionales de distinto ntmero de filtros
pueden apilarse. Los hiperparametros de estas capas son el niimero de filtros
(K), su dimension, su paso (stride) y la cantidad de zero-padding. Las capas de
pooling se sitian periédicamente entre capas convolucionales para reducir pro-
gresivamente el tamano necesario de representacion, el nimero de pardmetros y
la computacion de la red. Un ejemplo de estas capas es mazx-pooling, con el que
se dividen las salidas de la capa convolucional en subconjuntos méas pequenos y
se selecciona tinicamente el mayor valor de los existentes. Los hiperparametros
de estas capas son el tamano de la salida y el paso. Finalmente, a la salida
se sittia habitualmente una o mas capas densas para clasificar las caracteris-
ticas extraidas por las capas predecesoras, con un numero de neuronas igual
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Figura 2.6: Procesos de convolucion (un filtro 3 x 3 con zero-padding a la derecha
y stride 1) y maz-pooling (2 X 2 con stride 2). De (Spark, 2017).

al nimero de caracteristicas existentes (e.g. 10 para reconocimiento de nime-
ros). La figura 2.6 muestra graficamente los conceptos de capa convolucional y
max-pooling con sus respectivos hiperparametros.

Habitualmente, el flujo de informaciéon en las ANN fluye hacia delante de
capas predecesoras hacia capas sucesoras. Sin embargo, existen arquitecturas
en las que la informacion se retro alimenta, como en las redes neuronales recu-
rrentes y recursivas (Recurrent Neural Networks y Recursive Neural Networks,
RNN) o las redes neuronales residuales (Residual Neural Network, ResNet),
una arquitectura més compleja donde la entrada a un conjunto de capas de la
red es sumada a la salida que producen.
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2.3. Entrenamiento de Redes Neuronales

Las redes neuronales pueden entrenarse para resolver una tarea especifica de
forma Optima, esto es, minimizar el error entre la salida esperada y la real.
Existen distintas técnicas de aprendizaje automéatico (Machine Learning, ML),
como el aprendizaje no supervisado ( Unsupervised Learning) en el que se apren-
den propiedades ttiles de un dataset; el aprendizaje supervisado (Supervised
Learning, SL), donde ademés cada ejemplo del conjunto se asocia con una eti-
queta o salida conocida; o el aprendizaje por refuerzo (Reinforcement Learning,
RL), un subconjunto del aprendizaje supervisado en el que no se interacciona
con un dataset fijo, sino que hay una conexion entre el sistema de aprendizaje
y el entorno. El aprendizaje profundo (Deep Learning, DL) es un subconjunto
dentro del aprendizaje automatico que hace referencia al aprendizaje de DNN,
i.e. ANN con multiples capas ocultas.

El objetivo tdltimo del aprendizaje es que el algoritmo funcione correc-
tamente con nuevas entradas no vistas hasta el momento, y no tnicamente
con los datasets aprendidos. Mientras la optimizacién buscaria que el error
entre la salida real de la red y la esperada se minimice durante el aprendizaje
(training error, ), el aprendizaje automético busca ademéas que el error an-
te nuevos datos de entrada (generalization error, €,) sea minimo. Dos de los
grandes retos del aprendizaje automético son el sobreajuste (overfitting) y la
sobregeneralizacion (underfitting). El primero de ellos ocurre cuando los pesos
ajustan en exceso para los datos del entrenamiento y el algoritmo es incapaz
de generalizar estos resultados a nuevos datos, provocando una gran diferencia
entre los errores €, y £4. La sobregeneralizaciéon representa el caso opuesto,
donde el modelo no es capaz de generar bajos errores de aprendizaje debido
a, por ejemplo, insuficiencia de datos. El conjunto de técnicas para conseguir
disminuir el error de generalizaciéon sin afectar al error de entrenamiento se
conocen como regularizacion. El parametro de capacidad del modelo indica si
es més propenso a sobreajustar o sobregeneralizar. En el caso de una regresion
polinomial, el grado del polinomio actuaria como capacidad, esto es, un poli-
nomio de grado 7 seria més propenso a sobreajustar que uno de grado 2 para
un conjunto de datos.

Las DNN son particularmente propensas al sobreajuste debido a su elevado
nivel de abstraccion. Tres de las técnicas de regularizacion més empleadas son
las siguientes:

= Descomposicion de las ponderaciones: consiste en anadir a la funcién de
coste que se optimiza un término que penalice las ponderaciones elevadas.
Este término puede ser la norma-2 (£?, weight decay) o la norma-1 (L),
que lleva a una solucién en la que mas ponderaciones resultan nulas
(sparsity).

» Aumento (sintético) del dataset: aumentando la cantidad de datos, el
propio algoritmo corrige el problema de sobreajuste.
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» Marginalizacion (Dropout): durante el entrenamiento, se ignoran neuro-
nas escogidas de forma arbitraria con una cierta probabilidad. Esto hace
que las neuronas activas tengan que suplir la contribucién de las neuronas
marginalizadas. Como consecuencia, el grafo se vuelve menos sensible a
las ponderaciones especificas de cada neurona y se consigue una mayor
capacidad de generalizacion.

Uno de los algoritmos mas difundidos para entrenar ANN mediante apren-
dizaje supervisado (i.e. cuando se conoce la senal de salida deseada) es back-
propagation (BP). En primer lugar se propaga hacia delante la informacion
en el grafo, de forma que se genere una senal de salida y pueda calcularse el
error entre ésta y la salida esperada. A continuacion, se propaga hacia atras
este término de error. Para ello debe calcularse la contribuciéon de cada una de
las ponderaciones al término de error (derivadas parciales). A cada neurona de
cada capa se le asigna una parte del error total en funciéon de su contribucion,
y se corrigen las ponderaciones para disminuir este error.

Considérese como ejemplo un entrenamiento en el que la funcién de coste
esta basada en minimos cuadrados:

70, %) = 5 3 (e ) - () (2.12)

O bien una funciéon mas compleja y més propensa a generalizar, que podria
ser la conocida como entropia cruzada (Mitchell, 1997):

N

J(0, X) = —% > y(i) log (ho(x(i))) + (1 = y(i)) log (1 — he((i))) (2.13)

=1

Donde z(i) € & es el conjunto de entradas del dataset de entrenamiento,
y(i) € Y el conjunto de etiquetas, y hy(x) la salida de la red ante una cierta
entrada x y con unos parametros 6.

Para poder entrenar la red deben calcularse las derivadas parciales de la
funcién de coste respecto a cada uno de los pardmetros de la red. El algoritmo
de BP permite realizar estos calculos de una manera eficiente, minimizando la
funcion de coste empleando el gradiente descendente (Gradient Descent, GD).
Se puede dividir en varios pasos (Rojas, 1996, cap. 7):

1. Feed-forward propagation. Primero se asigna un valor aleatorio a cada
parametro y se propaga la informacion por la red, guardando el valor de

la salida y de la funcion de activacion de cada capa (tanto ocultas como
de salida).

2. Backpropagation. En primer lugar se calcula el término de error en la
capa final m, entre la salida esperada y la obtenida (67"). Se propaga
hacia atras este error hasta llegar a la primera capa (5;“) Conocidos
los términos 6, cuyo calculo dependera de la funciéon de activacion de
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los nodos, se pueden evaluar las derivadas parciales de J respecto a las
ponderaciones empleando la regla de la cadena como:

aJ;  0J 0d* ~
Sk = Dt aw; = 5§? o1 (2.14)
(¥ J 1]

Donde wfj es el peso del nodo j en la capa k para el nodo entrante ¢,
a? es la suma ponderada de las entradas (activacion) al nodo j en la
capa k, of_l la salida del nodo ¢ en la capa k — 1, y d el conjunto de
datos del dataset. El gradiente total puede calcularse como la media de

los gradientes para cada pareja de datos entrada-salida, esto es:

8J(0, X) 1 <~ 0J,
S At i (2.15)
8wfj N dz:; awl’?j

3. Weight update. Finalmente, las ponderaciones se pueden actualizar de
acuerdo al gradiente total y al factor de aprendizaje, a:
aJ(0, X)

Awl = —oq 22 2.16

: o (2.16)

Notese que los biases se han introducido en los pesos para simplificar las ex-

presiones, tal que el bias del nodo i-ésimo de la capa k-ésima se incorpora en
los pesos wk; = bf.

Otra forma de llevar a cabo el problema de optimizaciéon anterior es em-
plear el gradiente descendente estocastico (Stochastic Gradient Descent, SGD).

2.3.1. Aprendizaje profundo

Las DNN permiten un nivel de abstraccion muy elevado, lo cual también con-
lleva ciertas desventajas. Por ejemplo, cuando se emplea entrenamiento su-
pervisado, aparecen minimos locales en la funcién de coste y la optimizacion
involucrada pasa a ser no convexa, pudiendo no converger el resultado a va-
lores aceptables (especialmente al emplear GD). En la figura 2.7 se muestra
un ejemplo de como la optimizacién convergeria a resultados distintos depen-
diendo donde comenzase el proceso. Otro ejemplo es la conocida difusion de
gradientes (vanishing of gradients). Al propagar los gradientes hacia atras en
BP, las primeras capas de la red cambian sus ponderaciones muy lentamente
(i.e. aprenden muy poco). Esto resulta en capas finales muy entrenadas que
practicamente obvian a las primeras, generando los mismos resultados que si
estas capas no existiesen y la senal de entrada estuviera ligeramente distorsio-
nada. Si las ponderaciones se inicializan en valores muy bajos, las derivadas
parciales tenderan a cero rapidamente, conduciendo al problema anterior. Si,
por el contrario, las ponderaciones son muy elevadas, el entrenamiento se que-
dara estancado en minimos locales.
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Figura 2.7: Representacién de una funcién de coste no convexa donde el punto
de inicio o semilla determinara la solucion (minimo local) y donde ademés existen
puntos de silla (saddle point).

Un método que ha probado tener cierto éxito para entrenar DNN es el
aprendizaje voraz por capas (greedy layer-wise training). Aunque este apren-
dizaje puede ser supervisado, habitualmente no lo es (e.g. stacked autoenco-
ders). Este algoritmo consta de una fase donde se pre-entrena la red capa a
capa, obteniendo una estimaciéon inicial de las ponderaciones; y una segunda
fase en la que se trata la red como un todo y se ajustan las ponderaciones
(fine-tunning). El pre-entrenamiento permite que la optimizacion se inicialice
en un punto cercano a la soluciéon 6ptima, esto es, que la semilla se sitte cerca
del minimo global en funciones no convexas. Una vez se ha pre-entrenado la
DNN, el aprendizaje posterior es similar al de una ANN. Los problemas de
atraccion hacia minimos locales y difusion de gradientes ya se han mitigado,
por lo que la optimizacion es comtnmente realizada mediante GD o SGD (e.g.
BP en el caso de aprendizaje supervisado).

Por lo tanto, el pre-entrenamiento permite evitar que la solucién yazca
en minimos locales y también la difusion de los gradientes, al haber entrenado
las primeras capas. Sin embargo, el pre-entrenamiento cayé en desuso (en la
mayoria de las aplicaciones) al aparecer otros métodos que consiguen el mismo
objetivo. Incluso redes muy profundas pueden entrenarse de forma satisfactoria
empleando unidades de rectificacion (ReLU) como funciones de activacion,
batch normalization, o dropout.

Otra forma de llevar a cabo el entrenamiento es mediante redes de creencia
profunda (Deep Belief Networks, DBN). De nuevo, se trata de varias capas que
se pre-entrenan una a una, pero en lugar de emplear autoencoders se emplean
méaquinas de Boltzmann restrictivas (Restricted Boltzmann Machine, RBM).

