
Anexos

79

Anexo A

Algoritmos de RL

A continuación se presentan brevemente dos algoritmos habituales en RL, Q-
learning (value iteration) y Policy Gradient (policy search). El algoritmo de
Q-learning es equivalente al empleado en la sección 4.3.

Q-learning

Uno de los algoritmos basados en la función de valor más empleados es el
denominado Q-learning, en el que se aprende la regla óptima directamente. Se
trata de un método off-policy (puesto que además emplea, por ejemplo, policies
ε − greedy o de Boltzmann) basado también en TD (temporal difference) y
que se ejecuta en numerosos algoritmos actuales de RL y DRL, pese a que fue
propuesto hace casi tres décadas por Watkins y Dayan (1992).

Partiendo del algoritmo conocido como TD(0) propuesto por Sutton (1988)
y la ecuación (3.10), se puede estimar el Q-value en cada instante a partir del
anterior según la ecuación (A.1) – denominada ecuación de Bellman –, y a
partir de ella definir la regla óptima.

Qt(st, at) = (1− α) Qt−1(st, at)︸ ︷︷ ︸
antiguo Q-value

+α

valor aprendido︷ ︸︸ ︷R(st, at) + γmáx
a
Qt−1(st+1, a)︸ ︷︷ ︸

estimación del Q-value
óptimo en s′

 (A.1)

Donde α ∈ (0, 1] es el factor de aprendizaje que determina cuánto aprende el
agente con cada experiencia.

En el algoritmo 1 se presenta el proceso off-policy de Q-learning en pseu-
docódigo, donde π hace referencia a la policy ε-greedy u otra similar.

Una alternativa on-policy también basada en TD es SARSA (State-Action-
Reward-State-Action), un algoritmo similar al presentado pero en el que en
cada iteración se toman dos acciones y se emplea para ello la policy calculada.

81

Algoritmo 1 Q-Learning
1: Parameters: α ∈ (0, 1], γ ∈ (0, 1], ε ∈ (0, 1]
2: Initialise Q-table with arbitrary Q-values
3: for episode ← 1 to max episodes do
4: while st not terminal and step < max steps do
5: Perceive st
6: Select at ← π(st|ε) . ε−greedy policy
7: Take at, get rt and perceive st+1

8: if st+1 is terminal then
9: Qt ← rt
10: else
11: Qt ← rt + γmáx

a
Q(st+1, a)

12: end if
13: Q(st, at)← (1− α)Q(st, at) + αQt . Bellman eq.
14: st ← st+1

15: step ← step+1
16: end while
17: ε← ε ∗ εdecay
18: end for

Policy Gradient

El núcleo de este tipo de algoritmos es la actualización iterativa de un conjunto
de parámetros θ de la regla de forma que la recompensa esperada incremente.
El proceso de optimización se puede formular como θi+1

.
= θi + ∆θi, o, en el

caso de los métodos basados en el gradiente,

θi+1
.
= θi + α∇θJ(θi) (A.2)

Donde ∇θJ puede estimarse mediante distintos métodos más o menos sofisti-
cados (diferencias finitas, ratios de verosimilitud...). Brevemente se presenta la
teoría sobre ratios de versimilitud (likelihood ratios), empleada a menudo para
resolver el problema.

Sea la función objetivo (no empleada únicamente en estos métodos):

J(θ) = máx
θ

E

[
H∑
t=0

R(st)|πθ
]

= E

[
H∑
t=0

R(st, at)|πθ
]

=
∑
τ

Pθ(τ)R(τ) (A.3)

Donde R(τ) es la recompensa total en el episodio o trayectoria τ , esto es,

R(τ) =
H∑
t=1

γtrt, y Pθ(τ) ≡ P(τ |θ) la distribución de probabilidad de la trayec-

toria.

