
Trabajo Fin de Grado

Análisis de vulnerabilidades
hardware basadas en la ejecución

especulativa

Analysis of hardware vulnerabilities based
on speculative execution

autor

Miguel Santiago Moniente Pannocchia

directores

Rubén Gran Tejero
Darío Suárez Gracia

escuela de ingeniería y arquitectura
2019



R E S U M E N

Hoy en día, prácticamente la totalidad de los datos son procesados por un
computador, siendo de vital importancia asegurar su integridad y confidenciali-
dad. Dado que el valor de estos datos es muy elevado, los ataques informáticos
que buscan extraerlos se han vuelto cada vez más frecuentes.

Como causa de este interés por la extracción de datos y el aumento en la segu-
ridad de los sistemas, cada vez se deben desarrollar técnicas más complejas para
conseguir comprometer estos datos. Durante un tiempo, la mayor parte de estos
ataques estaban enfocados en las vulnerabilidades presentes en el software, tanto
aplicaciones o sistemas operativos. Sin embargo, en los últimos dos años han apare-
cido ataques hardware cuyo objetivo es la implementación (micro-arquitectura) de
los procesadores, y que comprometen la integridad de todos los niveles superiores
[8-10, 12, 13].

Este trabajo se centra en el estudio de estos últimos, abriendo un nuevo foco de
investigación en un ámbito de información limitada a causa de su novedad y la
falta de documentación por parte de los fabricantes. Por este motivo, gran parte
de este trabajo fin de grado se ha dedicado al estudio en detalle de estos ataques,
su clasificación y sus implicaciones, en un constante esfuerzo para mantenerse al
día con los últimos ataques publicados este mismo año.

Para el estudio de estos ataques, ha sido necesaria la preparación de una pla-
taforma vulnerable para la experimentación. Se ha aprovechado esta plataforma
para estudiar en detalle los ataques Meltdown [9] y Spectre [8]. Como fruto de
este estudio, se ha podido mejorar el rendimiento de Meltdown a través de la in-
troducción de 2 mejoras en el código fuente del ataque, obteniendo una tasa de
extracción 50 veces mayor que en su versión original. Por otro lado, este estudio
ha permitido proponer una posible mitigación nueva del mismo, reduciendo la
eficacia del ataque.

ii



Í N D I C E G E N E R A L

1 introducción 1
1.1 Motivación . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Objetivos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Alcance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Descripción del documento . . . . . . . . . . . . . . . . . . . . . . . . 2

2 estado del arte 4
2.1 Mapa de memoria del Sistema Operativo . . . . . . . . . . . . . . . . 4
2.2 Micro-arquitectura de un procesador moderno . . . . . . . . . . . . . 5

2.2.1 Ejecución fuera de orden (Out-of-order execution) . . . . . . 5
2.2.2 Predictor de saltos . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2.3 Tratamiento de excepciones . . . . . . . . . . . . . . . . . . . . 6

2.3 Ataques de canal lateral . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4 Ataques basados en especulación . . . . . . . . . . . . . . . . . . . . . 7

2.4.1 Flush+Reload . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4.2 Meltdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4.3 Spectre . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4.4 Foreshadow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4.5 ZombieLoad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.5 Taxonomía . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3 meltdown y spectre 12

3.1 Meltdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.1.1 Obtención de la dirección de memoria del secreto . . . . . . . 12
3.1.2 Preparación del canal lateral . . . . . . . . . . . . . . . . . . . 12
3.1.3 Fases del ataque Meltdown . . . . . . . . . . . . . . . . . . . . 13
3.1.4 Tratamiento de la excepción . . . . . . . . . . . . . . . . . . . . 14

3.2 Estudio y caracterización de Meltdown . . . . . . . . . . . . . . . . . 15
3.2.1 Meltdown M1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2.2 Llenado de estructuras internas del procesador . . . . . . . . 15
3.2.3 Optimización de la temporización de Flush+Reload . . . . . . 16
3.2.4 Aplicación de estas variaciones sobre el ataque original . . . 16

3.3 Spectre . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3.1 Preparación del ataque y el canal lateral . . . . . . . . . . . . 16
3.3.2 Fases del ataque . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4 metodología 19
4.1 Plataforma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2 Herramientas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.3 Preparación del entorno . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.4 Métricas de experimentación . . . . . . . . . . . . . . . . . . . . . . . 20

5 experimentación y análisis 21
5.1 Experimentación . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5.1.1 Flush+Reload . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.1.2 Llenado de estructuras internas del procesador . . . . . . . . 22
5.1.3 Número de intentos por byte . . . . . . . . . . . . . . . . . . . 23
5.1.4 Precisión de Flush+Reload . . . . . . . . . . . . . . . . . . . . 24
5.1.5 Tabla comparativa de Meltdown y Meltdown M1 . . . . . . . 25
5.1.6 Resultados de la prueba de concepto de Spectre . . . . . . . . 26

iii



5.2 Mitigaciones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.2.1 Kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.2.2 Firmware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.2.3 Paralelismo del procesador . . . . . . . . . . . . . . . . . . . . 27

5.3 Impacto de las mitigaciones . . . . . . . . . . . . . . . . . . . . . . . . 28
6 conclusiones y trabajo futuro 29

6.1 Conclusiones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6.2 Trabajo futuro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

bibliografía 30
a anexos 32

a.1 Tabla de horas dedicadas . . . . . . . . . . . . . . . . . . . . . . . . . 32
a.2 Diagrama de Gantt del proyecto . . . . . . . . . . . . . . . . . . . . . 32
a.3 Micro-arquitectura de Kaby Lake H . . . . . . . . . . . . . . . . . . . 33
a.4 Código de Meltdown M1 . . . . . . . . . . . . . . . . . . . . . . . . . 34
a.5 Código de la víctima utilizada para las pruebas de Meltdown y Spectre 39

Í N D I C E D E F I G U R A S

Figura 1 Taxonomía de ataques especulativos . . . . . . . . . . . . . . 11
Figura 2 Diagrama de funcionamiento de Meltdown . . . . . . . . . . 13
Figura 3 Código de Meltdown con cadena de dependencias . . . . . . 15
Figura 4 Tiempo de acceso (en ciclos) a cada uno de los datos de

probe_array medido por Flush+Reload. . . . . . . . . . . . . 21
Figura 5 Tasa de éxito (ataque completado) sobre un byte con distin-

tas configuraciones de llenado de la ventana de lanzamiento
con ADDs antes de la ejecución de Meltdown. . . . . . . . . 22

Figura 6 Porcentaje de bytes de la cadena final leídos correctamente
en base al número de intentos (probes), sin aislamiento de
lectura (NOPs). . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Figura 7 Tasa de éxito (ataque completado) sobre un byte con dis-
tintas configuraciones de llenado de la ventana de lanza-
miento con ADDs antes de la ejecución de Meltdown, con
aislamiento de lectura (NOPs). . . . . . . . . . . . . . . . . . 24

Figura 8 Porcentaje de bytes de la cadena final leídos correctamente
en base al número de intentos (probes), con aislamiento de
lectura (NOPs). . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Figura 9 Diagrama de Gantt . . . . . . . . . . . . . . . . . . . . . . . . 32
Figura 10 Micro-arquitectura de la familia Kaby Lake (Skylake) . . . . 33

