s Universidad
100 Zaragoza

1542

TrRABAJO FIN DE GRADO

ANALISIS DE VULNERABILIDADES
HARDWARE BASADAS EN LA E]ECUCI()N
ESPECULATIVA

ANALYSIS OF HARDWARE VULNERABILITIES BASED
ON SPECULATIVE EXECUTION

AUTOR

MIGUEL SANTIAGO MONIENTE PANNOCCHIA

DIRECTORES
RuBEN GRAN TEJERO
DARIO SUAREZ GRACIA

ESCUELA DE INGENIERIA Y ARQUITECTURA
2019

RESUMEN

Hoy en dia, précticamente la totalidad de los datos son procesados por un
computador, siendo de vital importancia asegurar su integridad y confidenciali-
dad. Dado que el valor de estos datos es muy elevado, los ataques informaticos
que buscan extraerlos se han vuelto cada vez mds frecuentes.

Como causa de este interés por la extraccion de datos y el aumento en la segu-
ridad de los sistemas, cada vez se deben desarrollar técnicas més complejas para
conseguir comprometer estos datos. Durante un tiempo, la mayor parte de estos
ataques estaban enfocados en las vulnerabilidades presentes en el software, tanto
aplicaciones o sistemas operativos. Sin embargo, en los tltimos dos afios han apare-
cido ataques hardware cuyo objetivo es la implementacién (micro-arquitectura) de
los procesadores, y que comprometen la integridad de todos los niveles superiores
[8-10, 12, 13].

Este trabajo se centra en el estudio de estos tltimos, abriendo un nuevo foco de
investigacion en un dmbito de informacién limitada a causa de su novedad y la
falta de documentacién por parte de los fabricantes. Por este motivo, gran parte
de este trabajo fin de grado se ha dedicado al estudio en detalle de estos ataques,
su clasificacion y sus implicaciones, en un constante esfuerzo para mantenerse al
dia con los dltimos ataques publicados este mismo afio.

Para el estudio de estos ataques, ha sido necesaria la preparaciéon de una pla-
taforma vulnerable para la experimentacion. Se ha aprovechado esta plataforma
para estudiar en detalle los ataques Meltdown [9] y Spectre [8]. Como fruto de
este estudio, se ha podido mejorar el rendimiento de Meltdown a través de la in-
troduccién de 2 mejoras en el cédigo fuente del ataque, obteniendo una tasa de
extraccién 50 veces mayor que en su versién original. Por otro lado, este estudio
ha permitido proponer una posible mitigacién nueva del mismo, reduciendo la
eficacia del ataque.

ii

INDICE GENERAL

1 INTRODUCCION
1.1 Motivacidon L
1.2 Objetivos
1.3 Alcance
1.4 Descripcién del documento 0L,

2 ESTADO DEL ARTE
2.1 Mapa de memoria del Sistema Operativo
2.2 Micro-arquitectura de un procesador moderno
2.2.1 Ejecucidén fuera de orden (Out-of-order execution)
2.2.2 Predictordesaltos
2.2.3 Tratamiento de excepciones
23 Ataquesdecanallateral
2.4 Ataques basados en especulacién
2.4.1 Flush+Reload,
24.2 Meltdown Lo oo
243 Spectre
2.4.4 Foreshadow o oL
2.4.5 Zombieload
25 Taxonomia o
3 MELTDOWN Y SPECTRE
3.1 Meltdown
3.1.1 Obtencién de la direccién de memoria del secreto
3.1.2 Preparacion del canal lateral
3.1.3 Fases del ataque Meltdown
3.1.4 Tratamiento delaexcepciéon.
3.2 Estudio y caracterizacién de Meltdown
321 Meltdown Mzo
3.2.2 Llenado de estructuras internas del procesador
3.2.3 Optimizacién de la temporizaciéon de Flush+Reload
3.2.4 Aplicacién de estas variaciones sobre el ataque original . . .
3.3 Spectre e
3.3.1 Preparacion del ataque y el canal lateral
3.3.2 Fasesdelataque
4 METODOLOGIA
4.1 Plataforma
4.2 Herramientas
4.3 Preparaciéondelentorno 0L
4.4 Meétricas de experimentaciéon L L L.
5 EXPERIMENTACION Y ANALISIS
5.1 Experimentacién o L
5.1.1 Flush+Reload
5.1.2 Llenado de estructuras internas del procesador
5.1.3 Numero de intentos porbyte
5.1.4 Precisiéon de Flush+Reload
5.1.5 Tabla comparativa de Meltdown y Meltdown M1
5.1.6 Resultados de la prueba de concepto de Spectre

iii

O 0 ON NI U1t Ul NN R R R

N NN B B R R R R R EE R R R R R R)R
H O OV VvV O NN OGOV UTUTLRAE WINDNDNNO O

5.2 Mitigaciones L L 26
52,1 Kernel 26
5.2.2 Firmware 27
5.2.3 Paralelismo del procesador 27
5.3 Impacto de las mitigaciones L. 28
6 CONCLUSIONES Y TRABAJO FUTURO 29
6.1 Conclusiones. 29
6.2 Trabajofuturo L o 29
BIBLIOGRAFIA 30
A ANEXOS 32
A.1 Tabla de horas dedicadas 32
A.2 Diagrama de Gantt del proyecto 32
A.3 Micro-arquitectura de Kaby Lake H 33
A4 CodigodeMeltdown M1 34
A.5 Coédigo de la victima utilizada para las pruebas de Meltdown y Spectre 39
INDICE DE FIGURAS
Figura 1 Taxonomia de ataques especulativos 11
Figura 2 Diagrama de funcionamiento de Meltdown 13
Figura 3 Codigo de Meltdown con cadena de dependencias. 15
Figura 4 Tiempo de acceso (en ciclos) a cada uno de los datos de
probe_array medido por FLUsH+RELOAD. 21
Figura 5 Tasa de éxito (ataque completado) sobre un byte con distin-
tas configuraciones de llenado de la ventana de lanzamiento
con ADDs antes de la ejecuciéon de Meltdown. 22
Figura 6 Porcentaje de bytes de la cadena final leidos correctamente
en base al ntiimero de intentos (probes), sin aislamiento de
lectura (NOPs). i 23
Figura 7 Tasa de éxito (ataque completado) sobre un byte con dis-
tintas configuraciones de llenado de la ventana de lanza-
miento con ADDs antes de la ejecuciéon de Meltdown, con
aislamiento de lectura (NOPs). 24
Figura 8 Porcentaje de bytes de la cadena final leidos correctamente
en base al ntimero de intentos (probes), con aislamiento de
lectura (NOPs). 25
Figura 9 Diagramade Gantt 32
Figura 10 Micro-arquitectura de la familia Kaby Lake (Skylake) 33
INDICE DE CUADROS

iv

Cuadro 1 Resumen de caracteristicas de los ataques basados en espe-

culacién estudiados o oL 11
Cuadro 2 Comparacién de resultados en las diferentes variantes de

Meltdown 25
Cuadro 3 Resultados de la ejecucién de Spectre 26
Cuadro 4 Resultados del benchmark de CPU en célculo 28
Cuadro 5 Resultados del benchmark de CPU en llamadas al sistema . . 28
Cuadro 6 Horas dedicadas al proyecto 32
LISTINGS
Listado 1 Ejemplo de especulacion 0oL 6
Listado 2 Fragmento de c6digo de Meltdown que realiza el robo de

informacion L 13
Listado 3 Spectre Variant 1. Lo oL 17
ACRONIMOS

PoC Proof-of-Concept

CPU Central Processing Unit (Unidad Central de Proceso)
SO Sistema Operativo

ROB Reorder Buffer

ILP Instruction-Level Parallelism (Paralelismo a nivel de instrucciéon)
ALU Arithmetic Logic Unit (Unidad aritmético-légica)
LLC Last-Level Cache

TSX Transactional Synchronization eXtensions

TSC Time-Stamp Counter

CDB Common Data Bus

BTB Branch Target Buffer

TLB Translation-Lookaside Buffer

IPC Instrucciones por ciclo

KPTI Kernel Page Table Isolation

SGX Software Guard eXtensions

KASLR Kernel Adress Space Layout Randomization

GLOSARIO

Arquitectura Conjunto de reglas que debe conocer el programador para programar
un computador. Eso es la ISA, mapa de memoria, gestién de interrupcio-
nes, etc.

Especulacién Deduccién que realiza el procesador cuando no tiene plena certeza
del futuro comportamiento de una instruccion. Puede fallar o acertar.

Estado micro-arquitecténico Estado almacenado en estructuras de almacenamien-
to interno del procesador que no son visibles al programador. Por ejemplo.
caches, predictores de salto, fill-buffers...

Estado arquitectéonico Estado almacenado en estructuras de almacenamiento que
son visibles al programador, como los registros y la memoria..

Micro-arquitectura Disefio interno de un procesador. También llamado organiza-
cién de un computador.

Prediccién Deduccion que realiza el procesador cuando tiene plenza certeza del
futuro comportamiento de una instruccioén. Siempre acierta.

Vi

INTRODUCCION

1.1 MOTIVACION

En los dltimos afios, gran parte de los ataques informéticos se han centrado en
encontrar y explotar vulnerabilidades en el software que permitan a los atacantes
acceder a informacién sensible, escalado de privilegios e incluso el control total
de la maquina. Estos ataques, por lo general, pueden ser mitigados a través de
actualizaciones de la aplicacién o del Sistema Operativo sin afectar demasiado
al rendimiento. Sin embargo, recientemente se han desarrollado ataques capaces
de aprovechar el disefio (micro-arquitectura) de algunos de los mecanismos que
mejoran el rendimiento de los procesadores modernos para extraer informacién
sensible sin dejar ninguna traza en el sistema [8-10, 12, 13]. Los procesadores afec-
tados van desde los ARM Cortex [1] presentes en la gran mayoria de los teléfonos
moviles hasta la familia de CPUs POWERS [7] en todos los IBM Power Systems,
afectando también a toda la gama de procesadores utilizados en ordenadores per-
sonales.

Estos ataques a nivel micro-arquitecténico en procesadores son especialmente
peligrosos ya que es muy dificil su solucion via software, y cuando es posible, la
penalizacién en el rendimiento es resefiable. Ademads, dado que la vulnerabilidad
se encuentra en el nivel més bajo del computador, algunos de estos ataques son
capaces de romper barreras de aislamiento como la virtualizacién o las Software
Guard eXtensions (SGX) de Intel [2]. Esto es especialmente importante en las infra-
estructuras cloud, en las que la confidencialidad de una maquina virtual se puede
ver comprometida por maquinas virtuales ajenas funcionando sobre el mismo hard-
ware.

Debido a su criticidad, es muy importante entender estos ataques y sus contra-
medidas. Solo asi se podran proponer micro-arquitecturas mas robustas y mejorar
las contra-medidas ante futuros ataques de este tipo.