El aprendizaje por refuerzo (Reinforcement Learning, RL) se basa en el
aprendizaje prueba-error, donde cada acciéon posible tiene asociada una recom-
pensa y el agente trata de maximizar la recompensa que consigue; como se vera
en el siguiente capitulo. El aprendizaje por refuerzo profundo (Deep Reinforce-
ment Learning, DRL) aumenta el problema anterior a las DNN. En este caso,
el algoritmo de BP puede ser usado pese a no ser un aprendizaje supervisado.
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Capitulo 3

Deep Learning en SLAM Activo

El uso de redes neuronales profundas se ha extendido en muchas areas de
investigaciéon en robodtica, pero jes realmente posible aplicarlo a la toma de
decisiones durante SLAM activo? Y en ese caso, j/para qué sirve exactamente
la red neuronal y qué aporta a las soluciones tradicionales?, ;como debe entre-
narse la red?, ;es posible un aprendizaje generalista que permita trabajar en
entornos cambiantes propios del problema?, ; bastaria con conocer una serie de
reglas de comportamiento? Estas son algunas de las preguntas que implicita-
mente se busca responder en este capitulo, en el que se formula el problema de
toma de decisiones bajo el framework de los procesos de decisiéon de Markov,
y se analizan las distintas soluciones, buscando siempre el posible potencial y
la utilidad del aprendizaje profundo.

3.1. Toma de Decisiones

Como ya se ha visto, el problema de SLAM activo puede englobarse dentro
de un marco de trabajo mas general, los procesos de decision de Markov par-
cialmente observables (POMDP); en los que se describe el proceso de toma de
decisiones secuenciales cuando tanto las acciones como la adquisicién de datos
poseen incertidumbre. Recuérdese que estos procesos quedan formalmente defi-
nidos por la 7-tupla (S, A, T,R,Q2, O,~), donde S es el conjunto de estados, A
el de acciones, T : S x A +— Fx[S] el de probabilidades condicionales entre es-
tados, R : SxA — R la funcién de recompensa, €2 el conjunto de observaciones
y O : Sx A Fx[Q] sus probabilidades condicionales, y el factor de descuento
v € [0,1]. La funcién Fx[-] € [0, 1] empleada anteriormente simboliza la distri-
bucion de probabilidad de (-). La probabilidad de cambiar de un estado s a otro
s’ contenidos en S vendréa dada por T (s,a,s’) = P[s;p1 = §|s; = s,a, = al; y
la probabilidad de realizar una observacion o € €2 tras haber alcanzado un esta-
do s serda O(o0,a,s) = Plo; = o|s; = s,a; = a]. La relacion entre estos espacios
puede apreciarse en la figura 3.1.
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Figura 3.1: Ilustracion de un MDP. De (Frangois-Lavet et al., 2018).

3.1.1. Funciones de valor y reglas de comportamiento

En cada iteracion del proceso, el agente ha de tomar una decision basandose
en los conjuntos de estados y acciones observables y observaciones pasadas.
Su proposito es encontrar la regla que maximice una funciéon objetivo definida
sobre el histérico de conjuntos de acciones y estados (u observaciones, en caso
de existir estados no observables), H. Estas funciones objetivo son las funciones
de valor, V(h) : H — R, y tinicamente mapean el espacio H a un niamero real.
Un conjunto h € H se preferiréa sobre otro si su funcién de valor es mas elevada.
Una funcién de valor comtinmente usada que cuantifica el valor de la pareja
estado-accion es la siguiente,

Zv (¢, ar) (3.1)

Siendo t el instante temporal y R(s,a) la recompensa inmediata tras la tran-
sicién de s a s’ por haber realizado la accién a.

Una regla de comportamiento o policy determina el comportamiento del
agente dado un conjunto de Ay O (ie.m: H— A, obien7:8 X T — A).
El objetivo del agente es buscar la regla 6éptima 7* € I1, es decir, la regla cuyo
valor esperado sea mayor. Este valor no es mas que el valor esperado de los
distintos conjuntos de acciones y observaciones inducidos por dicha regla:

V™(h) = E[V|h] =Y V(h)P [h|r,0°] (3.2)

Donde E[-] es el valor esperado, P[-] es la distribucién de probabilidad y °
es la estimacion a priori de los estados del sistema (funcion de la estimacion

anterior, la accion realizada y la observacion actual). Y particularizando para
s€ S, donde V™(s) : S — R:

V™ (s) =E.7[Ri|st = s] =E 1

t=0

ZWth+k+1|St = 8] Vs e S (3.3)
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La ecuacion (3.3) puede reescribirse de forma que el valor esperado de
una regla se pueda calcular mediante la siguiente recurrencia (ecuacion de
Bellman):

Vo (s) =R (s,m(s,0)) (3-4)
V7(s) = R(s,m(s,t)) +7 Y T ls,m(s,t), s V(s (3.5)

s'eS

O, empleando el operador de valor esperado,

Vi'(s) = Ex [Tt+1 +Er [7‘/1‘,7:1<S/)H (3.6)

Pudiendo simplificarse a la siguiente expresion para entornos determinis-
tas:

Vi'(s) = R (s,m(s, 1)) + 7V (5) (3.7)

Sabiendo que la funcién de valor 6ptima serd V*(s) = méx V7 (s), el prin-
™
cipio de optimalidad de Bellman permite calcular la funcién de valor 6ptima
del instante t a partir de la del instante inmediatamente anterior,

V*(s) =mdx |R(s,a) +7 Y T[s,a,sV*(s) (3.8)

acA
s'eS

Esta tltima ecuacion permite encontrar la funcién de valor 6ptima vy,
una vez conocida, también es posible calcular la policy 6ptima como 7* =
argmax V7 (s).

s

La ecuacion (3.5) permite conocer el valor esperado de una regla y es
la base de los algoritmos policy-iteration que se explicaran més adelante. Los
métodos value-iteration emplean la ecuacion (3.8) para calcular las funciones
de valor 6ptimas directamente.

La funcion Q (Q-function o Q-value), @ : S x A — R, representa el valor
de ejecutar una cierta accién en un estado y seguir ademas una regla 6ptima.
La relacion entre esta y V' viene dada por V*(s) = méax, Q*(s,a). De forma
analoga a V:

Q(s,a) =E, 7 [Ri|st = s,a: = a] (3.9)
L Q(s,a) = R(s,a) +7 ) T [s,a, 5| V*(s) (3.10)
s'eS

Esta funciéon permite conocer directamente la policy 6ptima extrayendo la
accion que genera la mayor recompensa para el estado s:

7" = argmax Q*(s,a) Vs € S (3.11)
acA

19



Ademas, cabe destacar que una regla puede definirse de manera estocéastica
como 1 = S — II(A). Frente a la definicion anterior en la que un estado era
mapeado a una accién, ahora cada estado es mapeado a la distribucion de
probabilidad de la acciéon (i.e. 1(s,a) = Pla; = als; = s| es la probabilidad
de que a se ejecute en s). Esta definicion representa tnicamente una ventaja
en el caso de POMDPs, en los que se puede convertir el espacio discreto A en
un espacio continuo de distribuciones de probabilidad sobre el que es posible
aplicar técnicas de optimizacion continuas (generalmente més sencillas que las
discretas).

Notese que puesto que en un POMDP no todos los estados son conocidos,
sera necesario redefinir el valor esperado de una regla (o de la Q-function para
los algoritmos implicitos) en funcién de la estimacion de dichos estados, b.
Otra forma de resolucién del POMDP es crear un MDP a partir de los estados
estimados (belief-state MDP). Ver (Braziunas, 2003, cap. 4) y (Linh Thai,
2018).

3.1.2. Solucién clasica al problema

La resolucién del problema puede abordarse ! calculando directamente la fun-
cion de valor 6ptima (value-iteration o wvalue-based) o calculando de forma
iterativa la regla 6ptima con valor esperado mayor (policy-iteration o policy-
based) y posteriormente calular la funcién de valor 6ptima. De esta forma, el
problema puede resolverse mediante:

» Value-iteration. Este proceso comienza (i) inicializando arbitrariamente
V (e.g. Vo(s) =0Vs € S), y (ii) calculando de forma iterativa la funcion
de valor V(s) hasta que converge al valor 6ptimo V*, ecuacion (3.8).
La regla se puede calcular entonces como se ha explicado en la secciéon
anterior.

» Policy-iteration. Se debe (i) inicializar 7 y V' Vs € S, (ii) calcular el valor
de la regla m; (ec. 3.5) —policy evaluation—, y la Q-function para cada par
estado-accion (ec. 3.10), y (iii) actualizar la regla segin el valor 6ptimo
de la funcion de valor (ec. 3.11) —policy improvement—.

A nivel computacional, los métodos value iteration suelen requerir un ma-
yor numero de iteraciones para converger. Sin embargo, en ellos tinicamente
hay que aplicar el operador de Bellman en cada iteracion, mientras que en el
caso de policy iteration hay que calcular el valor de la regla, o lo que es lo mis-
mo, resolver un sistema lineal de ecuaciones, como se muestra a continuacion.
Partiendo de la ecuacion (3.5), se puede expresar el calculo del valor de una
regla como:

Ve =7+ yPvy — vy = ([ —vP;) ' r (3.12)

I'Noétese que existen ademas otras aproximaciones empleadas menos frecuentemente, co-
mo los métodos basados en la programaciéon dindmica o en Monte Carlo.
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Donde v, € RIS! es el vector de valores para cada estado, r € RIS! el vector de
recompensas y P, € RI¥IS! la matriz de probabilidades para cada transicién
bajo la policy .

Otras soluciones no exactas al problema pueden encontrarse aplicando
métodos de optimizacién numeérica no lineal clasicos (métodos basados en el
gradiente). La ventaja de estos radica en que las simplificaciones que se realizan
(e.g. restricciones en las reglas), hacen que problemas de alta dimensionalidad
(o incluso infinita) no resulten en policies infinitas ya que las reglas son opti-
mizadas directamente en el espacio II. Ver (Braziunas, 2003, cap. 5).

3.1.3. Aprendizaje por refuerzo

El aprendizaje por refuerzo (Reinforcement Learning, RL) es el area del apren-
dizaje automéatico que trata la toma de decisiones de agentes en un entorno, de
forma que se maximice una cierta funciéon de recompensa. En la figura 3.2 se
muestra el proceso completo de RL. Se trata de un método valido para la resolu-
cion del proceso de decision de Markov cuando éste no es conocido (los estados
y las funciones de transicion son desconocidas). Puede realizarse empleando
distintos algoritmos y métodos, como los explicados en la seccion anterior de
optimizacion de la funciéon de valor (basados en programacion dindmica, en
Monte Carlo o en temporal differences) o de la regla de comportamiento, ya
sea determinista o estocastica; u otros métodos mas complejos como los mé-
todos advantage actor-critic en los que de alguna forma se combinan los dos
anteriores (value-based critic que evalia como de buena es la accion elegida y
policy-based actor que controla el comportamiento del agente) y se emplea la
funciéon “ventaja” para estabilizar el aprendizaje empleando gradientes. Dicha
funcién indica la mejora que supondria tomar una cierta acciéon a desde un
estado s respecto del valor promedio de dicho estado, A(s,a) = Q(s,a)—V (s).