Entonces, el objetivo es encontrar un conjunto de parámetros θ tal que
la trayectoria que creen (i.e. τ = (s1, a1, ..., sH , aH)) maximice la recompensa

82

esperada:
máx
θ
J(θ) = máx

θ

∑
τ

P(τ |θ)R(τ) (A.4)

Puesto que se busca resolver el problema de optimización empleando el
gradiente estocástico ascendente (Stochastic Gradient Ascent, SGA), ecuación
(A.2), hay que conseguir definir el gradiente de J :

∇θJθ = ∇θ

(∑
τ

P(τ |θ)R(τ)

)
(A.5)

= ... =
∑
τ

P(τ |θ)∇θ logPθ(τ)R(τ) (A.6)

= E [∇θ logPθ(τ)R(τ)] (A.7)

Nótese que se ha empleado la regla de Leibniz integral para introducir el gra-
diente en el sumatorio, y que en la ecuación (A.6) se ha empleado el ratio de
verosimilitud (likelihood ratio), definido como:

∇θPθ(τ)
.
= Pθ(τ)∇θ logPθ(τ) (A.8)

Finalmente, la ecuación (A.7) se puede expresar en función de los estados
y acciones, de forma que:

∇θJθ = E

[
H∑
t=0

∇θ log πθ(st, at)R(st, at)

]
(A.9)

Donde πθ(st, at) = π(at|st, θ).
Redefiniendo ahora la función objetivo como:

J(θ) =
∑
s∈S

dπ(s)V π(s) (A.10)

=
∑
s∈S

dπ(s)︸ ︷︷ ︸
Probabilidad de

estar en s

∑
a∈A

πθ(s, a)︸ ︷︷ ︸
Probabilidad de

escoger a dados s y π

Qπ(s, a) (A.11)

Donde dπ(s) es la distribución estacionaria de la cadena de Markov para πθ,
i.e. la probabilidad de ocurrencia del estado, dπ(s)

.
= N(s)∑

N
con N(s) el número

de ocurrencias del estado s.

Se puede llegar entonces a que:

∇θJθ = Eπ [∇θ (log πθ(s, a))Q(s, a)] (A.12)

La teoría sobre PG (Policy Gradient) es la base de algoritmos como REIN-
FORCE (Monte-Carlo Policy Gradient), DPG (Deterministic Policy Gradient)
o A3C (Asynchronous Advantage Actor-Critic). Mas detalles pueden encon-
trarse en (Meyer, 2018).

83

84

Anexo B

Algoritmos de DRL

En este Anexo se presentan los algoritmos de DRL empleados en la sección
4.4, a saber: Deep Q-Network, Double Deep Q-Network y Dueling Double Deep
Q-Network.

DQN

Deep Q-Network aproxima el cálculo de los Q-values en Q-learning mediante
una red neuronal (profunda), habitualmente con capas convolucionales si su
entrada son imágenes. Este tipo de redes, introducidas por Google DeepMind
en (Volodymyr Mnih et al., 2015), actúan como una función de aproximación
no lineal, lo que hace que RL sea inestable o diverja. Tres problemas principales
surgen en esta red: la correlación temporal entre experiencias pasadas, el olvido
de ciertas experiencias lejanas y la búsqueda continua de un objetivo móvil que
desemboca en inestabilidades. Los dos primeros son solucionados con el uso de
un buffer de memoria, denominado Experience Replay (ER), que guarda las
experiencias conforme se van generando. En cada iteración, la optimización
se realiza con un conjunto de experiencias (batch) que se muestrea de forma
aleatoria. En cuanto al tercer problema; considérese la siguiente variación de
los pesos de la red:

∆θ = α

(R + γmáx
a
Q(s′, a, θ))︸ ︷︷ ︸

Q target

−Q(s, a, θ)


︸ ︷︷ ︸

TD Error (loss)

∇θQ(s, a, θ)︸ ︷︷ ︸
Q gradient

(B.1)

Puede notarse se están usando los mismos pesos para calcular el Q-value y el
Q-target. Como consecuencia, se genera una correlación entre la pérdida y los
parámetros que se están cambiado, esto es, los Q-values varían pero también
lo hace el objetivo al que estos intentan parecerse. DeepMind introdujo la idea
de los Q-targets fijos. Empleando una red secundaria (target network) cuyos
pesos θ∗ cambien únicamente cada cierto número de episodios, se puede fijar

85

la función objetivo. De esta forma, la actualización de pesos será:

∆θ = α
[
(R + γmáx

a
Q(s′, a, θ∗))−Q(s, a, θ)

]
∇θQ(s, a, θ) (B.2)

El algoritmo 2 muestra el proceso de aprendizaje de estos agentes.

