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Abstract

Active SLAM (Simultanous Localisation and Mapping) refers to the problem of
controlling the movement of a robot while performing SLAM, so as to minimize
the map representation and robot localisation’s uncertainty. This problem has
traditionally been solved by filtering methods or other frameworks that involve
Markov decision processes or reinforcement learning algorithms. In those solu-
tions, it is necessary to (i) identify the possible actions to take, (ii) compute
the expected future value of each one (e.g. via utility functions) and (iii) select
the optimal action.

In this Master’s Thesis, we analyse the resolution of the problem by using
deep neural networks, a currently booming field where supervised learning
is the preferred learning form par excellence, outshinning other methods in
the literature. Active SLAM nature, however, makes it necessary to use a
different machine learning method: deep reinforcement learning. We analyse
the potential and limitations of this framework, usually executed on simple
simulation environments in which also the difference between exploration and
navigation and generalisation issues are frequently ignored.

Several reinforcement and deep reinforcement learning approaches based
on Q-learning have been implemented on top of Gazebo simulator. Both lear-
ning processes and the agent’s ability to generalise are deeply studied, achieving
trained agents capable of navigating on unseen environments. Moreover, the
inclusion of covariance matrix metrics in the algorithm’s reward function is
proposed, achieving a gradual entropy decrease during exploration and encou-
raging much more optimal actions in terms of uncertainty reduction.
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Resumen

El SLAM (Simultanous Localisation and Mapping) activo hace referencia al
problema de controlar el movimiento de un robot que está realizando SLAM,
de forma que se minimice la incertidumbre del mapa creado y de su localiza-
ción. Tradicionalmente ha sido resuelto mediante filtros u otras aproximaciones
que involucran procesos de decisión de Markov o algoritmos de aprendizaje por
refuerzo. En éstos, es necesario (i) identificar las posibles acciones, (ii) calcu-
lar el valor futuro esperado de cada una de ellas (e.g. mediante funciones de
utilidad) y (iii) ejecutar la acción óptima.

En este Trabajo Fin de Máster se analiza la resolución del problema me-
diante redes neuronales profundas, un campo de gran auge en la actualidad
donde el aprendizaje por excelencia es el supervisado, que atrae la mayoría
de investigaciones y aplicaciones de la literatura. La naturaleza del problema
abordado, sin embargo, hace necesario el uso de otra forma de aprendizaje
automático: el aprendizaje por refuerzo profundo. Se ha analizado el poten-
cial y las limitaciones de este marco de trabajo, empleado normalmente en
entornos de simulación sencillos, donde la diferencia entre exploración y nave-
gación y el problema de generalización (clave en el SLAM activo, puesto que
la información a priori del entorno es nula) son habitualmente obviados.

Se han implementado distintas aproximaciones de aprendizaje por refuer-
zo y refuerzo profundo basadas en Q-learning sobre el entorno de simulación
Gazebo. Ambos aprendizajes y su capacidad de generalización a escenarios
desconocidos se estudian en profundidad, consiguiendo que agentes entrenados
naveguen por entornos totalmente desconocidos. Además, se propone la inclu-
sión de una métrica de la matriz de covarianza en la función de recompensa,
consiguiendo una reducción de entropía paulatina durante la exploración y
favoreciendo acciones mucho más óptimas en términos de reducción de la in-
certidumbre.
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Capítulo 1

Introducción

En este capítulo se presentan la motivación, el alcance, los objetivos contem-
plados, la metodología seguida y la estructura de este Trabajo Fin de Máster.

1.1. Motivación, Alcance y Objetivos

En los últimos años, el aprendizaje automático mediante redes neuronales cada
vez más profundas ha tenido un crecimiento asombroso y ha comenzado a apli-
carse en la mayoría de áreas de investigación, incluida la robótica. Ejemplos de
ello son la detección de lazos en SLAM (Simultaneous Localisation and Map-
ping), la eliminación de elementos dinámicos de imágenes, o incluso soluciones
end-to-end de SLAM monocular basado en redes convolucionales. En medio de
este auge de las redes profundas entrenadas mediante aprendizaje supervisa-
do, cabe preguntarse si podrían ser empleadas en problemas menos preparados
para ello, como la toma de decisiones, donde otros tipos de aprendizaje menos
estudiados toman protagonismo y en donde la capacidad de generalización es
imprescindible.

Este Trabajo Fin de Máster surge para analizar el potencial y las limita-
ciones de las redes profundas en un área de la robótica que ha sido estudiada
durante décadas: el SLAM activo, donde los conocimientos adquiridos por el
agente han de extrapolarse a entornos distintos al de entrenamiento cuyo cono-
cimiento a priori es nulo, donde debe aprenderse mediante la interacción con
el propio entorno y donde además el estado del agente puede no ser completa-
mente observable. Estas premisas hacen que la resolución del problema no sea
trivial y que el aprendizaje supervisado, el área más estudiada del aprendizaje
automático, no tenga cabida.

En primer lugar, se pretende entender los conceptos de SLAM activo y
aprendizaje profundo, así como analizar el estado del arte de las técnicas de
aprendizaje profundo aplicadas al problema de exploración robótica hasta el
momento. Este análisis permitirá explorar el potencial y las limitaciones de
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las redes neuronales en este contexto y proponer algunas líneas de trabajo e
implementaciones. Pese a que el trabajo contiene un amplio capítulo de imple-
mentación de algoritmos de aprendizaje por refuerzo profundo ejecutados sobre
Gazebo, su núcleo principal ha sido el análisis de las estrategias empleadas en
la actualidad.

1.2. Estructura

El documento restante está estructurado de la siguiente manera. El capítulo
2 contiene una breve introducción al SLAM activo y las funciones de utilidad,
las redes neuronales artificiales y el aprendizaje profundo; conceptos clave que
se usarán en adelante. En el tercer y cuarto capítulos se desarrolla la idea
principal de este trabajo, analizar el uso de Deep Learning en SLAM activo.
El capítulo 3 expone una amplia revisión bibliográfica sobre ésta, mientras que
en el 4 se implementan y evalúan distintas soluciones. Finalmente, se presentan
las conclusiones del trabajo realizado e ideas de trabajo futuro en el capítulo
5.

Además, se incluyen los siguientes anexos a la memoria:

Anexo A: descripción de dos de los algoritmos básicos de Reinforcement
Learning : Q-learning y Policy Gradient.

Anexo B: descripción y detalles de algoritmos de Deep Reinforcement
Learning : Deep Q-Networks.
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Capítulo 2

Antecedentes

En este capítulo introductorio, se presentan teóricamente los dos conceptos
sobre los que trata este Trabajo Fin de Máster: el SLAM activo y las redes
neuronales profundas. El capítulo está estructurado como sigue:

En primer lugar se presentan los conceptos de SLAM y SLAM activo,
incidiendo de manera especial en los procesos de decisión de Markov y
en las funciones de utilidad (sección 2.1).

Tras esto, se presenta la teoría sobre redes neuronales artificiales, así como
una breve reseña de su evolución. Se explican en mayor profundidad las
redes convolucionales (sección 2.2).

Finalmente se introducen los conceptos de de backpropagation, aprendi-
zaje profundo y los tipos de aprendizaje más comunes (sección 2.3).

2.1. SLAM Activo

El mapeo y localización simultáneos, SLAM (Simultaneous Localisation and
Mapping), consiste en la determinación de la posición de un robot móvil en un
entorno desconocido a la vez que se crea un mapa de este entorno de forma
incremental o recurrente.

Históricamente, el problema se ha resuelto empleando la odometría visual
(Visual Odometry, VO) en el entorno de, habitualmente, un filtro extendido
de Kalman (Extended Kalman Filter, EKF) en el que ambos problemas de
localización y mapeado se resuelven conjuntamente en un proceso iterativo
que consta de: (i) extracción de características del entorno (features), (ii) aso-
ciación de datos entre mediciones, (iii) estimación y actualización del estado
y (iv) actualización de características (Thrun et al., 2005; Piniés-Rodríguez,
2009; Viñal-Pons, 2012). Otras aproximaciones también basadas en filtros han
proliferado desde entonces, como los filtros de partículas, los filtros de infor-
mación o Unscented Transforms.
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De manera más reciente y en contraste a las aproximaciones anteriores,
se ha comenzado a usar no sólo la información visual sino también la iner-
cial en un marco de optimización no lineal, integrando el problema de VIO
(Visual-Inertial Odometry) en SLAM. Ejemplos de ello son (Burusa, 2017) o
(Mur-Artal & Tardós, 2017b), donde se propone la integración de la informa-
ción visual-inercial bajo el marco de ORB-SLAM2, formulado por los mismos
autores en (Mur-Artal et al., 2015; Mur-Artal & Tardós, 2017a). El aumento de
la capacidad computacional ha favorecido el crecimiento de estas aproximacio-
nes basadas en la minimización de una función que incluye el error fotométrico
o el de reproyección y, habitualmente, una métrica de la información inercial
(i.e. tightly-coupled methods). Ver (Leutenegger et al., 2015; Concha et al.,
2016; Usenko et al., 2016; Forster et al., 2017).

La exploración robótica fue definida por Thrun et al., (2005, cap. 17)
como el problema de controlar un robot de forma que su conocimiento sobre el
entorno sea óptimo. Para ello, parece lógico pensar que es necesaria una buena
estimación de la pose del robot y, por ende, una reconstrucción certera del mapa
del entorno. El SLAM activo (active SLAM), a veces denominado SPLAM
(Simultaneous Planning, Localisation and Mapping), resuelve el problema de
la exploración robótica empleando técnicas de SLAM. De acuerdo a Carrillo-
Lindado (2014, cap. 3), puede definirse como:

“... the problem of controlling the movements of a robot performing
SLAM so as to maximize the accuracy of its map representation
and localization.”

2.1.1. Procesos de decisión de Markov

Por las características del problema de toma de decisiones, el SLAM activo está
englobado dentro del marco matemático de los procesos de decisión de Mar-
kov parcialmente observables (Partially Observable Markov Decision Process,
POMDP); que formalmente están definidos por la 7-tupla (S,A, T ,R,Ω,O, γ),
donde S es el conjunto finito de estados, A el de acciones, T : S ×A 7→ Π(S)
el conjunto de probabilidades condicionales entre estados (i.e. la probabilidad
de terminar en el estado s′ tras haber ejecutado la acción a en el estado s),
R : S × A → R la función de recompensa, Ω el conjunto finito de observacio-
nes y O : S ×A 7→ Π(Ω) sus probabilidades condicionales (i.e. la probabilidad
de realizar la observación o tras haber ejecutado la acción a y haber termi-
nado en el estado s), y γ ∈ [0, 1] el factor de descuento que permite trabajar
siempre en un horizonte temporal finito. El objetivo del agente es actuar de
forma que se maximice una métrica de la recompensa a largo plazo. La función
de recompensa empleada habitualmente es la recompensa futura descontada
esperada:

Rt
.
= rt+1 + γrt+2 + γ2rt+3 + ... =

∞∑
t=0

γtrt+k+1 =
∞∑
t=0

γtR(st, at) (2.1)
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(a) MDP (b) POMDP

Figura 2.1: Estructura de (a) un MDP, donde se modela la interacción entre un
agente y el entorno; y (b) un POMDP. De (Kaelbling et al., 1998).

Este framework no es más que un proceso de decisión de Markov (MDP)
en el que el agente es incapaz de observar el estado actual – o parte de él –,
y que ha de tomar decisiones con incertidumbre en el estado real. Mediante la
interacción con el entorno, el agente puede actualizar su estimación (belief ) del
estado real actualizando la distribución de probabilidad del estado actual. En
la figura 2.1 se pueden observar las diferencias entre un MDP y su homólogo
parcialmente observable, que ha de contener un bloque de estimación (state
estimation, SE).

La creencia o belief de un estado será la probabilidad de distribución sobre
S. Sea b(s) la probabilidad de que b ∈ B sea el estado real s ∈ S, entonces

0 ≤ b(s) ≤ 1 (2.2)∑
s∈S

b(s) = 1 (2.3)

Y este belief puede ser actualizado a partir de la estimación anterior siguiendo
la teoría de probabilidad como:

b′(s′)
.
= P[s′|o, a, b] = ... =

O(o, a, s′)
∑

s∈S T (s, a, s′)b(s)

P[o|a, b] (2.4)

La resolución de estos problemas se verá en detalle en el capítulo 3, donde
se analizarán distintas aproximaciones clásicas y las basadas en redes neuro-
nales y se explicarán otros conceptos importantes como las funciones de valor
y las reglas de comportamiento.
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2.1.2. Funciones de utilidad

En términos generales, el SLAM activo consta de tres fases (Carrillo-Lindado,
2014; Rodríguez-Arévalo, 2018): (i) la identificación de las posibles localizacio-
nes a explorar, (ii) el cálculo de la recompensa o ventaja que genera cada una
de las acciones que conducen a estas localizaciones de interés, y (iii) la ejecución
de la acción más ventajosa. La elección de puntos de interés (vantage points)
puede realizarse de forma aleatoria, basándose en las localizaciones vecinas,
en la frontera entre zonas conocidas y desconocidas, etc. Tras identificarlos, se
debe crear un conjunto de posibles acciones que conduzcan al robot a dichos
puntos, donde cada acción tendrá asociada una cuantificación de su utilidad
que, en última instancia, no será más que una cuantificación de la incertidum-
bre del mapa y/o de la pose del robot. Finalmente, basta con escoger la acción
más ventajosa mediante la optimización de la función de utilidad.

En función de como estén formuladas, las funciones de utilidad se divi-
den en dos grupos: las orientadas a la tarea (task-driven) y las orientadas a la
información (information-driven). Las primeras también se denominan crite-
rios de optimalidad y emplean funciones escalares de la matriz de covarianza
para cuantificar la incertidumbre. Pueden verse como una cuantificación del
volumen de la (hiper)elipsoide correspondiente a la matriz de covarianza. Los
criterios de optimalidad más empleados son los siguientes (Carrillo-Lindado,
2014; Rodríguez-Arévalo, 2018):

Criterio de optimalidad A: cuantifica la traza de la matriz de covarianza
– i.e. la suma de sus valores propios (A-opt, eq. (2.5)).

Criterio de optimalidad D: cuantifica el determinante de la matriz de
covarianza – i.e. el producto de sus valores propios (D-opt, eq. (2.6)).