1.2 OBJETIVOS

El principal objetivo de este trabajo es estudiar, analizar y clasificar algunos
de los ataques basados en especulacion mds importantes, entre ellos Meltdown
[9], Spectre [8], Foreshadow [12, 13] 0 ZombieLoad [10], asi como caracterizar y
comprender mejor alguno de ellos. Por otro lado, este trabajo busca profundizar en
el estudio de los factores implicados para que estos ataques funcionen, tanto desde
el punto de vista del hardware (micro-arquitectura y arquitectura) como desde el
punto de vista del software (caracteristicas del Sistema Operativo, uso de bibliotecas
compartidas o andlisis de binarios vulnerables mediante reverse-engineering).

1.3 ALCANCE

1.3 ALCANCE

Para la realizacion de este trabajo se parte de una base de conocimientos adquiri-
dos en el grado que no ha sido suficiente para cubrir la complejidad presentada en
éste, lo que implica una gran fase de estudio e investigacion en diversos dmbitos
antes de poder comenzar la fase de experimentacién. Este estudio ha compren-
dido extender conceptos de administraciéon de sistemas y seguridad informatica,
asi como la necesidad de asimilar conceptos avanzados de las asignaturas de sis-
temas operativos, procesadores comerciales, multiprocesadores y arquitectura y
organizacion de computadores, todo ello aplicado en d&mbitos virtualizados y no-
virtualizados.

La consecucion de los objetivos requiere, en primer lugar, realizar un profundo
estudio de los ataques y todos los mecanismos explotados por éstos para compren-
der su funcionamiento. Esto implica comprender en gran detalle aspectos como
la micro-arquitectura y la arquitectura del procesador en el que se realizaran las
pruebas. En este caso, los experimentos serdn realizados sobre un Intel i7-7700
(Kaby Lake H), por lo que es imprescindible comprender su pipeline de ejecucién
de instrucciones, jerarquia de memoria y estructuras de almacenamiento interno
del procesador. Al mismo tiempo, también es necesario estudiar las caracteristicas
software que son aprovechadas por los ataques, como el mapeo directo de memoria
fisica en espacio de kernel, el uso de bibliotecas enlazadas dindmicamente (mapea-
das entre varios usuarios y el SO), y la posibilidad de analizar binarios con el fin
de encontrar secciones de c6digo vulnerables.

Una vez alcanzados los conocimientos necesarios para comenzar a experimentar,
se ha preparado una mdquina con un entorno controlado en el que poder realizar
las pruebas de dichos ataques. Dado que para la mayoria de estos ataques ya se
han desplegado parches de microcédigo y actualizaciones del kernel Linux, es im-
prescindible realizar un downgrade tanto de kernel como del parche de microcédigo
a una version vulnerable contra estos ataques.

Tras esto, se ha analizado el comportamiento de los Proof-of-Concept (PoC) apor-
tados en los articulos originales y obtenido resultados experimentales de varios de
los ataques presentados. Posteriormente, se ha programado una versién funcional
de Meltdown desde cero, con el fin de estudiar en més detalle los mecanismos
implicados en su funcionamiento. A partir de este c6digo, junto con el estudio
realizado sobre la micro-arquitectura del procesador, se ha conseguido mejorar la
eficiencia del ataque con respecto a la versién original analizando los elementos
criticos y experimentando con diferentes configuraciones, lo que a su vez permite
proponer nuevas mitigaciones.

1.4 DESCRIPCION DEL DOCUMENTO

En el Capitulo 2 se describen los factores del procesador que hacen posible es-
tos ataques, tanto desde el punto de vista de la ARQUITECTURA (Seccién 2.1) como
desde el de la MICRO-ARQUITECTURA (Seccion 2.2). En este capitulo también se pre-
sentan los diferentes ataques estudiados (Seccion 2.4) y se propone una TAXONOMIA
(Seccion 2.5). En el Capitulo 3 se ahonda en los ataques Meltdown (Secciéon 3.1) y
Spectre (Seccién 3.3). En el Capitulo 4, se describe la metodologia de trabajo y la

2

1.4 DESCRIPCION DEL DOCUMENTO

preparacion de la PLATAFORMA (Seccion 4.1) y HERRAMIENTAS (Seccion 4.2). En el
Capitulo 5 se presentan las pruebas realizadas y los resultados obtenidos, asi como
las mejoras realizadas sobre el ataque Meltdown. Finalmente, en el Capitulo 6 se
presentan las conclusiones y el posible trabajo futuro de este trabajo.

ESTADO DEL ARTE

2.1 MAPA DE MEMORIA DEL SISTEMA OPERATIVO

En este apartado se expone el mecanismo de mapeo de memoria que utilizan
los sistemas operativos modernos para la gestion paginada de memoria. Este me-
canismo es fundamental para los ataques objeto de este trabajo.

Con la necesidad de implementar multi-tarea y multi-usuario en los sistemas
operativos, se ide6 el concepto de memoria virtual paginada, una caracteristica
que permite la divisién del espacio de direccionamiento virtual (o 16gico) de los
programas en fragmentos mds pequefios y manejables denominados paginas. A
su vez, toda la memoria fisica de un computador es dividida en fragmentos del
mismo tamafio que las pdginas, llamados marcos de pagina, que albergaran en su
interior las paginas pertenecientes a los procesos.

En la creaciéon de un proceso, el sistema operativo buscard marcos de paginas
libres y les asignard las paginas del proceso, anotando esta asociacién en una tabla
de péaginas propia del mismo proceso. Asimismo, en Linux, el sistema operativo
provee para cada uno de los procesos, un interfaz que contiene la informacién de
la tabla de paginas del mismo, ubicada en /proc/self/pagemap.

Cada proceso tiene un espacio de direccionamiento légico (o virtual), en el que el
proceso cree que se ejecuta en solitario en un sistema con toda la memoria virtual
que puede direccionar. Puesto que es imposible tener un sistema con suficiente
memoria fisica como para mapear el espacio virtual de todos los procesos que se
ejecutan, es necesario que en memoria fisica, solo se alberguen algunas paginas
l6gicas (las mas usadas). Para acceder a estas paginas, existe un mecanismo de
traduccién de direcciones virtuales a fisicas, el Translation-Lookaside Buffer (TLB).

Con el fin de optimizar algunas llamadas al sistema, dentro del espacio légico
del proceso se encuentra mapeado el propio kernel, de este modo las llamadas al
sistema ahorran cambios de contexto y vaciados del TLB. Estas pédginas del kernel
mapeadas en el espacio de memoria del proceso, son protegidas con los permisos
de acceso presentes en la tabla de péginas.

Una de las tareas del kernel es gestionar el movimiento de marcos de péagina
entre memoria principal y almacenamiento no volétil. Asi pues, el kernel es el en-
cargado de cargar en memoria las paginas de cada uno de los procesos. Para llevar
a cabo esta labor, el kernel, en su espacio de direccionamiento, tiene mapeada to-
da la memoria fisica del computador a partir de un cierto offset, que por defecto
es la direccion 0xffff880000000000. Esto es lo que se conoce como direct-physical

mapping.

2.2 MICRO-ARQUITECTURA DE UN PROCESADOR MODERNO

2.2 MICRO-ARQUITECTURA DE UN PROCESADOR MODERNO

Los procesadores de hoy en dia llevan una serie de mecanismos hardware que
permiten acelerar la ejecucién de las instrucciones, permitiendo asi un mayor ren-
dimiento en instrucciones por ciclo.

A continuacién se detalla el funcionamiento de algunos de estos mecanismos
que fundamentan los ataques presentados.

2.2.1 Ejecucion fuera de orden (Out-of-order execution)

La ejecucion fuera de orden es la capacidad del procesador para ejecutar ins-
trucciones en un orden distinto al orden secuencial descrito por el programador,
permitiendo romper la dependencia de control implicita entre instrucciones (se-
cuencialidad). De este modo, un procesador superescalar (que es capaz de lanzar
a ejecucion mdltiples instrucciones en un mismo ciclo) puede aprovechar en ma-
yor medida el paralelismo a nivel de instruccién presente en los programas. El
paralelismo a nivel de instruccién de un programa (Instruction-Level Parallelism o
ILP) corresponde al nimero de instrucciones que pueden ser ejecutadas en para-
lelo. Dos instrucciones pueden ser ejecutadas en paralelo siempre y cuando sean
independientes, es decir, que no existe una dependencia de datos entre ellas. Estas
dependencias entre instrucciones pueden ser: RAW (read-after-write), WAR (write-
after-read) y WAW (write-after-write) [5].

Con el fin de explotar al maximo el ILP, es necesario eliminar las dependencias
existentes entre las instrucciones de un programa. Para ello, en 1967 Tomasulo
propuso un algoritmo [11] capaz de eliminar las dependencias WAR y WAW (o de-
pendencias falsas), quedando tnicamente las dependencias RAW (o dependencias
verdaderas).

Dado que se desea maximizar el ILP explotado atin cuando existen dependen-
cias verdaderas, los procesadores hacen uso de diversas técnicas para exponer mds
ILP. Muchas de estas técnicas se basan en la prediccién del comportamiento de
una cierta instruccién del programa, y de este modo poder explotar el ILP presente
en el programa mas alld de dicha instruccién. En este trabajo, se habla de predic-
cién cuando se tiene plena certeza del futuro comportamiento de la instruccién.
Un ejemplo de ésta seria la prediccion de latencia de ejecucién de instrucciones
de latencia constante (operaciones de ALU). Por otro lado, cuando no existe plena
certeza se habla de especulacién, la cual serd acierto o fallo dependiendo de la
coincidencia del comportamiento observado con el comportamiento predicho. Es-
to ocurre, por ejemplo, con la predicciéon de latencia en instrucciones de latencia
variable como el load.

2.2.2 Predictor de saltos

Otra optimizaciéon micro-arquitecténica afiade estructuras para la prediccién del
comportamiento de instrucciones de salto: direccién destino de salto y decisién
sobre tomar o no tomar el salto. Estas estructuras se conocen como predictores de
saltos, y su objetivo es realizar una prediccion o especulacion cada vez que aparece

[

AN U A~ W N

2.2 MICRO-ARQUITECTURA DE UN PROCESADOR MODERNO

un salto en el programa.

En el caso de los retornos de subrutina, las direcciones destino de salto suelen
ser bien conocidas con anterioridad. Para estas instrucciones un sencillo predictor
puede ser capaz de acertar siempre la direccién de la siguiente instruccién a ejecu-
tar.

Por otro lado, cuando la decisién de tomar el salto o no depende de una ins-
trucciéon de salto condicional, el procesador debe especular con el futuro compor-
tamiento de dicha instruccién de salto para poder seguir extrayendo ILP més alld
de dicha instruccién (Subseccién 2.2.1). De esta manera, el procesador decidira si
el salto es tomado o no, y continuaré la ejecucién del flujo elegido de manera espe-
culativa, sin esperar a que la condicién se resuelva. Una vez resuelta la condicién,
si el flujo de ejecucion tomado era el correcto, la ejecucién continuard desde ese
punto. De lo contrario, se hard un rollback de todas las instrucciones ejecutadas y
se continuard por el otro flujo.