Í N D I C E D E C U A D R O S

iv



Cuadro 1 Resumen de características de los ataques basados en espe-
culación estudiados . . . . . . . . . . . . . . . . . . . . . . . . 11

Cuadro 2 Comparación de resultados en las diferentes variantes de
Meltdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Cuadro 3 Resultados de la ejecución de Spectre . . . . . . . . . . . . . 26
Cuadro 4 Resultados del benchmark de CPU en cálculo . . . . . . . . . 28
Cuadro 5 Resultados del benchmark de CPU en llamadas al sistema . . 28
Cuadro 6 Horas dedicadas al proyecto . . . . . . . . . . . . . . . . . . . 32

L I S T I N G S

Listado 1 Ejemplo de especulación . . . . . . . . . . . . . . . . . . . . . 6
Listado 2 Fragmento de código de Meltdown que realiza el robo de

información . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Listado 3 Spectre Variant 1 . . . . . . . . . . . . . . . . . . . . . . . . . . 17

A C R Ó N I M O S

PoC Proof-of-Concept

CPU Central Processing Unit (Unidad Central de Proceso)

SO Sistema Operativo

ROB Reorder Buffer

ILP Instruction-Level Parallelism (Paralelismo a nivel de instrucción)

ALU Arithmetic Logic Unit (Unidad aritmético-lógica)

LLC Last-Level Cache

TSX Transactional Synchronization eXtensions

TSC Time-Stamp Counter

CDB Common Data Bus

BTB Branch Target Buffer

TLB Translation-Lookaside Buffer

IPC Instrucciones por ciclo

KPTI Kernel Page Table Isolation

SGX Software Guard eXtensions

KASLR Kernel Adress Space Layout Randomization

v



G L O S A R I O

Arquitectura Conjunto de reglas que debe conocer el programador para programar
un computador. Eso es la ISA, mapa de memoria, gestión de interrupcio-
nes, etc.

Especulación Deducción que realiza el procesador cuando no tiene plena certeza
del futuro comportamiento de una instrucción. Puede fallar o acertar.

Estado micro-arquitectónico Estado almacenado en estructuras de almacenamien-
to interno del procesador que no son visibles al programador. Por ejemplo.
caches, predictores de salto, fill-buffers...

Estado arquitectónico Estado almacenado en estructuras de almacenamiento que
son visibles al programador, como los registros y la memoria..

Micro-arquitectura Diseño interno de un procesador. También llamado organiza-
ción de un computador.

Predicción Deducción que realiza el procesador cuando tiene plenza certeza del
futuro comportamiento de una instrucción. Siempre acierta.

vi



1
I N T R O D U C C I Ó N

1.1 motivación

En los últimos años, gran parte de los ataques informáticos se han centrado en
encontrar y explotar vulnerabilidades en el software que permitan a los atacantes
acceder a información sensible, escalado de privilegios e incluso el control total
de la máquina. Estos ataques, por lo general, pueden ser mitigados a través de
actualizaciones de la aplicación o del Sistema Operativo sin afectar demasiado
al rendimiento. Sin embargo, recientemente se han desarrollado ataques capaces
de aprovechar el diseño (micro-arquitectura) de algunos de los mecanismos que
mejoran el rendimiento de los procesadores modernos para extraer información
sensible sin dejar ninguna traza en el sistema [8-10, 12, 13]. Los procesadores afec-
tados van desde los ARM Cortex [1] presentes en la gran mayoría de los teléfonos
móviles hasta la familia de CPUs POWER8 [7] en todos los IBM Power Systems,
afectando también a toda la gama de procesadores utilizados en ordenadores per-
sonales.

Estos ataques a nivel micro-arquitectónico en procesadores son especialmente
peligrosos ya que es muy difícil su solución vía software, y cuando es posible, la
penalización en el rendimiento es reseñable. Además, dado que la vulnerabilidad
se encuentra en el nivel más bajo del computador, algunos de estos ataques son
capaces de romper barreras de aislamiento como la virtualización o las Software
Guard eXtensions (SGX) de Intel [2]. Esto es especialmente importante en las infra-
estructuras cloud, en las que la confidencialidad de una máquina virtual se puede
ver comprometida por máquinas virtuales ajenas funcionando sobre el mismo hard-
ware.

Debido a su criticidad, es muy importante entender estos ataques y sus contra-
medidas. Solo así se podrán proponer micro-arquitecturas más robustas y mejorar
las contra-medidas ante futuros ataques de este tipo.

1.2 objetivos

El principal objetivo de este trabajo es estudiar, analizar y clasificar algunos
de los ataques basados en especulación más importantes, entre ellos Meltdown
[9], Spectre [8], Foreshadow [12, 13] o ZombieLoad [10], así como caracterizar y
comprender mejor alguno de ellos. Por otro lado, este trabajo busca profundizar en
el estudio de los factores implicados para que estos ataques funcionen, tanto desde
el punto de vista del hardware (micro-arquitectura y arquitectura) como desde el
punto de vista del software (características del Sistema Operativo, uso de bibliotecas
compartidas o análisis de binarios vulnerables mediante reverse-engineering).

1



1.3 alcance 2

1.3 alcance

Para la realización de este trabajo se parte de una base de conocimientos adquiri-
dos en el grado que no ha sido suficiente para cubrir la complejidad presentada en
éste, lo que implica una gran fase de estudio e investigación en diversos ámbitos
antes de poder comenzar la fase de experimentación. Este estudio ha compren-
dido extender conceptos de administración de sistemas y seguridad informática,
así como la necesidad de asimilar conceptos avanzados de las asignaturas de sis-
temas operativos, procesadores comerciales, multiprocesadores y arquitectura y
organización de computadores, todo ello aplicado en ámbitos virtualizados y no-
virtualizados.

La consecución de los objetivos requiere, en primer lugar, realizar un profundo
estudio de los ataques y todos los mecanismos explotados por éstos para compren-
der su funcionamiento. Esto implica comprender en gran detalle aspectos como
la micro-arquitectura y la arquitectura del procesador en el que se realizarán las
pruebas. En este caso, los experimentos serán realizados sobre un Intel i7-7700
(Kaby Lake H), por lo que es imprescindible comprender su pipeline de ejecución
de instrucciones, jerarquía de memoria y estructuras de almacenamiento interno
del procesador. Al mismo tiempo, también es necesario estudiar las características
software que son aprovechadas por los ataques, como el mapeo directo de memoria
física en espacio de kernel, el uso de bibliotecas enlazadas dinámicamente (mapea-
das entre varios usuarios y el SO), y la posibilidad de analizar binarios con el fin
de encontrar secciones de código vulnerables.

Una vez alcanzados los conocimientos necesarios para comenzar a experimentar,
se ha preparado una máquina con un entorno controlado en el que poder realizar
las pruebas de dichos ataques. Dado que para la mayoría de estos ataques ya se
han desplegado parches de microcódigo y actualizaciones del kernel Linux, es im-
prescindible realizar un downgrade tanto de kernel como del parche de microcódigo
a una versión vulnerable contra estos ataques.