Tanto los métodos policy- como value-based pertenecen a una categoria
superior denominada model-free RL, donde el agente se centra en desarrollar
una funcién que mapee el estado en la mejor accion posible y no en modelar el
MDP (i.e. el entorno), suponiéndose desconocido, y aprendiendo directamente
mediante la interacciéon con él. Frente a esta aproximacion, se encuentran los
métodos model-based en los que en primer lugar se aprende el modelo del
entorno (modelo probabilistico) y posteriormente se toman decisiones en base
a éste. Notese por tanto que en estos métodos el agente es capaz de hacer
predicciones de estados y recompensas futuras antes de realizar una accion,
esto es, simular transiciones. Esto resulta en una eficiencia mayor pero también
en la posibilidad de apariciéon de errores derivados de un modelo incorrecto.
Ver figura 3.3.

En el anexo A se explican dos algoritmos habituales en RL: Q-learning y
Policy Gradient.
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Figura 3.2: Proceso de (Deep) Reinforcement Learning. La informacion del entorno
puede introducirse como input al problema mediante el uso de distintos sensores
(e.g. camaras, sensores inerciales), que, con distintas técnicas (e.g. redes neuronales)
codifican esta informacion de forma que el agente sea capaz de entenderla y reconocer
ciertas caracteristicas o patrones. Finalmente, a partir de este razonamiento, el agente
debe ser capaz de tomar una decisién que generara un cambio en el estado del agente
y en su entorno. Adaptado de (Fridman, 2019).
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Figura 3.3: Division de métodos de (Deep) Reinforcement Learning y su eficiencia
en cuanto al ntmero de datos necesarios para aprender. Adaptado de (Fridman,
2019).
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3.2. Aprendizaje por Refuerzo Profundo

3.2.1. Introducciéon

El aprendizaje por refuerzo profundo (Deep Reinforcement Learning, DRL) ha-
ce uso de redes neuronales profundas (DNN) para resolver el problema de RL.
Como todo sistema de ANN, emplea coeficientes para aproximar una funciéon
que relacione las entradas del sistema con sus salidas, y su aprendizaje consis-
te en el ajuste correcto de estos coeficientes de forma iterativa basandose en
gradientes y en el algoritmo de backpropagation. En el &mbito de RL, DNN o
CNN pueden emplearse para reconocer estados del sistema (o incluso estimar
aquellos que estan ocultos) y escoger la accién mas ventajosa. El aprendizaje
por refuerzo puede considerarse similar al aprendizaje supervisado, pero en lu-
gar de asignar etiquetas durante el proceso de aprendizaje, se asignan posibles
acciones, i.e. a = m(s); tal y como se puede ver en la figura 3.4. Al fin y al
cabo, todos los tipos de aprendizaje podrian considerarse “supervisados” por
una funcion de pérdida u objetivo. En DRL, las redes neuronales son el agente
capaz de mapear los estados o parejas estado-accidon a recompensas, o de forma
equivalente, a funciones ya vistas como V' o (). Entre las ventajas de emplear
DNN se encuentra la posibilidad de resolver problemas que con métodos cla-
sicos (e.g. tabulares) resultan irresolubles. Tomese como ejemplo el algoritmo
value-based ()-learning. Se puede apreciar rapidamente que la tabla generada
que relaciona cada pareja estado-accidén con su @Q-value seria de un tamano
excesivo para, por ejemplo, problemas en los que el cambio de un pixel de una
imagen generase un nuevo estado. Las DNN permiten solucionar este problema
simplificando la solucién de los métodos tabulares: en lugar de disponer de la
Q-function exacta, se dispone de una aproximacion de ésta.

Algunas caracteristicas que quiza merezca la pena enfatizar sobre (D)RL
son que (i) la regla de comportamiento 6ptima se encuentra mediante prueba-
error, siendo la recompensa el tnico dato del que el agente dispone, (ii) cada
observacion depende de las acciones realizadas por el agente, y pueden estar

Convolutional Classifier
Convolutional Agent

input possible
image categories input possible
image actions
~ |8
H e
|1 lwe
3 S
= o
=2 = ~|3
-2 ' 2
(a) Aprendizaje supervisado (b) Aprendizaje por refuerzo

Figura 3.4: Ejemplos del distinto uso de CNN en aprendizaje supervisado y por
refuerzo. De (SkyMind, 2018).
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fuertemente correladas, y (iii) las consecuencias de una acciéon pueden prolon-
garse en el tiempo y no materializarse inmediatamente (long-term temporal
dependency) (Arulkumaran et al., 2017).

En los algoritmos de DRL, en lugar de modelar los conjuntos de probabi-
lidades O(sy, ay) — oy y T (8¢, a;) — si11 se modela una funcion de transicion
combinada To (s, at, o, rt, 07) — Siy1. En los algoritmos policy-based también
se modela una funcion de valor V (s, a;, 04,14, 0y) — Vi(0y) y una funcion de
regla m(agy1]Se, ag, 0,11, 0r) — m(ai11]65). El objetivo del DRL es estimar los
parametros § = 61+ U 0, U 6y que maximicen la recompensa futura descontada
esperada, o lo que es lo mismo, §* = arg méxy E[R;]. Las tres funciones mode-

ladas comparten algunos de sus parametros tal que 67 C 0, N Oy (Banerjee et
al., 2018).

En el anexo B se explica el algoritmo Deep Q-Networks (DQN), extension
de Q-learning con DNN.

3.2.2. DRL en exploracién

El uso de DNN para representar las reglas o estrategias en RL es relativa-
mente reciente. Permite una representacion muy detallada, pero tiene grandes
inestabilidades durante el aprendizaje online. Distintas soluciones se han pro-
puesto para estabilizar el algoritmo, como las basadas en Fxperience Replay
(ER), que guardan en una memoria de un cierto tamano (Liu & Zou, 2018)
experiencias pasadas y en cada iteracion muestrean un subconjunto de ellas
para actualizar los parametros del agente. Cada experiencia podria ser, por
ejemplo, la 4-tupla (sq, az, 1y, s¢11). De esta forma se evita la correlacion entre
datos sucesivos, evitando minimos locales y el sobreajuste. Este tamano del
muestreo ha probado ser clave en el aprendizaje, teniendo su incremento el
mismo efecto que la disminucion del learning rate, o (Smith et al., 2017).

(Volodymyr Mnih et al., 2015) es uno de los primeros trabajos donde se
emplea ER de forma satisfactoria, superando a todos los algoritmos del mo-
mento. Los mismos autores presentan una solucion alternativa en (Volodymyr
Mnih et al., 2016). El algoritmo A3C (Asynchronous Advantage Actor Critic)
propone la ejecucion asincrona de miltiples agentes en paralelo, y ha sido em-
pleado en numerosos trabajos ya que consigue la estabilizacion del aprendizaje
sin el uso de ER, como en (Lei et al., 2017; J. Zhang et al., 2017; Zhelo et al.,
2018) o (Mirowski et al., 2016), donde se aumenta ademés el aprendizaje con
objetivos auxiliares (e.g. la estimacion de profundidad o la deteccion de lazos)
para mejorar su funcionamiento.

Los métodos basados en este algoritmo representan una nueva aproxima-
cion al problema con respecto a las vistas hasta ahora, ya que combina las fun-
ciones de valor (critic) con una representacion implicita de las reglas (actor).
De esta forma, la funciéon de valor se emplea como feedback para la optimi-
zacion de la regla: tras ejecutar una accién, se genera una recompensa y un
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Figura 3.5: Arquitectura actor-critic. De (Arulkumaran et al., 2017).

nuevo estado en funcién del entorno, que permiten calcular la funcién de valor.
Esta funcion de valor junto con el estado son empleados para calcular la regla
Optima que generard una nueva accion. Tanto la funcién de valor como la regla
se realimentan con el error TD (temporal difference), 6,1 = ry + vV, — V1.
Este término suele referirse como ventaja o advantage y puede representarse
como A = Q(s,a) — V(s), o de forma equivalente, como A ~ R — V(s) si los
(Q-values no son calculados en el algoritmo (ver figura 3.5). Notese que tanto
la funcion de valor como la regla son calculadas en una red neuronal.

En (Mirowski et al., 2016) se consigue entrenar la red para encontrar ob-
jetivos aleatorios en un mapa con distintas posiciones iniciales del agente, pero
no se presentan resultados en distintos mapas, por lo que se plantea la pre-
gunta de si se podria generalizar el aprendizaje a mapas no conocidos. Oh
et al., (2016), en contraste, si generalizan los resultados en mapas de diferen-
tes dimensiones obteniendo buenos resultados, pero en este caso el agente no
busca un goal concreto sino que es entrenado para escoger entre varios ba-
sandose en el historial de observaciones. En Banerjee et al., (2018) se emplea
una aproximacion similar a la de Mirowski, pero con una gama de experimen-
tos més amplia, intentando responder a la pregunta: ;jrealmente aprenden los
algoritmos de DRL a explorar?. Al generalizar el aprendizaje (llevado a ca-
bo en N = {10,100, 500,1000} mapas) a mapas desconocidos se observa que
se estd explotando y no explorando ? el entorno, siguiendo, por ejemplo, es-
trategias de seguimiento de paredes. En experimentos simples se detecta que
tinicamente se explora aleatoriamente el mapa, en lugar de buscar el camino
més corto hacia el objetivo. Los resultados en distintos mapas muestran que el
camino mas corto tnicamente se escoge en aproximadamente el 50 % de ocasio-

2Una decision puede tomarse de forma que se escoja la mejor accién posible con la
informacion actual disponible (explotacion) o de forma que se mejore la informacion (explo-
racion). De esta forma, un sacrificio a corto plazo puede llevar a mejoras de comportamiento
a largo plazo. Este dilema se conoce como exploration-exploitation y debe llegarse a un
compromiso entre ambas decisiones para optimizar la exploracién de un mapa.
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nes (i.e. no presenta una significativa mejora sobre un movimiento aleatorio).
Este trabajo es uno de los pocos en los que que se evalia el aprendizaje en
mapas desconocidos, probando que realmente el agente no esta aprendiendo a
explorar. Los mismos autores presentan en (Dhiman et al., 2018) resultados de
generalizacion de DRL, concluyendo que los algoritmos (A3C) funcionan bien
tnicamente cuando el entorno es similar al de entrenamiento.