Esta decision serd tomada basandose en los comportamientos anteriores para
dicha instruccién, haciendo uso de técnicas que combinan estos comportamien-
tos almacenados en estructuras de almacenamiento interno como el Branch Target
Buffer (BTB), que indexa la prediccién con los bits de menor peso del contador de
programa.

En el ejemplo del Listado 1, cuando llega el salto condicional jne, el procesa-
dor debe decir, en base a ejecuciones anteriores, si seguir ejecutando la resta (sub,
linea 4) posterior, o la suma (add, linea 6) en la direccién del salto. En ambos ca-
sos, el procesador esta calculando en base a una suposicién, siendo una ejecucién
especulativa.

add

cmp ...

jne eti0

sub
etiO:

add

Listado 1: Ejemplo de especulacién

2.2.3 Tratamiento de excepciones

La ejecucion fuera de orden permite mejorar el rendimiento del procesador a
base de exponer un mayor ILP, pero existe la posibilidad de que ocurra una excep-
cién (fallo de pagina, instruccion ilegal, etc.) mientras instrucciones posteriores ya
se encuentran en ejecucién o han sido ejecutadas, que deben ser revertidas.

En todos los procesadores con posibilidad de ejecutar instrucciones fuera de
orden se hace uso de una estructura comtinmente llamada Reorder Buffer (ROB).
Dicha estructura mantiene las instrucciones con el mismo orden con el que llega-
ron al pipeline del procesador, es decir, en orden de programa. En la fase del pipeline
de retirement se utilizara esta estructura para retirar la instruccién mas vieja, y asi,
permitir que el estado arquitectonico modificado por esa instruccion sea visible.

2.3 ATAQUES DE CANAL LATERAL

Asi pues, para que una instruccién pueda ser retirada, deben haberse retirado to-
das aquellas instrucciones que son anteriores (mds viejas) en el orden de programa.

Los mecanismos para tratamiento de una excepcién y los mecanismos para el
rollback de una especulacion fallida hacen uso del ROB para asegurar un estado
arquitectonico correcto. Asi pues, si una instruccién provoca una excepcion, sera
marcada en su entrada del ROB y cuando llegue el momento de ser retirada, se
invalidaran todas las instrucciones posteriores a ésta. Aunque la ejecucion de una
instruccién no modifique el estado arquitecténico, las modificaciones realizadas en
el estado micro-arquitectonico persistirdn y seran visibles.

2.3 ATAQUES DE CANAL LATERAL

De manera sucinta, los ataques de canal lateral son un tipo de ataques capaces de
inferir informacién de la victima a través de la monitorizacién de canales en el sis-
tema atacado. Es decir, requieren conocer en profundidad la implementacion fisica
del hardware. Por ejemplo, en procesadores es conocido que el consumo depende
de los datos de entrada y de las operaciones realizadas, por lo tanto mediante su
observacién se puede determinar si, por ejemplo, un algoritmo criptografico esta
operando con un 1 o un 0 y en qué fase esta.

Para este TFG se han estudiado ataques de canal lateral que emplean las estructu-
ras micro-arquitecténicas del procesador como el predictor de saltos o la memoria
cache para robar informacién, ya que la ejecucién especulativa no es vista por el
usuario pero si por dichas estructuras. Ademads de ataques de canal lateral basados
en especulacién, también hay electromagnéticos, actsticos, ...

2.4 ATAQUES BASADOS EN ESPECULACION

En esta seccion se presentan los ataques estudiados para este trabajo, destacando
las caracteristicas principales de cada uno de ellos para posteriormente proponer
una posible taxonomia de éstos.

2.4.1 Flush+Reload

El primero de estos ataques, aunque no es un ataque basado en la ejecucién espe-
culativa, tiene especial importancia para los siguientes ataques presentados, ya que
es utilizado para extraer los secretos robados desde el estado micro-arquitecténico
al estado arquitecténico y concluir el ataque.

Flush+Reload [14] es un ataque de canal lateral que permite inferir el comporta-
miento del programa atacado a través de la monitorizacién del tiempo de acceso a
una direccién de memoria compartida entre ambos. Un caso de uso de este ataque
seria, por ejemplo, el uso de bibliotecas compartidas entre la victima y el atacante.

Para realizar a cabo este ataque, el atacante fuerza la expulsion de la linea de
cache monitorizada, y esperara a que el proceso victima acceda a dicha direccién.
Pasado un tiempo, el atacante accede a la direccién monitorizando el tiempo (en
ciclos) que cuesta acceder. Si el tiempo ha sido menor que un threshold estipulado,
quiere decir que el proceso victima ha accedido a dicha direccién. De lo contrario,

2.4 ATAQUES BASADOS EN ESPECULACION

se asumird que la victima no ha accedido.

Esta informacién se puede utilizar para inferir el comportamiento de la victima,
0 en combinacién con otros ataques, extraer un dato perteneciente al espacio de
memoria privilegiada, sin necesidad de permisos de superusuario para llevar a
cabo ninguna de las operaciones.

2.4.2 Meltdown

Meltdown [9] es un ataque basado en especulacién capaz de acceder a direc-
ciones de memoria arbitrarias, privilegiadas o no privilegiadas, desde espacio de
usuario. Esto lo convierte en uno de los ataques mas peligrosos, pero tiene facil
mitigacion.

Este ataque se aprovecha principalmente de dos vulnerabilidades. La primera
de ellas se basa en la implementacién del mapa de memoria en el kernel Linux.
Como se explica en la Seccién 2.1, por cuestiones de eficiencia todos los procesos
tienen mapeado en su espacio de direccionamiento una copia del kernel, que a su
vez éste tiene mapeado toda la memoria fisica en uso para minimizar los cambios
de contexto en algunas llamadas al sistema. Esto se hace confiando en que el hard-
ware bloqueara el acceso a dicho espacio de memoria a un usuario no privilegiado.
Sin embargo, la segunda vulnerabilidad explotada por Meltdown es la caracteris-
tica de especulacién que permite a un proceso acceder a una direccién protegida
mientras espera la validacién de los permisos.

De esta manera, el atacante accede a la direccién de memoria que contiene el
secreto del proceso victima, mapeado dentro de su propio espacio de direcciona-
miento. Tras acceder, el atacante utiliza el valor del secreto al que ha accedido para
indexar un vector de su propiedad antes de que la excepcién sea procesada. Mien-
tras tanto, este vector es monitorizado con un Flush+Reload, lo que permite inferir
qué elemento del vector ha sido accedido, y por lo tanto obtener el secreto, que se
corresponde con el valor de indice de dicho elemento.

2.4.3 Spectre

De todos los ataques basados en especulacién, Spectre [8] es el ataque que mds
procesadores afecta, pues no solo afecta a los procesadores de Intel, si no que afec-
ta a la gran mayoria de procesadores que hacen uso de la especulacion para decidir
el camino de ejecucién de un salto.

Al igual que Meltdown, Spectre permite leer direcciones de memoria de otros
procesos sin tener los privilegios para ello, pero lo hace a través de la manipulacién
de los predictores de salto (Subseccion 2.2.2).

Spectre comparte con Meltdown el mecanismo bésico para extraer un secreto,
que consiste en un acceso a la direccién de memoria con el secreto seguido de un
ataque de canal lateral Flush+Reload para exponer el valor del secreto al estado
arquitectonico del atacante. Lo que diferencia a Spectre de Meltdown, es que esta
secuencia de ataque va a ser ejecutada bajo un fallo de especulacién de salto pen-
diente de resolver. Frente a lo que ocurre en Meltdown, recuperarse de un fallo de

2.4 ATAQUES BASADOS EN ESPECULACION

especulacién de salto es menos costoso que tratar una excepcién por acceder a una
direccién de memoria sin permiso (secreto), lo que acelera la filtracién del secreto.
Lo que Spectre aporta es la manipulacién del predictor de salto para que el ataque
sea ejecutado al igual que Meltdown, pero pendiente de una prediccién de salto
que el atacante sabe que va a ser fallo de especulacion.

En la primera variante de Spectre, es el propio atacante que codifica un ataque
Meltdown (acceso a una direccién protegida) dentro del &mbito de una instruccién
de control tipo if. A continuacion, el atacante entrena al predictor de salto para que
se prediga la condicién del if como verdadera. Antes de ejecutar el ataque, modifi-
ca la condicién del if para que sea resuelta como falsa. Asi pues, cuando se ejecuta
el c6digo, el predictor de salto indicara que se ejecute especulativamente el c6digo
del ataque. Sin embargo, cuando se resuelva el salto, el ataque sera invalidado por
un fallo de prediccién de salto y no por una excepcion.

Por otro lado, la segunda variante de Spectre es mucho mas compleja, pues re-
quiere hacer uso de ingenieria inversa en el binario que se desea atacar, con el fin
de encontrar un segmento de c6digo que realice la misma funcién que la variante
1, pero cumpliendo una serie de condiciones. La primera de ellas es que este seg-
mento tiene que estar dentro del espacio de direccionamiento de la victima, para
poder acceder a su informacién. Por otro lado, el atacante debe tener poder influir
en los valores que recibe como pardmetro. Esto podria ser, por ejemplo, una fun-
cién de biblioteca compartida entre el atacante y la victima.

Una vez encontrado este c6digo, el atacante deberd replicar el comportamiento
del c6digo de la victima, mimetizando las direcciones utilizadas por la victima con
el fin de entrenar el BTB accediendo a dicho segmento. Esto provocard que cuando
entre en ejecucion la victima, se forzara el salto indirecto al segmento y asi realizar
el ataque, de manera similar a la variante 1.

2.4.4 Foreshadow

Foreshadow [12, 13] es otro de los ataques especulativos que, a causa de la lenta
comprobaciéon de permisos de acceso a una pégina, ciertas instrucciones ejecuta-
das especulativamente serdn capaces de acceder a un byte secreto. Estas instruc-
ciones, al igual que los demads ataques, reflejardn los cambios en el estado micro-
arquitectonico de manera que puedan ser extraidos mediante un canal lateral como
Flush+Reload.

La peculiaridad de Foreshadow es que, en su variante SGX, es capaz de romper
las barreras de aislamiento que provee SGX. Estas extensiones, permiten al progra-
mador definir unos almacenes llamados enclaves, en los que se almacenaran los
secretos del programa. Ni siquiera el kernel o un usuario privilegiado es capaz de
ver el contenido almacenado en estos enclaves, pudiendo acceder tinicamente a tra-
vés de una previa verificacion mediante clave publica con un hash del enclave. La
posibilidad de romper esta barrera de aislamiento es lo que hace que este ataque
sea particularmente peligroso.