Criterio de optimalidad E: cuantifica el mayor de los valores propios (E-
opt, eq. (2.7)).

tr(Σ)
.
=

1

n

n∑
i=1

λi (2.5)

det(Σ)
.
= exp

(
1

n

n∑
i=1

log(λi)

)
(2.6)

máx(λi) (2.7)

Donde Σ ∈ Rn×n es la matriz de covarianza, λi son los valores propios de dicha
matriz y n la dimensión del vector de estado.

Habitualmente se emplea uno de estos tres criterios, y aunque los criterios
A-opt y E-opt requieren de una menor capacidad de computación, es fácil notar
que el criterioD-opt es el único capaz de capturar la incertidumbre global, como
ya expuso Kiefer (1974), puesto que actúa sobre todos los elementos de Σ.

Por otra parte, existen funciones de utilidad basadas en la Teoría de la
Información, siendo la entropía es la más empleada. Sea P una distribución

6



Figura 2.2: Composición de poses empleando la representación (a) absoluta y (b)
diferencial. De (Rodríguez-Arévalo et al., 2018).

Gaussiana, entonces su entropía de Shannon será:

H(P)
.
=
n

2
(1 + log(2π)) +

1

2
log(det(Σ)) (2.8)

Y dado que H ∝∼ det(Σ), su comportamiento será similar al del criterio D-opt.

Ambos grupos de funciones de utilidad se basan en la cuantificación de
la incertidumbre de la pose del robot, por lo que su representación es de vital
importancia. Existen dos formas de representar esta incertidumbre: absoluta y
diferencial. La incertidumbre absoluta asigna una función de distribución a la
pose absoluta del robot respecto a una cierta referencia (xAB); mientras que
la incertidumbre diferencial supone una pose aproximada (estimación, x̂AB) y
asigna la función de distribución al error de dicha aproximación (dB), como
se muestra en la figura 2.2. En (Rodríguez-Arévalo, 2018) se prueba analítica-
mente que la propiedad de monotonía se mantiene en todas las funciones de
utilidad –y en la entropía de Shannon– cuando la incertidumbre es representada
de forma diferencial; comportamiento de gran importancia en tanto en cuanto
el sistema escogerá aquellas acciones que generen una menor incertidumbre en
la estimación de la pose.
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2.2. Redes Neuronales Artificiales

2.2.1. Contexto histórico

El uso de neuronas como modelos matemáticos fue propuesto por primera vez
por McCulloch y Pitts (1943), empleando estas unidades como funciones lógicas
(e.g. AND, OR, XOR) donde las entradas eran señales binarias. Dos décadas
después, sería Rosenblatt (1961) quien, basándose en el modelo de McCulloch-
Pitts y las investigaciones de Hebb (1949), acuñase el concepto de perceptrón.
Se trata una neurona artificial similar a la propuesta por sus predecesores en
la que cada señal de entrada está ponderada con un factor w, y la función
de activación es la función signo. La red, formada por una sola capa, podía
entrenarse calculando la salida a partir de una entrada dada y comparándola
con la salida esperada. De esta forma, se podían ajustar las ponderaciones para
que ambas coincidiesen (aprendizaje supervisado).

Este modelo fue duramente criticado en (Minsky & Papert, 1969), donde
se demostró su limitación a la hora de modelar problemas linealmente no sepa-
rables (e.g. función XOR). Además, demostraron que el método de aprendizaje
de McCulloch no funcionaba para las redes con múltiples capas (Multilayer
Perceptron, MLP), necesarias para modelar este tipo de problemas.

El desarrollo del campo de las redes neuronales se paralizó hasta la dé-
cada de 1980, cuando hitos como el uso de las redes neuronales recurrentes
de Hopfield (1982), las redes convolucionales de LeCun en 1989, o el “redes-
cubrimiento” del algoritmo de backpropagation por Rumelhart et al., (1986)
incitaron a numerosos científicos a continuar la investigación en este campo.
Mediante este método de minimización de errores basado en el gradiente des-
cendente, se podían entrenar redes multicapa.

Tras estos avances, la investigación se extendió también al aprendizaje
no supervisado (autoencoders), las redes profundas (Deep Neural Networks,
DNN), las redes convolucionales (Convolutional Neural Networks, CNN) o las
redes de creencia profunda (Deep Belief Networks, DBN), entre otros.

2.2.2. Redes neuronales artificiales

Una red neuronal artificial (Artificial Neural Network, ANN) es una red for-
mada por nodos (neuronas) conectados entre sí, de tal forma que la salida de
unos sea la entrada de otros. Las neuronas son capaces de recibir señales de
entrada, cambiar su estado interno (activación) y producir señales de salida,
de igual forma que ocurre en el cerebro. El potencial de esta herramienta para
modelar sistemas complejos reside en la agrupación de neuronas en distintas
capas dentro de la red, de forma que la información de entrada se propaga
(habitualmente hacia delante) por sucesivas transformaciones de carácter no
lineal.
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Considérese una ANN con una capa de entrada, una capa de salida, n
capas intermedias (hidden layers) y un cierto número de neuronas en cada
capa (hidden units). Puesto que la conexión entre neuronas de distintas capas
transfiere la salida de una de ellas (predecesora) como entrada a la siguiente
(sucesora) y cada una de estas conexiones tiene asignada una ponderación w,
se tratará de un grafo dirigido ponderado.

Cuando una neurona dentro del grafo recibe señales de entrada de neuro-
nas predecesoras, se computa la suma ponderada de todas las entradas (cono-
cida como función de propagación o excitación). Además, para conseguir un
comportamiento no lineal en la red, debe existir una segunda operación, co-
nocida como función de activación (ver figura 2.3). Ésta actúa como una capa
adicional entre capas ocultas, transformando la salida de cada neurona por una
función no lineal que permite acotar la salida. Las funciones de activación más
comunes son la función sigmoide, el rectificador (Rectified Linear Unit, ReLU)
o la tangente hiperbólica, definidas respectivamente como (ver figura 2.4):

y(x) =
1

1 + e−x
(2.9)

y(x) = máx(0, x) (2.10)

y(x) =
ex − e−x

ex + e−x
(2.11)

Cada capa puede estar totalmente conectada (Fully Connected Layer,
FCL) con la capa predecesora (capa densa, i.e. en la entrada de cada neurona
de la capa están consideradas las salidas de todas las neuronas de la capa ante-
rior) o parcialmente conectada. Las ventajas en cuanto al coste computacional
de conectar las capas localmente entre sí es clara, y por ello estas capas son
comúnmente empleadas en aplicaciones con grandes volúmenes de información
(e.g. reconocimiento de imágenes, reconocimiento de audio, procesamiento de
lenguaje, clasificación de texto...). Un ejemplo de capas parcialmente conecta-
das son las capas convolucionales.

Función de 
activación

Función de 
propagación

Salida

Entradas

Bias

..
.

Figura 2.3: Modelo de una neurona artificial.
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Figura 2.4: Funciones de activación más habituales: sigmoide (amarillo), tangente
hiperbólica (azul), ReLU (rojo) y softmax (violeta).

Una red neuronal convolucional (Convolutional Neural Network, CNN) es-
tá formada por capas convolucionales apiladas. Esta arquitectura favorece que
cada neurona se especialice en una región de la capa predecesora, reduciendo
la necesidad computacional (e.g. sea más sensitiva a ciertas características una
imagen, como líneas o esquinas). Las CNN están habitualmente formadas por
combinaciones de:

(a) capas convolucionales que aplican filtros de un cierto tamaño a la entrada
completa (habitualmente una imagen)

(b) capas de reducción de muestreo (pooling): se produce una reducción pro-
gresiva del tamaño espacial de la representación, disminuyendo así el nú-
mero de parámetros y la necesidad de computación de la red (y por tanto
ayudando a evitar el sobreajuste)

(c) capas densas (normalmente a la salida)

En la figura 2.5 puede verse la estructura típica de una CNN con los tres tipos
de capas mencionados.

Por ejemplo, en una aplicación de procesamiento de imágenes, las capas
convolucionales aplican un cierto número de filtros o kernels de convolución a
las imágenes (e.g. 64 filtros de tamaño 5×5 píxeles). Para cada una de estas su-
bregiones de tamaño 5×5, se genera un único valor de salida al que se aplica la
función de activación para introducir no linealidades en el modelo (habitual-
mente ReLU). Sucesivas capas convolucionales de distinto número de filtros
pueden apilarse. Los hiperparámetros de estas capas son el número de filtros
(K), su dimensión, su paso (stride) y la cantidad de zero-padding. Las capas de
pooling se sitúan periódicamente entre capas convolucionales para reducir pro-
gresivamente el tamaño necesario de representación, el número de parámetros y
la computación de la red. Un ejemplo de estas capas es max-pooling, con el que
se dividen las salidas de la capa convolucional en subconjuntos más pequeños y
se selecciona únicamente el mayor valor de los existentes. Los hiperparámetros
de estas capas son el tamaño de la salida y el paso. Finalmente, a la salida
se sitúa habitualmente una o más capas densas para clasificar las caracterís-
ticas extraídas por las capas predecesoras, con un número de neuronas igual

10



Figura 2.5: Estructura típica de una CNN. De (Peng et al., 2017).

(a) Convolución

(b) Max Pooling

Figura 2.6: Procesos de convolución (un filtro 3× 3 con zero-padding a la derecha
y stride 1) y max-pooling (2× 2 con stride 2). De (Spark, 2017).

al número de características existentes (e.g. 10 para reconocimiento de núme-
ros). La figura 2.6 muestra gráficamente los conceptos de capa convolucional y
max-pooling con sus respectivos hiperparámetros.

Habitualmente, el flujo de información en las ANN fluye hacia delante de
capas predecesoras hacia capas sucesoras. Sin embargo, existen arquitecturas
en las que la información se retro alimenta, como en las redes neuronales recu-
rrentes y recursivas (Recurrent Neural Networks y Recursive Neural Networks,
RNN) o las redes neuronales residuales (Residual Neural Network, ResNet),
una arquitectura más compleja donde la entrada a un conjunto de capas de la
red es sumada a la salida que producen.
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2.3. Entrenamiento de Redes Neuronales

Las redes neuronales pueden entrenarse para resolver una tarea específica de
forma óptima, esto es, minimizar el error entre la salida esperada y la real.
Existen distintas técnicas de aprendizaje automático (Machine Learning, ML),
como el aprendizaje no supervisado (Unsupervised Learning) en el que se apren-
den propiedades útiles de un dataset ; el aprendizaje supervisado (Supervised
Learning, SL), donde además cada ejemplo del conjunto se asocia con una eti-
queta o salida conocida; o el aprendizaje por refuerzo (Reinforcement Learning,
RL), un subconjunto del aprendizaje supervisado en el que no se interacciona
con un dataset fijo, sino que hay una conexión entre el sistema de aprendizaje
y el entorno. El aprendizaje profundo (Deep Learning, DL) es un subconjunto
dentro del aprendizaje automático que hace referencia al aprendizaje de DNN,
i.e. ANN con múltiples capas ocultas.

El objetivo último del aprendizaje es que el algoritmo funcione correc-
tamente con nuevas entradas no vistas hasta el momento, y no únicamente
con los datasets aprendidos. Mientras la optimización buscaría que el error
entre la salida real de la red y la esperada se minimice durante el aprendizaje
(training error, εt), el aprendizaje automático busca además que el error an-
te nuevos datos de entrada (generalization error, εg) sea mínimo. Dos de los
grandes retos del aprendizaje automático son el sobreajuste (overfitting) y la
sobregeneralización (underfitting). El primero de ellos ocurre cuando los pesos
ajustan en exceso para los datos del entrenamiento y el algoritmo es incapaz
de generalizar estos resultados a nuevos datos, provocando una gran diferencia
entre los errores εt y εg. La sobregeneralización representa el caso opuesto,
donde el modelo no es capaz de generar bajos errores de aprendizaje debido
a, por ejemplo, insuficiencia de datos. El conjunto de técnicas para conseguir
disminuir el error de generalización sin afectar al error de entrenamiento se
conocen como regularización. El parámetro de capacidad del modelo indica si
es más propenso a sobreajustar o sobregeneralizar. En el caso de una regresión
polinomial, el grado del polinomio actuaría como capacidad, esto es, un poli-
nomio de grado 7 sería más propenso a sobreajustar que uno de grado 2 para
un conjunto de datos.

Las DNN son particularmente propensas al sobreajuste debido a su elevado
nivel de abstracción. Tres de las técnicas de regularización más empleadas son
las siguientes:

Descomposición de las ponderaciones: consiste en añadir a la función de
coste que se optimiza un término que penalice las ponderaciones elevadas.
Este término puede ser la norma-2 (L2, weight decay) o la norma-1 (L1),
que lleva a una solución en la que más ponderaciones resultan nulas
(sparsity).

Aumento (sintético) del dataset : aumentando la cantidad de datos, el
propio algoritmo corrige el problema de sobreajuste.

12



Marginalización (Dropout): durante el entrenamiento, se ignoran neuro-
nas escogidas de forma arbitraria con una cierta probabilidad. Esto hace
que las neuronas activas tengan que suplir la contribución de las neuronas
marginalizadas. Como consecuencia, el grafo se vuelve menos sensible a
las ponderaciones específicas de cada neurona y se consigue una mayor
capacidad de generalización.

Uno de los algoritmos más difundidos para entrenar ANN mediante apren-
dizaje supervisado (i.e. cuando se conoce la señal de salida deseada) es back-
propagation (BP). En primer lugar se propaga hacia delante la información
en el grafo, de forma que se genere una señal de salida y pueda calcularse el
error entre ésta y la salida esperada. A continuación, se propaga hacia atrás
este término de error. Para ello debe calcularse la contribución de cada una de
las ponderaciones al término de error (derivadas parciales). A cada neurona de
cada capa se le asigna una parte del error total en función de su contribución,
y se corrigen las ponderaciones para disminuir este error.

Considérese como ejemplo un entrenamiento en el que la función de coste
está basada en mínimos cuadrados:

J(θ, X ) =
1

2N

N∑
i=1

[hθ(x(i))− y(i)]2 (2.12)

O bien una función más compleja y más propensa a generalizar, que podría
ser la conocida como entropía cruzada (Mitchell, 1997):

J(θ, X ) = − 1

N

N∑
i=1

y(i) log (hθ(x(i))) + (1− y(i)) log (1− hθ(x(i))) (2.13)

Donde x(i) ∈ X es el conjunto de entradas del dataset de entrenamiento,
y(i) ∈ Y el conjunto de etiquetas, y hθ(x) la salida de la red ante una cierta
entrada x y con unos parámetros θ.

