Anexos

79

Anexo A

Algoritmos de RL

A continuaciéon se presentan brevemente dos algoritmos habituales en RL, Q-
learning (value iteration) y Policy Gradient (policy search). El algoritmo de
Q)-learning es equivalente al empleado en la seccion 4.3.

Q-learning

Uno de los algoritmos basados en la funciéon de valor mas empleados es el
denominado)-learning, en el que se aprende la regla 6ptima directamente. Se
trata de un método off-policy (puesto que ademés emplea, por ejemplo, policies
e — greedy o de Boltzmann) basado también en TD (temporal difference) y
que se ejecuta en numerosos algoritmos actuales de RL y DRL, pese a que fue
propuesto hace casi tres décadas por Watkins y Dayan (1992).

Partiendo del algoritmo conocido como TD(0) propuesto por Sutton (1988)
y la ecuacion (3.10), se puede estimar el Q-value en cada instante a partir del
anterior segun la ecuacion (A.1) — denominada ecuaciéon de Bellman — y a
partir de ella definir la regla 6ptima.

valor aprendido
7\

Qi(st,ar) = (1 — a) Qi1(se, ar) +a | R(se, ar) +yméx Q—1(se41,a) [(A1)
—_—— a

.

antiguo Q-value . R
guo Q estimacion del Q-value

6ptimo en s’

Donde « € (0,1] es el factor de aprendizaje que determina cuénto aprende el
agente con cada experiencia.

En el algoritmo 1 se presenta el proceso off-policy de (Q)-learning en pseu-
docodigo, donde 7 hace referencia a la policy e-greedy u otra similar.

Una alternativa on-policy también basada en TD es SARSA (State-Action-
Reward-State-Action), un algoritmo similar al presentado pero en el que en
cada iteracion se toman dos acciones y se emplea para ello la policy calculada.

81

Algoritmo 1 Q-Learning

1: Parameters: a € (0,1}, v € (0,1], € € (0,1]
2: Initialise Q-table with arbitrary Q-values
3: for episode < 1 to max episodes do

4: while s; not terminal and step < max steps do

5: Perceive s;

6: Select a; +— m(s¢|e) > e—greedy policy
7 Take a;, get r; and perceive s;41

8: if 54,1 is terminal then

9: Qt — T

10: else

L1 Qi1+ 7m§XQ(5t+1a a)

12: end if

13: Q(st,ar) < (1 — a)Q(st, ar) + aQy > Bellman eq.
14: St < Siy1

15: step < step+1

16: end while

17: € 4= € * Edecay

18: end for

Policy Gradient

El nucleo de este tipo de algoritmos es la actualizacion iterativa de un conjunto
de parametros 6 de la regla de forma que la recompensa esperada incremente.
El proceso de optimizacion se puede formular como 6;.1 = 6; + Af;, o, en el
caso de los métodos basados en el gradiente,

Donde VyJ puede estimarse mediante distintos métodos més o menos sofisti-
cados (diferencias finitas, ratios de verosimilitud...). Brevemente se presenta la
teoria sobre ratios de versimilitud (likelihood ratios), empleada a menudo para
resolver el problema.

Sea la funcion objetivo (no empleada tnicamente en estos métodos):

H H
J(0) max Z se)|mg| = Z (8¢, ay]ﬂg] ZP(; R(T) (A.3)
-0 =0

Donde R(7) es la recompensa total en el episodio o trayectoria 7, esto es,
H

R(7) = > wre, y Po(7) = P(7|0) la distribucion de probabilidad de la trayec-
t=1

toria.