Tras esto, se ha analizado el comportamiento de los Proof-of-Concept (PoC) apor-
tados en los artículos originales y obtenido resultados experimentales de varios de
los ataques presentados. Posteriormente, se ha programado una versión funcional
de Meltdown desde cero, con el fin de estudiar en más detalle los mecanismos
implicados en su funcionamiento. A partir de este código, junto con el estudio
realizado sobre la micro-arquitectura del procesador, se ha conseguido mejorar la
eficiencia del ataque con respecto a la versión original analizando los elementos
críticos y experimentando con diferentes configuraciones, lo que a su vez permite
proponer nuevas mitigaciones.

1.4 descripción del documento

En el Capítulo 2 se describen los factores del procesador que hacen posible es-
tos ataques, tanto desde el punto de vista de la arquitectura (Sección 2.1) como
desde el de la micro-arquitectura (Sección 2.2). En este capítulo también se pre-
sentan los diferentes ataques estudiados (Sección 2.4) y se propone una taxonomía
(Sección 2.5). En el Capítulo 3 se ahonda en los ataques Meltdown (Sección 3.1) y
Spectre (Sección 3.3). En el Capítulo 4, se describe la metodología de trabajo y la



1.4 descripción del documento 3

preparación de la plataforma (Sección 4.1) y herramientas (Sección 4.2). En el
Capítulo 5 se presentan las pruebas realizadas y los resultados obtenidos, así como
las mejoras realizadas sobre el ataque Meltdown. Finalmente, en el Capítulo 6 se
presentan las conclusiones y el posible trabajo futuro de este trabajo.



2
E S TA D O D E L A RT E

2.1 mapa de memoria del sistema operativo

En este apartado se expone el mecanismo de mapeo de memoria que utilizan
los sistemas operativos modernos para la gestión paginada de memoria. Este me-
canismo es fundamental para los ataques objeto de este trabajo.

Con la necesidad de implementar multi-tarea y multi-usuario en los sistemas
operativos, se ideó el concepto de memoria virtual paginada, una característica
que permite la división del espacio de direccionamiento virtual (o lógico) de los
programas en fragmentos más pequeños y manejables denominados páginas. A
su vez, toda la memoria física de un computador es dividida en fragmentos del
mismo tamaño que las páginas, llamados marcos de página, que albergarán en su
interior las páginas pertenecientes a los procesos.

En la creación de un proceso, el sistema operativo buscará marcos de páginas
libres y les asignará las páginas del proceso, anotando esta asociación en una tabla
de páginas propia del mismo proceso. Asimismo, en Linux, el sistema operativo
provee para cada uno de los procesos, un interfaz que contiene la información de
la tabla de páginas del mismo, ubicada en /proc/self/pagemap.

Cada proceso tiene un espacio de direccionamiento lógico (o virtual), en el que el
proceso cree que se ejecuta en solitario en un sistema con toda la memoria virtual
que puede direccionar. Puesto que es imposible tener un sistema con suficiente
memoria física como para mapear el espacio virtual de todos los procesos que se
ejecutan, es necesario que en memoria física, solo se alberguen algunas páginas
lógicas (las más usadas). Para acceder a estas páginas, existe un mecanismo de
traducción de direcciones virtuales a físicas, el Translation-Lookaside Buffer (TLB).

Con el fin de optimizar algunas llamadas al sistema, dentro del espacio lógico
del proceso se encuentra mapeado el propio kernel, de este modo las llamadas al
sistema ahorran cambios de contexto y vaciados del TLB. Estas páginas del kernel
mapeadas en el espacio de memoria del proceso, son protegidas con los permisos
de acceso presentes en la tabla de páginas.

Una de las tareas del kernel es gestionar el movimiento de marcos de página
entre memoria principal y almacenamiento no volátil. Así pues, el kernel es el en-
cargado de cargar en memoria las páginas de cada uno de los procesos. Para llevar
a cabo esta labor, el kernel, en su espacio de direccionamiento, tiene mapeada to-
da la memoria física del computador a partir de un cierto offset, que por defecto
es la dirección 0xffff880000000000. Esto es lo que se conoce como direct-physical
mapping.

4



2.2 micro-arquitectura de un procesador moderno 5

2.2 micro-arquitectura de un procesador moderno

Los procesadores de hoy en día llevan una serie de mecanismos hardware que
permiten acelerar la ejecución de las instrucciones, permitiendo así un mayor ren-
dimiento en instrucciones por ciclo.

A continuación se detalla el funcionamiento de algunos de estos mecanismos
que fundamentan los ataques presentados.

2.2.1 Ejecución fuera de orden (Out-of-order execution)

La ejecución fuera de orden es la capacidad del procesador para ejecutar ins-
trucciones en un orden distinto al orden secuencial descrito por el programador,
permitiendo romper la dependencia de control implícita entre instrucciones (se-
cuencialidad). De este modo, un procesador superescalar (que es capaz de lanzar
a ejecución múltiples instrucciones en un mismo ciclo) puede aprovechar en ma-
yor medida el paralelismo a nivel de instrucción presente en los programas. El
paralelismo a nivel de instrucción de un programa (Instruction-Level Parallelism o
ILP) corresponde al número de instrucciones que pueden ser ejecutadas en para-
lelo. Dos instrucciones pueden ser ejecutadas en paralelo siempre y cuando sean
independientes, es decir, que no existe una dependencia de datos entre ellas. Estas
dependencias entre instrucciones pueden ser: RAW (read-after-write), WAR (write-
after-read) y WAW (write-after-write) [5].

Con el fin de explotar al máximo el ILP, es necesario eliminar las dependencias
existentes entre las instrucciones de un programa. Para ello, en 1967 Tomasulo
propuso un algoritmo [11] capaz de eliminar las dependencias WAR y WAW (o de-
pendencias falsas), quedando únicamente las dependencias RAW (o dependencias
verdaderas).

Dado que se desea maximizar el ILP explotado aún cuando existen dependen-
cias verdaderas, los procesadores hacen uso de diversas técnicas para exponer más
ILP. Muchas de estas técnicas se basan en la predicción del comportamiento de
una cierta instrucción del programa, y de este modo poder explotar el ILP presente
en el programa más allá de dicha instrucción. En este trabajo, se habla de predic-
ción cuando se tiene plena certeza del futuro comportamiento de la instrucción.
Un ejemplo de ésta sería la predicción de latencia de ejecución de instrucciones
de latencia constante (operaciones de ALU). Por otro lado, cuando no existe plena
certeza se habla de especulación, la cual será acierto o fallo dependiendo de la
coincidencia del comportamiento observado con el comportamiento predicho. Es-
to ocurre, por ejemplo, con la predicción de latencia en instrucciones de latencia
variable como el load.

2.2.2 Predictor de saltos

Otra optimización micro-arquitectónica añade estructuras para la predicción del
comportamiento de instrucciones de salto: dirección destino de salto y decisión
sobre tomar o no tomar el salto. Estas estructuras se conocen como predictores de
saltos, y su objetivo es realizar una predicción o especulación cada vez que aparece



2.2 micro-arquitectura de un procesador moderno 6

un salto en el programa.

En el caso de los retornos de subrutina, las direcciones destino de salto suelen
ser bien conocidas con anterioridad. Para estas instrucciones un sencillo predictor
puede ser capaz de acertar siempre la dirección de la siguiente instrucción a ejecu-
tar.