Para llevar a cabo este ataque, un atacante debe ejecutar el enclave victima de
manera que los secretos se almacenen en cache. Dado que los datos en cache no se

2.5 TAXONOMfA

encuentran cifrados, el atacante realiza un ataque Meltdown sobre la direcciéon en
la que se almacena el secreto, exponiendo los secretos al estado arquitecténico con
un canal lateral.

Ademds, Foreshadow permite la extracciéon de las claves necesarias para la crea-
cién de un enclave malicioso, verificando el acceso por clave y asi recibir directa-
mente los secretos de la victima.

2.4.5 ZombieLoad

El dltimo de los ataques presentados en este trabajo, al igual que Meltdown y
Foreshadow, explota la especulacién realizada durante la comprobacién de permi-
sos de acceso, y permite extraer informacién desde espacio de usuario.

ZombieLoad [10] aprovecha la existencia de unas estructuras de almacenamien-
to interno del procesador denominadas fill-buffers, que son utilizadas para rellenar
la cache con datos de loads anteriores que han sido expulsados, por ejemplo, por
una excepcion. Estos buffers, ademds, son compartidos entre los procesos 16gicos
de un mismo ntcleo del procesador.

Este ataque permite a un atacante inducir fallos de pagina mientras realiza un
acceso a memoria. De esta manera, cuando se recupera de la excepcion el fill-buffer
cargard en cache los datos utilizados por loads anteriores, independientemente del
proceso légico que los haya ejecutado. Esto permite, a través de un vector de mues-
treo, la extraccidon de estos datos mediante un canal lateral como Flush+Reload.

Este ataque, a diferencia de los anteriores, no tiene la capacidad de decidir la
direccién de memoria de la que se extrae un dato, pero si puede saber qué datos
estan siendo utilizados por otros procesos, lo que rompe las barreras de aislamien-
to entre procesos.

2.5 TAXONOMIA

Tras el anélisis realizado de los ataques presentados en la seccién anterior, en la
Tabla 1 se resumen una serie de caracteristicas de todos ellos. Los ataques referen-
ciados son los siguientes: Meltdown (M), Spectre Variante 1 (S1), Spectre Variante 2
(S52), Foreshadow (F) y ZombieLoad (Z). En el margen izquierdo, se encuentran las
caracteristicas estudiadas, y para cada uno de los ataques se indica en una casilla
si la cumple o no. En caso de cumplirse, serd indicado con un check verde. Si se
cumple pero bajo ciertas restricciones, se indicard con un check amarillo. De lo con-
trario, no se cumple, se indicard con una cruz roja. Si se desconoce la caracteristica,
se indica con una interrogacion.

Observando este resumen de las caracteristicas de cada uno de los ataques, se
propone una posible taxonomia, que permite clasificar los ataques estudiados en
este trabajo a través de un diagrama de Venn (Figura 1). Esta clasificacién divide
los ataques estudiados en base a tres criterios. Estos criterios son, el mecanismo
de especulacion explotado, la necesidad de forzar la ejecucion de un coédigo en la
victima y la posibilidad de especificar la direccion de memoria atacada.

10

2.5 TAXONOMfA

<

Ataque
S1 S2

Funciona desde espacio de usuario
Funciona en Maquina Virtual
Funciona de MV a host

Funciona de MV a MV

Afecta sélo a arquitectura Intel

Afecta a varias arquitecturas
(Intel, ARM, AMD, IBM..)
Basado en prediccion de saltos
Basado en excepciones

Extraccion por canal lateral
(Flush+Reload)

Tiene control de la @ atacada
Accede a @ memoria arbitrarias
Permite romper SGX

XX NN NN X] XN (X (XSS
XX NN N IR\ N [X(X(X|N)SN
NIX(ISIS SN [XSN] N [XXX
SINSINSIS) N ISR XN (X (VSR
SIS X (X[N (N(X]| X (SN N VISE

Necesita interaccion de la victima

Cuadro 1: Resumen de caracteristicas de los ataques basados en especulacién estudiados

ataques
especulativos

tipo tipo
spectre meltdown
(prediccion de salto) (excepcion)

con ejecucion

de la victima meltdown
spectre
vi Foreshadow
spectre
v2 direccién
desconocida
ZombielLoad

Figura 1: Posible taxonomia de los ataques estudiados. Todos los ataques excepto Zombie-
Load conocen la direccién que estdn atacando

11

MELTDOWN Y SPECTRE

3.1 MELTDOWN

Como se explica en la Subseccién 2.4.2, Meltdown permite a un atacante leer
secretos pertenecientes a la memoria de otros usuarios o incluso del kernel. A con-
tinuacién se detallan todos los aspectos implicados en el funcionamiento de este
ataque, cuya comprension es necesaria para entender las modificaciones propues-
tas en los apartados 3.2.2 y 3.2.3.

3.1.1 Obtencion de la direccién de memoria del secreto

Como se comenta en Seccion 2.1, con el fin de poder acceder y escribir las pa-
ginas con datos para el usuario, se aplica la técnica de direct-physical mapping, que
mapea todas las direcciones fisicas en espacio de kernel. Por otro lado, con el fin
de optimizar el uso de algunas llamadas al sistema, todas las paginas del kernel
son mapeadas en espacio de usuario. Esto provoca que todos los procesos tienen
en su espacio légico una copia de toda la memoria fisica utilizada por otros proce-
sos, lo que aprovecha Meltdown para acceder a direcciones arbitrarias de memoria.

Aunque el ataque puede leer posiciones de memoria arbitraria y realizar un vol-
cado de toda la memoria fisica en uso, para este trabajo se asume que se conoce
la direccién de memoria en la que se encuentra el secreto. Para facilitar la experi-
mentacion, el proceso victima proveerd la traduccion de direccién virtual a fisica a
través de su mapa de memoria ubicado en /proc/self/pagemap. Posteriormente,
se ejecutard Meltdown sobre la direccién resultante de concatenar la direccién fisi-
ca con Oxffff880000000000 (direccion por defecto del direct-physical mapping), pues
esa es la direccion en la que el atacante tendrd mapeado el secreto de la victima.

3.1.2 Preparacion del canal lateral

Tal y como se comenta en la Seccién 2.4, Meltdown hace uso de un canal lateral
para extraer el byte (secreto) del estado micro-arquitectonico al estado arquitecténi-
co. De los diferentes ataques de canal lateral, Meltdown hace uso de Flush+Reload,
que a través de la observacion del tiempo de acceso a un vector de muestreo, es
capaz de inferir el secreto robado por Meltdown.

Para poder realizar el Flush+Reload, el atacante debe disponer de un vector que
sera utilizado para muestrear los datos que se encuentran en la cache. Este vector
(probe_array), es un vector formado por 256 * 4096 elementos de tamafio de un byte.
Cada uno de los 256 elementos a muestrear se encuentra separado del siguiente
por 4096 elementos, es decir, 4 KB. Se aplica esta separaciéon aprovechando que
el prefetcher no funciona a través de paginas, ya que éste podria traer elementos
contiguos impidiendo detectar de manera clara el byte accedido.

12

=

U R~ WN

3.1 MELTDOWN

Antes de cada iteracion del ataque, el atacante debe asegurarse de que este vector
no se encuentra en cache, de lo contrario podrian ser inferidos los resultados de

manera incorrecta.

3.1.3 Fases del ataque Meltdown

El funcionamiento de Meltdown consta de tres fases bien diferenciadas, tal y
como describen la Figura 2 y el Listado 2. Este c6digo lo ejecuta exclusivamente el
atacante sin intervencién de la victima.

edx => direccion del secreto
eax => dato robado / indice vector
ecx => probe_arrayl(]

retry:
mov (%edx), %eax —» eax = secret_byte
shl $12, %rax —>» rax = secret_byte * 4096
jz retry
mov (%ecx, %rax, 1), %rbx ——» rbx =Lprobe_array [secret_byte * 4096]J
RS
@ 0 | 1 | 2 | | Iaa 84 | .. | |254|255 probe_array[]

latencia no-L1 latencia L1 latencia no-L1

Figura 2: Diagrama de funcionamiento de Meltdown

retry:

mov (addr), %eax

shl $12, %rax

jz retry

mov (probe_array, %rax, 1), %rbx

Listado 2: Fragmento de cédigo de Meltdown que realiza el robo de informacién

Fase 1. Durante la primera fase del ataque, el atacante accede a la direccion del
secreto de la victima (linea 2), que se encuentra mapeado en el espacio del ata-
cante, como se indica en la Subseccién 3.1.1. Dado que la comprobacién de que
el atacante tiene permisos para acceder a la direccién addr es un proceso lento, el
procesador especula asumiendo que tiene permisos, y por lo tanto accede a @addr
y carga el dato obtenido en el registro eax. Sin embargo, este acceso provocard una
excepcion que forzaré el rollback de todas las instrucciones posteriores a la tltima
instruccion retirada correctamente que se encuentren en el ROB, pero como se co-
menta en Subseccion 2.2.3, esta excepcion no serd tratada hasta la fase de retirement.
Esto produce una condicién de carrera desde que se accede al dato hasta que se
anula la ejecucién, siendo ésta la ventana del ataque.

13

3.1 MELTDOWN

Fase 2. Durante esta fase, tras el acceso de memoria, las instrucciones de las li-
neas 3y 5 serdn ejecutadas especulativamente, antes de que sean revertidas por el
tratamiento de la excepcion. Una vez el secreto de la victima estd cargado en rax (o
por lo menos disponible mediante encadenamiento de instrucciones), se multiplica
su valor por 4096, realizando un shift de 12 bits y almacenandolo de nuevo en rax.
Tras ésto, la instruccion de la linea 5 serd la encargada de acceder al probe_array uti-
lizando rax como indice. Aqui hay que recordar que probe_array ha sido expulsado
de la cache antes del ataque, y rax contiene el valor del secreto multiplicado por
4096. Esto provocard que el elemento probe_array[secreto * 4096] sea llevado a
memoria cache. La instruccién de la linea 4 reintenta el ataque si el byte leido se co-
rresponde con un 0, con el fin de asegurar que no ha ocurrido un fallo en la lectura.

Fase 3. Finalmente, durante la tercera fase del ataque, el atacante aplica las técni-
cas utilizadas por Flush+Reload sobre su propio vector de muestreo (probe_array)
para inferir el dato robado. Para ello, haciendo uso del contador de ciclos de alta
precision de Intel (TSC), se monitoriza el tiempo de acceso a cada uno de los 256
elementos a muestrear. Cuando el tiempo de acceso de alguno de ellos es similar
al tiempo de latencia de cache L1, quiere decir que ese elemento se encontraba en
la cache, a diferencia de los demds elementos del vector. Si la fase 2 ha concluido
satisfactoriamente, el elemento probe_array[secreto * 4096] deberia estar en ca-
che, resultando en un tiempo de acceso mucho menor que los demds. Dado que
el indice de dicho elemento es el valor del secreto multiplicado por 4096, desha-
ciendo la multiplicacién se obtiene, en estado arquitectonico, el valor del secreto
extraido de la victima.