Para poder entrenar la red deben calcularse las derivadas parciales de la
función de coste respecto a cada uno de los parámetros de la red. El algoritmo
de BP permite realizar estos cálculos de una manera eficiente, minimizando la
función de coste empleando el gradiente descendente (Gradient Descent, GD).
Se puede dividir en varios pasos (Rojas, 1996, cap. 7):

1. Feed-forward propagation. Primero se asigna un valor aleatorio a cada
parámetro y se propaga la información por la red, guardando el valor de
la salida y de la función de activación de cada capa (tanto ocultas como
de salida).

2. Backpropagation. En primer lugar se calcula el término de error en la
capa final m, entre la salida esperada y la obtenida (δm1 ). Se propaga
hacia atrás este error hasta llegar a la primera capa (δkj ). Conocidos
los términos δ, cuyo cálculo dependerá de la función de activación de
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los nodos, se pueden evaluar las derivadas parciales de J respecto a las
ponderaciones empleando la regla de la cadena como:

∂Jd
∂wkij

=
∂J

∂akj

∂akj
∂wkij

≡ δkj o
k−1
i (2.14)

Donde wkij es el peso del nodo j en la capa k para el nodo entrante i,
akj es la suma ponderada de las entradas (activación) al nodo j en la
capa k, ok−1i la salida del nodo i en la capa k − 1, y d el conjunto de
datos del dataset. El gradiente total puede calcularse como la media de
los gradientes para cada pareja de datos entrada-salida, esto es:

∂J(θ, X )

∂wkij
=

1

N

N∑
d=1

∂Jd
∂wkij

(2.15)

3. Weight update. Finalmente, las ponderaciones se pueden actualizar de
acuerdo al gradiente total y al factor de aprendizaje, α:

∆wkij = −α ∂J(θ, X )

∂wkij
(2.16)

Nótese que los biases se han introducido en los pesos para simplificar las ex-
presiones, tal que el bias del nodo i-ésimo de la capa k-ésima se incorpora en
los pesos wk0i = bki .

Otra forma de llevar a cabo el problema de optimización anterior es em-
plear el gradiente descendente estocástico (Stochastic Gradient Descent, SGD).

2.3.1. Aprendizaje profundo

Las DNN permiten un nivel de abstracción muy elevado, lo cual también con-
lleva ciertas desventajas. Por ejemplo, cuando se emplea entrenamiento su-
pervisado, aparecen mínimos locales en la función de coste y la optimización
involucrada pasa a ser no convexa, pudiendo no converger el resultado a va-
lores aceptables (especialmente al emplear GD). En la figura 2.7 se muestra
un ejemplo de cómo la optimización convergería a resultados distintos depen-
diendo donde comenzase el proceso. Otro ejemplo es la conocida difusión de
gradientes (vanishing of gradients). Al propagar los gradientes hacia atrás en
BP, las primeras capas de la red cambian sus ponderaciones muy lentamente
(i.e. aprenden muy poco). Esto resulta en capas finales muy entrenadas que
prácticamente obvian a las primeras, generando los mismos resultados que si
estas capas no existiesen y la señal de entrada estuviera ligeramente distorsio-
nada. Si las ponderaciones se inicializan en valores muy bajos, las derivadas
parciales tenderán a cero rápidamente, conduciendo al problema anterior. Si,
por el contrario, las ponderaciones son muy elevadas, el entrenamiento se que-
dará estancado en mínimos locales.
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Figura 2.7: Representación de una función de coste no convexa donde el punto
de inicio o semilla determinará la solución (mínimo local) y donde además existen
puntos de silla (saddle point).

Un método que ha probado tener cierto éxito para entrenar DNN es el
aprendizaje voraz por capas (greedy layer-wise training). Aunque este apren-
dizaje puede ser supervisado, habitualmente no lo es (e.g. stacked autoenco-
ders). Este algoritmo consta de una fase donde se pre-entrena la red capa a
capa, obteniendo una estimación inicial de las ponderaciones; y una segunda
fase en la que se trata la red como un todo y se ajustan las ponderaciones
(fine-tunning). El pre-entrenamiento permite que la optimización se inicialice
en un punto cercano a la solución óptima, esto es, que la semilla se sitúe cerca
del mínimo global en funciones no convexas. Una vez se ha pre-entrenado la
DNN, el aprendizaje posterior es similar al de una ANN. Los problemas de
atracción hacia mínimos locales y difusión de gradientes ya se han mitigado,
por lo que la optimización es comúnmente realizada mediante GD o SGD (e.g.
BP en el caso de aprendizaje supervisado).

Por lo tanto, el pre-entrenamiento permite evitar que la solución yazca
en mínimos locales y también la difusión de los gradientes, al haber entrenado
las primeras capas. Sin embargo, el pre-entrenamiento cayó en desuso (en la
mayoría de las aplicaciones) al aparecer otros métodos que consiguen el mismo
objetivo. Incluso redes muy profundas pueden entrenarse de forma satisfactoria
empleando unidades de rectificación (ReLU) como funciones de activación,
batch normalization, o dropout.

Otra forma de llevar a cabo el entrenamiento es mediante redes de creencia
profunda (Deep Belief Networks, DBN). De nuevo, se trata de varias capas que
se pre-entrenan una a una, pero en lugar de emplear autoencoders se emplean
máquinas de Boltzmann restrictivas (Restricted Boltzmann Machine, RBM).

El aprendizaje por refuerzo (Reinforcement Learning, RL) se basa en el
aprendizaje prueba-error, donde cada acción posible tiene asociada una recom-
pensa y el agente trata de maximizar la recompensa que consigue; como se verá
en el siguiente capítulo. El aprendizaje por refuerzo profundo (Deep Reinforce-
ment Learning, DRL) aumenta el problema anterior a las DNN. En este caso,
el algoritmo de BP puede ser usado pese a no ser un aprendizaje supervisado.
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Capítulo 3

Deep Learning en SLAM Activo

El uso de redes neuronales profundas se ha extendido en muchas áreas de
investigación en robótica, pero ¿es realmente posible aplicarlo a la toma de
decisiones durante SLAM activo? Y en ese caso, ¿para qué sirve exactamente
la red neuronal y qué aporta a las soluciones tradicionales?, ¿como debe entre-
narse la red?, ¿es posible un aprendizaje generalista que permita trabajar en
entornos cambiantes propios del problema?, ¿bastaría con conocer una serie de
reglas de comportamiento? Estas son algunas de las preguntas que implícita-
mente se busca responder en este capítulo, en el que se formula el problema de
toma de decisiones bajo el framework de los procesos de decisión de Markov,
y se analizan las distintas soluciones, buscando siempre el posible potencial y
la utilidad del aprendizaje profundo.

3.1. Toma de Decisiones

Como ya se ha visto, el problema de SLAM activo puede englobarse dentro
de un marco de trabajo más general, los procesos de decisión de Markov par-
cialmente observables (POMDP); en los que se describe el proceso de toma de
decisiones secuenciales cuando tanto las acciones como la adquisición de datos
poseen incertidumbre. Recuérdese que estos procesos quedan formalmente defi-
nidos por la 7-tupla (S,A, T ,R,Ω,O, γ), donde S es el conjunto de estados, A
el de acciones, T : S ×A 7→ FX [S] el de probabilidades condicionales entre es-
tados,R : S×A → R la función de recompensa, Ω el conjunto de observaciones
y O : S×A 7→ FX [Ω] sus probabilidades condicionales, y el factor de descuento
γ ∈ [0, 1]. La función FX [·] ∈ [0, 1] empleada anteriormente simboliza la distri-
bución de probabilidad de (·). La probabilidad de cambiar de un estado s a otro
s′ contenidos en S vendrá dada por T (s, a, s′)

.
= P [st+1 = s′|st = s, at = a]; y

la probabilidad de realizar una observación o ∈ Ω tras haber alcanzado un esta-
do s será O(o, a, s)

.
= P [ot = o|st = s, at = a]. La relación entre estos espacios

puede apreciarse en la figura 3.1.
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Figura 3.1: Ilustración de un MDP. De (François-Lavet et al., 2018).

3.1.1. Funciones de valor y reglas de comportamiento

En cada iteración del proceso, el agente ha de tomar una decisión basándose
en los conjuntos de estados y acciones observables y observaciones pasadas.
Su propósito es encontrar la regla que maximice una función objetivo definida
sobre el histórico de conjuntos de acciones y estados (u observaciones, en caso
de existir estados no observables),H. Estas funciones objetivo son las funciones
de valor, V (h) : H 7→ R, y únicamente mapean el espacio H a un número real.
Un conjunto h ∈ H se preferirá sobre otro si su función de valor es más elevada.
Una función de valor comúnmente usada que cuantifica el valor de la pareja
estado-acción es la siguiente,

V (h) = Rt =
∞∑
t=0

γtR(st, at) (3.1)

Siendo t el instante temporal y R(s, a) la recompensa inmediata tras la tran-
sición de s a s′ por haber realizado la acción a.

Una regla de comportamiento o policy determina el comportamiento del
agente dado un conjunto de A y O (i.e. π : H 7→ A, o bien π : S × T 7→ A).
El objetivo del agente es buscar la regla óptima π∗ ∈ Π, es decir, la regla cuyo
valor esperado sea mayor. Este valor no es más que el valor esperado de los
distintos conjuntos de acciones y observaciones inducidos por dicha regla:

V π(h)
.
= Eπ[V |h] =

∑
h∈H

V (h)P
[
h|π, b0

]
(3.2)

Donde E[·] es el valor esperado, P[·] es la distribución de probabilidad y b0

es la estimación a priori de los estados del sistema (función de la estimación
anterior, la acción realizada y la observación actual). Y particularizando para
s ∈ S, donde V π(s) : S 7→ R:

V π(s) = Eπ,T [Rt|st = s] = Eπ,T

[
∞∑
t=0

γkrt+k+1|st = s

]
∀s ∈ S (3.3)
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La ecuación (3.3) puede reescribirse de forma que el valor esperado de
una regla se pueda calcular mediante la siguiente recurrencia (ecuación de
Bellman):

V π
0 (s) = R (s, π(s, 0)) (3.4)

V π
t (s) = R (s, π(s, t)) + γ

∑
s′∈S

T [s, π(s, t), s′]V π
t−1(s

′) (3.5)

O, empleando el operador de valor esperado,

V π
t (s) = Eπ

[
rt+1 + ET

[
γV π

t−1(s
′)
]]

(3.6)

Pudiendo simplificarse a la siguiente expresión para entornos determinis-
tas:

V π
t (s) = R (s, π(s, t)) + γV π

t−1(s
′) (3.7)

Sabiendo que la función de valor óptima será V ∗(s) = máx
π

V π(s), el prin-
cipio de optimalidad de Bellman permite calcular la función de valor óptima
del instante t a partir de la del instante inmediatamente anterior,

V ∗(s) = máx
a∈A

[
R (s, a) + γ

∑
s′∈S

T [s, a, s′]V ∗(s′)

]
(3.8)

Esta última ecuación permite encontrar la función de valor óptima y,
una vez conocida, también es posible calcular la policy óptima como π∗ =
arg máx

π
V π(s).

La ecuación (3.5) permite conocer el valor esperado de una regla y es
la base de los algoritmos policy-iteration que se explicarán más adelante. Los
métodos value-iteration emplean la ecuación (3.8) para calcular las funciones
de valor óptimas directamente.

La función Q (Q-function o Q-value), Q : S ×A 7→ R, representa el valor
de ejecutar una cierta acción en un estado y seguir además una regla óptima.
La relación entre esta y V viene dada por V ∗(s) = máxaQ

∗(s, a). De forma
análoga a V :

Q(s, a) = Eπ,T [Rt|st = s, at = a] (3.9)

∴ Q∗(s, a) = R(s, a) + γ
∑
s′∈S

T [s, a, s′]V ∗(s′) (3.10)

Esta función permite conocer directamente la policy óptima extrayendo la
acción que genera la mayor recompensa para el estado s:

π∗ = arg máx
a∈A

Q∗(s, a) ∀s ∈ S (3.11)
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Además, cabe destacar que una regla puede definirse de manera estocástica
como ψ = S 7→ Π(A). Frente a la definición anterior en la que un estado era
mapeado a una acción, ahora cada estado es mapeado a la distribución de
probabilidad de la acción (i.e. ψ(s, a)

.
= P[at = a|st = s] es la probabilidad

de que a se ejecute en s). Esta definición representa únicamente una ventaja
en el caso de POMDPs, en los que se puede convertir el espacio discreto A en
un espacio continuo de distribuciones de probabilidad sobre el que es posible
aplicar técnicas de optimización continuas (generalmente más sencillas que las
discretas).

Nótese que puesto que en un POMDP no todos los estados son conocidos,
será necesario redefinir el valor esperado de una regla (o de la Q-function para
los algoritmos implícitos) en función de la estimación de dichos estados, b.
Otra forma de resolución del POMDP es crear un MDP a partir de los estados
estimados (belief-state MDP). Ver (Braziunas, 2003, cap. 4) y (Linh Thai,
2018).

3.1.2. Solución clásica al problema

La resolución del problema puede abordarse 1 calculando directamente la fun-
ción de valor óptima (value-iteration o value-based) o calculando de forma
iterativa la regla óptima con valor esperado mayor (policy-iteration o policy-
based) y posteriormente calular la función de valor óptima. De esta forma, el
problema puede resolverse mediante:

Value-iteration. Este proceso comienza (i) inicializando arbitrariamente
V (e.g. V0(s) = 0 ∀s ∈ S), y (ii) calculando de forma iterativa la función
de valor V (s) hasta que converge al valor óptimo V ∗, ecuación (3.8).
La regla se puede calcular entonces como se ha explicado en la sección
anterior.

Policy-iteration. Se debe (i) inicializar π y V ∀s ∈ S, (ii) calcular el valor
de la regla πt (ec. 3.5) –policy evaluation–, y la Q-function para cada par
estado-acción (ec. 3.10), y (iii) actualizar la regla según el valor óptimo
de la función de valor (ec. 3.11) –policy improvement–.