En (Zhelo et al., 2018) se realizan experimentos de generalizacion en nue-
vos mapas comparando diferentes algoritmos:

(a) A3C: dos capas convolucionales y dos totalmente conectadas (FCL, Fully
Conneced Layer) seguidas de sus respectivas no linealidades (ELU, Expo-
nential Linear Unit) para codificar las lecturas de los sensores, seguidas
de una capa con 16 LSTM (long short term memory) y finalmente una
capa lineal seguida de softmaz (para producir las probabilidades de cada
accion) y otra capa lineal (para generar la funcion de valor)

(b) A3C incluyendo el término de pérdida de entropia * en el célculo de los
gradientes (df,). El algoritmo A3C actualiza los parametros de las policy y
value networks (0, y 0,) de forma que se maximice la recompensa esperada.
En este trabajo se ha aumentado la actualizaciéon de la policy de forma que
la entropia de esta sea tenida en cuenta y se evite la convergencia hacia
policies deterministicas subdptimas, motivando al agente a tomar acciones
“mas impredecibles”:

df, = Vs, (log 7(ag|st, 0r)) (Ry — V (54, HU))/‘F?VQW (H (m(ay|st, 9”))2
término t‘l’:)iCO A3C término‘gntropl’a

(3.13)

(c) A3C y ademas un ICM (Intrinsic Curiosity Module) que contiene tres
capas totalmente conectadas seguidas de no linealidades para codificar las
lecturas de los sensores, una capa lineal con softmaz (para calcular la
accion estimada a partir de esta codificacion) y dos capas lineales seguidas
de ELU més otra capa lineal que a partir de la accién y las observaciones
codificadas predice la observacion siguiente

(d) A3C con entropia e ICM

En mapas conocidos, (d) es capaz de superar todos los mapas con éxito (i.e.
encontrar el goal en N pasos), mientras que los demds algoritmos fallan en
algunas ocasiones. La inclusion de memoria (capas LSTM) incrementa su éxito
es mas de un 25 % y hace converger a una buena regla de comportamiento. En
mapas desconocidos, sin embargo, incluso este algoritmo falla en numerosas
ocasiones, en funciéon de la complejidad del mapa y, probablemente, de su
parecido con los empleados durante el entrenamiento. No se reportan resultados
de random-walks en los mismos mapas, pero cabria esperar peores resultados.
Los minimos locales (caminos no minimos hasta el objetivo) parecen evitarse

3La entropia de una policy puede entenderse como la aleatoriedad de las acciones que el
agente toma. Cuanto mayor es la entropia, méas arbitrarias son las acciones escogidas.
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al emplear el moédulo de curiosidad ya que la recompensa intrinseca atrae al
agente hacia estados nuevos y dificiles de predecir y por tanto disponen de
mayor informacion de la que tendria un agente aleatorio (que podria estar
revisitando las mismas éareas todo el rato). El modulo de curiosidad contribuye
en la recompensa anadiendo el siguiente término a una recompensa extrinseca
tipica,

;1
R = Sll¢er — P41l (3.14)

Donde ¢, es el estado s;;1 codificado en sus correspondientes features, y ¢;11
la prediccion de éstas realizada por el modulo de curiosidad; de forma que se
recompensan més aquellos estados dificiles de predecir y no conocidos.

La inclusion en la funcion de recompensa de diferentes componentes afecta
a la capacidad de explorar del agente significativamente. Incluir la incertidum-
bre del robot o una métrica de ésta (i.e. criterios de optimalidad) favoreceria
la navegacion 6ptima, ayudando a escoger al agente las acciones con menor in-
certidumbre asociada. Sin embargo, jes posible introducir esta recompensa en
algoritmos de DRL?. Sean un sistema de SLAM tradicional capaz de devolver
el mapa y la posicion del agente en éste a partir de e.g. imégenes; y una red
neuronal profunda capaz de resolver el problema de toma de decisiones, e.g.
DQN, tomando como entrada el estado del robot, y devolviendo como salida
una direccion de movimiento (e.g. el espacio finito A = {<—, —, 1, |}). Parece
obvio pensar entonces, que, efectivamente, el agente podria ser recompensado
con una meétrica de la incertidumbre (X). La funciéon recompensa tradicional
simplemente deberia incluir un término asociado a esta incertidumbre que po-
dria ser, empleando el criterio D-opt, R* oc™! det(X2).

iSeria posible introducir esta métrica de ¥ de otra manera en la red?
. Qué pasaria si se tuviera en cuenta en la propia red modificando la funcion
objetivo, y por tanto la actualizacion de sus pesos 67 Ya se ha visto que algunos
algoritmos como A3C incluyen la entropia de la policy en la actualizacion de
los pesos O, i.e. H(m) = =Y (7(s)rlogm(s)x) siendo m(s) la probabilidad de
la accion k-ésima en el estado s. Las funciones objetivo del algoritmo seran
entonces,

L, =) (R=V(s)) (3.15)
L, = —log(m(als))A(s) —  PH(m) (3.16)
tér. regularizacién
Y la funcion global:
L= %L’v +L, = %Z(R —V(s))* — log(m(als))A(s) — BH(T) (3.17)

Entonces, puede verse que implicitamente se esta introduciendo la recompensa
en el problema de optimizacion, por lo que seria equivalente.

En este caso se estaria motivando la visita de estados novedosos y se
optimizaria la exploraciéon conforme se entrenase el agente, incluso revisitando
areas conocidas para cerrar lazos (i.e. reducir la incertidumbre).
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Las aproximaciones en las que se guia la exploraciéon mediante la incer-
tidumbre (uncertainty-driven exploration) son reducidas y habitualmente em-
pleadas en model-based DRL para manipulaciéon, de forma que esta incertidum-
bre puede introducirse en el modelo. Algunos ejemplos son (Depeweg et al.,
2017) o (Biichler et al., 2018) donde se emplea la incertidumbre para promover
o evitar, respectivamente, la exploraciéon de lugares con alta incertidumbre, o
(Chua et al., 2018) en el que se propone una estrategia de DL no supervisado.

En (Bai et al., 2017) se propone una solucion basada en aprendizaje su-
pervisado profundo en lugar de RL, como se habia hecho en todos los trabajos
previamente mencionados. Se etiquetan mapas 2D de forma que una red neu-
ronal sea capaz de predecir la accion mas valiosa a partir de la entropia de
Shannon (ver figura 3.6). Se emplean y comparan distintas redes neuronales
existentes como AlexNet (Krizhevsky et al., 2012), GoogleNet (Szegedy et al.,
2015) y ResNet (He et al., 2016), entre otras. Pese a ser un ejemplo de entrena-
miento supervisado, este trabajo emplea directamente una funcion de utilidad
como herramienta para aprender a tomar decisiones.

La Q-function puede emplearse en lugar de V para conocer el valor de cada
accion, lo que se denomina ()-learning, como ya se ha visto. Esto permite resol-
ver problemas en los que la funcion de transicion no es conocida (model free);
aunque presenta dificultades con espacios de estados de gran dimensiéon, puesto
que la dimension de Q(s,a) es incluso mayor que la de V(s) pudiendo existir
espacios A continuos. Las Deep Q-Networks (DQN) emplean redes neuronales
para el calculo (aproximado) de Q-functions, esto es: Q(s,a,0) =~ Q™(s,a) (ver
figura 3.7 y anexo B).

Este tipo de agentes, introducidos por Google Deep Mind en (Volodymyr
Mnih et al., 2015), son un buen ejemplo de resolucion de MDP con S de elevada
dimension empleando DRL y SGD (Stochastic Gradient Descent), de forma que
futuras recompensas sean maximizadas. Sin embargo, ésta, puede considerarse

una aplicacion limitada, ya que imagenes 2D greyscale son la tnica entrada a
la red y dim A = 3.

Lei y Ming (2016) consiguen explorar un entorno desconocido sencillo
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Figura 3.7: Ejemplo de la estructura de una DNN capaz de estimar Q-functions a
partir de los estados conocidos y los estimados. De (Egorov, 2015).
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Figura 3.8: Estructura de la DQN propuesta en (Lei & Ming, 2016).

en Gazebo evitando obstéaculos, empleando una DQN (ver figura 3.8). Una
CNN entrenada offline de forma supervisada se usa para extraer los mapas de
caracteristicas (feature maps o activation maps) de imagenes RGB-D, que se
alimentan a otra red totalmente conectada que se entrena online para calcular
las Q-functions, y escoger la mejor accién. A pesar lograr la convergencia de la
red, Unicamente se resuelve la exploracion en entornos ya navegados durante
el entrenamiento, generando, al menos, preguntas en cuanto a la capacidad
de generalizacion. La recompensa se modela mediante una funcién sencilla
disenada para evitar obstéculos, de forma que iinicamente penaliza el acercarse
a éstos.

Karkus et al., (2017) proponen otra solucion al problema de navegacion
autéonoma en el que se sustituye la CNN por una RNN con capas LSTM,
de forma que permita abordar la observabilidad parcial, hecho olvidado en la
mayoria de trabajos. En la red se codifica tanto el entorno como el algoritmo
de aprendizaje. Consta de (i) una etapa de filtrado en la que se obtiene la
estimacion del instante (¢ + 1) a partir de la estimacion, acciéon y observacion
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del instante ¢, i.e. un filtro Bayesiano,

bira(s) =1 O(s,0) Y T(s,a,8)by(s) (3.18)

s'eS

(siendo 1 una constante de normalizacion) y (ii) una etapa de planificacion que
ejecuta un método value-iteration mediante el que encuentra la accion preferida
para (t + 1). En primer lugar se calculan los @Q-values, y posteriormente se
actualizan los valores de V', segiin

Qri1(s,a) = R(s,a) —i—vZT[s,a, s V(s (3.19)
s'eS
Vi(s) = méx Qx(s, a) (3.20)

La ecuacion (3.19) se codifica mediante una serie de convoluciones con A filtros,
seguidos de una operacion de suma con tensor recompensa; mientras que la eq.
(3.20) se consigue con capas maz-pooling. Estas dos ecuaciones — denominadas
como actualizacion de Bellman — se repiten de forma iterativa apilando las
capas k veces. Tras k iteraciones se conocen los Q-values aproximados para
cada par accion-estado, que, ponderados con la estimacion (belief ), permiten
conocer el valor de cada accién y escoger asi la mas ponderada.

g(a) =Y Qu(s,a)b(s) (3.21)

seS

Las reglas aprendidas generalizan satisfactoriamente a nuevos entornos de ma-
yor dimensién o con una configuracion distinta, pero como elementos o carac-
teristicas similares. Esto es gracias a que la red no aprende una regla 6ptima
para los casos de entrenamiento sino un modelo de planificaciéon més com-
plejo. En algunos casos, QMDP-net llega a superar al algoritmo QMDP que
esté codificando, pese a que éste conoce el modelo real del POMDP, debido a
que la red redefine los valores de las recompensas de tomar ciertas decisiones
permitiendo volver a lugares ya visitados, por ejemplo. Hay que remarcar que
durante el proceso se itera sobre la totalidad del espacio de estados (value-
iteration), hecho factible unicamente por la baja dimensionalidad de este en
los experimentos realizados.

La inclusion de memoria en estas redes permite disponer de una repre-
sentacion interna del entorno, mejorando la exploracion. Sin embargo, en esce-
narios de larga duracion, con la creciente demanda de memoria, la capacidad
expresiva de la red se reduce potencialmente (Graves et al., 2016). Una memo-
ria externa evitaria mezclar en los pesos de la red la memoria y los distintos
algoritmos de célculo. Existen tres arquitecturas de memoria externa para redes
profundas: Neural Turning Machine (NTM), Differentiable Neural Computer
(DNC) y las redes de memoria (memory networks), aunque estas tltimas no
aprenden qué deben escribir en la memoria (Graves et al., 2014; Graves et al.,
2016; Oh et al., 2016).
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J. Zhang et al., (2017) embeben en una memoria externa una representa-
cion interna del entorno, a partir de la que una red neuronal es capaz de ejecutar
tareas de planificacion y SLAM, incluso long-term. En cada step primero se
actualiza la memoria Ny posteriormente se realiza la toma de decisiones, que
tras ser procesado por distintas capas de la red resulta en 7 y V. Esta aproxi-
macion, denominada Neural-SLAM, es validada en entornos 2 y 3D en Gazebo
(donde la fisica subyacente y los modelos de ruido de sensores son mucho mas
realistas que en los entornos de simulacién empleados en otros trabajos) con
cuatro posibles acciones. Se consiguen resultados superiores a los conseguidos
con random-walks y otras aproximaciones del algoritmo A3C, como (Mirowski
et al., 2016). Se incluyen ademas pruebas de generalizacion en escenarios de
mayor dimension que los del entrenamiento. En la tabla 3.1 se han agrupa-
do los resultados obtenidos. En primer lugar, se observa una mejora entre un
movimiento aleatorio y el algoritmo propuesto en (Mirowski et al., 2016). Sin
embargo, como ya explicaba (Banerjee et al., 2018), la mejora es sutil. Se consi-
gue finalizar inicamente un 10 % de los escenarios en menos de 750 iteraciones
y no se presenta la informaciéon del resto de escenarios para su comparativa.
Las dos capas LSTM de la RNN podrian estar almacenando datos de la odo-
metria del robot, incitandole a moverse en un vecindario cercano sin volver a
lugares lejanos ya visitados o a realizar estrategias de seguimiento de paredes
(como ya se ha comentado). La mejora del uso de una memoria externa, por
otra parte, si representa una mejora sustancial al disponer de una representa-
cion del entorno. Los experimentos en Gazebo consiguen ser satisfactorios pero
no se presentan resultados de generalizaciéon en entornos desconocidos, trabajo
que se plantea a futuro junto con la inclusién de recompensas intrinsecas de
forma similar a (Zhelo et al., 2018).