Para mayor certeza de que el byte extraido es el correcto, estas tres fases pueden
ser repetidas continuamente tantas veces como se considere necesario, siempre y
cuando se use un método para manejar la excepcion y evitar la finalizacién del
programa atacante.

3.1.4 Tratamiento de la excepcion

Dado que la ejecucién de este ataque se basa en un acceso a una direccién inac-
cesible para el usuario, se provocard una excepcioén que finalizara el proceso cada
vez que se ejecute. Sin embargo, la posibilidad de extraer un dato es mayor cuantos
maés ataques se realizan, siendo necesario tratar la excepcion para poder continuar
la ejecucién y reintentar el ataque sobre el mismo byte nuevamente.

Para tratar la excepcién existen dos alternativas, hacer uso de las extensiones
de sincronizacién transaccional (TSX) o el uso de un manejador de la sefal (signal
handler). En este trabajo solo se abarca el tratamiento de la excepciéon mediante
un signal handler. Para ello, se programa el manejador de manera que cuando se
detecte una sefial SIGSEGV (violacién de segmento), éste la atrape y la suprima,
para posteriormente continuar con una nueva ejecucion del ataque.

14

3.2 ESTUDIO Y CARACTERIZACION DE MELTDOWN

3.2 ESTUDIO Y CARACTERIZACION DE MELTDOWN
3.2.1 Meltdown M1

En esta seccion se define Meltdown M1, una variante del ataque Meltdown origi-
nal desarrollada para este trabajo, que permite explotar algunas de sus caracteristi-
cas para mejorar, en términos generales, el rendimiento y la eficacia de Meltdown.

3.2.2 Llenado de estructuras internas del procesador

Durante las pruebas realizadas con el PoC original [6], los resultados carecian
de consistencia, dado que el ataque sélo funcionaba en ocasiones puntuales, y ob-
teniendo resultados erréneos la mayor parte de las veces que se conseguia ejecutar.

Dado que la biblioteca del PoC afiade una sobrecarga para poder generalizar el
cédigo en distintas arquitecturas (x64 y x86), detectar automaticamente la utiliza-
cién de TSX, y otras configuraciones, se han programado un cédigo victima y una
versiéon minima de Meltdown con la que empezar a trabajar, sin dicha sobrecarga.
El cédigo resultante se encuentra en el anexo Seccion A 4.

Sin embargo, esta primera version simplificada no funciona, por lo que se pro-
pone hacer un estudio més detallado del funcionamiento de las instrucciones del
ataque. Una intuicioén es que las instrucciones ya presentes en la ventana de ins-
trucciones podian interferir con la adecuada secuenciacion de las instrucciones que
conforman el ataque. Se pens6 entonces en proveer al ataque un escenario en el
que disponia de via libre para ejecutarse sin interferencias. Por este motivo, se
procede a aislar las instrucciones de Meltdown mediante la introduccién de una
cadena de dependencias verdaderas justo antes de la ejecucién del ataque. Con
ello, estructuras internas del procesador como la estacién de reserva o el ROB se
llenan de instrucciones que deben ser ejecutadas secuencialmente, vaciando asi el
pipeline de ejecucion fuera de orden. Con el pipeline vacio, para el momento en el
que el ataque entre en la ventana de lanzamiento (o Unified reservation station), se
encontrard todas las unidades funcionales disponibles, y podré ejecutarse inmedia-
tamente. Esta cadena de dependencias debe ser una instruccién que no interfiera
con los puertos utilizados por el ataque, como podrian ser instrucciones del tipo
ADD $1, %rax (ver Figura 3).

retry:
add $1, %rax
add $1, %rax

Cadena
de ADDs

add $1, %rax
add $1, %rax
mov (%edx), %eax
shl $12, %rax
jz retry

mov (%ecx, %rax, 1), Y%rbx

Figura 3: Cédigo de Meltdown con cadena de dependencias

15

3.3 SPECTRE

Como se vera en el Capitulo 5, la cadena de ADDs mejora el rendimiento del
ataque gracias al aislamiento de las instrucciones del mismo.

3.2.3 Optimizacion de la temporizacion de Flush+Reload

Con el fin de detectar por qué no funciona el ataque el 100% de las veces, se de-
cide analizar en profundidad el binario generado haciendo un desensamblado del
mismo. Observando la funcién intrinseca __rdtscp(), ésta incluye mucha sobrecar-
ga a la hora de leer el TSC, lo que provoca que a veces la lectura no sea precisa, y
por lo tanto dando por no presente el dato. Por este motivo, se reescribe el coédigo
ensamblador minimo necesario para realizar un rdtscp, eliminando la sobrecarga.
Con este cambio, la lectura del TSC es mds precisa y constante, pero siguen exis-
tiendo instrucciones que pueden retrasar el acceso al dato para su muestreo (por
ejemplo, otros loads en ejecucién ocupando el puerto). Para solucionar este proble-
ma, se plantea la introduccién de instrucciones NOP, que se encargardn de vaciar
el pipeline, pero que seran retiradas antes de entrar en la ventana de lanzamiento
(o Unified reservation station). Esto provoca que, para cuando se desea monitorizar
el tiempo de acceso a memoria mediante Flush+Reload, el acceso al elemento del
vector sea el tinico load en ejecucién, y por lo tanto mejorando la precisiéon del
conteo de ciclos. De esta manera, se consigue optimizar tanto la eficacia del ataque
como su tasa de éxito, tal y como se explica en el Capitulo 5.

3.2.4 Aplicacién de estas variaciones sobre el ataque original

Tras haber optimizado la variante Meltdown M1, se vuelve a intentar la ejecu-
cién del PoC original, pero ésta vez aplicando las mismas técnicas de optimizacién
que se han desarrollado para Meltdown M1. Tras aplicarlos, la inconsistencia de
funcionamiento del ataque original desaparece, y se consiguen unos resultados
muy aproximados a los alcanzados con el Meltdown M.

Analizando mds en detalle la biblioteca original, en ésta se hace uso de varios
threads que se dedican a introducir NOPs constantemente. Sin embargo, estos th-
reads afiadian demasiada sobrecarga, y el ataque estaba siendo expulsado del hilo
de ejecucion continuamente. Por ello, tras eliminar los threads, e incluir las mejoras
comentadas anteriormente, la eficacia del Meltdown original mejora considerable-
mente.

3.3 SPECTRE

Aunque existen distintas variantes de Spectre, en esta seccién se profundiza en
el funcionamiento de la variante 1 de este ataque.

3.3.1 Preparacion del ataque y el canal lateral

Como se comenta en la Seccion 2.4, Meltdown y Spectre tienen un comporta-
miento muy similar, con la principal diferencia de que Spectre aprovecha la ejecu-
cién especulativa del salto para ocultar la excepcién. Por este motivo, este ataque
debe prepararse tal y como se comenta en la Subseccion 3.1.2.

16

3.3 SPECTRE

Esta preparacion incluye, ademds del vector de muestreo de 256 elementos (pro-
be_array) para la extracciéon del dato mediante Flush+Reload, la creacién de un
nuevo vector que serd el encargado de acceder al dato durante la especulacién del
salto. Tanto este vector (array1), como el vector de muestreo (probe_array), son in-
ternos del cédigo del atacante.

Ademas, para facilitar la experimentaciéon con Spectre, también se parte de cono-
cer la direccién en la que se encuentra el secreto de la victima, de la misma manera
que se realiza para las pruebas de Meltdown (ver Subseccién 3.1.1).

3.3.2 Fases del ataque

El ataque Spectre en su variante 1 tiene tres fases diferenciadas. Con el fin de
entender mejor el ataque, se incluye el c6digo necesario para el ataque en el Lista-
do 3. Al igual que Meltdown, este ataque no necesita que la victima realice nada,
ya que todo el ataque se realiza desde el espacio de usuario del atacante.

if (x < arrayl_size)
temp = probe_array[arrayl[x] * 4096];

Listado 3: Spectre Variant 1

Fase 1. Durante la primera fase del ataque, el atacante ejecutara continuamente
el segmento de cédigo del Listado 3 con un valor de x dentro de los limites del
vector arrayl. De esta manera la condicion de la linea 1 siempre serd cierta, y el
salto no serd tomado. Este comportamiento, indirectamente, estd entrenando la es-
tructura de almacenamiento del procesador encargada de predecir los saltos.

Fase 2. En la segunda fase, el atacante sustituira el valor de x por una x mali-
ciosa, que apunta a una direccién fuera de los indices del vector, la direccién del
secreto de la victima. Dado que el valor de la variable arrayl_size se encuentra
en cache, la comprobacién de la condicién seria demasiado rapida y bloquearia el
ataque. Es por esto que el atacante expulsard de cache la variable de comproba-
cién del limite del vector (arrayl_size). Esto provocard que la siguiente vez que
se ejecute instruccion de la linea 1, el dato arrayl_size tenga que ser traido desde
memoria principal, obligando al procesador a especular en los distintos caminos
de ejecucién disponibles: salto tomado o no tomado.

En este momento, el predictor de salto especula que el salto no serda tomado,
en base al entrenamiento introducido en la fase 1. Esto provocard el acceso de
manera especulativa a la direcciéon del secreto fuera de los indices de arrayl. Al
igual que Meltdown, el valor obtenido por el acceso es utilizado para indexar el
vector de muestreo (que se encuentra fuera de cache), de manera que el elemento
probe_array[secreto x 4096] es traido a cache.

En condiciones normales, el acceso de memoria especulativo provocaria una ex-
cepcién, forzando el rollback de todo el ROB. Sin embargo, al haberse producido en
el interior de un camino especulativo de un salto, estos cambios son invalidados
y contindia la ejecucién por el camino correcto, sin tratar la excepcién. Por este
motivo, el rendimiento de Spectre es muy superior al de Meltdown, ya que no es
necesario atrapar la excepcion en cada uno de los intentos, lo que implica muchos

17

3.3 SPECTRE

ciclos perdidos.

Fase 3. Finalmente, dado que durante la fase 2, el elemento probe_array[secreto
* 4096] fue accedido especulativamente, los rastros de este acceso atin son visibles
micro-arquitectonicamente. De igual manera que en Meltdown, se monitoriza el
tiempo de acceso a cada uno de los elementos del probe_array, y si alguno de ellos
tiene latencia L1 a diferencia de los demads, el secreto robado a la victima corres-
ponde al resultado de deshacer la multiplicacién del indice.

Este ataque también se puede repetir tantas veces como sea necesario, y en este
caso no es necesario el tratamiento de excepciones, ya que es el propio error de la
especulacién quien se encarga de deshacer los cambios.

18

METODOLOGIA

En este capitulo se detalla la plataforma utilizada para la experimentacién junto
con sus caracteristicas mads significativas para el caso de estudio de este trabajo.
Ademads, se comenta su preparacion y las herramientas utilizadas para llevar a ca-
bo la experimentacion.