Entonces, el objetivo es encontrar un conjunto de parametros 6 tal que
la trayectoria que creen (i.e. 7 = ($1,4a4,...,Sy,ay)) maximice la recompensa

82

esperada:

méix J () = mix > P(r[0)R(7) (A.4)

Puesto que se busca resolver el problema de optimizacién empleando el
gradiente estocastico ascendente (Stochastic Gradient Ascent, SGA), ecuacion
(A.2), hay que conseguir definir el gradiente de J:

VoJs = Vo (Z IP’(T\G)R(T)> (A.5)
= .= Y P(7]0)VylogPy(7)R(7) (A.6)

= E [V log Py(7) R(7)] (A.7)

Notese que se ha empleado la regla de Leibniz integral para introducir el gra-
diente en el sumatorio, y que en la ecuacion (A.6) se ha empleado el ratio de
verosimilitud (likelihood ratio), definido como:

V@P@(T) =]PQ(T)VQ log]P)Q(T) (A8)

Finalmente, la ecuacion (A.7) se puede expresar en funcion de los estados
y acciones, de forma que:

H
VoJy =E Z Vo log my(se, ar) R(s¢, ar) (A.9)

=0
Donde my(s¢, ar) = m(ag|sq,).

Redefiniendo ahora la funcién objetivo como:

J(0) =Y d"(s)V7(s) (A.10)

= > d(s) D ms,a) Q7(s,a) (A.11)
s€S acA

N—— SN———
Probabilidad de Probabilidad de
estar en s escoger a dados sy 7

Donde d™(s) es la distribucion estacionaria de la cadena de Markov para m,

i.e. la probabilidad de ocurrencia del estado, d™(s) = % con N(s) el nimero
de ocurrencias del estado s.
Se puede llegar entonces a que:
Viodg =E: [Vo (logme(s,a)) Q(s,a)] (A.12)

La teoria sobre PG (Policy Gradient) es la base de algoritmos como REIN-
FORCE (Monte-Carlo Policy Gradient), DPG (Deterministic Policy Gradient)
o A3C (Asynchronous Advantage Actor-Critic). Mas detalles pueden encon-
trarse en (Meyer, 2018).

83

84

Anexo B

Algoritmos de DRL

En este Anexo se presentan los algoritmos de DRL empleados en la seccién
4.4, a saber: Deep Q)-Network, Double Deep ()-Network y Dueling Double Deep
Q)-Network.

DQN

Deep @Q-Network aproxima el calculo de los Q-values en (Q)-learning mediante
una red neuronal (profunda), habitualmente con capas convolucionales si su
entrada son imagenes. Este tipo de redes, introducidas por Google DeepMind
en (Volodymyr Mnih et al., 2015), actian como una funcién de aproximacion
no lineal, lo que hace que RL sea inestable o diverja. Tres problemas principales
surgen en esta red: la correlacion temporal entre experiencias pasadas, el olvido
de ciertas experiencias lejanas y la biisqueda continua de un objetivo moévil que
desemboca en inestabilidades. Los dos primeros son solucionados con el uso de
un buffer de memoria, denominado Ezperience Replay (ER), que guarda las
experiencias conforme se van generando. En cada iteracion, la optimizacion
se realiza con un conjunto de experiencias (batch) que se muestrea de forma
aleatoria. En cuanto al tercer problema; considérese la siguiente variacién de
los pesos de la red:

Ab=a [(R+yméxQ(s',a,0)) —Q(s,a,0) | VeQ(s,a,0) (B.1)
h . ——
Q t;;get Q gradient

~
TD Error (loss)

Puede notarse se estan usando los mismos pesos para calcular el Q-value y el
Q)-target. Como consecuencia, se genera una correlacion entre la pérdida y los
parametros que se estan cambiado, esto es, los Q-values varian pero también
lo hace el objetivo al que estos intentan parecerse. DeepMind introdujo la idea
de los Q-targets fijos. Empleando una red secundaria (target network) cuyos
pesos 0* cambien tUnicamente cada cierto ntiimero de episodios, se puede fijar

85

la funcion objetivo. De esta forma, la actualizacion de pesos sera:

Ab=a|(R+ Vméix Q(s',a,0%) — Q(s,a, 9)] VoQ(s,a,0) (B.2)

El algoritmo 2 muestra el proceso de aprendizaje de estos agentes.