Por otro lado, cuando la decisión de tomar el salto o no depende de una ins-
trucción de salto condicional, el procesador debe especular con el futuro compor-
tamiento de dicha instrucción de salto para poder seguir extrayendo ILP más allá
de dicha instrucción (Subsección 2.2.1). De esta manera, el procesador decidirá si
el salto es tomado o no, y continuará la ejecución del flujo elegido de manera espe-
culativa, sin esperar a que la condición se resuelva. Una vez resuelta la condición,
si el flujo de ejecución tomado era el correcto, la ejecución continuará desde ese
punto. De lo contrario, se hará un rollback de todas las instrucciones ejecutadas y
se continuará por el otro flujo.

Esta decisión será tomada basándose en los comportamientos anteriores para
dicha instrucción, haciendo uso de técnicas que combinan estos comportamien-
tos almacenados en estructuras de almacenamiento interno como el Branch Target
Buffer (BTB), que indexa la predicción con los bits de menor peso del contador de
programa.

En el ejemplo del Listado 1, cuando llega el salto condicional jne, el procesa-
dor debe decir, en base a ejecuciones anteriores, si seguir ejecutando la resta (sub,
línea 4) posterior, o la suma (add, línea 6) en la dirección del salto. En ambos ca-
sos, el procesador está calculando en base a una suposición, siendo una ejecución
especulativa.

1 add ...
2 cmp ...
3 jne eti0
4 sub
5 eti0:
6 add ...

Listado 1: Ejemplo de especulación

2.2.3 Tratamiento de excepciones

La ejecución fuera de orden permite mejorar el rendimiento del procesador a
base de exponer un mayor ILP, pero existe la posibilidad de que ocurra una excep-
ción (fallo de página, instrucción ilegal, etc.) mientras instrucciones posteriores ya
se encuentran en ejecución o han sido ejecutadas, que deben ser revertidas.

En todos los procesadores con posibilidad de ejecutar instrucciones fuera de
orden se hace uso de una estructura comúnmente llamada Reorder Buffer (ROB).
Dicha estructura mantiene las instrucciones con el mismo orden con el que llega-
ron al pipeline del procesador, es decir, en orden de programa. En la fase del pipeline
de retirement se utilizará esta estructura para retirar la instrucción mas vieja, y así,
permitir que el estado arquitectónico modificado por esa instrucción sea visible.



2.3 ataques de canal lateral 7

Así pues, para que una instrucción pueda ser retirada, deben haberse retirado to-
das aquellas instrucciones que son anteriores (más viejas) en el orden de programa.

Los mecanismos para tratamiento de una excepción y los mecanismos para el
rollback de una especulación fallida hacen uso del ROB para asegurar un estado
arquitectónico correcto. Así pues, si una instrucción provoca una excepción, será
marcada en su entrada del ROB y cuando llegue el momento de ser retirada, se
invalidarán todas las instrucciones posteriores a ésta. Aunque la ejecución de una
instrucción no modifique el estado arquitectónico, las modificaciones realizadas en
el estado micro-arquitectónico persistirán y serán visibles.

2.3 ataques de canal lateral

De manera sucinta, los ataques de canal lateral son un tipo de ataques capaces de
inferir información de la víctima a través de la monitorización de canales en el sis-
tema atacado. Es decir, requieren conocer en profundidad la implementación física
del hardware. Por ejemplo, en procesadores es conocido que el consumo depende
de los datos de entrada y de las operaciones realizadas, por lo tanto mediante su
observación se puede determinar si, por ejemplo, un algoritmo criptográfico está
operando con un 1 o un 0 y en qué fase está.

Para este TFG se han estudiado ataques de canal lateral que emplean las estructu-
ras micro-arquitectónicas del procesador como el predictor de saltos o la memoria
cache para robar información, ya que la ejecución especulativa no es vista por el
usuario pero si por dichas estructuras. Además de ataques de canal lateral basados
en especulación, también hay electromagnéticos, acústicos, . . .

2.4 ataques basados en especulación

En esta sección se presentan los ataques estudiados para este trabajo, destacando
las características principales de cada uno de ellos para posteriormente proponer
una posible taxonomía de éstos.

2.4.1 Flush+Reload

El primero de estos ataques, aunque no es un ataque basado en la ejecución espe-
culativa, tiene especial importancia para los siguientes ataques presentados, ya que
es utilizado para extraer los secretos robados desde el estado micro-arquitectónico
al estado arquitectónico y concluir el ataque.

Flush+Reload [14] es un ataque de canal lateral que permite inferir el comporta-
miento del programa atacado a través de la monitorización del tiempo de acceso a
una dirección de memoria compartida entre ambos. Un caso de uso de este ataque
sería, por ejemplo, el uso de bibliotecas compartidas entre la víctima y el atacante.

Para realizar a cabo este ataque, el atacante fuerza la expulsión de la línea de
cache monitorizada, y esperará a que el proceso víctima acceda a dicha dirección.
Pasado un tiempo, el atacante accede a la dirección monitorizando el tiempo (en
ciclos) que cuesta acceder. Si el tiempo ha sido menor que un threshold estipulado,
quiere decir que el proceso víctima ha accedido a dicha dirección. De lo contrario,



2.4 ataques basados en especulación 8

se asumirá que la víctima no ha accedido.

Esta información se puede utilizar para inferir el comportamiento de la víctima,
o en combinación con otros ataques, extraer un dato perteneciente al espacio de
memoria privilegiada, sin necesidad de permisos de superusuario para llevar a
cabo ninguna de las operaciones.

2.4.2 Meltdown

Meltdown [9] es un ataque basado en especulación capaz de acceder a direc-
ciones de memoria arbitrarias, privilegiadas o no privilegiadas, desde espacio de
usuario. Esto lo convierte en uno de los ataques más peligrosos, pero tiene fácil
mitigación.

Este ataque se aprovecha principalmente de dos vulnerabilidades. La primera
de ellas se basa en la implementación del mapa de memoria en el kernel Linux.
Como se explica en la Sección 2.1, por cuestiones de eficiencia todos los procesos
tienen mapeado en su espacio de direccionamiento una copia del kernel, que a su
vez éste tiene mapeado toda la memoria física en uso para minimizar los cambios
de contexto en algunas llamadas al sistema. Esto se hace confiando en que el hard-
ware bloqueará el acceso a dicho espacio de memoria a un usuario no privilegiado.
Sin embargo, la segunda vulnerabilidad explotada por Meltdown es la caracterís-
tica de especulación que permite a un proceso acceder a una dirección protegida
mientras espera la validación de los permisos.

De esta manera, el atacante accede a la dirección de memoria que contiene el
secreto del proceso víctima, mapeado dentro de su propio espacio de direcciona-
miento. Tras acceder, el atacante utiliza el valor del secreto al que ha accedido para
indexar un vector de su propiedad antes de que la excepción sea procesada. Mien-
tras tanto, este vector es monitorizado con un Flush+Reload, lo que permite inferir
qué elemento del vector ha sido accedido, y por lo tanto obtener el secreto, que se
corresponde con el valor de índice de dicho elemento.