4.1 PLATAFORMA

La maquina utilizada para las pruebas es un Intel i7-7700 @ 3.6 GHz, de cua-
tro nicleos y ocho procesos légicos (threads) y 32 GB de memoria RAM, y ejecuta
un sistema Operativo CentOS Linux RHEL 7.0, actualizado en su versién 3.10.0-
862.11.6.el7.x86_64. Dado que para este trabajo es relevante, el procesador parte de
tener la versién de microcédigo 0x8e, en la que Meltdown y Spectre se encuentran
parcheados.

Este procesador pertenece a la familia de procesadores Kaby Lake H, que man-
tiene la misma micro-arquitectura que la familia anterior, Skylake. Esta micro-
arquitectura dispone de un Frontend capaz de buscar 16 B por ciclo e introducir
6 WOPs al Backend(ROB) por ciclo. Este ROB cuenta con 224 entradas, y estd comuni-
cado con la ventana de lanzamiento (96 entradas), que dispone de 8 puertos para
el lanzamiento de instrucciones fuera de orden. Las unidades funcionales, la ven-
tana y el ROB estdn comunicados a través de un CDB. Este procesador es capaz de
retirar instrucciones a 4 pOPs por ciclos por hilo. En la Secciéon A.3 se encuentra
un diagrama detallado de la micro-arquitectura de este procesador.

Este procesador cuenta con caches L1l y L1D de 32KB compartidas por ntcleo,
a latencia de 5 ciclos para loads, 256 KB de cache L2 no-inclusiva, con latencia de
acceso 12 ciclos y 2 MB por ntcleo de LLC no-inclusiva compartida entre todos los
nucleos, a latencia 42 ciclos.

4.2 HERRAMIENTAS

Para la realizacion de este trabajo, tan solo se han utilizado tres herramientas ex-
ternas, puesto que el grueso del trabajo ha sido la experimentacién con programas
propios desarrollados en lenguaje C.

La primera de estas herramientas Radare2 [15], un software de desensambla-
do de binarios y andlisis y depuracién de cédigo, utilizado comtnmente para
reverse-engineering y hallar vulnerabilidades en binarios. Se ha hecho uso de es-
ta herramienta para poder analizar el binario de Meltdown y ejecutarlo de manera
controlada para probar comportamientos.

La siguiente herramienta utilizada ha sido el software de benchmarking stress-ng,
utilizado para medir el impacto en el rendimiento de los parches publicados para

19

4.3 PREPARACION DEL ENTORNO

estos ataques.

Finalmente, se han realizado pruebas en maquinas virtuales corriendo en Qemu-
KVM.

4.3 PREPARACION DEL ENTORNO

Para preparar el entorno para la ejecucion de estos ataques, existen dos alterna-
tivas. La primera de ellas consiste en desactivar las mitigaciones del kernel con los
flags nopti y nokaslr en la secuencia de arranque de grub, dejando el sistema sin
las protecciones activadas. Para hacer estos cambios persistentes, existe la posibili-
dad de editar el fichero /etc/default/grub indicandole estos flags, y regenerar el
grub.cfg para que se aplique en todas las secuencias de arranque.

Sin embargo, con el fin de exponer més el kernel a estos ataques, se ha realiza-
do la segunda alternativa, que consiste en realizar un downgrade el kernel a una
version vulnerable, como podria ser la 3.10.0-327.el7.x86_64. Ademads, también se
ha forzado la carga de una versién de microcédigo vulnerable en el arranque, la
version 0x5e.

Una vez realizado esto, la mdquina queda totalmente vulnerable a los todos ata-
ques basados en ejecucion especulativa desde la aparicion de Meltdown y Spectre.

4.4 METRICAS DE EXPERIMENTACION

Para los experimentos realizados en el Capitulo 5, se han definido las siguientes
métricas:

= Rendimiento: Medido en B/s, corresponde a la cantidad de bytes que pue-
den ser extraidos por el ataque. Estos bytes pueden ser correctos o incorrec-
tos, dado que el atacante nunca tendrd una forma de validarlo.

= Tasa de éxito: Se define como tasa de éxito el porcentaje del total de ataques
sobre un mismo byte que han finalizado con éxito. Esto es, que un byte ha
llegado a ser extraido mediante un canal lateral y se ha filtrado al estado
arquitectonico. El byte extraido puede ser correcto o incorrecto.

= Eficacia: Expresa el porcentaje de los bytes que se han extraido que coinciden
con el secreto esperado. Es decir, el total de bytes secretos vélidos que se han
extraido en un ataque completo.

20

EXPERIMENTACION Y ANALISIS

5.1 EXPERIMENTACION

En este capitulo se presentan y analizan los resultados de las diferentes varian-
tes y modificaciones realizadas sobre los Proof-of-Concept(PoC), buscando mejorar
el rendimiento de los ataques lo maximo posible, y estudiando los mecanismos
implicados en estas mejoras.

Debido a la limitacién temporal de un Trabajo de Fin de Grado, el estudio se ha
centrado tinicamente en la validacién de los dos ataques presentados en el Capitu-
lo 3, Meltdown y Spectre, principalmente en la caracterizaciéon de Meltdown.

Los resultados comentados en este capitulo se basan en las 3 métricas definidas
en la Seccion 4.4: rendimiento del ataque en bytes extraidos por segundo, la efi-
cacia del ataque mediante el porcentaje de bytes correctos extraidos (respecto al
secreto original), y el porcentaje de veces que el ataque se ha realizado con éxito
sobre cada byte, es decir, el nimero de veces que ha sido capaz de detectar el byte
en la cache (tasa de éxito).

5.1.1 Flush+Reload

Ciclos de acceso con Flush+Reload sobre probe_array[]

Rpand prefpesseend b aeed e o Nemanged ! -/

2501

= N

u o

o o
| L

n? de ciclos de acceso

=

o

S]
L

50 4

0 50 100 150 200 250
elementos de probe_array[]

Figura 4: Tiempo de acceso (en ciclos) a cada uno de los datos de probe_array medido por
FLUSH+RELOAD.

En el Capitulo 2 se indica que gran parte de los ataques basados en especulacién
hacen uso de Flush+Reload como canal lateral para extraer al estado arquitecténi-
co los secretos. Este ataque de canal lateral permite inferir el secreto robado a
través de la observacién del tiempo de acceso a un array de muestreo del atacan-
te, previamente accedido durante el ataque. La Figura 4 presenta los resultados
de realizar Flush+Reload sobre los 256 bytes del vector de muestreo (probe_array).
Para cada valor del vector, se obtienen los ciclos que ha tardado el dato en estar

21

5.1 EXPERIMENTACION

disponible, tardando 59 ciclos para el byte 84 (caracter "T"), mientras que el resto
se encuentran por encima de los 250 ciclos. Aunque la latencia del dato en L1 se
indique como 59 ciclos, ésta incluye el tiempo de sobrecarga aportado por las ins-
trucciones que realizan el rdtscp, que son aproximadamente entre 45 y 50 ciclos
(en la arquitectura de la maquina testeada).

5.1.2 Llenado de estructuras internas del procesador

Tasa de éxito de Meltdown M1 en base a llenado del pipeline

60

50 A

40 1

% éxito en byte
w
o

N
o
L

10 A

20 40 60 80 100 120 140 160
n? ADDs afiadidos

Figura 5: Tasa de éxito (ataque completado) sobre un byte con distintas configuraciones
de llenado de la ventana de lanzamiento con ADDs antes de la ejecucién de
Meltdown.

Como se comenta en la Subseccion 3.2.2, se ha estudiado el efecto que provo-
ca afiadir diferentes longitudes de cadenas de dependencias antes del ataque. La
Figura 5 representa, en el eje X, el nimero de ADDs dependientes introducidos
antes del ataque. El eje Y representa la mediana de 50 ensayos de la tasa de éxito
del ataque. Cada ensayo intenta extraer un byte del secreto 1000 veces consecutivas.

A la vista de los resultados, la realizacién del ataque aplicando la técnica descri-
ta influye directamente en la cantidad de veces que el ataque es capaz de extraer
el dato. Con cadenas inferiores a 40 instrucciones la tasa de éxito es nula, pues no
consigue leer practicamente ningtin byte. Para cadenas entre 40 y 70 instrucciones,
a medida que se va llenando la estacion de reserva, los resultados mejoran con-
siderablemente, llegando a leer un byte correctamente el 56% de los intentos con
68 ADDs antes del ataque. Para cadenas superiores a este nliimero, este porcentaje
decae un poco y se mantiene constante a ese valor. Sin embargo, en esta gréfica
destacan varios aspectos. El primero de ellos es que ocurre un patrén muy regular,
en la que el ataque funciona mejor con las cadenas que son miltiplos de 4, mien-
tras que en los demds valores decae el resultado. Aunque se han estudiado varias
alternativas capaces de causar de este comportamiento, todavia no se ha podido
validar ninguna de ellas, por lo que se propone como trabajo futuro. El Capitulo 6
detalla en mayor profundidad las posibles causas. Por otro lado, destacan un pico
negativo en el valor 117 asi como una seccién irregular desde 84 hasta 117 ADDs,
descrito en las siguientes secciones.

22

5.1 EXPERIMENTACION

5.1.3 Niimero de intentos por byte

Rendimiento de Meltdown M1 en base a intentos por byte

% acierto

—e— Sin carga de trabajo
—e— Con alta carga de trabajo
L

40 4

T T T T T

20 40 60 80 100
n? intentos por byte

Figura 6: Porcentaje de bytes de la cadena final leidos correctamente en base al nimero de
intentos (probes), sin aislamiento de lectura (NOPs).

En este apartado se intenta caracterizar cudntos intentos son necesarios para te-
ner una buena eficacia en el ataque, y la impacto que tiene una fuerte carga de
trabajo en el sistema en este nimero de intentos.

La Figura 6 representa el porcentaje de bytes leidos correctamente (eje Y) de
una cadena secreta arbitraria de otro proceso en base al nimero de intentos (pro-
bes) realizados sobre cada byte. La linea azul representa las pruebas sin carga de
trabajo, mientras que la roja representa las pruebas con carga de trabajo en todos
los ntcleos del procesador. Todas las pruebas se han realizado con 68 ADDs antes
del ataque, dado que es el valor 6ptimo de tasa de éxito observado en el apartado
anterior.

Sin carga de trabajo, Meltdown M1 extrae correctamente aproximadamente el
55% de la cadena realizando la lectura tan solo una vez. De esta manera, se puede
volcar la memoria de un proceso hasta 30 KB/s. A medida que se aumenta el nt-
mero de lecturas sobre cada byte, la eficacia del ataque aumenta, obteniendo un
100% de acierto a partir de las 10 lecturas por byte a una velocidad de 3 KB/s.