Algoritmo 2 Deep Q-learning

1: Parameters: a € (0, 1], v € (0,1], € € (0,1]
2: Initialise Memory M with N samples
3: Initialise Q-network () with random parameters 6
4: Initialise target Q-network Q* with parameters 6* < 6
5: for episode < 1 to max episodes do
6: while s; not terminal and step < max steps do
7 Perceive s,
8: Select a; <— m(s¢|e) > e—greedy policy
9: Take a;, get r; and perceive s; 1 and e
10: Store tuple (s, ag, 1y, Sey1,€;) in M
11: Sample minibatch of tuples (s;, a;, 14, Siy1,€;) from M > ER
12: for each tuple in minibatch do
13: if s;41 is terminal then
14: Qtarget Ty
15: else
16: Qrarget < Ti + ’ymgﬁx@(siﬂ, alf*) > DQN
17: end if
18: end for
19: Perform optimization on (Quarger — Q(s,al0))? w.r.t. 6
20: Every U steps set 60* < 0 > Target network update
21: St < St41
22: step < step+1
23: end while
24: € 4 € * Edecay
25: end for
DDQN

Double Deep @Q-Network, propuesta por (Van Hasselt et al., 2016), actta sobre
el problema de la sobreestimacion realizada por la operacion méx(-) de la
funcién objetivo:

Qtarget =R+ ’metXQ (StJrla ayet) (BB)

= R+~Q (st“, arg maxQ(syi1, a|9t)|9t) (B.4)

De esta forma, las acciones objetivo se calculan como aquellas con el @-
value mayor, lo que puede no ser siempre cierto, especialmente al comienzo del

86

entrenamiento cuando no se tiene suficiente informacion. Esta sobreestimacion
puede reducirse empleando la red entrenada para escoger la que seria la mejor
accion para el siguiente estado y la red objetivo para estimar su Q-value, esto
es,

Orarget — R 470 <st+1, arg mAxQ (511, a\eme:) (B.5)

Esta aproximacion conduce a aprendizajes mas estables y réapidos.

D3QN

Ademés del sobreoptimismo de las estimaciones, las redes anteriores tienen
amplias limitaciones en cuanto a la ineficiencia de los datos de entrenamien-
to, de la memoria externa o del uso de los estados. Se ha implementado una
Dueling Double Deep @)-Network a partir de la red DQN original, pese a que
existian otras alternativas como A3C, DDPG (Deep Deterministic Policy Gra-
dient) o Noisy Nets Ezploration, una interesante aproximacion donde se anade
ruido paramétrico entrenable a la red a la vez que se sigue una greedy policy
(Fortunato et al., 2017).

De nuevo, la red recibe las medidas laser, que pasan por capas densas con
activacion LeakyReLU y por una capa de salida densa con activacion lineal. Los
Q-values de la funcidon objetivo se calculan de forma dual empleando las redes
online y objetivo, ver ec. (B.5). Ademaés, se han realizado otras modificaciones
sobre la red inicial:

» Arquitectura dueling: los Q-values se calculan ahora partir de V(s) (el
valor de estar en un estado) y A(s,a) (la ventaja de tomar una accién
en un estado con respecto a otras acciones), que se estiman de forma
separada en la red de forma que ésta puede ademés aprender el valor de
cada estado sin necesidad de aprender el efecto de cada acciéon en dicho
estado. Este hecho es particularmente util cuando no todas las acciones
afectan forma significativa en el entorno (Wang et al., 2015). Tras la capa
de estimacion de V' (s) y A(s, a), hay una capa de agregacion que no hace
la suma directa de ambas para obtener (s, a), puesto que concurriria en
un problema del algoritmo backpropagation al existir mas de un posible
valor para V(s) y A(s,a) dado Q(s,a). Esta operacion es la siguiente:

Q(s,0,0) = V(s,0) + A(5,0,0) — ~——— S A(s,a',6) (B6)

dim(A)
N—— N ~~
Value Advantage stream
stream

» Prioritised Experience Replay (Schaul et al., 2015): ahora los lotes de
informacion extraidos de la memoria en cada aprendizaje no son escogidos
de forma aleatoria sino con un cierto criterio para evitar correlaciones
temporales. Cuando una tupla (s, a;, Ry, S¢+1, €;) se va a introducir en la

87

(0-3) (3-13) (13-25) (25-29) (29-30) (30-32) (32-40) (40-42)

Figura B.1: Ejemplo de biisqueda del nodo del que se extrae la tupla con s = 24.
De (Janisch, 2016).

memoria, se calcula el error TD (i.e. Q —Qyarget) ¥ S€ asigna una prioridad
a dicha tupla en funciéon del mismo:

p = (TDerror + 5)a (B?)

Siendo € una constante pequena para evitar la prioridad 0, y 0 < a <
1. Todas las tuplas son ordenadas en un arbol binario con estructura
sum-tree, de forma que el valor de cada nodo del arbol contiene la suma
de las prioridades de sus hijos. Para extraer un lote de k muestras, se
divide > p en k intervalos, escogiendo de cada uno un valor s segtin una
distribucion uniforme. Con este valor se recorre el drbol hacia abajo hasta
encontrar el nodo del que se extraera la tupla, segtn:

def retrieve (n,s): # Search can start at n — 0 (top node)
if n is leaf node: # Tuples are stored in leave nodes
return n

if n.left .value >= s: # Move down to left child
return retrieve (n. left ,s)

else: # Move down to right child & update s
return retrieve (n.right, s—n.left.value)

Como puede verse en la figura B.1, aquellos nodos con mayor prioridad
tiene mas probabilidad de ser seleccionados (tltima fila de la imagen).
De esta forma la red aprende de aquellas experiencias cuyas estimaciones
més se desvian del valor real. Para garantizar que la red emplee todas las
experiencias al menos una vez, las tuplas se introducen en la memoria
con prioridad maxima, y cada vez que son extraidas, su prioridad en el
arbol es actualizada con el nuevo error TD.

A continuacién se muestra el algoritmo de este agente:

88

Algoritmo 3 Dueling Double Deep Q-learning

1: Parameters: a € (0,1}, v € (0,1], € € (0,1]
2: Initialise Memory M with N samples, 6 ~ 0 and o/ € (0, 1]
3: Initialise Dueling Q-network with random parameters 6
4: Initialise target Dueling Q-network with parameters 0* < 0
5: for episode < 1 to max episodes do
6: while s; not terminal and step < max steps do
7 Perceive s,
8: Select a; «— m(s4|e) > e-greedy policy
9: Take a;, get r; and perceive s, and ey
10: Store tuple (s, ag, 1, St1, €;) in M with max p
11: Sample minibatch of tuples (s;, a;, ri, Siv1, €;) from M
12: for each tuple in minibatch do
13: if s;41 is terminal then
14: Qtarget Ty
15: else
16: Qtarget <+ Ti +YQ(8i11, arg maxQ(siy1,al0)|0")
17 end if ’
18: Qz <~ Qtarget - Q(8i7 az’9>
19: Update p of i*-tuple in M such that p; < (€; +)
20: end for
21: Perform optimization on Q? w.r.t. 6 > Quadratic loss
22: Every U steps set 0% < 0 > Target network update
23: St < St+1
24: step - step+1
25 end while
26: € <= € * Edecay
27: end for

Otras mejoras pasarian por cambiar la funcién de pérdida cuadrética por
la de Huber o la regla ¢ — greedy por la de Boltzmann, sustituyendo las lineas

1, 8, 21 y 26 del algoritmo por, respectivamente:

1: Parameters: « € (0,1], v € (0,1], 7 € [0.5, 5]

8: for each action a € A

Pla] + b/ > Boltzmann policy

. QGLa/
end for
Select a; <— m(s;|7) with that probability distribution

21: Perform optimization on log(cosh(£2)) w.r.t. 6 > Huber loss

26: T < T * Tdecay

89