Algoritmo 2 Deep Q-learning
1: Parameters: α ∈ (0, 1], γ ∈ (0, 1], ε ∈ (0, 1]
2: Initialise MemoryM with N samples
3: Initialise Q-network Q with random parameters θ
4: Initialise target Q-network Q∗ with parameters θ∗ ← θ
5: for episode ← 1 to max episodes do
6: while st not terminal and step < max steps do
7: Perceive st
8: Select at ← π(st|ε) . ε−greedy policy
9: Take at, get rt and perceive st+1 and et
10: Store tuple (st, at, rt, st+1, et) inM
11: Sample minibatch of tuples (si, ai, ri, si+1, ei) fromM . ER
12: for each tuple in minibatch do
13: if si+1 is terminal then
14: Qtarget ← ri
15: else
16: Qtarget ← ri + γmáx

a
Q(si+1, a|θ∗) . DQN

17: end if
18: end for
19: Perform optimization on (Qtarget −Q(s, a|θ))2 w.r.t. θ
20: Every U steps set θ∗ ← θ . Target network update
21: st ← st+1

22: step ← step+1
23: end while
24: ε← ε ∗ εdecay
25: end for

DDQN

Double Deep Q-Network, propuesta por (Van Hasselt et al., 2016), actúa sobre
el problema de la sobreestimación realizada por la operación máx(·) de la
función objetivo:

Qtarget = R + γmáx
a
Q (st+1, a|θt) (B.3)

= R + γQ

(
st+1, arg máx

a
Q(st+1, a|θt)|θt

)
(B.4)

De esta forma, las acciones objetivo se calculan como aquellas con el Q-
value mayor, lo que puede no ser siempre cierto, especialmente al comienzo del

86

entrenamiento cuando no se tiene suficiente información. Esta sobreestimación
puede reducirse empleando la red entrenada para escoger la que sería la mejor
acción para el siguiente estado y la red objetivo para estimar su Q-value, esto
es,

Qtarget = R + γQ

(
st+1, arg máx

a
Q(st+1, a|θt)|θ∗t

)
(B.5)

Esta aproximación conduce a aprendizajes más estables y rápidos.

D3QN

Además del sobreoptimismo de las estimaciones, las redes anteriores tienen
amplias limitaciones en cuanto a la ineficiencia de los datos de entrenamien-
to, de la memoria externa o del uso de los estados. Se ha implementado una
Dueling Double Deep Q-Network a partir de la red DQN original, pese a que
existían otras alternativas como A3C, DDPG (Deep Deterministic Policy Gra-
dient) o Noisy Nets Exploration, una interesante aproximación donde se añade
ruido paramétrico entrenable a la red a la vez que se sigue una greedy policy
(Fortunato et al., 2017).

De nuevo, la red recibe las medidas láser, que pasan por capas densas con
activación LeakyReLU y por una capa de salida densa con activación lineal. Los
Q-values de la función objetivo se calculan de forma dual empleando las redes
online y objetivo, ver ec. (B.5). Además, se han realizado otras modificaciones
sobre la red inicial:

Arquitectura dueling : los Q-values se calculan ahora partir de V (s) (el
valor de estar en un estado) y A(s, a) (la ventaja de tomar una acción
en un estado con respecto a otras acciones), que se estiman de forma
separada en la red de forma que ésta puede además aprender el valor de
cada estado sin necesidad de aprender el efecto de cada acción en dicho
estado. Este hecho es particularmente útil cuando no todas las acciones
afectan forma significativa en el entorno (Wang et al., 2015). Tras la capa
de estimación de V (s) y A(s, a), hay una capa de agregación que no hace
la suma directa de ambas para obtener Q(s, a), puesto que concurriría en
un problema del algoritmo backpropagation al existir más de un posible
valor para V (s) y A(s, a) dado Q(s, a). Esta operación es la siguiente:

Q(s, a, θ) = V (s, θ)︸ ︷︷ ︸
Value
stream

+A(s, a, θ)− 1

dim(A)