2.4.3 Spectre

De todos los ataques basados en especulación, Spectre [8] es el ataque que más
procesadores afecta, pues no solo afecta a los procesadores de Intel, si no que afec-
ta a la gran mayoría de procesadores que hacen uso de la especulación para decidir
el camino de ejecución de un salto.

Al igual que Meltdown, Spectre permite leer direcciones de memoria de otros
procesos sin tener los privilegios para ello, pero lo hace a través de la manipulación
de los predictores de salto (Subsección 2.2.2).

Spectre comparte con Meltdown el mecanismo básico para extraer un secreto,
que consiste en un acceso a la dirección de memoria con el secreto seguido de un
ataque de canal lateral Flush+Reload para exponer el valor del secreto al estado
arquitectónico del atacante. Lo que diferencia a Spectre de Meltdown, es que esta
secuencia de ataque va a ser ejecutada bajo un fallo de especulación de salto pen-
diente de resolver. Frente a lo que ocurre en Meltdown, recuperarse de un fallo de



2.4 ataques basados en especulación 9

especulación de salto es menos costoso que tratar una excepción por acceder a una
dirección de memoria sin permiso (secreto), lo que acelera la filtración del secreto.
Lo que Spectre aporta es la manipulación del predictor de salto para que el ataque
sea ejecutado al igual que Meltdown, pero pendiente de una predicción de salto
que el atacante sabe que va a ser fallo de especulación.

En la primera variante de Spectre, es el propio atacante que codifica un ataque
Meltdown (acceso a una dirección protegida) dentro del ámbito de una instrucción
de control tipo if. A continuación, el atacante entrena al predictor de salto para que
se prediga la condición del if como verdadera. Antes de ejecutar el ataque, modifi-
ca la condición del if para que sea resuelta como falsa. Así pues, cuando se ejecuta
el código, el predictor de salto indicará que se ejecute especulativamente el código
del ataque. Sin embargo, cuando se resuelva el salto, el ataque sera invalidado por
un fallo de predicción de salto y no por una excepción.

Por otro lado, la segunda variante de Spectre es mucho más compleja, pues re-
quiere hacer uso de ingeniería inversa en el binario que se desea atacar, con el fin
de encontrar un segmento de código que realice la misma función que la variante
1, pero cumpliendo una serie de condiciones. La primera de ellas es que este seg-
mento tiene que estar dentro del espacio de direccionamiento de la víctima, para
poder acceder a su información. Por otro lado, el atacante debe tener poder influir
en los valores que recibe como parámetro. Esto podría ser, por ejemplo, una fun-
ción de biblioteca compartida entre el atacante y la víctima.

Una vez encontrado este código, el atacante deberá replicar el comportamiento
del código de la víctima, mimetizando las direcciones utilizadas por la víctima con
el fin de entrenar el BTB accediendo a dicho segmento. Esto provocará que cuando
entre en ejecución la víctima, se forzará el salto indirecto al segmento y así realizar
el ataque, de manera similar a la variante 1.

2.4.4 Foreshadow

Foreshadow [12, 13] es otro de los ataques especulativos que, a causa de la lenta
comprobación de permisos de acceso a una página, ciertas instrucciones ejecuta-
das especulativamente serán capaces de acceder a un byte secreto. Estas instruc-
ciones, al igual que los demás ataques, reflejarán los cambios en el estado micro-
arquitectónico de manera que puedan ser extraídos mediante un canal lateral como
Flush+Reload.

La peculiaridad de Foreshadow es que, en su variante SGX, es capaz de romper
las barreras de aislamiento que provee SGX. Estas extensiones, permiten al progra-
mador definir unos almacenes llamados enclaves, en los que se almacenarán los
secretos del programa. Ni siquiera el kernel o un usuario privilegiado es capaz de
ver el contenido almacenado en estos enclaves, pudiendo acceder únicamente a tra-
vés de una previa verificación mediante clave pública con un hash del enclave. La
posibilidad de romper esta barrera de aislamiento es lo que hace que este ataque
sea particularmente peligroso.

Para llevar a cabo este ataque, un atacante debe ejecutar el enclave víctima de
manera que los secretos se almacenen en cache. Dado que los datos en cache no se



2.5 taxonomía 10

encuentran cifrados, el atacante realiza un ataque Meltdown sobre la dirección en
la que se almacena el secreto, exponiendo los secretos al estado arquitectónico con
un canal lateral.

Además, Foreshadow permite la extracción de las claves necesarias para la crea-
ción de un enclave malicioso, verificando el acceso por clave y así recibir directa-
mente los secretos de la víctima.

2.4.5 ZombieLoad

El último de los ataques presentados en este trabajo, al igual que Meltdown y
Foreshadow, explota la especulación realizada durante la comprobación de permi-
sos de acceso, y permite extraer información desde espacio de usuario.

ZombieLoad [10] aprovecha la existencia de unas estructuras de almacenamien-
to interno del procesador denominadas fill-buffers, que son utilizadas para rellenar
la cache con datos de loads anteriores que han sido expulsados, por ejemplo, por
una excepción. Estos buffers, además, son compartidos entre los procesos lógicos
de un mismo núcleo del procesador.

Este ataque permite a un atacante inducir fallos de página mientras realiza un
acceso a memoria. De esta manera, cuando se recupera de la excepción el fill-buffer
cargará en cache los datos utilizados por loads anteriores, independientemente del
proceso lógico que los haya ejecutado. Esto permite, a través de un vector de mues-
treo, la extracción de estos datos mediante un canal lateral como Flush+Reload.

Este ataque, a diferencia de los anteriores, no tiene la capacidad de decidir la
dirección de memoria de la que se extrae un dato, pero sí puede saber qué datos
están siendo utilizados por otros procesos, lo que rompe las barreras de aislamien-
to entre procesos.

2.5 taxonomía

Tras el análisis realizado de los ataques presentados en la sección anterior, en la
Tabla 1 se resumen una serie de características de todos ellos. Los ataques referen-
ciados son los siguientes: Meltdown (M), Spectre Variante 1 (S1), Spectre Variante 2
(S2), Foreshadow (F) y ZombieLoad (Z). En el margen izquierdo, se encuentran las
características estudiadas, y para cada uno de los ataques se indica en una casilla
si la cumple o no. En caso de cumplirse, será indicado con un check verde. Si se
cumple pero bajo ciertas restricciones, se indicará con un check amarillo. De lo con-
trario, no se cumple, se indicará con una cruz roja. Si se desconoce la característica,
se indica con una interrogación.

Observando este resumen de las características de cada uno de los ataques, se
propone una posible taxonomía, que permite clasificar los ataques estudiados en
este trabajo a través de un diagrama de Venn (Figura 1). Esta clasificación divide
los ataques estudiados en base a tres criterios. Estos criterios son, el mecanismo
de especulación explotado, la necesidad de forzar la ejecución de un código en la
víctima y la posibilidad de especificar la dirección de memoria atacada.



2.5 taxonomía 11

Cuadro 1: Resumen de características de los ataques basados en especulación estudiados

Figura 1: Posible taxonomía de los ataques estudiados. Todos los ataques excepto Zombie-
Load conocen la dirección que están atacando



3
M E LT D O W N Y S P E C T R E

3.1 meltdown

Como se explica en la Subsección 2.4.2, Meltdown permite a un atacante leer
secretos pertenecientes a la memoria de otros usuarios o incluso del kernel. A con-
tinuación se detallan todos los aspectos implicados en el funcionamiento de este
ataque, cuya comprensión es necesaria para entender las modificaciones propues-
tas en los apartados 3.2.2 y 3.2.3.