A nivel computacional, los métodos value iteration suelen requerir un ma-
yor número de iteraciones para converger. Sin embargo, en ellos únicamente
hay que aplicar el operador de Bellman en cada iteración, mientras que en el
caso de policy iteration hay que calcular el valor de la regla, o lo que es lo mis-
mo, resolver un sistema lineal de ecuaciones, como se muestra a continuación.
Partiendo de la ecuación (3.5), se puede expresar el cálculo del valor de una
regla como:

vπ = r + γPvπ −→ vπ = (I− γPπ)−1 r (3.12)

1Nótese que existen además otras aproximaciones empleadas menos frecuentemente, co-
mo los métodos basados en la programación dinámica o en Monte Carlo.
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Donde vπ ∈ R|S| es el vector de valores para cada estado, r ∈ R|S| el vector de
recompensas y Pπ ∈ R|S|×|S| la matriz de probabilidades para cada transición
bajo la policy π.

Otras soluciones no exactas al problema pueden encontrarse aplicando
métodos de optimización numérica no lineal clásicos (métodos basados en el
gradiente). La ventaja de estos radica en que las simplificaciones que se realizan
(e.g. restricciones en las reglas), hacen que problemas de alta dimensionalidad
(o incluso infinita) no resulten en policies infinitas ya que las reglas son opti-
mizadas directamente en el espacio Π. Ver (Braziunas, 2003, cap. 5).

3.1.3. Aprendizaje por refuerzo

El aprendizaje por refuerzo (Reinforcement Learning, RL) es el área del apren-
dizaje automático que trata la toma de decisiones de agentes en un entorno, de
forma que se maximice una cierta función de recompensa. En la figura 3.2 se
muestra el proceso completo de RL. Se trata de un método válido para la resolu-
ción del proceso de decisión de Markov cuando éste no es conocido (los estados
y las funciones de transición son desconocidas). Puede realizarse empleando
distintos algoritmos y métodos, como los explicados en la sección anterior de
optimización de la función de valor (basados en programación dinámica, en
Monte Carlo o en temporal differences) o de la regla de comportamiento, ya
sea determinista o estocástica; u otros métodos más complejos como los mé-
todos advantage actor-critic en los que de alguna forma se combinan los dos
anteriores (value-based critic que evalúa cómo de buena es la acción elegida y
policy-based actor que controla el comportamiento del agente) y se emplea la
función “ventaja” para estabilizar el aprendizaje empleando gradientes. Dicha
función indica la mejora que supondría tomar una cierta acción a desde un
estado s respecto del valor promedio de dicho estado, A(s, a) = Q(s, a)−V (s).

Tanto los métodos policy- como value-based pertenecen a una categoría
superior denominada model-free RL, donde el agente se centra en desarrollar
una función que mapee el estado en la mejor acción posible y no en modelar el
MDP (i.e. el entorno), suponiéndose desconocido, y aprendiendo directamente
mediante la interacción con él. Frente a esta aproximación, se encuentran los
métodos model-based en los que en primer lugar se aprende el modelo del
entorno (modelo probabilístico) y posteriormente se toman decisiones en base
a éste. Nótese por tanto que en estos métodos el agente es capaz de hacer
predicciones de estados y recompensas futuras antes de realizar una acción,
esto es, simular transiciones. Esto resulta en una eficiencia mayor pero también
en la posibilidad de aparición de errores derivados de un modelo incorrecto.
Ver figura 3.3.

En el anexo A se explican dos algoritmos habituales en RL: Q-learning y
Policy Gradient.
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Figura 3.2: Proceso de (Deep) Reinforcement Learning. La información del entorno
puede introducirse como input al problema mediante el uso de distintos sensores
(e.g. cámaras, sensores inerciales), que, con distintas técnicas (e.g. redes neuronales)
codifican esta información de forma que el agente sea capaz de entenderla y reconocer
ciertas características o patrones. Finalmente, a partir de este razonamiento, el agente
debe ser capaz de tomar una decisión que generará un cambio en el estado del agente
y en su entorno. Adaptado de (Fridman, 2019).

Figura 3.3: División de métodos de (Deep) Reinforcement Learning y su eficiencia
en cuanto al número de datos necesarios para aprender. Adaptado de (Fridman,
2019).
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3.2. Aprendizaje por Refuerzo Profundo

3.2.1. Introducción

El aprendizaje por refuerzo profundo (Deep Reinforcement Learning, DRL) ha-
ce uso de redes neuronales profundas (DNN) para resolver el problema de RL.
Como todo sistema de ANN, emplea coeficientes para aproximar una función
que relacione las entradas del sistema con sus salidas, y su aprendizaje consis-
te en el ajuste correcto de estos coeficientes de forma iterativa basándose en
gradientes y en el algoritmo de backpropagation. En el ámbito de RL, DNN o
CNN pueden emplearse para reconocer estados del sistema (o incluso estimar
aquellos que están ocultos) y escoger la acción más ventajosa. El aprendizaje
por refuerzo puede considerarse similar al aprendizaje supervisado, pero en lu-
gar de asignar etiquetas durante el proceso de aprendizaje, se asignan posibles
acciones, i.e. a = π(s); tal y como se puede ver en la figura 3.4. Al fin y al
cabo, todos los tipos de aprendizaje podrían considerarse “supervisados” por
una función de pérdida u objetivo. En DRL, las redes neuronales son el agente
capaz de mapear los estados o parejas estado-acción a recompensas, o de forma
equivalente, a funciones ya vistas como V o Q. Entre las ventajas de emplear
DNN se encuentra la posibilidad de resolver problemas que con métodos clá-
sicos (e.g. tabulares) resultan irresolubles. Tómese como ejemplo el algoritmo
value-based Q-learning. Se puede apreciar rápidamente que la tabla generada
que relaciona cada pareja estado-acción con su Q-value sería de un tamaño
excesivo para, por ejemplo, problemas en los que el cambio de un píxel de una
imagen generase un nuevo estado. Las DNN permiten solucionar este problema
simplificando la solución de los métodos tabulares: en lugar de disponer de la
Q-function exacta, se dispone de una aproximación de ésta.

Algunas características que quizá merezca la pena enfatizar sobre (D)RL
son que (i) la regla de comportamiento óptima se encuentra mediante prueba-
error, siendo la recompensa el único dato del que el agente dispone, (ii) cada
observación depende de las acciones realizadas por el agente, y pueden estar

(a) Aprendizaje supervisado (b) Aprendizaje por refuerzo

Figura 3.4: Ejemplos del distinto uso de CNN en aprendizaje supervisado y por
refuerzo. De (SkyMind, 2018).
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fuertemente correladas, y (iii) las consecuencias de una acción pueden prolon-
garse en el tiempo y no materializarse inmediatamente (long-term temporal
dependency) (Arulkumaran et al., 2017).

En los algoritmos de DRL, en lugar de modelar los conjuntos de probabi-
lidades O(st, at) 7→ ot y T (st, at) 7→ st+1 se modela una función de transición
combinada TO(st, at, ot, rt, θT ) 7→ st+1. En los algoritmos policy-based también
se modela una función de valor V (st, at, ot, rt, θV ) 7→ Vt(θV ) y una función de
regla π(at+1|st, at, ot, rt, θπ) 7→ πt(at+1|θπ). El objetivo del DRL es estimar los
parámetros θ = θT ∪ θπ ∪ θV que maximicen la recompensa futura descontada
esperada, o lo que es lo mismo, θ∗ = arg máxθ E[Rt]. Las tres funciones mode-
ladas comparten algunos de sus parámetros tal que θT ⊂ θπ ∩ θV (Banerjee et
al., 2018).

En el anexo B se explica el algoritmo Deep Q-Networks (DQN), extensión
de Q-learning con DNN.

3.2.2. DRL en exploración

El uso de DNN para representar las reglas o estrategias en RL es relativa-
mente reciente. Permite una representación muy detallada, pero tiene grandes
inestabilidades durante el aprendizaje online. Distintas soluciones se han pro-
puesto para estabilizar el algoritmo, como las basadas en Experience Replay
(ER), que guardan en una memoria de un cierto tamaño (Liu & Zou, 2018)
experiencias pasadas y en cada iteración muestrean un subconjunto de ellas
para actualizar los parámetros del agente. Cada experiencia podría ser, por
ejemplo, la 4-tupla (st, at, rt, st+1). De esta forma se evita la correlación entre
datos sucesivos, evitando mínimos locales y el sobreajuste. Este tamaño del
muestreo ha probado ser clave en el aprendizaje, teniendo su incremento el
mismo efecto que la disminución del learning rate, α (Smith et al., 2017).

(Volodymyr Mnih et al., 2015) es uno de los primeros trabajos donde se
emplea ER de forma satisfactoria, superando a todos los algoritmos del mo-
mento. Los mismos autores presentan una solución alternativa en (Volodymyr
Mnih et al., 2016). El algoritmo A3C (Asynchronous Advantage Actor Critic)
propone la ejecución asíncrona de múltiples agentes en paralelo, y ha sido em-
pleado en numerosos trabajos ya que consigue la estabilización del aprendizaje
sin el uso de ER, como en (Lei et al., 2017; J. Zhang et al., 2017; Zhelo et al.,
2018) o (Mirowski et al., 2016), donde se aumenta además el aprendizaje con
objetivos auxiliares (e.g. la estimación de profundidad o la detección de lazos)
para mejorar su funcionamiento.

Los métodos basados en este algoritmo representan una nueva aproxima-
ción al problema con respecto a las vistas hasta ahora, ya que combina las fun-
ciones de valor (critic) con una representación implícita de las reglas (actor).
De esta forma, la función de valor se emplea como feedback para la optimi-
zación de la regla: tras ejecutar una acción, se genera una recompensa y un

24



Figura 3.5: Arquitectura actor-critic. De (Arulkumaran et al., 2017).

nuevo estado en función del entorno, que permiten calcular la función de valor.
Esta función de valor junto con el estado son empleados para calcular la regla
óptima que generará una nueva acción. Tanto la función de valor como la regla
se realimentan con el error TD (temporal difference), δt−1 = rt + γVt − Vt−1.
Este término suele referirse como ventaja o advantage y puede representarse
como A = Q(s, a) − V (s), o de forma equivalente, como A ≈ R − V (s) si los
Q-values no son calculados en el algoritmo (ver figura 3.5). Nótese que tanto
la función de valor como la regla son calculadas en una red neuronal.

En (Mirowski et al., 2016) se consigue entrenar la red para encontrar ob-
jetivos aleatorios en un mapa con distintas posiciones iniciales del agente, pero
no se presentan resultados en distintos mapas, por lo que se plantea la pre-
gunta de si se podría generalizar el aprendizaje a mapas no conocidos. Oh
et al., (2016), en contraste, sí generalizan los resultados en mapas de diferen-
tes dimensiones obteniendo buenos resultados, pero en este caso el agente no
busca un goal concreto sino que es entrenado para escoger entre varios ba-
sándose en el historial de observaciones. En Banerjee et al., (2018) se emplea
una aproximación similar a la de Mirowski, pero con una gama de experimen-
tos más amplia, intentando responder a la pregunta: ¿realmente aprenden los
algoritmos de DRL a explorar?. Al generalizar el aprendizaje (llevado a ca-
bo en N = {10, 100, 500, 1000} mapas) a mapas desconocidos se observa que
se está explotando y no explorando 2 el entorno, siguiendo, por ejemplo, es-
trategias de seguimiento de paredes. En experimentos simples se detecta que
únicamente se explora aleatoriamente el mapa, en lugar de buscar el camino
más corto hacia el objetivo. Los resultados en distintos mapas muestran que el
camino más corto únicamente se escoge en aproximadamente el 50 % de ocasio-

2Una decisión puede tomarse de forma que se escoja la mejor acción posible con la
información actual disponible (explotación) o de forma que se mejore la información (explo-
ración). De esta forma, un sacrificio a corto plazo puede llevar a mejoras de comportamiento
a largo plazo. Este dilema se conoce como exploration-exploitation y debe llegarse a un
compromiso entre ambas decisiones para optimizar la exploración de un mapa.
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nes (i.e. no presenta una significativa mejora sobre un movimiento aleatorio).
Este trabajo es uno de los pocos en los que que se evalúa el aprendizaje en
mapas desconocidos, probando que realmente el agente no está aprendiendo a
explorar. Los mismos autores presentan en (Dhiman et al., 2018) resultados de
generalización de DRL, concluyendo que los algoritmos (A3C) funcionan bien
únicamente cuando el entorno es similar al de entrenamiento.

En (Zhelo et al., 2018) se realizan experimentos de generalización en nue-
vos mapas comparando diferentes algoritmos:

(a) A3C: dos capas convolucionales y dos totalmente conectadas (FCL, Fully
Conneced Layer) seguidas de sus respectivas no linealidades (ELU, Expo-
nential Linear Unit) para codificar las lecturas de los sensores, seguidas
de una capa con 16 LSTM (long short term memory) y finalmente una
capa lineal seguida de softmax (para producir las probabilidades de cada
acción) y otra capa lineal (para generar la función de valor)

(b) A3C incluyendo el término de pérdida de entropía 3 en el cálculo de los
gradientes (dθπ). El algoritmo A3C actualiza los parámetros de las policy y
value networks (θπ y θv) de forma que se maximice la recompensa esperada.
En este trabajo se ha aumentado la actualización de la policy de forma que
la entropía de esta sea tenida en cuenta y se evite la convergencia hacia
policies determinísticas subóptimas, motivando al agente a tomar acciones
“más impredecibles”:

dθπ = ∇θπ (log π(at|st, θπ)) (Rt − V (st, θv))︸ ︷︷ ︸
término típico A3C

+ β∇θπ (H (π(at|st, θπ)))︸ ︷︷ ︸
término entropía

(3.13)

(c) A3C y además un ICM (Intrinsic Curiosity Module) que contiene tres
capas totalmente conectadas seguidas de no linealidades para codificar las
lecturas de los sensores, una capa lineal con softmax (para calcular la
acción estimada a partir de esta codificación) y dos capas lineales seguidas
de ELU más otra capa lineal que a partir de la acción y las observaciones
codificadas predice la observación siguiente

(d) A3C con entropía e ICM

En mapas conocidos, (d) es capaz de superar todos los mapas con éxito (i.e.
encontrar el goal en N pasos), mientras que los demás algoritmos fallan en
algunas ocasiones. La inclusión de memoria (capas LSTM) incrementa su éxito
es más de un 25 % y hace converger a una buena regla de comportamiento. En
mapas desconocidos, sin embargo, incluso este algoritmo falla en numerosas
ocasiones, en función de la complejidad del mapa y, probablemente, de su
parecido con los empleados durante el entrenamiento. No se reportan resultados
de random-walks en los mismos mapas, pero cabría esperar peores resultados.
Los mínimos locales (caminos no mínimos hasta el objetivo) parecen evitarse

3La entropía de una policy puede entenderse como la aleatoriedad de las acciones que el
agente toma. Cuanto mayor es la entropía, más arbitrarias son las acciones escogidas.
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al emplear el módulo de curiosidad ya que la recompensa intrínseca atrae al
agente hacia estados nuevos y difíciles de predecir y por tanto disponen de
mayor información de la que tendría un agente aleatorio (que podría estar
revisitando las mismas áreas todo el rato). El módulo de curiosidad contribuye
en la recompensa añadiendo el siguiente término a una recompensa extrínseca
típica,

Ri =
1

2
||φ̂t+1 − φt+1||22 (3.14)

Donde φt+1 es el estado st+1 codificado en sus correspondientes features, y φ̂t+1

la predicción de éstas realizada por el módulo de curiosidad; de forma que se
recompensan más aquellos estados difíciles de predecir y no conocidos.