Agente Steps Recompensa | Tasa éxito
Aleatorio 5531 + 4299 —596 £ 505 -

A3C (Mirowski et al., 2016) 683 + 201 —15+11 0.10
Neural-SLAM (J. Zhang et al., 2017) 175 + 175 13+9 0.92

Tabla 3.1: Resultados aproximados de generalizacion en los experimentos 2D de (J.
Zhang et al., 2017), donde la tasa de éxito se refiere a la capacidad de explorar un
entorno en menos de 750 steps.

Otras soluciones de vanguardia de Deep Q-learning alternativas a DQN
son DBQN (Deep Belief Q-network), DRQN (Deep Recurrent (QQ-network),
DDRQN (Deep Distributed Recurrent Q-network) o ADRQN (Action-based
Deep Recurrent Q-network), propuestas respectivamente en (Egorov, 2015;
Hausknecht & Stone, s.f.; Foerster et al., 2016; Zhu et al., 2018). En la ta-
bla 3.2 se presenta una breve comparativa de estas aproximaciones. Notese
que en ADRQN se introducen parejas accién-observacion acopladas a la red,
mejorando significativamente la estimacion con respecto a DDRQN. La figura
3.9 muestra de forma muy clara la estructura de una ADRQN, con sus distin-
tas capas, entradas y operaciones; pudiendo verse la metodologia de calculo,
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Aproximacion Entrada Problema abordado
DQN Sy model-free MDP
DBQN by model-based POMDP
DRQN (01,...,0t) model-free POMDP
DDRQN (ag, ..., at—1)(01, ...0t) | model-free POMDP
ADRQN (ag,01), vy (@t—1,0¢) | model-free POMDP

Tabla 3.2: Comparativa entre distintas aproximaciones de Deep Q-learning.

O-values a,,, 0,0

I Simulator
P

Figura 3.9: Estructura de la ADRQN propuesta en (Zhu et al., 2018), donde IP
(inner product) es equivalente a FCL (fully connected layer).

que, a rasgos generales, es similar en todas las aproximaciones presentadas.

En (F. Chen et al., 2019), se emplea una aproximacion de DRL con recom-
pensas basadas en la entropia del mapa (mutual information) para explorar de
forma eficiente entornos 2 y 3D. Este trabajo, publicado durante la realizacion
de esta memoria, es similar a las implementaciones que se veran en el capitulo
4, donde la funciéon recompensa es aumentada con una métrica de la incerti-
dumbre para favorecer la exploracion. Es el tinico trabajo que se ha encontrado
en el que se emplea una DQN con recompensas basadas en la covarianza, y
presenta resultados en los que se supera a algoritmos tradicionales de SLAM
activo, pero siempre en entornos de tipo grid-world.

32



Capitulo 4

Implementacion y Evaluacion de
RL en Exploraciéon

Los contenidos de este capitulo estdn organizados de la siguiente manera:

= En primer lugar se describen las herramientas empleadas para la imple-
mentacion de algoritmos y el hardware disponible (seccion 4.1).

= En la seccion 4.2 se presentan los escenarios de simulacién empleados y
sus caracteristicas.

= Finalmente se muestran los detalles de las distintas implementaciones y
los resultados obtenidos (secciones 4.3 en adelante).

4.1. Herramientas

A continuacion se describen brevemente algunas de las herramientas empleadas
en este trabajo. Los experimentos se han llevado a cabo en dos terminales
distintos para agilizar el proceso, ambos con Ubuntu 16.04, ROS Kinetic y
Gazebo 7.15. El primero de ellos (T1 de ahora en adelante) dispone de 16GB
de RAM DDR3, CPU de 8 nucleos (i7-4771 @ 3.5GHz) y GPU Nvidia GTX-660
2GB; y el segundo (T2) de 32GB de RAM DDR4, CPU de 4 nucleos (i7-7500U
@ 2.7GHz) y GPU Nvidia Quadro M520 2GB.

4.1.1. Python, TensorFlow y Keras
TensorFlow! es una libreria de cédigo abierto para ML desarrollada original-
mente en 2015 por Google Brain que funciona con CPUs (Central Processsing
Units), GPUs (Graphics Processsing Units) e incluso TPUs (Tensor Process-
sing Units). Esta libreria empleada para calculo numeérico esta basada en grafos

thttps:/ /www.tensorflow.org/
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donde los nodos representan las operaciones y los arcos los tensores que flu-
yen entre ellos. Pese a que permite trabajar en Python las operaciones son
realmente realizadas en codigo de alto rendimiento en C-++.

Keras? es una API (Application Programming Interface) de alto nivel de
redes neuronales que es capaz de ejecutarse sobre otras librerias de optimizacion
o calculo matematico como Tensorflow, CNTK? o Theano®. Se trata de una
libreria Python para aprendizaje profundo que permite crear modelos de los
agentes de una forma sencilla con TensorFlow en backend. Esto es, una liberia
que no se encarga de operaciones de bajo nivel como productos de tensores o
convoluciones, sino de facilitar la creacion de modelos de DL mediante bloques.

En estre trabajo se han empleado tanto Python 2.7.12 como Python 3.5.2,
TensorFlow 1.13.1 (CPU y GPU), Theano 1.0.4 y Keras 2.1.2.

4.1.2. OpenAl Gym

OpenAl Gym® es un paquete para el desarrollo y la comparacién de distintos
algoritmos de RL, desarrollado por OpenAl. Contiene un conjunto de entornos
que van desde problemas de control clasicos como el péndulo invertido hasta
otros més complejos como los juegos de Atari. Ademas, proporciona herramien-
tas para la creacion de espacios de acciones, de estados, o para la recoleccion
de observaciones, en Python.

4.1.3. Gym Gazebo

Gym-Gazebo® es un software complejo que extiende las librerias de OpenAl
Gym para su uso conjunto con ROS (Robot Operating System)” y Gazebo®.
Contiene entornos de Gazebo complejos en los que simular comportamientos
cercanos al mundo real. Este proyecto de Erle Robotics provee distintos en-
tornos para tres robots moviles (TurtleBot, ErleRover y ErleCopter), asi como
varios brazos roboticos. Recientemente se ha dejado de mantener esta exten-
sion de OpenAl Gym para Ubuntu 16.04 y para ROS, tras el lanzamiento
de Gym-Gazebo 27, que se ejecuta de forma nativa en ROS2 y tnicamente
ofrece la posibilidad de simular el robot modular MARA (Modular Articulated
Robotic Arm).

https:/ /keras.io/

3https://www.microsoft.com /en-us/cognitive-toolkit /
4http://deeplearning.net /software /theano/
Shttps://gym.openai.com/

Shttps://github.com /erlerobot /gym-gazebo

"http:/ /www.ros.org/

8http://gazebosim.org/
9https://github.com/AcutronicRobotics /gym-gazebo2

34



4.2. Entornos de Simulacion

En este proyecto se han empleado varios entornos de simulacion para evaluar los
algoritmos de RL. Son entornos propios de Gym-Gazebo, versiones alteradas

de estos o nuevos entornos creados para Gazebo e integrados en el framework
de Gym-Gazebo.

En todos ellos, el robot TurtleBot!'?, equipado con un laser 2D y una
camara, navega por el entorno generando distintas observaciones y cambiando
de estado. El conjunto de acciones posibles esta restringido a velocidad lineal
positiva, velocidad angular positiva o velocidad angular negativa (dim A = 3):

a; ={v=03, w=0}
as = {v =0.05, w=0.3}
a3 = {v=0.05, w=—-0.3}

Donde v es la velocidad lineal en ms™! y w la angular en rad s—!. El espacio de
estados viene definido por las medidas del sensor laser por lo que su dimension
variard en funcién de la descripcion del sensor. Ademés, el méaximo nimero
de pasos por episodio se ha limitado a 1000 para RL y 500 para DRL por su
demanda computacional. Puesto que la exploraciéon debe ocurrir sin colisiones
con las paredes, el episodio también termina si el robot se acerca por debajo
de un threshold de 0.2m a cualquier obstaculo.

En las figuras 4.1 y 4.2 se muestran los tres entornos empleados, pudiendo
destacar las similitudes entres el primero y el segundo y la complejidad del
tercero.

Los procesos de entrenamiento y evaluacion que se han llevado a cabo en
ambas aproximaciones se muestran en la figura 4.3. En el caso de RL el médulo
de memoria no es mas que la ()-table, mientras que en el caso “deep” representa
la ER de la que se extraen muestras para actualizar los pardmetros de la red.

Figura 4.1: Escenario de entrenamiento.

Ohttp:/ /wiki.ros.org/Robots/TurtleBot
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(a) Escenario 2. (b) Escenario 3.

Figura 4.2: Escenarios de generalizacion.

F——— — — — — —— - - - - - - — =

\Training ~ state .

action

Figura 4.3: Procesos de entrenamiento y evaluacién. Durante el primero la memoria
guarda informacion de las recompensas obtenidas segtn el estado y la accién escogida,
dando forma a la policy. En la fase de testeo, inicamente se evaltaa la policy.
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4.3. Aproximacion RL: Q-Learning

4.3.1. Traditional reward

En primer lugar, se busca comprobar que las aproximaciones con DNN suponen
una ventaja realmente sobre algoritmos de RL tradicionales. En la mayoria
de trabajos que afirman capacidad de exploraciéon se plantean recompensas
extrinsecas clésicas, por lo que se ha realizado un experimento siguiendo estas
premisas. Se ha entrenado un primer agente mediante ()-learning en el entorno
1 durante 10000 episodios (= 125 horas en T1), con una policy e-greedy con
decreciente en el intervalo [0.9,0.05], factor de aprendizaje a = 0.2, factor de
descuento v = 0.8 y la siguiente funcién recompensa:

— 100 si hay colision
R, = 05 siw=0 (4.1)
— 0.05 siw#0

Donde cada valor ha sido sintonizado de forma que se eviten giros y movimien-
tos innecesarios motivados por minimos locales (e.g. giros continuos).

Uno de los grandes retos en el problema de @-learning es convertir el
conjunto de lecturas del laser en estados para generar la @Q-table. Esto se ha
resuelto discretizando la lectura del laser en 5 datos equidistantes, pero otras
opciones como calcular la media o el valor minimo entre grupos de datos serian
métodos también validos.

En la figura 4.4 se muestran los resultados del aprendizaje. Se observa una
curva de aprendizaje creciente que llega a estabilizarse, a pesar de haber para-
do el entrenamiento por su elevado coste computacional tras ~ 7.5M steps y de
cambiar los parametros ‘recomendados” por los autores (Zamora et al., 2016).
Notese también el cambio de la tendencia conforme ¢ — 0. Efectivamente el
agente aprende a tomar decisiones favorables para navegar en el entorno evi-
tando las paredes, consiguiendo alcanzar en muchas ocasiones el limite de pasos
fijado por episodio. Sin embargo, surgen dos preguntas: jse trata realmente de
una exploracién, o simplemente esta moviéndose para evitar los obstaculos co-
mo proponia Banerjee et al., (2018), i.e. navegando? y, jeste aprendizaje puede
extrapolarse o generalizarse a otros entornos distintos?.