3.1.1 Obtención de la dirección de memoria del secreto

Como se comenta en Sección 2.1, con el fin de poder acceder y escribir las pá-
ginas con datos para el usuario, se aplica la técnica de direct-physical mapping, que
mapea todas las direcciones físicas en espacio de kernel. Por otro lado, con el fin
de optimizar el uso de algunas llamadas al sistema, todas las páginas del kernel
son mapeadas en espacio de usuario. Esto provoca que todos los procesos tienen
en su espacio lógico una copia de toda la memoria física utilizada por otros proce-
sos, lo que aprovecha Meltdown para acceder a direcciones arbitrarias de memoria.

Aunque el ataque puede leer posiciones de memoria arbitraria y realizar un vol-
cado de toda la memoria física en uso, para este trabajo se asume que se conoce
la dirección de memoria en la que se encuentra el secreto. Para facilitar la experi-
mentación, el proceso víctima proveerá la traducción de dirección virtual a física a
través de su mapa de memoria ubicado en /proc/self/pagemap. Posteriormente,
se ejecutará Meltdown sobre la dirección resultante de concatenar la dirección físi-
ca con 0xffff880000000000 (dirección por defecto del direct-physical mapping), pues
esa es la dirección en la que el atacante tendrá mapeado el secreto de la víctima.

3.1.2 Preparación del canal lateral

Tal y como se comenta en la Sección 2.4, Meltdown hace uso de un canal lateral
para extraer el byte (secreto) del estado micro-arquitectónico al estado arquitectóni-
co. De los diferentes ataques de canal lateral, Meltdown hace uso de Flush+Reload,
que a través de la observación del tiempo de acceso a un vector de muestreo, es
capaz de inferir el secreto robado por Meltdown.

Para poder realizar el Flush+Reload, el atacante debe disponer de un vector que
será utilizado para muestrear los datos que se encuentran en la cache. Este vector
(probe_array), es un vector formado por 256 * 4096 elementos de tamaño de un byte.
Cada uno de los 256 elementos a muestrear se encuentra separado del siguiente
por 4096 elementos, es decir, 4 KB. Se aplica esta separación aprovechando que
el prefetcher no funciona a través de páginas, ya que éste podría traer elementos
contiguos impidiendo detectar de manera clara el byte accedido.

12



3.1 meltdown 13

Antes de cada iteración del ataque, el atacante debe asegurarse de que este vector
no se encuentra en cache, de lo contrario podrían ser inferidos los resultados de
manera incorrecta.

3.1.3 Fases del ataque Meltdown

El funcionamiento de Meltdown consta de tres fases bien diferenciadas, tal y
como describen la Figura 2 y el Listado 2. Este código lo ejecuta exclusivamente el
atacante sin intervención de la víctima.

Figura 2: Diagrama de funcionamiento de Meltdown

1 retry:
2 mov (addr), %eax
3 shl $12, %rax
4 jz retry
5 mov (probe_array, %rax, 1), %rbx

Listado 2: Fragmento de código de Meltdown que realiza el robo de información

Fase 1. Durante la primera fase del ataque, el atacante accede a la dirección del
secreto de la víctima (línea 2), que se encuentra mapeado en el espacio del ata-
cante, como se indica en la Subsección 3.1.1. Dado que la comprobación de que
el atacante tiene permisos para acceder a la dirección addr es un proceso lento, el
procesador especula asumiendo que tiene permisos, y por lo tanto accede a @addr

y carga el dato obtenido en el registro eax. Sin embargo, este acceso provocará una
excepción que forzará el rollback de todas las instrucciones posteriores a la última
instrucción retirada correctamente que se encuentren en el ROB, pero como se co-
menta en Subsección 2.2.3, esta excepción no será tratada hasta la fase de retirement.
Esto produce una condición de carrera desde que se accede al dato hasta que se
anula la ejecución, siendo ésta la ventana del ataque.



3.1 meltdown 14

Fase 2. Durante esta fase, tras el acceso de memoria, las instrucciones de las lí-
neas 3 y 5 serán ejecutadas especulativamente, antes de que sean revertidas por el
tratamiento de la excepción. Una vez el secreto de la víctima está cargado en rax (o
por lo menos disponible mediante encadenamiento de instrucciones), se multiplica
su valor por 4096, realizando un shift de 12 bits y almacenándolo de nuevo en rax.
Tras ésto, la instrucción de la línea 5 será la encargada de acceder al probe_array uti-
lizando rax como índice. Aquí hay que recordar que probe_array ha sido expulsado
de la cache antes del ataque, y rax contiene el valor del secreto multiplicado por
4096. Esto provocará que el elemento probe_array[secreto * 4096] sea llevado a
memoria cache. La instrucción de la línea 4 reintenta el ataque si el byte leído se co-
rresponde con un 0, con el fin de asegurar que no ha ocurrido un fallo en la lectura.

Fase 3. Finalmente, durante la tercera fase del ataque, el atacante aplica las técni-
cas utilizadas por Flush+Reload sobre su propio vector de muestreo (probe_array)
para inferir el dato robado. Para ello, haciendo uso del contador de ciclos de alta
precisión de Intel (TSC), se monitoriza el tiempo de acceso a cada uno de los 256
elementos a muestrear. Cuando el tiempo de acceso de alguno de ellos es similar
al tiempo de latencia de cache L1, quiere decir que ese elemento se encontraba en
la cache, a diferencia de los demás elementos del vector. Si la fase 2 ha concluido
satisfactoriamente, el elemento probe_array[secreto * 4096] debería estar en ca-
che, resultando en un tiempo de acceso mucho menor que los demás. Dado que
el índice de dicho elemento es el valor del secreto multiplicado por 4096, desha-
ciendo la multiplicación se obtiene, en estado arquitectónico, el valor del secreto
extraído de la víctima.

Para mayor certeza de que el byte extraído es el correcto, estas tres fases pueden
ser repetidas continuamente tantas veces como se considere necesario, siempre y
cuando se use un método para manejar la excepción y evitar la finalización del
programa atacante.

3.1.4 Tratamiento de la excepción

Dado que la ejecución de este ataque se basa en un acceso a una dirección inac-
cesible para el usuario, se provocará una excepción que finalizará el proceso cada
vez que se ejecute. Sin embargo, la posibilidad de extraer un dato es mayor cuantos
más ataques se realizan, siendo necesario tratar la excepción para poder continuar
la ejecución y reintentar el ataque sobre el mismo byte nuevamente.

Para tratar la excepción existen dos alternativas, hacer uso de las extensiones
de sincronización transaccional (TSX) o el uso de un manejador de la señal (signal
handler). En este trabajo solo se abarca el tratamiento de la excepción mediante
un signal handler. Para ello, se programa el manejador de manera que cuando se
detecte una señal SIGSEGV (violación de segmento), éste la atrape y la suprima,
para posteriormente continuar con una nueva ejecución del ataque.