Por otro lado, cuando el procesador estd sometido a una carga de trabajo intensa
la eficacia del ataque se ve afectada, ya que al haber multiples procesos accediendo
a memoria es mds dificil muestrear la cache y detectar el dato que se quiere extraer,
lo que implica en un menor porcentaje de bytes correctos extraidos. Esto es asi es-
pecialmente cuando se realiza un nimero pequefio de intentos sobre cada byte. En
este caso, aumentar el ndmero de intentos no asegura al 100% una mayor eficacia
del ataque, pues sigue existiendo la posibilidad de leer datos basura a causa del
ruido generado por los datos de otros procesos en el muestreo del vector.

23

5.1 EXPERIMENTACION

5.1.4 Precision de Flush+Reload
Tras optimizar el método de temporizaciéon de Flush+Reload (Subseccion 3.2.3),

se han repetido los experimentos realizados en las secciones anteriores, dando
como resultado las Figuras 7 y 8.

Tasa de éxito de Meltdown M1 en base a llenado del pipeline y Flush+Reload mejorado

% éxito en byte
N w B w [« ~
o o o o o o
. " . . : .
T
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
|
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

=
o
L

20 40 60 80 100 120 140 160
n? ADDs afiadidos

Figura 7: Tasa de éxito (ataque completado) sobre un byte con distintas configuraciones
de llenado de la ventana de lanzamiento con ADDs antes de la ejecucién de
Meltdown, con aislamiento de lectura (NOPs).

La Figura 7 corresponde a la Figura 5, pero incluyendo un aislamiento en la tem-
porizacién de la cache al incluir 500 NOPs antes de la realizaciéon del canal lateral
Flush+Reload, junto con el valor 6ptimo de instrucciones encadenadas comenta-
das en el apartado anterior para cada uno de los intentos realizados.

Se puede ver que en las dos figuras se comparte el mismo patrén de funciona-
miento hasta la cadena de 8o ADDs, aunque con una mayor tasa de éxito con esta
optimizacién. A diferencia del experimento anterior, esta figura presenta mayor
regularidad ya que al optimizar la temporizacién de Flush+Reload incluyendo un
numero suficiente de NOPs en el pipeline es posible aislar cada una de las lecturas,
reduciendo el ruido, y aumentando consecuentemente la precision del ataque y el
porcentaje total de ataques llevados a cabo correctamente. Por otro lado, en esta
figura se puede observar un pico negativo en el 49, al igual que aparece en el 117
en la Figura 5. Al igual que ocurre con la tasa de éxito, no se puede asegurar que
a qué se deben estos picos, y no se han podido validar las alternativas propuestas.
El estudio de este comportamiento se deja como trabajo futuro (Capitulo 6).

La Figura 8 corresponde a la Figura 6, pero incluyendo un aislamiento en la tem-
porizacién de la cache al incluir 500 NOPs antes de realizar cada lectura mediante
el canal lateral Flush+Reload. Al optimizar la temporizacién de Flush+Reload se
percibe un aumento considerable en la eficacia del ataque, dado que con sélo 4
intentos lectura, Meltdown M1 es capaz de leer el 100% de los bytes correctamente.
Sin embargo, esta sobrecarga de instrucciones tiene un impacto considerable en la
eficiencia del mismo, siendo capaz de leer datos a una velocidad de 7,6 KB/s.

24

5.1 EXPERIMENTACION

Rendimiento de Meltdown M1 en base a intentos por byte y Flush+Reload mejorado

100 A

80

60 -

% acierto

40 A

20 A

0 T T T T
10 20 30 40 50

n? intentos por byte

Figura 8: Porcentaje de bytes de la cadena final leidos correctamente en base al nimero de
intentos (probes), con aislamiento de lectura (NOPs).

5.1.5 Tabla comparativa de Meltdown y Meltdown M1

1 30804,34 55,66 100
Meltdown M1 5 6253,765 98,11 60
(ADDs) 50 625,705 100 58
100 315,355 100 57
1000 31,81 100 57
1 26071,31 69,81 100
5 5259,05 100 80
(“:;:;giwl:o'\::) 50 529,09 100 72
100 265,03 100 72
1000 26,69 100 71,4
Meltdown Original - 96,796 100 -
Meltdown Original
- 2078,37 100 -
(ADDs)
Meltdown Original
- 4324,49 100 -
(ADDs + nothread)
Meltdown Original
- 2707,2 1 -
(ADDs + NOPs) 07, 00
Meltdown Original
- 5362,08 100 -
(ADDs + NOPs + nothread)

Cuadro 2: Comparacién de resultados en las diferentes variantes de Meltdown

La Tabla 2 resume todos los resultados comentados en las secciones anteriores
de este capitulo. La primera de las variantes de esta tabla es la variante propia
de Meltdown M1, que incluye la cadena de dependencias que llenan las estructu-
ras internas del procesador (Subseccion 3.2.2). El segundo ataque, corresponde al
mismo Meltdown M1, pero incluyendo la mejora que permite aumentar la preci-
sién de Flush+Reload (Subseccién 3.2.3). La entrada clasificada como "Meltdown
Original”, corresponde al c6digo PoC proporcionado por los investigadores [6]. Las
entradas siguientes corresponden a este PoC, pero incluyendo progresivamente las
mejoras desarrolladas en Meltdown M1, como los ADDs (llenado de estructuras)
y los NOPs (optimizacién de temporizacion). Ademas, se incluyen también las va-
riantes que, como se comenta en la Subseccion 3.2.4, eliminan los threads utilizados
por el PoC.

25

5.2 MITIGACIONES

En esta tabla se puede ver que al aplicar las técnicas desarrolladas, Meltdown
M1 con ADDs y NOPs, con 5 intentos es capaz de extraer datos 50 veces mds ré-
pido que la versién original sin optimizaciones, con la misma eficacia del 100%.
Esta mejora también se puede observar en la tltima variante, resultado de aplicar
las mejoras directamente sobre el PoC. Por otro lado, usando Meltdown M1 con 1
intento, es posible conseguir tasas de extraccién de datos muy altas, de entre 26 a
30 KB/s, a cambio de perder parte de la precision en los datos.

Cabe destacar que en el articulo oficial de Meltdown [9], ellos mencionan que
utilizando signal handling, consiguen una eficacia de 103 KB/s, con un error del
0,03% de los datos. Es posible que no se hayan podido alcanzar estos resultados ya
que estos ataques van fuertemente ligados a la micro-arquitectura de la méquina,
y no especifican en cudl de las mdquinas que prueban obtienen estos resultados.

5.1.6 Resultados de la prueba de concepto de Spectre

intentos rendimiento (B/s) eficacia (% bytes correctos)
1 26572,66 90,56
5 5353,92 96,22
10 2675,55 100
15 1784,19 100

Cuadro 3: Resultados de la ejecucion de Spectre

Partiendo del PoC disponible en un gist anénimo [3], se han introducido en el
cédigo las modificaciones necesarias para obtener las métricas de rendimiento y
eficacia para Spectre. La Tabla 3 representa la mediana de 50 ejecuciones de Spectre,
repitiendo el ataque 1, 5, 10 y 15 veces sobre cada byte. Como es de esperar, el
rendimiento es mucho mayor con menos intentos, pudiendo volcar memoria a 26
KB/s en el mejor de los casos. Por otro lado, cuando se aumenta el ntiimero de
intentos, la eficacia aumenta a costa de una ligera caida de rendimiento.

5.2 MITIGACIONES

En esta seccién se comentan los parches oficiales desplegados para mitigar Melt-
down y Spectre, asi como una posible nueva manera de reducir el impacto del
ataque, propuesta en este trabajo.

5.2.1 Kernel

Los dos ataques presentados en esta seccién se aprovechan de dos optimizacio-
nes hechas por el sistema operativo: el mapeo del kernel dentro de un proceso en
espacio de usuario, y a su vez, el mapeo de toda la memoria fisica en el kernel
(Seccion 2.1). Desde hace tiempo, el kernel de Linux dispone de una técnica deno-
minada Kernel Address Space Layout Randomization (KASLR), que en cada arranque
del sistema aleatoriza las direcciones del espacio de direccionamiento del kernel.
Esto permite colocar la direccién base del direct-physical mapping en una direccién
diferente cada vez, pero no es suficiente ya que con unos pocos barridos de memo-
ria, un atacante puede encontrar la nueva direccién base de este mapeo.

26

5.2 MITIGACIONES

Para mitigar estos ataques, Gruss et al. [4] proponen una solucién denominada
KAISER , posteriormente bautizada por el parche como Kernel Page Table Isola-
tion(KPTI), que reduce el mapeo del kernel en espacio de usuario a tinicamente lo
necesario, y elimina el direct-physical mapping del kernel. Este parche es capaz de
mitigar completamente Meltdown, y la parte de Spectre que permite acceder a la
memoria de otros procesos utilizando la misma técnica.

Sin embargo, este parche tiene un impacto considerable en el rendimiento, espe-
cialmente en los escenarios en los que hay multiples llamadas al sistema virtuales
implicadas.

Otra de las mitigaciones proporcionadas por el kernel, es la inclusién de mas-
caras de comprobacién de validez en el indice de un vector, antes de realizar un
acceso. Estas mdscaras bit a bit son capaces de comprobar rapidamente si el valor
con el que se indexa un vector es valido o no. Esto consigue mitigar completamen-
te la variante 1 de Spectre, sin afectar demasiado al rendimiento del procesador.

Tras ejecutar de nuevo Meltdown y Spectre con las mitigaciones del kernel acti-
vadas, la eficacia del ataque se reduce al 0%, ya que es ahora es imposible disponer
del secreto de otro proceso mapeado en el espacio de usuario del atacante.

5.2.2 Firmware

Ala par que las mitigaciones software, se han publicado parches de microcédigo
que actualizan el firmware del procesador, y la forma en la que las instrucciones
son decodificadas en pOPs. Estos parches, principalmente han sido enfocados a la
proteccién de ataques como Spectre V2, Foreshadow y ZombieLoad.

Tras ejecutar Meltdown y Spectre con este parche, el resultado obtenido ha sido
muy similar al de la ejecucién con microcédigo vulnerable. Esto se debe princi-
palmente a que la principal vulnerabilidad que explotan Meltdown y Spectre es
via software. Este resultado es el esperado, dado que este parche va enfocado a
mitigar los ataques que no se han probado en este trabajo.

5.2.3 Paralelismo del procesador

A la vista de los resultados de la Figura 6, en los que tener el sistema con al-
ta carga de trabajo parece aplacar la eficacia del ataque, una posible mitigacién
o contra-medida que se propone en este trabajo es la explotaciéon del paralelismo
del procesador. Si se fuerza al procesador a tener todos los puertos ocupados, las
posibilidades de que la temporizacién del ataque se den de la manera idénea para
que funcione se reducen, ademads del ruido generado en cache que dificulta la de-
teccion del dato robado.

Esta contra-medida no pretende bloquear ni proteger contra el ataque, pero po-
dria reducir los dafios provocados sin sufrir las impactos de las mitigaciones ante-
riores.