A continuacién se ha probado el agente entrenado en los entornos 2 y 3
durante 1000 episodios. En las figuras 4.5 y 4.6 se presentan los resultados
obtenidos por el agente entrenado, un agente sin entrenar y un agente cuyas
acciones estan condicionadas por un factor de aleatoriedad elevado (¢ ~ 1).
En el entorno 2, a pesar de la variabilidad por la apariciéon de estados no
contemplados en la Q-table, el comportamiento del agente entrenado (azul) es
superior a los demas. En el entorno 3, completamente diferente y mas complejo,
sin embargo, los resultados son similares para los tres agentes. Se observa una
ligera mejoria en cuanto a la recompensa o los pasos medios, pero en ningun
caso se trata de una mejoria notable (recuérdese que han sido empleadas ~ 125
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horas de entrenamiento). La capacidad de generalizacion de este algoritmo
puede considerarse limitada por la similitud entre los entornos y su complejdad,
conclusion extendible a algoritmos similares de RL.

300 Q-learning
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Figura 4.4: Recompensa durante el aprendizaje con @-learning de un agente en el
entorno 1 (azul claro), su media movil (azul oscuro), los steps medios (negro) y e
(verde).
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Figura 4.5: Recompensa de un agente estocastico (rojo), uno sin entrenar (verde)
y el agente entrenado (azul) en los escenarios de generalizacion.
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Figura 4.6: Comportamiento de los tres agentes mencionados en cuanto a tiempo
de computo y recompensa y pasos medios por episodio.
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4.3.2. Uncertainty-based reward

Considérese ahora la definicion de exploracion roboética (ver secciéon 2.1) en la
que el objetivo es minimizar la incertidumbre de la localizaciéon del robot y el
mapa creado. Una recompensa definida segin la ecuacion (4.1) tnicamente esté
motivando la evasiéon de obstaculos y el movimiento por el centro de pasillos,
y prueba de ello es la figura 4.7, donde se muestra la entropia en funcién
del namero de pasos (izquierda) y episodios (derecha) para el escenario 2.
Ademés de la discontinuidad generada por revisitar estados conocidos en torno
a los 200 pasos, se observa una tendencia desordenada de la entropia conforme
aumentan los episodios, esto es, inicamente mejora o empeora arbitrariamente
como consecuencia de intentar optimizar R;.

Por el contrario, si se incluyese en la ec. (4.1) una componente inversa
a una métrica de la matriz de covarianza (¥), se motivaria visitar ademés
aquellos estados que redujesen la incertidumbre y se evitarian otros indeseados
que favoreciesen el aumento de la incertidumbre progresivamente, e.g. giros
continuos en un punto o acercarse en exceso a las paredes. Se propone por
tanto la siguiente funcién de recompensa aumentada:

— 100 si hay colision

L
R, — 0.5 +m siw =0 (4.2)

1
— 005 +—= siw#0
f(E)

Para disponer de una métrica de la covarianza durante la simulacién se
ha empleado el paquete de ROS gmapping!! ya que es relativamente sencillo
de usar y su demanda computacional no es alta. Tras su previa configuracion
y ajuste de parametros, es capaz de ejecutar un algoritmo de SLAM basado

ntropy along steps ntropy along episodes
Entropy along step Entropy along episod 4
3.6 T E T n £ :
2.8 2.4
S 24 g = 20 »
o 2.0 g o <t
S =} = 1.6 3
= 163 & 198
- 1.2 = :
0.8 08
04 0.4
0 . 0.0 0.0
0 200 400 600 800 0 200 400 600 800 1000
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Figura 4.7: Evolucion de la entropia en funcién de los episodios y steps en el es-
cenario 2 con el agente entrenado con R;. El mapa de color indica la ocurrencia
logaritmica.

Uhttp://wiki.ros.org/gmapping, https://openslam-org.github.io/gmapping.html
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(a) Entorno 1 (b) Entorno 2 (c) Entorno 3

Figura 4.8: Visualizaciéon en RViz de los mapas creado mediante gmapping de los
tres escenarios.
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Figura 4.9: Recompensa durante el aprendizaje con @Q-learning empleando R, en
el entorno 1 (azul claro), su media movil (azul oscuro), los pasos medios (negro) y €
(verde).

en filtros de particulas de Rao-Blackwell (Rao-Blackwellized Particle Filter,
RBPF) que calcula el mapa del entorno, la pose del robot en éste y una métrica
de la incertidumbre: la entropia (i.e. f(3) := H); a partir de la odometria y
las medidas laser. En la figura 4.8 se presentan ejemplos de los mapas creados
por el algoritmo, visualizados con RViz!2.

La figura 4.9 muestra el aprendizaje de un agente programado con la
funcion de recompensa definida en la ecuacion (4.2) para los 5000 primeros
episodios (= 2M steps y ~ 29 horas en T1). Véase la notable diferencia entre las
curvas de aprendizaje 4.4 y 4.9 en cuanto a tendencia, efecto de ¢, estabilidad
y convergencia, entre otros.

Finalmente, en la figura 4.10, se muestra la densidad de entropia con el
agente entrenado con R,. La evoluciéon de H es ahora mas ordenada y de-
creciente a lo largo de los episodios, dentro de lo esperado por la limitada
capacidad de generalizacion del algoritmo al segundo entorno.

2http: / /wiki.ros.org/rviz
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Figura 4.10: Evoluciéon de la entropia en funcién de los episodios y steps en el
escenario 2 con el agente entrenado con R,. El mapa de color indica la ocurrencia
logaritmica.

4.3.3. Conclusiones

Queda demostrada la incapacidad de algoritmos de (D)RL en general de explo-
rar un entorno sin previamente incluir una componente adicional que motive
el aprendizaje reduciendo la incertidumbre. Los experimentos con una compo-
nente inversa a la entropia conducen a resultados satisfactorios, motivando la
reduccion de incertidumbre incluso en entornos distintos del de aprendizaje.
En ellos, sin embargo, el comportamiento del agente es mucho peor que en los
mapas de entrenamiento, en funcién de su parecido y su complejidad. Ademés,
es destacable la elevada necesidad computacional para resolver el problema.
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4.4. Aproximacion DRL: Deep Q-Learning

Analizado el marco de RL, se ha estudiado la aproximaciéon con DNN, en la que
la Q-function es sustituida por una red que acttia como function approximator.
De esta forma quiere analizarse si las redes profundas aportan alguna ventaja
a la hora de generalizar o tomar las decisiones repecto a la aproximacion tra-
dicional. A diferencia de los anteriores, estos experimentos se han ejecutado
principalmente en la GPU de T2 ya que Keras (con TensorFlow backend) tiene
soporte para ésta.

En primer lugar, han tenido que realizarse diversas modificaciones a la
libreria Gym-Gazebo para el correcto funcionamiento de la simulacién con
DNN. Entre las méas representativas se encuentran: (i) la creacion de un nuevo
modelo de sensor laser con n rayos horizontales entre +180°, que no tenga
en cuenta todos los decimales del tipo float32 ni los valores NaN, +Inf y
-Inf ; (ii) una velocidad de ejecucion de acciones que permita que el robot
se mueva y Gazebo realice los célculos necearios, esperando para ello varios
milisegundos; (iii) la posibilidad de reaparecer en distintos puntos del mapa,
reiniciando correctamente los nodos ROS de odometria, comando de velocidad
y estado; (iv) el ajuste de los pardametros del solver de Gazebo para limitar el
tiempo de simulacion a 10 veces el tiempo real, permitiendo que los calculos
necesarios se ejecuten en todo momento; y (v) la nueva definicién del modelo
del robot para evitar desviaciones en la trayectoria y temblores no deseados,
provocados por una descompensacion inercial y por colisiones entre mallas.

Tras estas modificaciones, se han programado una Deep Q-Network (DQN),
una Double Deep Q)-Network (DDQN) y una Dueling Double Deep Q)-Network
(D3QN), que se presentan en el Anexo B. La funciéon recompensa se ha definido
de forma analoga a @)-learning como:

— 100 si hay colision
RDQN = 1 siw=0 (43)
— 0.05 siw=#0

La DQN, representada en la figura 4.11(a), estd formada por una capa
de entrada que recibe las mediciones del laser, 2 capas densas (24 y 12 hidden
units) con activacion ReLU, y una capa de salida densa con activacion lineal
(de tamano igual al nimero de acciones posibles). Las capas intermedias estan
regularizadas mediante dropout. El método de optimizacion es RMSProp con
learning rate o = 2.5e—4 y como funciéon de pérdida se usa el error cuadra-
tico medio. La red emplea ER con un buffer de 50000 vectores de la forma
(8¢, ae, T, Sv1, €1), del que se muestrean lotes arbitrarios de tamano 64 (donde
e; indica si se trata del altimo estado de un episodio). Se sigue ademés una
policy € — greedy con ¢ decreciente en el intervalo [1,0.05] durante los pri-
meros episodios. Los parametros de las redes principal, 6, y objetivo, 6%, se
sincronizan cada 10000 steps para disponer de un objetivo estacionario (hard
updates), y se inicializan segin una distribucion uniforme (LeCun). Para esta
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configuracion, el nimero de parametros entrenables es § =~ 600. La tabla 4.1
muestra un resumen de los parametros descritos. Por su parte, el moédulo de
memoria se ha programado sobre el existente de Gym-Gazebo, empleando la
estructura deque () de alto rendimiento para extraccion y guardado de tuplas
en Python. La red D3QN, figura 4.11(b), comparte la mayoria de parametros
con la primera, habiendose modificado principalmente la arquitectura y el mo-
dulo de memoria (ver Anexo B). Para conseguir resultados repetibles, se han
fijado las semillas de aleatoriedad de todas las librerias empleadas, aunque un
pequeno grado de variabilidad existe debido a la simulacién en Gazebo.

O-Input  1-Dense RelU 2-Dense ReLU 3-Dense Linear

X1

=@
Gazebo laser X 7 Approximate
measurements | * B Q-values
; : | e

Dropout Dropout

(a) DQN con dropout

5

0-Input 1,2-Dense  3,4-Dense5-Aggregate
\Y
X1
Gazebo laser X2 : A ¥ ApPprox.
measurements ' Q-values

Xn

(b) Dueling DDQN

Figura 4.11: Arquitectura de las redes empleadas, donde los circulos negros repre-
sentan las neuronas de la red.