∑
a′

A(s, a′, θ)︸ ︷︷ ︸
Advantage stream

(B.6)

Prioritised Experience Replay (Schaul et al., 2015): ahora los lotes de
información extraidos de la memoria en cada aprendizaje no son escogidos
de forma aleatoria sino con un cierto criterio para evitar correlaciones
temporales. Cuando una tupla (st, at, Rt, st+1, et) se va a introducir en la

87

Figura B.1: Ejemplo de búsqueda del nodo del que se extrae la tupla con s = 24.
De (Janisch, 2016).

memoria, se calcula el error TD (i.e. Q−Qtarget) y se asigna una prioridad
a dicha tupla en función del mismo:

p = (TDerror + ε)α (B.7)

Siendo ε una constante pequeña para evitar la prioridad 0, y 0 ≤ α ≤
1. Todas las tuplas son ordenadas en un arbol binario con estructura
sum-tree, de forma que el valor de cada nodo del arbol contiene la suma
de las prioridades de sus hijos. Para extraer un lote de k muestras, se
divide

∑
p en k intervalos, escogiendo de cada uno un valor s según una

distribución uniforme. Con este valor se recorre el árbol hacia abajo hasta
encontrar el nodo del que se extraerá la tupla, según:

def retrieve (n,s) : # Search can start at n = 0 (top node)
if n is leaf_node: # Tuples are stored in leave nodes
return n

if n. left .value >= s: # Move down to left child
return retrieve (n. left , s)

else : # Move down to right child & update s
return retrieve (n.right , s−n.left .value)

Como puede verse en la figura B.1, aquellos nodos con mayor prioridad
tiene más probabilidad de ser seleccionados (última fila de la imagen).
De esta forma la red aprende de aquellas experiencias cuyas estimaciones
más se desvian del valor real. Para garantizar que la red emplee todas las
experiencias al menos una vez, las tuplas se introducen en la memoria
con prioridad máxima, y cada vez que son extraídas, su prioridad en el
árbol es actualizada con el nuevo error TD.

A continuación se muestra el algoritmo de este agente:

88

Algoritmo 3 Dueling Double Deep Q-learning
1: Parameters: α ∈ (0, 1], γ ∈ (0, 1], ε ∈ (0, 1]
2: Initialise MemoryM with N samples, δ ≈ 0 and α′ ∈ (0, 1]
3: Initialise Dueling Q-network with random parameters θ
4: Initialise target Dueling Q-network with parameters θ∗ ← θ
5: for episode ← 1 to max episodes do
6: while st not terminal and step < max steps do
7: Perceive st
8: Select at ← π(st|ε) . ε-greedy policy
9: Take at, get rt and perceive st+1 and et
10: Store tuple (st, at, rt, st+1, et) inM with max p
11: Sample minibatch of tuples (si, ai, ri, si+1, ei) fromM . PER
12: for each tuple in minibatch do
13: if si+1 is terminal then
14: Qtarget ← ri
15: else
16: Qtarget ← ri + γQ(si+1, arg máx

a
Q(si+1, a|θ)|θ∗) . DDQN

17: end if
18: Ωi ← Qtarget −Q(si, ai|θ) . TDerror

19: Update p of ith-tuple inM such that pi ← (Ωi + δ)α
′

20: end for
21: Perform optimization on Ω2 w.r.t. θ . Quadratic loss
22: Every U steps set θ∗ ← θ . Target network update
23: st ← st+1

24: step ← step+1
25: end while
26: ε← ε ∗ εdecay
27: end for

Otras mejoras pasarían por cambiar la función de pérdida cuadrática por
la de Huber o la regla ε− greedy por la de Boltzmann, sustituyendo las líneas
1, 8, 21 y 26 del algoritmo por, respectivamente:

1: Parameters: α ∈ (0, 1], γ ∈ (0, 1], τ ∈ [0.5, 5]

8: for each action a ∈ A
P[a]← eQ(st,a)/τ∑

i e
Q(st,a)/τ

. Boltzmann policy
end for
Select at ← π(st|τ) with that probability distribution

21: Perform optimization on log(cosh(Ω)) w.r.t. θ . Huber loss

26: τ ← τ ∗ τdecay

89