La inclusión en la función de recompensa de diferentes componentes afecta
a la capacidad de explorar del agente significativamente. Incluir la incertidum-
bre del robot o una métrica de ésta (i.e. criterios de optimalidad) favorecería
la navegación óptima, ayudando a escoger al agente las acciones con menor in-
certidumbre asociada. Sin embargo, ¿es posible introducir esta recompensa en
algoritmos de DRL?. Sean un sistema de SLAM tradicional capaz de devolver
el mapa y la posición del agente en éste a partir de e.g. imágenes; y una red
neuronal profunda capaz de resolver el problema de toma de decisiones, e.g.
DQN, tomando como entrada el estado del robot, y devolviendo como salida
una dirección de movimiento (e.g. el espacio finito A = {←, →, ↑, ↓}). Parece
obvio pensar entonces, que, efectivamente, el agente podría ser recompensado
con una métrica de la incertidumbre (Σ). La función recompensa tradicional
simplemente debería incluir un término asociado a esta incertidumbre que po-
dría ser, empleando el criterio D-opt, Ru ∝−1 det(Σ).

¿Sería posible introducir esta métrica de Σ de otra manera en la red?
¿Qué pasaría si se tuviera en cuenta en la propia red modificando la función
objetivo, y por tanto la actualización de sus pesos θ? Ya se ha visto que algunos
algoritmos como A3C incluyen la entropía de la policy en la actualización de
los pesos θπ, i.e. H(π) = −∑ (π(s)k log π(s)k) siendo π(s)k la probabilidad de
la acción k-ésima en el estado s. Las funciones objetivo del algoritmo serán
entonces,

Lv =
∑

(R− V (s))2 (3.15)

Lπ = − log(π(a|s))A(s)− βH(π)︸ ︷︷ ︸
tér. regularización

(3.16)

Y la función global:

L =
1

2
Lv + Lπ =

1

2

∑
(R− V (s))2 − log(π(a|s))A(s)− βH(π) (3.17)

Entonces, puede verse que implícitamente se está introduciendo la recompensa
en el problema de optimización, por lo que sería equivalente.

En este caso se estaría motivando la visita de estados novedosos y se
optimizaría la exploración conforme se entrenase el agente, incluso revisitando
áreas conocidas para cerrar lazos (i.e. reducir la incertidumbre).
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Figura 3.6: Fase de aprendizaje offline y funcionamiento del marco empleado en
(Bai et al., 2017).

Las aproximaciones en las que se guía la exploración mediante la incer-
tidumbre (uncertainty-driven exploration) son reducidas y habitualmente em-
pleadas en model-based DRL para manipulación, de forma que esta incertidum-
bre puede introducirse en el modelo. Algunos ejemplos son (Depeweg et al.,
2017) o (Büchler et al., 2018) donde se emplea la incertidumbre para promover
o evitar, respectivamente, la exploración de lugares con alta incertidumbre, o
(Chua et al., 2018) en el que se propone una estrategia de DL no supervisado.

En (Bai et al., 2017) se propone una solución basada en aprendizaje su-
pervisado profundo en lugar de RL, como se había hecho en todos los trabajos
previamente mencionados. Se etiquetan mapas 2D de forma que una red neu-
ronal sea capaz de predecir la acción más valiosa a partir de la entropía de
Shannon (ver figura 3.6). Se emplean y comparan distintas redes neuronales
existentes como AlexNet (Krizhevsky et al., 2012), GoogleNet (Szegedy et al.,
2015) y ResNet (He et al., 2016), entre otras. Pese a ser un ejemplo de entrena-
miento supervisado, este trabajo emplea directamente una función de utilidad
como herramienta para aprender a tomar decisiones.

La Q-function puede emplearse en lugar de V para conocer el valor de cada
acción, lo que se denomina Q-learning, como ya se ha visto. Esto permite resol-
ver problemas en los que la función de transición no es conocida (model free);
aunque presenta dificultades con espacios de estados de gran dimensión, puesto
que la dimensión de Q(s, a) es incluso mayor que la de V (s) pudiendo existir
espacios A continuos. Las Deep Q-Networks (DQN) emplean redes neuronales
para el cálculo (aproximado) de Q-functions, esto es: Q(s, a, θ) ≈ Qπ(s, a) (ver
figura 3.7 y anexo B).

Este tipo de agentes, introducidos por Google Deep Mind en (Volodymyr
Mnih et al., 2015), son un buen ejemplo de resolución de MDP con S de elevada
dimensión empleando DRL y SGD (Stochastic Gradient Descent), de forma que
futuras recompensas sean maximizadas. Sin embargo, ésta, puede considerarse
una aplicación limitada, ya que imágenes 2D greyscale son la única entrada a
la red y dimA = 3.

Lei y Ming (2016) consiguen explorar un entorno desconocido sencillo
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Figura 3.7: Ejemplo de la estructura de una DNN capaz de estimar Q-functions a
partir de los estados conocidos y los estimados. De (Egorov, 2015).

Figura 3.8: Estructura de la DQN propuesta en (Lei & Ming, 2016).

en Gazebo evitando obstáculos, empleando una DQN (ver figura 3.8). Una
CNN entrenada offline de forma supervisada se usa para extraer los mapas de
características (feature maps o activation maps) de imágenes RGB-D, que se
alimentan a otra red totalmente conectada que se entrena online para calcular
las Q-functions, y escoger la mejor acción. A pesar lograr la convergencia de la
red, únicamente se resuelve la exploración en entornos ya navegados durante
el entrenamiento, generando, al menos, preguntas en cuanto a la capacidad
de generalización. La recompensa se modela mediante una función sencilla
diseñada para evitar obstáculos, de forma que únicamente penaliza el acercarse
a éstos.

Karkus et al., (2017) proponen otra solución al problema de navegación
autónoma en el que se sustituye la CNN por una RNN con capas LSTM,
de forma que permita abordar la observabilidad parcial, hecho olvidado en la
mayoría de trabajos. En la red se codifica tanto el entorno como el algoritmo
de aprendizaje. Consta de (i) una etapa de filtrado en la que se obtiene la
estimación del instante (t+ 1) a partir de la estimación, acción y observación
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del instante t, i.e. un filtro Bayesiano,

bt+1(s) = η O(s, o)
∑
s′∈S

T (s, a, s′)bt(s
′) (3.18)

(siendo η una constante de normalización) y (ii) una etapa de planificación que
ejecuta un método value-iteration mediante el que encuentra la acción preferida
para (t + 1). En primer lugar se calculan los Q-values, y posteriormente se
actualizan los valores de V , según

Qk+1(s, a) = R(s, a) + γ
∑
s′∈S

T [s, a, s′]Vk(s
′) (3.19)

Vk(s) = máx
a

Qk(s, a) (3.20)

La ecuación (3.19) se codifica mediante una serie de convoluciones conA filtros,
seguidos de una operación de suma con tensor recompensa; mientras que la eq.
(3.20) se consigue con capas max-pooling. Estas dos ecuaciones – denominadas
como actualización de Bellman – se repiten de forma iterativa apilando las
capas k veces. Tras k iteraciones se conocen los Q-values aproximados para
cada par acción-estado, que, ponderados con la estimación (belief ), permiten
conocer el valor de cada acción y escoger así la más ponderada.

q(a) =
∑
s∈S

Qk(s, a)b(s) (3.21)

Las reglas aprendidas generalizan satisfactoriamente a nuevos entornos de ma-
yor dimensión o con una configuración distinta, pero como elementos o carac-
terísticas similares. Esto es gracias a que la red no aprende una regla óptima
para los casos de entrenamiento sino un modelo de planificación más com-
plejo. En algunos casos, QMDP-net llega a superar al algoritmo QMDP que
está codificando, pese a que éste conoce el modelo real del POMDP, debido a
que la red redefine los valores de las recompensas de tomar ciertas decisiones
permitiendo volver a lugares ya visitados, por ejemplo. Hay que remarcar que
durante el proceso se itera sobre la totalidad del espacio de estados (value-
iteration), hecho factible únicamente por la baja dimensionalidad de este en
los experimentos realizados.

La inclusión de memoria en estas redes permite disponer de una repre-
sentación interna del entorno, mejorando la exploración. Sin embargo, en esce-
narios de larga duración, con la creciente demanda de memoria, la capacidad
expresiva de la red se reduce potencialmente (Graves et al., 2016). Una memo-
ria externa evitaría mezclar en los pesos de la red la memoria y los distintos
algoritmos de cálculo. Existen tres arquitecturas de memoria externa para redes
profundas: Neural Turning Machine (NTM), Differentiable Neural Computer
(DNC) y las redes de memoria (memory networks), aunque estas últimas no
aprenden qué deben escribir en la memoria (Graves et al., 2014; Graves et al.,
2016; Oh et al., 2016).
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J. Zhang et al., (2017) embeben en una memoria externa una representa-
ción interna del entorno, a partir de la que una red neuronal es capaz de ejecutar
tareas de planificación y SLAM, incluso long-term. En cada step primero se
actualiza la memoria N t y posteriormente se realiza la toma de decisiones, que
tras ser procesado por distintas capas de la red resulta en πt y V t. Esta aproxi-
mación, denominada Neural-SLAM, es validada en entornos 2 y 3D en Gazebo
(donde la física subyacente y los modelos de ruido de sensores son mucho más
realistas que en los entornos de simulación empleados en otros trabajos) con
cuatro posibles acciones. Se consiguen resultados superiores a los conseguidos
con random-walks y otras aproximaciones del algoritmo A3C, como (Mirowski
et al., 2016). Se incluyen además pruebas de generalización en escenarios de
mayor dimensión que los del entrenamiento. En la tabla 3.1 se han agrupa-
do los resultados obtenidos. En primer lugar, se observa una mejora entre un
movimiento aleatorio y el algoritmo propuesto en (Mirowski et al., 2016). Sin
embargo, como ya explicaba (Banerjee et al., 2018), la mejora es sutil. Se consi-
gue finalizar únicamente un 10 % de los escenarios en menos de 750 iteraciones
y no se presenta la información del resto de escenarios para su comparativa.
Las dos capas LSTM de la RNN podrían estar almacenando datos de la odo-
metría del robot, incitándole a moverse en un vecindario cercano sin volver a
lugares lejanos ya visitados o a realizar estrategias de seguimiento de paredes
(como ya se ha comentado). La mejora del uso de una memoria externa, por
otra parte, sí representa una mejora sustancial al disponer de una representa-
ción del entorno. Los experimentos en Gazebo consiguen ser satisfactorios pero
no se presentan resultados de generalización en entornos desconocidos, trabajo
que se plantea a futuro junto con la inclusión de recompensas intrínsecas de
forma similar a (Zhelo et al., 2018).

Agente Steps Recompensa Tasa éxito
Aleatorio 5531± 4299 −596± 505 -
A3C (Mirowski et al., 2016) 683± 201 −15± 11 0.10

Neural-SLAM (J. Zhang et al., 2017) 175± 175 13± 9 0.92

Tabla 3.1: Resultados aproximados de generalización en los experimentos 2D de (J.
Zhang et al., 2017), donde la tasa de éxito se refiere a la capacidad de explorar un
entorno en menos de 750 steps.

Otras soluciones de vanguardia de Deep Q-learning alternativas a DQN
son DBQN (Deep Belief Q-network), DRQN (Deep Recurrent Q-network),
DDRQN (Deep Distributed Recurrent Q-network) o ADRQN (Action-based
Deep Recurrent Q-network), propuestas respectivamente en (Egorov, 2015;
Hausknecht & Stone, s.f.; Foerster et al., 2016; Zhu et al., 2018). En la ta-
bla 3.2 se presenta una breve comparativa de estas aproximaciones. Nótese
que en ADRQN se introducen parejas acción-observación acopladas a la red,
mejorando significativamente la estimación con respecto a DDRQN. La figura
3.9 muestra de forma muy clara la estructura de una ADRQN, con sus distin-
tas capas, entradas y operaciones; pudiendo verse la metodología de cálculo,
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Aproximación Entrada Problema abordado
DQN st model-free MDP
DBQN bt model-based POMDP
DRQN (o1, ..., ot) model-free POMDP
DDRQN (a0, ..., at−1)(o1, ...ot) model-free POMDP
ADRQN (a0, o1), ..., (at−1, ot) model-free POMDP

Tabla 3.2: Comparativa entre distintas aproximaciones de Deep Q-learning.

Figura 3.9: Estructura de la ADRQN propuesta en (Zhu et al., 2018), donde IP
(inner product) es equivalente a FCL (fully connected layer).

que, a rasgos generales, es similar en todas las aproximaciones presentadas.

En (F. Chen et al., 2019), se emplea una aproximación de DRL con recom-
pensas basadas en la entropía del mapa (mutual information) para explorar de
forma eficiente entornos 2 y 3D. Este trabajo, publicado durante la realización
de esta memoria, es similar a las implementaciones que se verán en el capítulo
4, donde la función recompensa es aumentada con una métrica de la incerti-
dumbre para favorecer la exploración. Es el único trabajo que se ha encontrado
en el que se emplea una DQN con recompensas basadas en la covarianza, y
presenta resultados en los que se supera a algoritmos tradicionales de SLAM
activo, pero siempre en entornos de tipo grid-world.
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Capítulo 4

Implementación y Evaluación de
RL en Exploración

Los contenidos de este capítulo están organizados de la siguiente manera:

En primer lugar se describen las herramientas empleadas para la imple-
mentación de algoritmos y el hardware disponible (sección 4.1).