Parametro Simbolo | Valor
Factor de aprendizaje «@ 0.00025
Factor de descuento y 0.99
Factor de dropout capa 1 dy 0.5
Factor de dropout capa 2 dsy 0
Tamano de ER M 50000
Tamano de muestreo b 64
Num. entradas Nin 10
Num. salidas Nout 3
Steps de exploracion U, 100
Steps entre actualizaciones | U 10000

Tabla 4.1: Resumen de los parametros de aprendizaje de la DQN.
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4.4.1. Analisis de resultados

Se han realizado numerosas simulaciones con distintas combinaciones de pa-
rametros y arquitecturas, detectando una enorme sensibilidad no sélo a la
variacion de éstos sino también a su relacion. Factor de aprendizaje y tamano
de muestreo de la memoria son claves en la simulacion, siendo el efecto de dis-
minuir el primero similar a aumentar el segundo (Smith et al., 2017). Learning
rates menores del propuesto conducen a aprendizajes extremadamente lentos,
mientras que mayores de 0.001 provocan inestabilidades. El tamano del mues-
treo minimo parece estar en torno a 64 muestras para conseguir aprender a
una velocidad aceptable, mientras que puede ser aumentado progresivamente
durante el entrenamiento hasta valores proximos a 300 sin penalizacién compu-
tacional elevada. El tamano de la memoria, por su parte, parece no tener un
efecto notable siempre que se encuentre en valores minimos razonables que
permitan una cierta variedad en las experiencias contenidas (e.g. 10-50k). Ta-
manos de hasta 500k se han evaluado, no presentando mejora en la policy
conseguida. La arquitectura de la red es otro de los factores criticos: un gran
namero de entradas y/o de posibles acciones hace que el aprendizaje se ralen-
tice mucho y consigue inicamente que la red termine ignorando parte de éstas,
como puede observarse en la figura 4.12, donde conforme avanza el entrena-
miento cada vez mas entradas se ignoran; mientras que un bajo nimero de
lecturas de laser hace dificil el reconocimiento de patrones similares. Aumen-
tar el nimero de neuronas o capas por encima del propuesto ralentiza también
la convergencia sin una mejora significativa en el comportamiento del robot
en simulaciones cortas, aunque su efecto en generalizacion y en simulaciones
més largas seria beneficioso. Por otra parte, la actualizacién de pesos de la
red objetivo muestra también una variacion significativa en los resultados. Si
los Q-targets no estén fijos durante un ntmero de episodios que permitan la
convergencia a éstos, se producen oscilaciones e inestabilidades, como ya se
habia visto en (S. Chen, 2018). Actualizaciones continuas (soft updates) de la
target network también se han evaluado (e.g. interpolacion 7 x 0* + (1 —7) x 0
con 7 € (0.001,0.005)), pero no se ha visto una mejoria notable para el coste
computacional que supone actualizar los pesos cada step. El valor de velocidad
lineal y angular son también criticos y deben ser ajustados en funciéon de las
dimensiones del entorno. Finalmente, un parametro que ha demostrado ser de
una importancia y sensibilidad abismal es la funciéon de recompensa. El disenio
de ésta en cuanto a valores absolutos y relacion entre ellos tiene efecto, en-
tre otros, en: convergencia a policies no 6ptimas, velocidad de aprendizaje y
error de estimacion de Q-values (i.e. loss function), y por tanto en problemas
derivados como ezxploding gradients. Pese a que recompensas contenidas en el
intervalo [—1,1] (reward clipping) consiguen funciones de pérdida y gradien-
tes acotados y menos bruscos, no ha resultado en una convergencia a mejores
policies en los horizontes temporales contemplados.

Como puede comprobarse en (Mohaimenian Pour et al., 2017), donde se
entrena un agente similar con parametros similares a los propuestos, la conver-
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gencia a una policy 6ptima es conseguible tras un periodo de entrenamiento
suficientemente grande. En ese caso, tras varios dias de entrenamiento en un
entorno més simple y empleando una GPU Nvidia Titan Xp. Por este motivo,
la convergencia a una policy 6ptima se descarta en los experimentos realizados.
Un ejemplo de aprendizaje de una policy exitosa se muestra en la figura 4.13,
con la que el agente es capaz de recorrer el entorno completo en aproximada-
mente el 85 % de ocasiones. En este caso, 100 son las entradas de la red y 21 sus
salidas, al igual que en (Mohaimenian Pour et al., 2017), aunque los valores ab-
solutos de la funciéon de recompensa son ligeramente distintos y la red contiene
un nimero de neuronas inferior. Como puede observarse, una regla subéptima
se sigue durante casi la mitad del entrenamiento, traducida en un agente que
inicamente sabe avanzar en linea recta y girar en un tnico sentido cuando va a
chocarse. No se ha detectado qué hace realmente al agente salir de dicha policy
pero supone un aprendizaje casi repentino de como girar en ambas direcciones.
En entornos distintos al de aprendizaje, tanto esta red como la propuesta por
Mohaimenian se comportan de forma muy inferior, mostrando comportamien-
tos mejores que los de un agente aleatorio tinicamente si los entornos tienen
una estructura similar (e.g. pasillos de igual tamano, giros similares...). Notese
que el entrenamiento ha necesitado un total de ~ 120 horas para los ~ 3.1M
de steps.
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Figura 4.12: Evolucién de los parametros de la primera capa densa de una red cuya
entrada son 100 lecturas de laser, tras 100, 1000 y 4000 episodios de entrenamiento.
Notese la especializaciéon de algunas neuronas en zonas del ldser o como muchas
entradas son practicamente ignoradas conforme se entrena la red.
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Figura 4.13: Recompensa durante el aprendizaje de DQN en el escenario 1 (azul
claro), su media movil (azul oscuro), e (verde) y los steps (negro). Méaximos steps:
1000, recompensa tedrica estimada maxima: = 4000.

Las figuras 4.14(b) y 4.14(c) contienen los kernels de entrada y salida
de la red como ejemplo de una mala policy (similar a la del agente anterior
durante la primera parte de la simulacion) a la que otro agente entrenado
converge tras mas de 3000 episodios de entrenamiento con la configuracion de
la tabla 4.1 y la funcién de recompensa de la ec. (4.3). En ella, los pesos se
configuran de forma que las lecturas del laser a la derecha del agente no se
ponderan bien y terminan en @Q-values subestimados. Recuérdese que valores
negativos son ignorados con activaciones ReLU, como puede verse en la figura
4.15: cuando las lecturas laser centrales y a la izquierda no son suficientemente
grandes para mitigar el efecto negativo de las lecturas a la derecha, resulta en
una gran cantidad de activaciones nulas (dying ReLU). En la figura 4.14(a) se
puede osbervar el comportamiento del agente en la simulaciéon y los Q-values
estimados en una situacion similar a la de la figura 4.15.

Una soluciéon a este problema podria encontrarse en usar funciones de
activacion diferentes. Se ha entrenado una red similar, incluyendo 24 neuronas
en ambas capas densas y 100 entradas laser, pero con activaciéon LeakyReLLU
(0 =~ 3000). Esta funcién no genera salida nula ante valores negativos sino un
pequeno valor negativo funcién de la entrada. En la figura 4.16 se muestran
los resultados de entrenamiento de un agente con regularizacion dropout tras
la primera capa!® (azul) y sin ella (rojo) tras 700 episodios (=~ 28 horas). En
primer lugar, se observa que el agente sin dropout converge a una policy cuasi-
6ptima durante el entenamiento, que tiene ademés una tendencia creciente.
El agente con dropout converge a una buena policy tras 300 episodios que
luego “olvida” repentinamente y parece “reaprender” mas adelante. El uso de
dropout introduce una varianza adicional al problema de redes neuronales que
en el caso de SL se busca para evitar overfitting, pero que en DRL genera
inestabilidades en el aprendizaje, puesto que la seleccién de acciones e-greedy,
el objetivo movil y el propio entorno ya son una fuente de varianza enorme. La
posible ventaja de solucionar el overfitting se ve nublada por la gran cantidad
de neuronas muertas que hacen oscilar el aprendizaje, necesitando un tiempo

13También se ha analizado el comportamiento de un agente con dropout tras la segunda
capa, siendo sus resultados similares.
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Figura 4.16: Recompensa acumulada durante el aprendizaje de DQN con Leaky-
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Figura 4.17: Funcién de pérdida durante el aprendizaje de DQN con LeakyReLU
en el escenario con (azul) y sin (rojo) dropout.

de aprendizaje mucho més elevado para estabilizarse. La figura 4.17 muestra
las funciones de pérdida para ambos agentes a lo largo del entrenamiento,
respaldando estas conclusiones.

Ambos agentes se han evaluado en los tres entornos durante 50 episodios
con una buena policy del entrenamiento (300 episodios con dropout y 700 epi-
sodios sin dropout), en los que ni se guarda informacion en la memoria ni se
modifican los pesos. Cada evaluacion se ha repetido 5 veces (3 para el primer
escenario) liberando las semillas de aleatoriedad. En la tabla 4.2 se presentan
el ratio de éxito (success ratio, SR) o porcentaje de intentos en los que se logra
explorar el entorno completo al menos una vez, los pasos medios, la recompen-
sa media acumulada en cada episodio, la recompensa tedrica maxima estimada
y la que obtendria una persona (sin chocarse); asi como las desviaciones es-
tandar de estas métricas entre paréntesis. Ambos agentes consiguen resolver
perfectamente el entorno de entrenamiento, y aunque lo hacen con una policy
suboptima, la recompensa es ligeramente superior a la que obtendria una per-
sona. El segundo escenario es resuelto en el 91 % de ocasiones por el agente
con dropout y en el 72 % por el que no tiene; aunque por el nimero de pasos y
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la recompensa media se puede ver que ambos realizan numerosos giros innece-
sarios. Puede observarse como el dropout favorece la generalizacion, pese a que
la fase de entrenamiento fue mas inestable, ya que el agente esta aprendiendo
caracteristicas “mas generales” del entorno (Farebrother et al., 2018). El tercer
escenario muestra los peores resultados, no consiguiéndose la exploracién com-
pleta en ninguna ocasiéon por la dificultad que suponen los caminos miltiples
o las zonas sin salida. Se nota una gran falta de entrenamiento para la resolu-
cion de este escenario y como las caracteristicas aprendidas por el agente con
dropout no mejoran el comportamiento del agente.

Do (%) | SR(%) | Steps R R tedrica | R humano
S . - WL LR e
] e Com e T e
ST O E T 1 R

Tabla 4.2: Resultados de evaluacion del agente DQN con LeakyReLU, con y sin
dropout en los tres entornos.

Las figuras 4.19 a 4.22 contienen la evolucion de la informacion a través
de las dos redes entrenadas en cuatro instantes de un episodio de evaluacion
del primer entorno: dos en los que la mejor opciéon es continuar recto y dos
donde es mejor girar. En cada figura se muesrta el agente en Gazebo, seguido
de cuatro graficos para cada red. El primero de ellos (arriba izquierda) contiene
la lectura del sensor laser (linea negra y primer mapa de color) y en qué lecturas
del sensor la red esté prestando més atencion, i.e. contribuye mas a la salida de
la red (saliency map, segundo mapa de color). Tras este, se presentan la salida
de la primera capa densa de la red (abajo izquierda), de la segunda (arriba
derecha) y de la tercera (abajo derecha). Este tltimo mapa corresponde al Q-
value de cada acciéon, y por ende, a la accion que se escogera con probabilidad
1 — ¢, siendo el valor contenido en [0, 1] correspondiente a girar a la derecha,
(1,2] a girar a la izquierda y (2, 3] a continuar recto. Notese que en todos los
mapas cuanto mas oscuro es el color mas pequeno es el valor que representa.