27

5.3 IMPACTO DE LAS MITIGACIONES

5.3 IMPACTO DE LAS MITIGACIONES

Para finalizar la fase de experimentacién, con el fin de medir el impacto que
tienen en el rendimiento del sistema los parches desplegados para mitigar estos
ataques, se ha hecho uso de la herramienta stress-ng (Seccién 4.2) para ejecutar los
diferentes benchmarks. Estas pruebas tienen como objetivo caracterizar la pérdida
de rendimiento que supone tener activadas la mitigaciones de la Seccion 5.2.

Para la primera de las pruebas se valorard como afectan estas mitigaciones al
rendimiento en aplicaciones intensivas en calculo. La Tabla 4 indica el rendimien-
to del procesador, en instrucciones por ciclo (IPC) para los diferentes estados de
proteccion del sistema.

benchmark - CPU Vulnerable Parche microcodigo Parche kernel Ambos parches
IPC obtenido 1,267 1,27 1,26 1,265

Cuadro 4: Resultados del benchmark de CPU en célculo

En este caso, ninguno de los parches provoca una caida de rendimiento notable
en el procesador.

Para la siguiente prueba, se estudiard como afectan las mitigaciones, especial-
mente el KPTI, a la ejecucion de las llamadas al sistema como getclock, gettimeof-
day o getpid. Dado que el KPTI elimina la caracteristica de mapeo de kernel en
espacio de usuario, se espera que el rendimiento en esta prueba se vea afectado
considerablemente.

benchmark - Syscall Vulnerable Parche microcodigo Parche kernel Ambos parches
IPC obtenido 0,736 0,734 0,243 0,243

Cuadro 5: Resultados del benchmark de CPU en llamadas al sistema

Como se puede ver en la Tabla 5, el impacto que sufre el rendimiento en el uso
de estas llamadas al sistema a raiz de esta mitigacién es considerable.

28

CONCLUSIONES Y TRABAJO FUTURO

6.1 CONCLUSIONES

La cantidad y la importancia de la informacién que procesamos con computado-
ras requiere garantizar su seguridad y confidencialidad. Estudiar el cumplimiento
de estas propiedades es arduo debido a la gran complejidad de los computadores.
Este TFG analiza varios ataques especulativos a procesadores para poder reprodu-
cir su comportamiento, y ha requerido un profundo estudio previo de todos los
mecanismos implicados en el funcionamiento de los procesadores asi como los ata-
ques mismos, ademads de la anterior preparacién de un entorno vulnerable en que
puedan ser reproducidos. Para facilitar la comprensién de los ataques, este TFG
agrupa buena parte de la literatura reciente sobre los mismos y aporta una sencilla
taxonomia sobre ellos.

Tras la puesta en marcha del entorno experimental, se han comprendido varios
ataques en profundidad lo que ha permitido caracterizar y mejorar una implemen-
tacién del ataque Meltdown. Estas mejoras permiten al ataque rendir del orden de
50 veces mds rapido con la misma eficacia, gracias al aumento de la tasa de éxito
proporcionado por otra de las mejoras propuestas. Las mejoras estdn orientadas
a asegurar que las instrucciones especulativas que roban la informacién se ejecu-
ten lo antes posible y que la excepcién que producen ocurra lo mds tarde posible.
Ademads, este trabajo vislumbra la posibilidad de otra mitigacién basada en la ex-
plotacién del paralelismo del procesador, rompiendo la temporizaciéon del ataque
y reduciendo asi su impacto.

6.2 TRABAJO FUTURO

En la Seccién 5.1, se comenta la existencia de comportamientos que afectan ne-
gativamente al ataque, pero no estd claro el por qué debido a la gran complejidad
del procesador y la falta de documentacién sobre ellos. Una de las hipétesis que se
baraja es que el ataque es muy dependiente de la alineacién de los paquetes que
salen del ROB y su planificacioén en los puertos, que podria coincidir con los picos
de sierra cada 4 ADDs. Observar mds de cerca este comportamiento esta fuera del
alcance de este TFG y se estudiara con posterioridad asi como la experimentacién
con otros ataques similares y el disefio de arquitecturas seguras por construccién
que sigan permitiendo la especulacion.

29

BIBLIOGRAFIA

[1]

[2]

(3]

(4]

(5]

[6]

[7]

[8]

[9]

[13]

ARM. (2018). Vulnerability of Speculative Processors to Cache Timing Side-
Channel Mechanism, direccién: https://developer.arm.com/support/arm-
security-updates/speculative-processor-vulnerability.

I. Anati, S. Gueron, S. Johnson y V. Scarlata, «Innovative technology for CPU
based attestation and sealing», en Proceedings of the 2nd international workshop
on hardware and architectural support for security and privacy, ACM New York,
NY, USA, vol. 13, 2013.

Anonymous. (2018). The proof-of-concept code for "Spectre Attacks: Exploi-
ting Speculative Execution”., direcciéon: https://gist.github.com/anonymous/
99a72c9c1003f8ae0707b4927eclbd8a.

D. Gruss, M. Lipp, M. Schwarz, R. Fellner, C. Maurice y S. Mangard, «KASLR
is Dead: Long Live KASLR», en Engineering Secure Software and Systems, E.
Bodden, M. Payer y E. Athanasopoulos, eds., Springer International Publis-
hing, 2017, pags. 161-176.

J. L. Hennessy y D. A. Patterson, Computer architecture: a quantitative approach.
Elsevier, 2011.

IAIK. (2018). Meltdown Proof-of-Concept, direccién: https://github.com/
IAIK/meltdown.

IBM. (2018). Potential Impact on Processors in the POWER Family, direccién:
https://www.ibm.com/blogs/psirt/potential-impact-processors-power-
family/.

P. Kocher, J. Horn, A. Fogh y col., «Spectre Attacks: Exploiting Speculative
Execution», en goth IEEE Symposium on Security and Privacy (S&P’19), 2019.

M. Lipp, M. Schwarz, D. Gruss y col., «Meltdown: Reading Kernel Memory
from User Space», en 27th USENIX Security Symposium (USENIX Security 18),
2018.

M. Schwarz, M. Lipp, D. Moghimi, J. Van Bulck, J. Stecklina, T. Prescher
y D. Gruss, «ZombieLoad: Cross-Privilege-Boundary Data Sampling», ar-
Xiv:1905.05726, 2019.

R. M. Tomasulo, «An efficient algorithm for exploiting multiple arithmetic
units», IBM JOURNAL OF RESEARCH AND DEVELOPMENT, 1967.

J. Van Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci, F. Piessens, M.
Silberstein, T. F. Wenisch, Y. Yarom y R. Strackx, «Foreshadow: Extracting the
Keys to the Intel SGX Kingdom with Transient Out-of-Order Execution», en
Proceedings of the 27th USENIX Security Symposium, See also technical report
Foreshadow-NG [13], USENIX Association, 2018.

O. Weisse, J. Van Bulck, M. Minkin, D. Genkin, B. Kasikci, F. Piessens, M. Sil-
berstein, R. Strackx, T. F. Wenisch e Y. Yarom, «Foreshadow-NG: Breaking the
Virtual Memory Abstraction with Transient Out-of-Order Execution», Techni-
cal report, 2018, See also USENIX Security paper Foreshadow [12].

30

https://developer.arm.com/support/arm-security-updates/speculative-processor-vulnerability
https://developer.arm.com/support/arm-security-updates/speculative-processor-vulnerability
https://gist.github.com/anonymous/99a72c9c1003f8ae0707b4927ec1bd8a
https://gist.github.com/anonymous/99a72c9c1003f8ae0707b4927ec1bd8a
https://github.com/IAIK/meltdown
https://github.com/IAIK/meltdown
https://www.ibm.com/blogs/psirt/potential-impact-processors-power-family/
https://www.ibm.com/blogs/psirt/potential-impact-processors-power-family/

[14]

[15]

Bibliografia

Y. Yarom y K. Falkner, «<FLUSH+RELOAD: A High Resolution, Low Noise,
L3 Cache Side-channel Attack», en Proceedings of the 23rd USENIX Conference
on Security Symposium, ép. SEC'14, USENIX Association, 2014, pags. 719-732.
P. aka @trufae. (). Radare: The Unix-Friendly Framework for Reverse Engi-
neering, direccion: https://www.radare.org/n/.

31

https://www.radare.org/n/

	Abstract
	Índice general
	Índice de figuras
	Índice de cuadros
	Listings
	1 Introducción
	1.1 Motivación
	1.2 Objetivos
	1.3 Alcance
	1.4 Descripción del documento

	2 Estado del arte
	2.1 Mapa de memoria del Sistema Operativo
	2.2 Micro-arquitectura de un procesador moderno
	2.2.1 Ejecución fuera de orden (Out-of-order execution)
	2.2.2 Predictor de saltos
	2.2.3 Tratamiento de excepciones

	2.3 Ataques de canal lateral
	2.4 Ataques basados en especulación
	2.4.1 Flush+Reload
	2.4.2 Meltdown
	2.4.3 Spectre
	2.4.4 Foreshadow
	2.4.5 ZombieLoad

	2.5 Taxonomía

	3 Meltdown y Spectre
	3.1 Meltdown
	3.1.1 Obtención de la dirección de memoria del secreto
	3.1.2 Preparación del canal lateral
	3.1.3 Fases del ataque Meltdown
	3.1.4 Tratamiento de la excepción

	3.2 Estudio y caracterización de Meltdown
	3.2.1 Meltdown M1
	3.2.2 Llenado de estructuras internas del procesador
	3.2.3 Optimización de la temporización de Flush+Reload
	3.2.4 Aplicación de estas variaciones sobre el ataque original

	3.3 Spectre
	3.3.1 Preparación del ataque y el canal lateral
	3.3.2 Fases del ataque

	4 Metodología
	4.1 Plataforma
	4.2 Herramientas
	4.3 Preparación del entorno
	4.4 Métricas de experimentación

	5 Experimentación y análisis
	5.1 Experimentación
	5.1.1 Flush+Reload
	5.1.2 Llenado de estructuras internas del procesador
	5.1.3 Número de intentos por byte
	5.1.4 Precisión de Flush+Reload
	5.1.5 Tabla comparativa de Meltdown y Meltdown M1
	5.1.6 Resultados de la prueba de concepto de Spectre

	5.2 Mitigaciones
	5.2.1 Kernel
	5.2.2 Firmware
	5.2.3 Paralelismo del procesador

	5.3 Impacto de las mitigaciones

	6 Conclusiones y trabajo futuro
	6.1 Conclusiones
	6.2 Trabajo futuro

	Bibliografía
	A Anexos
	A.1 Tabla de horas dedicadas
	A.2 Diagrama de Gantt del proyecto
	A.3 Micro-arquitectura de Kaby Lake H
	A.4 Código de Meltdown M1
	A.5 Código de la víctima utilizada para las pruebas de Meltdown y Spectre