3.2 estudio y caracterización de meltdown 15

3.2 estudio y caracterización de meltdown

3.2.1 Meltdown M1

En esta sección se define Meltdown M1, una variante del ataque Meltdown origi-
nal desarrollada para este trabajo, que permite explotar algunas de sus característi-
cas para mejorar, en términos generales, el rendimiento y la eficacia de Meltdown.

3.2.2 Llenado de estructuras internas del procesador

Durante las pruebas realizadas con el PoC original [6], los resultados carecían
de consistencia, dado que el ataque sólo funcionaba en ocasiones puntuales, y ob-
teniendo resultados erróneos la mayor parte de las veces que se conseguía ejecutar.

Dado que la biblioteca del PoC añade una sobrecarga para poder generalizar el
código en distintas arquitecturas (x64 y x86), detectar automáticamente la utiliza-
ción de TSX, y otras configuraciones, se han programado un código víctima y una
versión mínima de Meltdown con la que empezar a trabajar, sin dicha sobrecarga.
El código resultante se encuentra en el anexo Sección A.4.

Sin embargo, esta primera versión simplificada no funciona, por lo que se pro-
pone hacer un estudio más detallado del funcionamiento de las instrucciones del
ataque. Una intuición es que las instrucciones ya presentes en la ventana de ins-
trucciones podían interferir con la adecuada secuenciación de las instrucciones que
conforman el ataque. Se pensó entonces en proveer al ataque un escenario en el
que disponía de vía libre para ejecutarse sin interferencias. Por este motivo, se
procede a aislar las instrucciones de Meltdown mediante la introducción de una
cadena de dependencias verdaderas justo antes de la ejecución del ataque. Con
ello, estructuras internas del procesador como la estación de reserva o el ROB se
llenan de instrucciones que deben ser ejecutadas secuencialmente, vaciando así el
pipeline de ejecución fuera de orden. Con el pipeline vacío, para el momento en el
que el ataque entre en la ventana de lanzamiento (o Unified reservation station), se
encontrará todas las unidades funcionales disponibles, y podrá ejecutarse inmedia-
tamente. Esta cadena de dependencias debe ser una instrucción que no interfiera
con los puertos utilizados por el ataque, como podrían ser instrucciones del tipo
ADD $1, %rax (ver Figura 3).

Figura 3: Código de Meltdown con cadena de dependencias



3.3 spectre 16

Como se verá en el Capítulo 5, la cadena de ADDs mejora el rendimiento del
ataque gracias al aislamiento de las instrucciones del mismo.

3.2.3 Optimización de la temporización de Flush+Reload

Con el fin de detectar por qué no funciona el ataque el 100% de las veces, se de-
cide analizar en profundidad el binario generado haciendo un desensamblado del
mismo. Observando la función intrínseca __rdtscp(), ésta incluye mucha sobrecar-
ga a la hora de leer el TSC, lo que provoca que a veces la lectura no sea precisa, y
por lo tanto dando por no presente el dato. Por este motivo, se reescribe el código
ensamblador mínimo necesario para realizar un rdtscp, eliminando la sobrecarga.
Con este cambio, la lectura del TSC es más precisa y constante, pero siguen exis-
tiendo instrucciones que pueden retrasar el acceso al dato para su muestreo (por
ejemplo, otros loads en ejecución ocupando el puerto). Para solucionar este proble-
ma, se plantea la introducción de instrucciones NOP, que se encargarán de vaciar
el pipeline, pero que serán retiradas antes de entrar en la ventana de lanzamiento
(o Unified reservation station). Esto provoca que, para cuando se desea monitorizar
el tiempo de acceso a memoria mediante Flush+Reload, el acceso al elemento del
vector sea el único load en ejecución, y por lo tanto mejorando la precisión del
conteo de ciclos. De esta manera, se consigue optimizar tanto la eficacia del ataque
como su tasa de éxito, tal y como se explica en el Capítulo 5.

3.2.4 Aplicación de estas variaciones sobre el ataque original

Tras haber optimizado la variante Meltdown M1, se vuelve a intentar la ejecu-
ción del PoC original, pero ésta vez aplicando las mismas técnicas de optimización
que se han desarrollado para Meltdown M1. Tras aplicarlos, la inconsistencia de
funcionamiento del ataque original desaparece, y se consiguen unos resultados
muy aproximados a los alcanzados con el Meltdown M1.

Analizando más en detalle la biblioteca original, en ésta se hace uso de varios
threads que se dedican a introducir NOPs constantemente. Sin embargo, estos th-
reads añadían demasiada sobrecarga, y el ataque estaba siendo expulsado del hilo
de ejecución continuamente. Por ello, tras eliminar los threads, e incluir las mejoras
comentadas anteriormente, la eficacia del Meltdown original mejora considerable-
mente.

3.3 spectre

Aunque existen distintas variantes de Spectre, en esta sección se profundiza en
el funcionamiento de la variante 1 de este ataque.

3.3.1 Preparación del ataque y el canal lateral

Como se comenta en la Sección 2.4, Meltdown y Spectre tienen un comporta-
miento muy similar, con la principal diferencia de que Spectre aprovecha la ejecu-
ción especulativa del salto para ocultar la excepción. Por este motivo, este ataque
debe prepararse tal y como se comenta en la Subsección 3.1.2.



3.3 spectre 17

Esta preparación incluye, además del vector de muestreo de 256 elementos (pro-
be_array) para la extracción del dato mediante Flush+Reload, la creación de un
nuevo vector que será el encargado de acceder al dato durante la especulación del
salto. Tanto este vector (array1), como el vector de muestreo (probe_array), son in-
ternos del código del atacante.

Además, para facilitar la experimentación con Spectre, también se parte de cono-
cer la dirección en la que se encuentra el secreto de la víctima, de la misma manera
que se realiza para las pruebas de Meltdown (ver Subsección 3.1.1).

3.3.2 Fases del ataque

El ataque Spectre en su variante 1 tiene tres fases diferenciadas. Con el fin de
entender mejor el ataque, se incluye el código necesario para el ataque en el Lista-
do 3. Al igual que Meltdown, este ataque no necesita que la víctima realice nada,
ya que todo el ataque se realiza desde el espacio de usuario del atacante.

1 if (x < array1_size)
2 temp = probe_array[array1[x] * 4096];

Listado 3: Spectre Variant 1

Fase 1. Durante la primera fase del ataque, el atacante ejecutará continuamente
el segmento de código del Listado 3 con un valor de x dentro de los límites del
vector array1. De esta manera la condición de la línea 1 siempre será cierta, y el
salto no será tomado. Este comportamiento, indirectamente, está entrenando la es-
tructura de almacenamiento del procesador encargada de predecir los saltos.

Fase 2. En la segunda fase, el atacante sustituirá el valor de x por una x mali-
ciosa, que apunta a una dirección fuera de los índices del vector, la dirección del
secreto de la víctima. Dado que el valor de la variable array1_size se encuentra
en cache, la comprobación de la condición sería demasiado rápida y bloquearía el
ataque. Es por esto que el atacante expulsará de cache la variable de comproba-
ción del límite del vector (array1_size). Esto provocará que la siguiente vez que
se ejecute instrucción de la línea 1, el dato array1_size tenga que ser traído desde
memoria principal, obligando al procesador a especular en los distintos caminos
de ejecución disponibles: salto tomado o no tomado.