En primer lugar, cabe destacar que en el caso con dropout son muchas
menos las entradas significativas, puesto que se estd obviando informacion.
Es recurrente también que entradas centrales y laterales sean mas empleadas,
tendiendo a “ignorar” grupos intermedios y evidenciando un excesivo niimero
de entradas. En los mapas de color de las tres capas, destaca especialmente la
escala: la red con dropout tiene un rango de valores mucho menor, haciendo
especial uso de valores negativos. En la red sin regularizacion la contribucion
de activaciones positivas es mucho mayor que las negativas y en pocos casos se
propagan valores negativos hasta la capa de salida. Podria entenderse entonces
que la red con dropout se ha entrenado de forma que las mediciones més bajas
son las mas ponderadas (negativamente) y por tanto se descartan, mientras
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que en la otra red son las mas altas las que se ponderan mas y generan un
(Q)-value mayor para la accidon que conduce a esa zona. La red sin dropout tiene
una tendencia clara en todos los casos, tanto en la segunda como en la tercera
capa: unas cuantas neuronas son las principales y la ligera modificacion de las
demés deriva en una acciéon u otra. A pesar de que la capa final dista bastante
tanto cualitativa como cuantitativamente, en todos los ejemplos se escoge la
misma accion. Notese también que un mapa de color mas difuminado en la
altima capa estaria indicando menor seguridad en la accién escogida. En la
figura 4.18 se muestra un mismo instante al comienzo de la evaluaciéon donde
la accion preferida es ir recto para dos agentes con la configuracion de la red sin
dropout tras 300 y 700 episodios de entrenamiento. Al avanzar el entrenamiento
la seguridad de tomar la tercera acciéon es mayor y por tanto el mapa de color
estd menos difuminado. Este hecho tiene especial importancia en estas redes
entrenadas durante poco tiempo, puesto que en numerosas ocasiones durante
la evaluacion el agente “duda” entre dos de las acciones y termina concurriendo
en policies subéptimas.

Output - Dense 3 Output - Dense 3

0.0 0.5 10 15 20 25 3.0
0.0 0.5 1.0 15 2.0 25 3.0 Right / Left / Forward
Right / Left / Forward

(a) (b)

Figura 4.18: )-values estimados en el instante inicial tras (a) 300 y (b) 700 episodios
de entrenamiento.

Finalmente, se muestra una comparaciéon entre la red sin dropout y sus
anéalogas Double DQN y Double Dueling DQN (ver Anexo B) en 500 episodios
de aprendizaje (=~ 15 — 20 horas). La figura 4.23 contiene las tres curvas de
aprendizaje, donde se muestra la recompensa acumulada y su media mévil con
outlier remouval. Se observa que la DDQN tiene un aprendizaje mucho mas es-
table que la DQN y converge ligeramente méas rapido, aunque las recompensas
méaximas conseguidas son sutilmente inferiores. La red D3QN, en la que una
inicializacion de pesos no aleatoria ha sido necesaria, esta formada por dos flu-
jos paralelos: el primero de ellos contiene una capa de extraccion de features de
24 neuronas y activacion LeakyReLU y una capa densa con una neurona que
codifica V'(s), mientras que el segundo tiene otra capa de extraccion andloga,
una capa densa de 3 neuronas que codifica A(s,a) y una capa que calcula el
segundo término de la ecuacion (B.6). Ambos flujos se unen en una capa de
agregacion final que codifica Q(s,a) (ver figura 4.11(b), € =~ 5000). Puede no-
tarse que el aprendizaje de esta red, que ademas emplea Prioritised Experience
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Figura 4.19: Evolucion de la informacion a través de la red neuronal en el primer
tramo.
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(c) Visualizacion de la red sin dropout para el instante 2.

Figura 4.20: Evolucién de la informacién a través de la red neuronal en el segundo
tramo.
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Figura 4.21: Evolucion de la informaciéon a través de la red neuronal en el tercer
tramo.
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Figura 4.22: Evolucién de la informacién a través de la red neuronal en el cuarto
tramo.
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Figura 4.23: Recompensa acumulada durante el aprendizaje en el primer entorno
de DQN (azul), DDQN (rojo) y D3QN (verde). Se muestran los datos en bruto y su
media moévil sin outliers.

Replay (PER), es notablemente superior a las anteriores tanto en términos de
estabilidad como valor absoluto. Esta simulacion se ha realizado en un menor
nimero de episodios por la demanda computacional, siendo el tiempo de ejecu-
cion similar a las anteriores. Mediante un aprendizaje previo, se ha permitido
converger los pesos a una buena policy, inicializando con ellos la red y estando
asf mucho mas cerca de la soluciéon del problema de optimizacion (ver zona
inicial de aprendizaje).

La tabla 4.3 muestra los resultados de generalizacion de las tres redes con
las mejores policies escogidas de cada una de ellas (700, 300 y 300 episodios,
respectivamente). La DDQN se comporta mucho mejor en el segundo escenario
que su predecesora, logrando un 100 % de éxito y duplicando la recompensa me-
dia obtenida. En el primer y tercer escenarios, el comportamiento es similares
entre ambas redes, teniendo la red double recompensas ligeramente inferiores,
como ya se apreciaba en el aprendizaje. La D3QN, por su parte, consigue so-
brepasar a ambas redes en el primer escenario. En el segundo escenario, el ratio
de éxito baja al 90 %, pero como puede observarse, la recompensa media es
incluso superior a la del agente DDQN (que conseguia un ratio del 100 %). Esto
es debido a que aunque en algunas ocasiones el agente D3QN se choca, cuando
no lo hace la recompensa obtenida es muy superior a la de DDQN: ~ 267
frente a &~ 192. Esta elevada recompensa en caso de completar el episodio con
500 pasos ya se vefa con DQN, pero en este caso, ocurria un ntimero de veces
muy bajo. Finalmente, en el tercer escenario, el agente recorre los 500 steps en
la mayoria de ocasiones, con una buena policy, generando asi resultados muy
superiores a los anteriores. De nuevo, algunas zonas del mapa no se exploran,
por lo que el ratio de éxito es del 0%. Cabe remarcar que en esta red solo
hay una capa que codifique las mediciones de cada flujo, mientras que en las
anteriores, la informacion pasaba por dos capas consecutivas.

14 Notese que el agente DQN estd empleando parametros entrenados tras 700 episodios,
mientras que DDQN y D3QN lo hacen tras 300 episodios, por lo que la “seguridad” en cada
decisiéon, y por ende el ratio de éxito, se ven afectados.
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Arquitectura SR(%) | Steps R
DQN 100 (o) | 500 (o) | 352.14 (0.1)
Entorno 1 | Double DQN 100 (o) | 500 (o) | 337.56 (2.2)
Double Dueling DQN | 100 (o) | 500 (o) | 355.31 (0.3)
DQN 72.8 (6.4) | 312 (13) | 95.55 (14.9)
Entorno 2 Double DQN 100 (o) | 500 (o) | 192.52 (3.0
Double Dueling DQN | 89.3 (1.1) | 419¢9.3) | 196.5 (5.7)
DQN & warm-up 100 (o) | 500 (o) | 269.98 (4.4)
DQN 0 © | 170 as) | -24.89 (s.3)
Entorno 3 | Double DQN 0 ) | 253 (16) | -42.15 (4.8)
Double Dueling DQN | 0 0) | 432 (18) | 241.56(16.5)

Tabla 4.3: Resultados de evaluacién de los agentes DQN, DDQN y D3QN en los
tres entornos.

Para la DQN se ha realizado ademas otro experimento en el que se permite
un breve periodo de aprendizaje antes de realizar la evaluaciéon en el segundo
entorno (warm-up), de forma que la red adapte sus pesos ligeramente. En la
figura 4.24 se muestran los resultados de evaluacion cada 10 episodios de pre-
entrenamiento; empleando un set-up igual al de entrenamientos anteriores pero
acotando los gradientes en RMSProp para evitar cambios bruscos en los pesos.
Notese que tras comenzar el entrenamiento, la policy empeora notablemente,
ya que comienza a adaptar los pardmetros, pero tras un periodo de tiempo
razonable, mejora hasta superar a redes con arquitecturas méas complejas. En el
tercer escenario se ha detectado que el periodo de pre-entrenamiento necesario
es excesivamente elevado para apreciar mejoria, por lo que no se muestran los
resultados.

4.4.2. Conclusiones

La aproximacién con redes neuronales profundas ha demostrado tener una gran
complejidad en el ajuste de parametros con respecto al RL tradicional. La con-
vergencia a policies Optimas o cuasi-Optimas es dificil, y més en entornos de
simulacion como Gazebo, donde el entorno se representa de forma detallada
y sus propios parametros juegan un papel importante en dicha convergencia.
Una vez superada esta barrera, el problema de la demanda computacional hace
que la convergencia a policies optimas requiera entrenamientos excesivamente
largos. Sin embargo, policies cuasi-6ptimas son alcanzables tras periodos de
entrenamiento muy inferiores a los de RL, con las que, ademaés, la capacidad
de generalizacion es ampliamente superior en entornos similares al de aprendi-
zaje. En entornos muy distintos la respuesta del agente es mas limitada, como
ya se concluia en (Banerjee et al., 2018) o (Dhiman et al., 2018) con algoritmos
incluso méas complejos como A3C. Ademas, queda clara de nuevo la incapa-
cidad de explorar del agente con recompensas extrinsecas tradicionales (ver
resultados entorno 3).
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Capitulo 5

Conclusiones

“SL wants to work. Even if you screw something up you’ll usually
get something non-random back. RL must be forced to work. If you
screw something up or don’t tune something well enough you’re
exceedingly likely to get a policy that is even worse than random.
And even if it’s all well tuned you’ll get a bad policy 30% of the
time, just because.”

Andrej Karpathy.

5.1. Conclusiones

En este Trabajo Fin de Master se han estudiado en profundidad los concep-
tos de SLAM activo, redes neuronales profundas y aprendizaje por refuerzo
(profundo). Una amplia revision del estado del arte de Deep Reinforcement
Learning en exploracion roboética se ha llevado a cabo en el capitulo 3, ana-
lizando numerosas soluciones adoptadas badas en tanto en Deep @Q-Networks
como en métodos mas sofisticados: Asynchronous Advantage Actor Critic, re-
des recurrentes, etc. Se han evidenciado problemas en cuanto a la generali-
zacion a entornos distintos al de aprendizaje, y la confusion entre navegacion
pura y exploracion. En este ultimo ambito, se ha propuesto una aproximacion
que contemple la inclusion de una métrica de la incertidumbre en la funcion
de recompensa. Finalmente, se han implementado distintos algoritmos de -
learning y Deep Q-Networks en un entorno de simulacion complejo (Gazebo)
empleando ROS, Tensorflow y Keras, entre otras herramientas. Los algoritmos
de Reinforcement Learning han demostrado una limitada capacidad de gene-
ralizacion, asi como la necesidad de largos entrenamientos. La inclusiéon en la
funciéon de recompensa de la entropia como métrica de la incertidumbre del
mapa generado por un algoritmo de SLAM ha demostrado favorecer el apren-
dizaje de movimientos que disminuyan esta incertidumbre. Por otra parte, los
algoritmos de Deep Reinforcement Learning han probado ser extremadamente
sensibles a la configuracion de sus numerosos parametros, viéndose afectadas
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la estabilidad y velocidad de aprendizaje, la demanda computacional o la con-
vergencia, entre otros. Varios agentes con arquitecturas y configuraciones dife-
rentes se han entrenado en un tiempo razonable, siendo capaces de extrapolar
sus policies suboptimas a nuevos mapas de una forma satisfactoria siempre y
cuando éstos sean “similares” al de aprendizaje. En esta aproximacion deep se
han intentado analizar qué ocurre exactamente en la red, como influye la va-
riacion de sus parametros y otros comportamientos interesantes, e.g. el efecto
que supondria tener un leve conocimiento a priori del nuevo entorno.

5.2. Trabajo Futuro

= Implementacion y evaluacion de algoritmos policy-gradient, e.g. A3C
(Asynchronous Advantage Actor-Critic) o DDPG (Deep Deterministic
Policy Gradient).

» Evaluacion del entorno empleando imégenes como entrada (CNN) y ana-
diendo a éste objetos dinamicos.

= Evaluaciéon de las recompensas con entropia en DRL.

= Uso de un software de SLAM més complejo.
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