En la sección 4.2 se presentan los escenarios de simulación empleados y
sus características.

Finalmente se muestran los detalles de las distintas implementaciones y
los resultados obtenidos (secciones 4.3 en adelante).

4.1. Herramientas

A continuación se describen brevemente algunas de las herramientas empleadas
en este trabajo. Los experimentos se han llevado a cabo en dos terminales
distintos para agilizar el proceso, ambos con Ubuntu 16.04, ROS Kinetic y
Gazebo 7.15. El primero de ellos (T1 de ahora en adelante) dispone de 16GB
de RAMDDR3, CPU de 8 núcleos (i7-4771 @ 3.5GHz) y GPU Nvidia GTX-660
2GB; y el segundo (T2) de 32GB de RAM DDR4, CPU de 4 núcleos (i7-7500U
@ 2.7GHz) y GPU Nvidia Quadro M520 2GB.

4.1.1. Python, TensorFlow y Keras

TensorFlow1 es una librería de código abierto para ML desarrollada original-
mente en 2015 por Google Brain que funciona con CPUs (Central Processsing
Units), GPUs (Graphics Processsing Units) e incluso TPUs (Tensor Process-
sing Units). Esta librería empleada para cálculo numérico está basada en grafos

1https://www.tensorflow.org/
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donde los nodos representan las operaciones y los arcos los tensores que flu-
yen entre ellos. Pese a que permite trabajar en Python las operaciones son
realmente realizadas en código de alto rendimiento en C++.

Keras2 es una API (Application Programming Interface) de alto nivel de
redes neuronales que es capaz de ejecutarse sobre otras librerías de optimización
o cálculo matemático como Tensorflow, CNTK3 o Theano4. Se trata de una
librería Python para aprendizaje profundo que permite crear modelos de los
agentes de una forma sencilla con TensorFlow en backend. Esto es, una libería
que no se encarga de operaciones de bajo nivel como productos de tensores o
convoluciones, sino de facilitar la creación de modelos de DL mediante bloques.

En estre trabajo se han empleado tanto Python 2.7.12 como Python 3.5.2,
TensorFlow 1.13.1 (CPU y GPU), Theano 1.0.4 y Keras 2.1.2.

4.1.2. OpenAI Gym

OpenAI Gym5 es un paquete para el desarrollo y la comparación de distintos
algoritmos de RL, desarrollado por OpenAI. Contiene un conjunto de entornos
que van desde problemas de control clásicos como el péndulo invertido hasta
otros más complejos como los juegos de Atari. Además, proporciona herramien-
tas para la creación de espacios de acciones, de estados, o para la recolección
de observaciones, en Python.

4.1.3. Gym Gazebo

Gym-Gazebo6 es un software complejo que extiende las librerías de OpenAI
Gym para su uso conjunto con ROS (Robot Operating System)7 y Gazebo8.
Contiene entornos de Gazebo complejos en los que simular comportamientos
cercanos al mundo real. Este proyecto de Erle Robotics provee distintos en-
tornos para tres robots móviles (TurtleBot, ErleRover y ErleCopter), así como
varios brazos robóticos. Recientemente se ha dejado de mantener esta exten-
sión de OpenAI Gym para Ubuntu 16.04 y para ROS, tras el lanzamiento
de Gym-Gazebo 29, que se ejecuta de forma nativa en ROS2 y únicamente
ofrece la posibilidad de simular el robot modular MARA (Modular Articulated
Robotic Arm).

2https://keras.io/
3https://www.microsoft.com/en-us/cognitive-toolkit/
4http://deeplearning.net/software/theano/
5https://gym.openai.com/
6https://github.com/erlerobot/gym-gazebo
7http://www.ros.org/
8http://gazebosim.org/
9https://github.com/AcutronicRobotics/gym-gazebo2

34



4.2. Entornos de Simulación

En este proyecto se han empleado varios entornos de simulación para evaluar los
algoritmos de RL. Son entornos propios de Gym-Gazebo, versiones alteradas
de estos o nuevos entornos creados para Gazebo e integrados en el framework
de Gym-Gazebo.

En todos ellos, el robot TurtleBot10, equipado con un láser 2D y una
cámara, navega por el entorno generando distintas observaciones y cambiando
de estado. El conjunto de acciones posibles está restringido a velocidad lineal
positiva, velocidad angular positiva o velocidad angular negativa (dimA = 3):

a1 = {v = 0.3, ω = 0}
a2 = {v = 0.05, ω = 0.3}
a3 = {v = 0.05, ω = −0.3}

Donde v es la velocidad lineal en m s−1 y ω la angular en rad s−1. El espacio de
estados viene definido por las medidas del sensor láser por lo que su dimensión
variará en función de la descripción del sensor. Además, el máximo número
de pasos por episodio se ha limitado a 1000 para RL y 500 para DRL por su
demanda computacional. Puesto que la exploración debe ocurrir sin colisiones
con las paredes, el episodio también termina si el robot se acerca por debajo
de un threshold de 0.2 m a cualquier obstáculo.

En las figuras 4.1 y 4.2 se muestran los tres entornos empleados, pudiendo
destacar las similitudes entres el primero y el segundo y la complejidad del
tercero.

Los procesos de entrenamiento y evaluación que se han llevado a cabo en
ambas aproximaciones se muestran en la figura 4.3. En el caso de RL el módulo
de memoria no es más que la Q-table, mientras que en el caso “deep” representa
la ER de la que se extraen muestras para actualizar los parámetros de la red.

Figura 4.1: Escenario de entrenamiento.

10http://wiki.ros.org/Robots/TurtleBot
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(a) Escenario 2. (b) Escenario 3.

Figura 4.2: Escenarios de generalización.

Figura 4.3: Procesos de entrenamiento y evaluación. Durante el primero la memoria
guarda información de las recompensas obtenidas según el estado y la acción escogida,
dando forma a la policy. En la fase de testeo, únicamente se evalúa la policy.
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4.3. Aproximación RL: Q-Learning

4.3.1. Traditional reward

En primer lugar, se busca comprobar que las aproximaciones con DNN suponen
una ventaja realmente sobre algoritmos de RL tradicionales. En la mayoría
de trabajos que afirman capacidad de exploración se plantean recompensas
extrínsecas clásicas, por lo que se ha realizado un experimento siguiendo estas
premisas. Se ha entrenado un primer agente mediante Q-learning en el entorno
1 durante 10000 episodios (≈ 125 horas en T1), con una policy ε-greedy con ε
decreciente en el intervalo [0.9, 0.05], factor de aprendizaje α = 0.2, factor de
descuento γ = 0.8 y la siguiente función recompensa:

Rt =


− 100 si hay colisión

0.5 si ω = 0
− 0.05 si ω 6= 0

(4.1)

Donde cada valor ha sido sintonizado de forma que se eviten giros y movimien-
tos innecesarios motivados por mínimos locales (e.g. giros continuos).

Uno de los grandes retos en el problema de Q-learning es convertir el
conjunto de lecturas del láser en estados para generar la Q-table. Esto se ha
resuelto discretizando la lectura del láser en 5 datos equidistantes, pero otras
opciones como calcular la media o el valor mínimo entre grupos de datos serían
métodos también válidos.

En la figura 4.4 se muestran los resultados del aprendizaje. Se observa una
curva de aprendizaje creciente que llega a estabilizarse, a pesar de haber para-
do el entrenamiento por su elevado coste computacional tras ≈ 7.5M steps y de
cambiar los parámetros “recomendados” por los autores (Zamora et al., 2016).
Nótese también el cambio de la tendencia conforme ε → 0. Efectivamente el
agente aprende a tomar decisiones favorables para navegar en el entorno evi-
tando las paredes, consiguiendo alcanzar en muchas ocasiones el límite de pasos
fijado por episodio. Sin embargo, surgen dos preguntas: ¿se trata realmente de
una exploración, o simplemente está moviéndose para evitar los obstáculos co-
mo proponía Banerjee et al., (2018), i.e. navegando? y, ¿este aprendizaje puede
extrapolarse o generalizarse a otros entornos distintos?.

A continuación se ha probado el agente entrenado en los entornos 2 y 3
durante 1000 episodios. En las figuras 4.5 y 4.6 se presentan los resultados
obtenidos por el agente entrenado, un agente sin entrenar y un agente cuyas
acciones están condicionadas por un factor de aleatoriedad elevado (ε ≈ 1).
En el entorno 2, a pesar de la variabilidad por la aparición de estados no
contemplados en la Q-table, el comportamiento del agente entrenado (azul) es
superior a los demás. En el entorno 3, completamente diferente y más complejo,
sin embargo, los resultados son similares para los tres agentes. Se observa una
ligera mejoría en cuanto a la recompensa o los pasos medios, pero en ningún
caso se trata de una mejoría notable (recuérdese que han sido empleadas ≈ 125
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horas de entrenamiento). La capacidad de generalización de este algoritmo
puede considerarse limitada por la similitud entre los entornos y su complejdad,
conclusión extendible a algoritmos similares de RL.
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Figura 4.4: Recompensa durante el aprendizaje con Q-learning de un agente en el
entorno 1 (azul claro), su media móvil (azul oscuro), los steps medios (negro) y ε
(verde).
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Figura 4.5: Recompensa de un agente estocástico (rojo), uno sin entrenar (verde)
y el agente entrenado (azul) en los escenarios de generalización.
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Figura 4.6: Comportamiento de los tres agentes mencionados en cuanto a tiempo
de cómputo y recompensa y pasos medios por episodio.
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4.3.2. Uncertainty-based reward

Considérese ahora la definición de exploración robótica (ver sección 2.1) en la
que el objetivo es minimizar la incertidumbre de la localización del robot y el
mapa creado. Una recompensa definida según la ecuación (4.1) únicamente está
motivando la evasión de obstáculos y el movimiento por el centro de pasillos,
y prueba de ello es la figura 4.7, donde se muestra la entropía en función
del número de pasos (izquierda) y episodios (derecha) para el escenario 2.
Además de la discontinuidad generada por revisitar estados conocidos en torno
a los 200 pasos, se observa una tendencia desordenada de la entropía conforme
aumentan los episodios, esto es, únicamente mejora o empeora arbitrariamente
como consecuencia de intentar optimizar Rt.

Por el contrario, si se incluyese en la ec. (4.1) una componente inversa
a una métrica de la matriz de covarianza (Σ), se motivaría visitar además
aquellos estados que redujesen la incertidumbre y se evitarían otros indeseados
que favoreciesen el aumento de la incertidumbre progresivamente, e.g. giros
continuos en un punto o acercarse en exceso a las paredes. Se propone por
tanto la siguiente función de recompensa aumentada:

Ru =


− 100 si hay colisión

0.5 +
1

f(Σ)
si ω = 0

− 0.05 +
1

f(Σ)
si ω 6= 0

(4.2)

Para disponer de una métrica de la covarianza durante la simulación se
ha empleado el paquete de ROS gmapping11 ya que es relativamente sencillo
de usar y su demanda computacional no es alta. Tras su previa configuración
y ajuste de parámetros, es capaz de ejecutar un algoritmo de SLAM basado
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Figura 4.7: Evolución de la entropía en función de los episodios y steps en el es-
cenario 2 con el agente entrenado con Rt. El mapa de color indica la ocurrencia
logarítmica.

11http://wiki.ros.org/gmapping, https://openslam-org.github.io/gmapping.html
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(a) Entorno 1 (b) Entorno 2 (c) Entorno 3

Figura 4.8: Visualización en RViz de los mapas creado mediante gmapping de los
tres escenarios.
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Figura 4.9: Recompensa durante el aprendizaje con Q-learning empleando Ru en
el entorno 1 (azul claro), su media móvil (azul oscuro), los pasos medios (negro) y ε
(verde).

en filtros de partículas de Rao-Blackwell (Rao-Blackwellized Particle Filter,
RBPF) que calcula el mapa del entorno, la pose del robot en éste y una métrica
de la incertidumbre: la entropía (i.e. f(Σ) := H); a partir de la odometría y
las medidas láser. En la figura 4.8 se presentan ejemplos de los mapas creados
por el algoritmo, visualizados con RViz12.

La figura 4.9 muestra el aprendizaje de un agente programado con la
función de recompensa definida en la ecuación (4.2) para los 5000 primeros
episodios (≈ 2M steps y≈ 29 horas en T1). Véase la notable diferencia entre las
curvas de aprendizaje 4.4 y 4.9 en cuanto a tendencia, efecto de ε, estabilidad
y convergencia, entre otros.

Finalmente, en la figura 4.10, se muestra la densidad de entropía con el
agente entrenado con Ru. La evolución de H es ahora más ordenada y de-
creciente a lo largo de los episodios, dentro de lo esperado por la limitada
capacidad de generalización del algoritmo al segundo entorno.

12http://wiki.ros.org/rviz
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Figura 4.10: Evolución de la entropía en función de los episodios y steps en el
escenario 2 con el agente entrenado con Ru. El mapa de color indica la ocurrencia
logarítmica.

4.3.3. Conclusiones

Queda demostrada la incapacidad de algoritmos de (D)RL en general de explo-
rar un entorno sin previamente incluir una componente adicional que motive
el aprendizaje reduciendo la incertidumbre. Los experimentos con una compo-
nente inversa a la entropía conducen a resultados satisfactorios, motivando la
reducción de incertidumbre incluso en entornos distintos del de aprendizaje.
En ellos, sin embargo, el comportamiento del agente es mucho peor que en los
mapas de entrenamiento, en función de su parecido y su complejidad. Además,
es destacable la elevada necesidad computacional para resolver el problema.
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4.4. Aproximación DRL: Deep Q-Learning

Analizado el marco de RL, se ha estudiado la aproximación con DNN, en la que
la Q-function es sustituida por una red que actúa como function approximator.
De esta forma quiere analizarse si las redes profundas aportan alguna ventaja
a la hora de generalizar o tomar las decisiones repecto a la aproximación tra-
dicional. A diferencia de los anteriores, estos experimentos se han ejecutado
principalmente en la GPU de T2 ya que Keras (con TensorFlow backend) tiene
soporte para ésta.

En primer lugar, han tenido que realizarse diversas modificaciones a la
librería Gym-Gazebo para el correcto funcionamiento de la simulación con
DNN. Entre las más representativas se encuentran: (i) la creación de un nuevo
modelo de sensor láser con n rayos horizontales entre ±180◦, que no tenga
en cuenta todos los decimales del tipo float32 ni los valores NaN, +Inf y
-Inf ; (ii) una velocidad de ejecución de acciones que permita que el robot
se mueva y Gazebo realice los cálculos necearios, esperando para ello varios
milisegundos; (iii) la posibilidad de reaparecer en distintos puntos del mapa,
reiniciando correctamente los nodos ROS de odometría, comando de velocidad
y estado; (iv) el ajuste de los parámetros del solver de Gazebo para limitar el
tiempo de simulación a 10 veces el tiempo real, permitiendo que los cálculos
necesarios se ejecuten en todo momento; y (v) la nueva definición del modelo
del robot para evitar desviaciones en la trayectoria y temblores no deseados,
provocados por una descompensación inercial y por colisiones entre mallas.

Tras estas modificaciones, se han programado unaDeep Q-Network (DQN),
una Double Deep Q-Network (DDQN) y una Dueling Double Deep Q-Network
(D3QN), que se presentan en el Anexo B. La función recompensa se ha definido
de forma análoga a Q-learning como:

RDQN =


− 100 si hay colisión

1 si ω = 0
− 0.05 si ω 6= 0

(4.3)

La DQN, representada en la figura 4.11(a), está formada por una capa
de entrada que recibe las mediciones del láser, 2 capas densas (24 y 12 hidden
units) con activación ReLU, y una capa de salida densa con activación lineal
(de tamaño igual al número de acciones posibles). Las capas intermedias están
regularizadas mediante dropout. El método de optimización es RMSProp con
learning rate α = 2.5e−4 y como función de pérdida se usa el error cuadrá-
tico medio. La red emplea ER con un buffer de 50000 vectores de la forma
(st, at, rt, st+1, et), del que se muestrean lotes arbitrarios de tamaño 64 (donde
et indica si se trata del último estado de un episodio). Se sigue además una
policy ε − greedy con ε decreciente en el intervalo [1, 0.05] durante los pri-
meros episodios. Los parámetros de las redes principal, θ, y objetivo, θ∗, se
sincronizan cada 10000 steps para disponer de un objetivo estacionario (hard
updates), y se inicializan según una distribución uniforme (LeCun). Para esta
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configuración, el número de parámetros entrenables es θ ≈ 600. La tabla 4.1
muestra un resumen de los parámetros descritos. Por su parte, el módulo de
memoria se ha programado sobre el existente de Gym-Gazebo, empleando la
estructura deque() de alto rendimiento para extracción y guardado de tuplas
en Python. La red D3QN, figura 4.11(b), comparte la mayoría de parámetros
con la primera, habiendose modificado principalmente la arquitectura y el mó-
dulo de memoria (ver Anexo B). Para conseguir resultados repetibles, se han
fijado las semillas de aleatoriedad de todas las librerías empleadas, aunque un
pequeño grado de variabilidad existe debido a la simulación en Gazebo.
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Figura 4.11: Arquitectura de las redes empleadas, donde los circulos negros repre-
sentan las neuronas de la red.

Parámetro Símbolo Valor
Factor de aprendizaje α 0.00025
Factor de descuento γ 0.99
Factor de dropout capa 1 d1 0.5
Factor de dropout capa 2 d2 0
Tamaño de ER M 50000
Tamaño de muestreo b 64
Núm. entradas nin 10
Núm. salidas nout 3
Steps de exploración Ue 100
Steps entre actualizaciones U 10000

Tabla 4.1: Resumen de los parámetros de aprendizaje de la DQN.
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4.4.1. Análisis de resultados

Se han realizado numerosas simulaciones con distintas combinaciones de pa-
rámetros y arquitecturas, detectando una enorme sensibilidad no sólo a la
variación de éstos sino también a su relación. Factor de aprendizaje y tamaño
de muestreo de la memoria son claves en la simulación, siendo el efecto de dis-
minuir el primero similar a aumentar el segundo (Smith et al., 2017). Learning
rates menores del propuesto conducen a aprendizajes extremadamente lentos,
mientras que mayores de 0.001 provocan inestabilidades. El tamaño del mues-
treo mínimo parece estar en torno a 64 muestras para conseguir aprender a
una velocidad aceptable, mientras que puede ser aumentado progresivamente
durante el entrenamiento hasta valores próximos a 300 sin penalización compu-
tacional elevada. El tamaño de la memoria, por su parte, parece no tener un
efecto notable siempre que se encuentre en valores mínimos razonables que
permitan una cierta variedad en las experiencias contenidas (e.g. 10-50k). Ta-
maños de hasta 500k se han evaluado, no presentando mejora en la policy
conseguida. La arquitectura de la red es otro de los factores críticos: un gran
número de entradas y/o de posibles acciones hace que el aprendizaje se ralen-
tice mucho y consigue únicamente que la red termine ignorando parte de éstas,
como puede observarse en la figura 4.12, donde conforme avanza el entrena-
miento cada vez más entradas se ignoran; mientras que un bajo número de
lecturas de láser hace difícil el reconocimiento de patrones similares. Aumen-
tar el número de neuronas o capas por encima del propuesto ralentiza también
la convergencia sin una mejora significativa en el comportamiento del robot
en simulaciones cortas, aunque su efecto en generalización y en simulaciones
más largas sería beneficioso. Por otra parte, la actualización de pesos de la
red objetivo muestra también una variación significativa en los resultados. Si
los Q-targets no están fijos durante un número de episodios que permitan la
convergencia a éstos, se producen oscilaciones e inestabilidades, como ya se
habia visto en (S. Chen, 2018). Actualizaciones continuas (soft updates) de la
target network también se han evaluado (e.g. interpolación τ × θ∗+ (1− τ)× θ
con τ ∈ (0.001, 0.005)), pero no se ha visto una mejoría notable para el coste
computacional que supone actualizar los pesos cada step. El valor de velocidad
lineal y angular son también críticos y deben ser ajustados en función de las
dimensiones del entorno. Finalmente, un parámetro que ha demostrado ser de
una importancia y sensibilidad abismal es la función de recompensa. El diseño
de ésta en cuanto a valores absolutos y relación entre ellos tiene efecto, en-
tre otros, en: convergencia a policies no óptimas, velocidad de aprendizaje y
error de estimación de Q-values (i.e. loss function), y por tanto en problemas
derivados como exploding gradients. Pese a que recompensas contenidas en el
intervalo [−1, 1] (reward clipping) consiguen funciones de pérdida y gradien-
tes acotados y menos bruscos, no ha resultado en una convergencia a mejores
policies en los horizontes temporales contemplados.

Como puede comprobarse en (Mohaimenian Pour et al., 2017), donde se
entrena un agente similar con parámetros similares a los propuestos, la conver-

44



gencia a una policy óptima es conseguible tras un periodo de entrenamiento
suficientemente grande. En ese caso, tras varios días de entrenamiento en un
entorno más simple y empleando una GPU Nvidia Titan Xp. Por este motivo,
la convergencia a una policy óptima se descarta en los experimentos realizados.
Un ejemplo de aprendizaje de una policy exitosa se muestra en la figura 4.13,
con la que el agente es capaz de recorrer el entorno completo en aproximada-
mente el 85% de ocasiones. En este caso, 100 son las entradas de la red y 21 sus
salidas, al igual que en (Mohaimenian Pour et al., 2017), aunque los valores ab-
solutos de la función de recompensa son ligeramente distintos y la red contiene
un número de neuronas inferior. Como puede observarse, una regla subóptima
se sigue durante casi la mitad del entrenamiento, traducida en un agente que
únicamente sabe avanzar en línea recta y girar en un único sentido cuando va a
chocarse. No se ha detectado qué hace realmente al agente salir de dicha policy
pero supone un aprendizaje casi repentino de cómo girar en ambas direcciones.
En entornos distintos al de aprendizaje, tanto esta red como la propuesta por
Mohaimenian se comportan de forma muy inferior, mostrando comportamien-
tos mejores que los de un agente aleatorio únicamente si los entornos tienen
una estructura similar (e.g. pasillos de igual tamaño, giros similares...). Nótese
que el entrenamiento ha necesitado un total de ≈ 120 horas para los ≈ 3.1M
de steps.
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Figura 4.12: Evolución de los parámetros de la primera capa densa de una red cuya
entrada son 100 lecturas de láser, tras 100, 1000 y 4000 episodios de entrenamiento.
Nótese la especialización de algunas neuronas en zonas del láser o cómo muchas
entradas son prácticamente ignoradas conforme se entrena la red.
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Figura 4.13: Recompensa durante el aprendizaje de DQN en el escenario 1 (azul
claro), su media móvil (azul oscuro), ε (verde) y los steps (negro). Máximos steps:
1000, recompensa teórica estimada máxima: ≈ 4000.

Las figuras 4.14(b) y 4.14(c) contienen los kernels de entrada y salida
de la red como ejemplo de una mala policy (similar a la del agente anterior
durante la primera parte de la simulación) a la que otro agente entrenado
converge tras más de 3000 episodios de entrenamiento con la configuración de
la tabla 4.1 y la función de recompensa de la ec. (4.3). En ella, los pesos se
configuran de forma que las lecturas del láser a la derecha del agente no se
ponderan bien y terminan en Q-values subestimados. Recuérdese que valores
negativos son ignorados con activaciones ReLU, como puede verse en la figura
4.15: cuando las lecturas láser centrales y a la izquierda no son suficientemente
grandes para mitigar el efecto negativo de las lecturas a la derecha, resulta en
una gran cantidad de activaciones nulas (dying ReLU ). En la figura 4.14(a) se
puede osbervar el comportamiento del agente en la simulación y los Q-values
estimados en una situación similar a la de la figura 4.15.

Una solución a este problema podría encontrarse en usar funciones de
activación diferentes. Se ha entrenado una red similar, incluyendo 24 neuronas
en ambas capas densas y 100 entradas láser, pero con activación LeakyReLU
(θ ≈ 3000). Esta función no genera salida nula ante valores negativos sino un
pequeño valor negativo función de la entrada. En la figura 4.16 se muestran
los resultados de entrenamiento de un agente con regularización dropout tras
la primera capa13 (azul) y sin ella (rojo) tras 700 episodios (≈ 28 horas). En
primer lugar, se observa que el agente sin dropout converge a una policy cuasi-
óptima durante el entenamiento, que tiene además una tendencia creciente.
El agente con dropout converge a una buena policy tras 300 episodios que
luego “olvida” repentinamente y parece “reaprender” más adelante. El uso de
dropout introduce una varianza adicional al problema de redes neuronales que
en el caso de SL se busca para evitar overfitting, pero que en DRL genera
inestabilidades en el aprendizaje, puesto que la selección de acciones ε-greedy,
el objetivo móvil y el propio entorno ya son una fuente de varianza enorme. La
posible ventaja de solucionar el overfitting se ve nublada por la gran cantidad
de neuronas muertas que hacen oscilar el aprendizaje, necesitando un tiempo

13También se ha analizado el comportamiento de un agente con dropout tras la segunda
capa, siendo sus resultados similares.
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(a) Secuencia de Gazebo de acercamiento a una esquina, y Q-values.
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Figura 4.14: Ejemplo de mala policy, donde el agente no considera giros a la derecha.

Figura 4.15: Salida de las capas de la red en la simulación mostrada en la figura
previa, donde puede verse la gran cantidad de elementos nulos.
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Figura 4.16: Recompensa acumulada durante el aprendizaje de DQN con Leaky-
ReLU en el escenario 1 y su media móvil con (azul) y sin (rojo) dropout ; y los steps
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Figura 4.17: Función de pérdida durante el aprendizaje de DQN con LeakyReLU
en el escenario con (azul) y sin (rojo) dropout.

de aprendizaje mucho más elevado para estabilizarse. La figura 4.17 muestra
las funciones de pérdida para ambos agentes a lo largo del entrenamiento,
respaldando estas conclusiones.

Ambos agentes se han evaluado en los tres entornos durante 50 episodios
con una buena policy del entrenamiento (300 episodios con dropout y 700 epi-
sodios sin dropout), en los que ni se guarda información en la memoria ni se
modifican los pesos. Cada evaluación se ha repetido 5 veces (3 para el primer
escenario) liberando las semillas de aleatoriedad. En la tabla 4.2 se presentan
el ratio de éxito (success ratio, SR) o porcentaje de intentos en los que se logra
explorar el entorno completo al menos una vez, los pasos medios, la recompen-
sa media acumulada en cada episodio, la recompensa teórica máxima estimada
y la que obtendría una persona (sin chocarse); así como las desviaciones es-
tándar de estas métricas entre paréntesis. Ambos agentes consiguen resolver
perfectamente el entorno de entrenamiento, y aunque lo hacen con una policy
subóptima, la recompensa es ligeramente superior a la que obtendría una per-
sona. El segundo escenario es resuelto en el 91 % de ocasiones por el agente
con dropout y en el 72 % por el que no tiene; aunque por el número de pasos y
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la recompensa media se puede ver que ambos realizan numerosos giros innece-
sarios. Puede observarse cómo el dropout favorece la generalización, pese a que
la fase de entrenamiento fue más inestable, ya que el agente está aprendiendo
características “más generales” del entorno (Farebrother et al., 2018). El tercer
escenario muestra los peores resultados, no consiguiéndose la exploración com-
pleta en ninguna ocasión por la dificultad que suponen los caminos múltiples
o las zonas sin salida. Se nota una gran falta de entrenamiento para la resolu-
ción de este escenario y cómo las características aprendidas por el agente con
dropout no mejoran el comportamiento del agente.

Do (%) SR(%) Steps R R teórica R humano

Entorno 1
50 100 (0) 500 (0) 350.52 (1)

. 425 ≈ 345
0 100 (0) 500 (0) 352.14 (0.1)

Entorno 2
50 91.5 (4.1) 404 (16) 176.32(13.7)

. 350 ≈ 300
0 72.8 (6.4) 312 (13) 95.55 (14.4)

Entorno 3
50 0 (0) 103(0.5) -86.52 (0.6)

. 325 ≈ 300
0 0 (0) 170 (15) -24.89 (8.3)

Tabla 4.2: Resultados de evaluación del agente DQN con LeakyReLU, con y sin
dropout en los tres entornos.

Las figuras 4.19 a 4.22 contienen la evolución de la información a través
de las dos redes entrenadas en cuatro instantes de un episodio de evaluación
del primer entorno: dos en los que la mejor opción es continuar recto y dos
donde es mejor girar. En cada figura se muesrta el agente en Gazebo, seguido
de cuatro gráficos para cada red. El primero de ellos (arriba izquierda) contiene
la lectura del sensor láser (linea negra y primer mapa de color) y en qué lecturas
del sensor la red está prestando más atención, i.e. contribuye más a la salida de
la red (saliency map, segundo mapa de color). Tras este, se presentan la salida
de la primera capa densa de la red (abajo izquierda), de la segunda (arriba
derecha) y de la tercera (abajo derecha). Este último mapa corresponde al Q-
value de cada acción, y por ende, a la acción que se escogerá con probabilidad
1 − ε, siendo el valor contenido en [0, 1] correspondiente a girar a la derecha,
(1, 2] a girar a la izquierda y (2, 3] a continuar recto. Nótese que en todos los
mapas cuanto más oscuro es el color más pequeño es el valor que representa.

En primer lugar, cabe destacar que en el caso con dropout son muchas
menos las entradas significativas, puesto que se está obviando información.
Es recurrente también que entradas centrales y laterales sean más empleadas,
tendiendo a “ignorar” grupos intermedios y evidenciando un excesivo número
de entradas. En los mapas de color de las tres capas, destaca especialmente la
escala: la red con dropout tiene un rango de valores mucho menor, haciendo
especial uso de valores negativos. En la red sin regularización la contribución
de activaciones positivas es mucho mayor que las negativas y en pocos casos se
propagan valores negativos hasta la capa de salida. Podría entenderse entonces
que la red con dropout se ha entrenado de forma que las mediciones más bajas
son las más ponderadas (negativamente) y por tanto se descartan, mientras
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que en la otra red son las más altas las que se ponderan más y generan un
Q-value mayor para la acción que conduce a esa zona. La red sin dropout tiene
una tendencia clara en todos los casos, tanto en la segunda como en la tercera
capa: unas cuantas neuronas son las principales y la ligera modificación de las
demás deriva en una acción u otra. A pesar de que la capa final dista bastante
tanto cualitativa como cuantitativamente, en todos los ejemplos se escoge la
misma acción. Nótese también que un mapa de color más difuminado en la
última capa estaría indicando menor seguridad en la acción escogida. En la
figura 4.18 se muestra un mismo instante al comienzo de la evaluación donde
la acción preferida es ir recto para dos agentes con la configuración de la red sin
dropout tras 300 y 700 episodios de entrenamiento. Al avanzar el entrenamiento
la seguridad de tomar la tercera acción es mayor y por tanto el mapa de color
está menos difuminado. Este hecho tiene especial importancia en estas redes
entrenadas durante poco tiempo, puesto que en numerosas ocasiones durante
la evaluación el agente “duda” entre dos de las acciones y termina concurriendo
en policies subóptimas.

(a) (b)

Figura 4.18: Q-values estimados en el instante inicial tras (a) 300 y (b) 700 episodios
de entrenamiento.

Finalmente, se muestra una comparación entre la red sin dropout y sus
análogas Double DQN y Double Dueling DQN (ver Anexo B) en 500 episodios
de aprendizaje (≈ 15 − 20 horas). La figura 4.23 contiene las tres curvas de
aprendizaje, donde se muestra la recompensa acumulada y su media móvil con
outlier removal. Se observa que la DDQN tiene un aprendizaje mucho más es-
table que la DQN y converge ligeramente más rápido, aunque las recompensas
máximas conseguidas son sutilmente inferiores. La red D3QN, en la que una
inicialización de pesos no aleatoria ha sido necesaria, está formada por dos flu-
jos paralelos: el primero de ellos contiene una capa de extracción de features de
24 neuronas y activación LeakyReLU y una capa densa con una neurona que
codifica V (s), mientras que el segundo tiene otra capa de extracción análoga,
una capa densa de 3 neuronas que codifica A(s, a) y una capa que calcula el
segundo término de la ecuación (B.6). Ambos flujos se unen en una capa de
agregación final que codifica Q(s, a) (ver figura 4.11(b), θ ≈ 5000). Puede no-
tarse que el aprendizaje de esta red, que además emplea Prioritised Experience
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(a) Instante 1.
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(b) Visualización de la red con dropout para el instante 1.
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(c) Visualización de la red sin dropout para el instante 1.

Figura 4.19: Evolución de la información a través de la red neuronal en el primer
tramo.
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(a) Instante 2.
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(b) Visualización de la red con dropout para el instante 2.
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(c) Visualización de la red sin dropout para el instante 2.

Figura 4.20: Evolución de la información a través de la red neuronal en el segundo
tramo.
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(a) Instante 3.

0 20 40 60 80 100

Lasers

� 1

0

1

2

3

4

5

La
se

r d
is

ta
nc

e 
( 

)

0 5 10 15 20
0.0

0.2

0.4

0.6

0.8

1.0
Dense 2

0 5 10 15 20
0.0

0.2

0.4

0.6

0.8

1.0
Input  - Dense 1

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Right  / Left  / Forward

0.0

0.2

0.4

0.6

0.8

1.0
Output  - Dense 3

0.000

0.556

1.111

1.667

2.222

2.778

3.333

3.889

4.444

5.000

� 5.0

� 2.6

� 0.2

2.2

4.6

7.0

9.4

11.8

14.2

� 0.20

� 0.15

� 0.10

� 0.05

0.00

0.05

0.10

� 4.50

� 3.75

� 3.00

� 2.25

� 1.50

� 0.75

0.00

(b) Visualización de la red con dropout para el instante 3.
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(c) Visualización de la red sin dropout para el instante 3.

Figura 4.21: Evolución de la información a través de la red neuronal en el tercer
tramo.
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(a) Instante 4.
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(b) Visualización de la red con dropout para el instante 4.
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(c) Visualización de la red sin dropout para el instante 4.

Figura 4.22: Evolución de la información a través de la red neuronal en el cuarto
tramo.
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Figura 4.23: Recompensa acumulada durante el aprendizaje en el primer entorno
de DQN (azul), DDQN (rojo) y D3QN (verde). Se muestran los datos en bruto y su
media móvil sin outliers.

Replay (PER), es notablemente superior a las anteriores tanto en términos de
estabilidad como valor absoluto. Esta simulación se ha realizado en un menor
número de episodios por la demanda computacional, siendo el tiempo de ejecu-
ción similar a las anteriores. Mediante un aprendizaje previo, se ha permitido
converger los pesos a una buena policy, inicializando con ellos la red y estando
así mucho más cerca de la solución del problema de optimización (ver zona
inicial de aprendizaje).

La tabla 4.3 muestra los resultados de generalización de las tres redes con
las mejores policies escogidas de cada una de ellas (700, 300 y 300 episodios,
respectivamente). La DDQN se comporta mucho mejor en el segundo escenario
que su predecesora, logrando un 100 % de éxito y duplicando la recompensa me-
dia obtenida. En el primer y tercer escenarios, el comportamiento es similares
entre ambas redes, teniendo la red double recompensas ligeramente inferiores,
como ya se apreciaba en el aprendizaje. La D3QN, por su parte, consigue so-
brepasar a ambas redes en el primer escenario. En el segundo escenario, el ratio
de éxito baja al 90 %, pero como puede observarse, la recompensa media es
incluso superior a la del agente DDQN (que conseguía un ratio del 100 %). Esto
es debido a que aunque en algunas ocasiones el agente D3QN se choca, cuando
no lo hace la recompensa obtenida es muy superior a la de DDQN: ≈ 267
frente a ≈ 192. Esta elevada recompensa en caso de completar el episodio con
500 pasos ya se veía con DQN, pero en este caso, ocurría un número de veces
muy bajo. Finalmente, en el tercer escenario, el agente recorre los 500 steps en
la mayoría de ocasiones, con una buena policy, generando así resultados muy
superiores a los anteriores. De nuevo, algunas zonas del mapa no se exploran,
por lo que el ratio de éxito es del 0 %. Cabe remarcar que en esta red solo
hay una capa que codifique las mediciones de cada flujo, mientras que en las
anteriores, la informacion pasaba por dos capas consecutivas. 14

14Nótese que el agente DQN está empleando parámetros entrenados tras 700 episodios,
mientras que DDQN y D3QN lo hacen tras 300 episodios, por lo que la “seguridad” en cada
decisión, y por ende el ratio de éxito, se ven afectados.
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Arquitectura SR(%) Steps R

Entorno 1
DQN 100 (0) 500 (0) 352.14 (0.1)

Double DQN 100 (0) 500 (0) 337.56 (2.2)

Double Dueling DQN 100 (0) 500 (0) 355.31 (0.3)

Entorno 2

DQN 72.8 (6.4) 312 (13) 95.55 (14.4)

Double DQN 100 (0) 500 (0) 192.52 (3.0)

Double Dueling DQN 89.3 (1.1) 419(9.3) 196.5 (5.7)

DQN & warm-up 100 (0) 500 (0) 269.98 (4.4)

Entorno 3
DQN 0 (0) 170 (15) -24.89 (8.3)

Double DQN 0 (0) 253 (16) -42.15 (4.8)

Double Dueling DQN 0 (0) 432 (18) 241.56(16.5)

Tabla 4.3: Resultados de evaluación de los agentes DQN, DDQN y D3QN en los
tres entornos.

Para la DQN se ha realizado además otro experimento en el que se permite
un breve periodo de aprendizaje antes de realizar la evaluación en el segundo
entorno (warm-up), de forma que la red adapte sus pesos ligeramente. En la
figura 4.24 se muestran los resultados de evaluación cada 10 episodios de pre-
entrenamiento; empleando un set-up igual al de entrenamientos anteriores pero
acotando los gradientes en RMSProp para evitar cambios bruscos en los pesos.
Nótese que tras comenzar el entrenamiento, la policy empeora notablemente,
ya que comienza a adaptar los parámetros, pero tras un periodo de tiempo
razonable, mejora hasta superar a redes con arquitecturas más complejas. En el
tercer escenario se ha detectado que el periodo de pre-entrenamiento necesario
es excesivamente elevado para apreciar mejoría, por lo que no se muestran los
resultados.

4.4.2. Conclusiones

La aproximación con redes neuronales profundas ha demostrado tener una gran
complejidad en el ajuste de parámetros con respecto al RL tradicional. La con-
vergencia a policies óptimas o cuasi-óptimas es difícil, y más en entornos de
simulación como Gazebo, donde el entorno se representa de forma detallada
y sus propios parámetros juegan un papel importante en dicha convergencia.
Una vez superada esta barrera, el problema de la demanda computacional hace
que la convergencia a policies optimas requiera entrenamientos excesivamente
largos. Sin embargo, policies cuasi-óptimas son alcanzables tras periodos de
entrenamiento muy inferiores a los de RL, con las que, además, la capacidad
de generalización es ampliamente superior en entornos similares al de aprendi-
zaje. En entornos muy distintos la respuesta del agente es más limitada, como
ya se concluía en (Banerjee et al., 2018) o (Dhiman et al., 2018) con algoritmos
incluso más complejos como A3C. Además, queda clara de nuevo la incapa-
cidad de explorar del agente con recompensas extrínsecas tradicionales (ver
resultados entorno 3).
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Figura 4.24: Recompensa (arriba) y pasos (abajo) de evaluación en el entorno 2 del
agente DQN pre-entrenado durante distinto número de episodios (naranja), y valores
obtenidos por los agentes DQN (azul), DDQN (rojo) y D3QN (verde) en el mismo
escenario.
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Capítulo 5

Conclusiones

“SL wants to work. Even if you screw something up you’ll usually
get something non-random back. RL must be forced to work. If you
screw something up or don’t tune something well enough you’re
exceedingly likely to get a policy that is even worse than random.
And even if it’s all well tuned you’ll get a bad policy 30% of the
time, just because.”

Andrej Karpathy.

5.1. Conclusiones

En este Trabajo Fin de Máster se han estudiado en profundidad los concep-
tos de SLAM activo, redes neuronales profundas y aprendizaje por refuerzo
(profundo). Una amplia revisión del estado del arte de Deep Reinforcement
Learning en exploración robótica se ha llevado a cabo en el capítulo 3, ana-
lizando numerosas soluciones adoptadas badas en tanto en Deep Q-Networks
como en métodos más sofisticados: Asynchronous Advantage Actor Critic, re-
des recurrentes, etc. Se han evidenciado problemas en cuanto a la generali-
zación a entornos distintos al de aprendizaje, y la confusión entre navegación
pura y exploración. En este último ámbito, se ha propuesto una aproximación
que contemple la inclusión de una métrica de la incertidumbre en la función
de recompensa. Finalmente, se han implementado distintos algoritmos de Q-
learning y Deep Q-Networks en un entorno de simulación complejo (Gazebo)
empleando ROS, Tensorflow y Keras, entre otras herramientas. Los algoritmos
de Reinforcement Learning han demostrado una limitada capacidad de gene-
ralización, así como la necesidad de largos entrenamientos. La inclusión en la
función de recompensa de la entropía como métrica de la incertidumbre del
mapa generado por un algoritmo de SLAM ha demostrado favorecer el apren-
dizaje de movimientos que disminuyan esta incertidumbre. Por otra parte, los
algoritmos de Deep Reinforcement Learning han probado ser extremadamente
sensibles a la configuración de sus numerosos parámetros, viéndose afectadas
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la estabilidad y velocidad de aprendizaje, la demanda computacional o la con-
vergencia, entre otros. Varios agentes con arquitecturas y configuraciones dife-
rentes se han entrenado en un tiempo razonable, siendo capaces de extrapolar
sus policies subóptimas a nuevos mapas de una forma satisfactoria siempre y
cuando éstos sean “similares” al de aprendizaje. En esta aproximación deep se
han intentado analizar qué ocurre exactamente en la red, cómo influye la va-
riación de sus parámetros y otros comportamientos interesantes, e.g. el efecto
que supondría tener un leve conocimiento a priori del nuevo entorno.

5.2. Trabajo Futuro

Implementación y evaluación de algoritmos policy-gradient, e.g. A3C
(Asynchronous Advantage Actor-Critic) o DDPG (Deep Deterministic
Policy Gradient).

Evaluación del entorno empleando imágenes como entrada (CNN) y aña-
diendo a éste objetos dinámicos.

Evaluación de las recompensas con entropía en DRL.

Uso de un software de SLAM más complejo.
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