En este momento, el predictor de salto especula que el salto no será tomado,
en base al entrenamiento introducido en la fase 1. Esto provocará el acceso de
manera especulativa a la dirección del secreto fuera de los índices de array1. Al
igual que Meltdown, el valor obtenido por el acceso es utilizado para indexar el
vector de muestreo (que se encuentra fuera de cache), de manera que el elemento
probe_array[secreto * 4096] es traído a cache.

En condiciones normales, el acceso de memoria especulativo provocaría una ex-
cepción, forzando el rollback de todo el ROB. Sin embargo, al haberse producido en
el interior de un camino especulativo de un salto, estos cambios son invalidados
y continúa la ejecución por el camino correcto, sin tratar la excepción. Por este
motivo, el rendimiento de Spectre es muy superior al de Meltdown, ya que no es
necesario atrapar la excepción en cada uno de los intentos, lo que implica muchos



3.3 spectre 18

ciclos perdidos.

Fase 3. Finalmente, dado que durante la fase 2, el elemento probe_array[secreto

* 4096] fue accedido especulativamente, los rastros de este acceso aún son visibles
micro-arquitectónicamente. De igual manera que en Meltdown, se monitoriza el
tiempo de acceso a cada uno de los elementos del probe_array, y si alguno de ellos
tiene latencia L1 a diferencia de los demás, el secreto robado a la víctima corres-
ponde al resultado de deshacer la multiplicación del índice.

Este ataque también se puede repetir tantas veces como sea necesario, y en este
caso no es necesario el tratamiento de excepciones, ya que es el propio error de la
especulación quien se encarga de deshacer los cambios.



4
M E T O D O L O G Í A

En este capítulo se detalla la plataforma utilizada para la experimentación junto
con sus características más significativas para el caso de estudio de este trabajo.
Además, se comenta su preparación y las herramientas utilizadas para llevar a ca-
bo la experimentación.

4.1 plataforma

La máquina utilizada para las pruebas es un Intel i7-7700 @ 3.6 GHz, de cua-
tro núcleos y ocho procesos lógicos (threads) y 32 GB de memoria RAM, y ejecuta
un sistema Operativo CentOS Linux RHEL 7.0, actualizado en su versión 3.10.0-
862.11.6.el7.x86_64. Dado que para este trabajo es relevante, el procesador parte de
tener la versión de microcódigo 0x8e, en la que Meltdown y Spectre se encuentran
parcheados.

Este procesador pertenece a la familia de procesadores Kaby Lake H, que man-
tiene la misma micro-arquitectura que la familia anterior, Skylake. Esta micro-
arquitectura dispone de un Frontend capaz de buscar 16 B por ciclo e introducir
6 µOPs al Backend(ROB) por ciclo. Este ROB cuenta con 224 entradas, y está comuni-
cado con la ventana de lanzamiento (96 entradas), que dispone de 8 puertos para
el lanzamiento de instrucciones fuera de orden. Las unidades funcionales, la ven-
tana y el ROB están comunicados a través de un CDB. Este procesador es capaz de
retirar instrucciones a 4 µOPs por ciclos por hilo. En la Sección A.3 se encuentra
un diagrama detallado de la micro-arquitectura de este procesador.

Este procesador cuenta con caches L1I y L1D de 32KB compartidas por núcleo,
a latencia de 5 ciclos para loads, 256 KB de cache L2 no-inclusiva, con latencia de
acceso 12 ciclos y 2 MB por núcleo de LLC no-inclusiva compartida entre todos los
núcleos, a latencia 42 ciclos.

4.2 herramientas

Para la realización de este trabajo, tan solo se han utilizado tres herramientas ex-
ternas, puesto que el grueso del trabajo ha sido la experimentación con programas
propios desarrollados en lenguaje C.

La primera de estas herramientas Radare2 [15], un software de desensambla-
do de binarios y análisis y depuración de código, utilizado comúnmente para
reverse-engineering y hallar vulnerabilidades en binarios. Se ha hecho uso de es-
ta herramienta para poder analizar el binario de Meltdown y ejecutarlo de manera
controlada para probar comportamientos.

La siguiente herramienta utilizada ha sido el software de benchmarking stress-ng,
utilizado para medir el impacto en el rendimiento de los parches publicados para

19



4.3 preparación del entorno 20

estos ataques.

Finalmente, se han realizado pruebas en máquinas virtuales corriendo en Qemu-
KVM.

4.3 preparación del entorno

Para preparar el entorno para la ejecución de estos ataques, existen dos alterna-
tivas. La primera de ellas consiste en desactivar las mitigaciones del kernel con los
flags nopti y nokaslr en la secuencia de arranque de grub, dejando el sistema sin
las protecciones activadas. Para hacer estos cambios persistentes, existe la posibili-
dad de editar el fichero /etc/default/grub indicándole estos flags, y regenerar el
grub.cfg para que se aplique en todas las secuencias de arranque.

Sin embargo, con el fin de exponer más el kernel a estos ataques, se ha realiza-
do la segunda alternativa, que consiste en realizar un downgrade el kernel a una
versión vulnerable, como podría ser la 3.10.0-327.el7.x86_64. Además, también se
ha forzado la carga de una versión de microcódigo vulnerable en el arranque, la
versión 0x5e.

Una vez realizado esto, la máquina queda totalmente vulnerable a los todos ata-
ques basados en ejecución especulativa desde la aparición de Meltdown y Spectre.

4.4 métricas de experimentación

Para los experimentos realizados en el Capítulo 5, se han definido las siguientes
métricas:

Rendimiento: Medido en B/s, corresponde a la cantidad de bytes que pue-
den ser extraídos por el ataque. Estos bytes pueden ser correctos o incorrec-
tos, dado que el atacante nunca tendrá una forma de validarlo.

Tasa de éxito: Se define como tasa de éxito el porcentaje del total de ataques
sobre un mismo byte que han finalizado con éxito. Esto es, que un byte ha
llegado a ser extraído mediante un canal lateral y se ha filtrado al estado
arquitectónico. El byte extraído puede ser correcto o incorrecto.

Eficacia: Expresa el porcentaje de los bytes que se han extraído que coinciden
con el secreto esperado. Es decir, el total de bytes secretos válidos que se han
extraído en un ataque completo.



5
E X P E R I M E N TA C I Ó N Y A N Á L I S I S

5.1 experimentación

En este capítulo se presentan y analizan los resultados de las diferentes varian-
tes y modificaciones realizadas sobre los Proof-of-Concept(PoC), buscando mejorar
el rendimiento de los ataques lo máximo posible, y estudiando los mecanismos
implicados en estas mejoras.

Debido a la limitación temporal de un Trabajo de Fin de Grado, el estudio se ha
centrado únicamente en la validación de los dos ataques presentados en el Capítu-
lo 3, Meltdown y Spectre, principalmente en la caracterización de Meltdown.

Los resultados comentados en este capítulo se basan en las 3 métricas definidas
en la Sección 4.4: rendimiento del ataque en bytes extraídos por segundo, la efi-
cacia del ataque mediante el porcentaje de bytes correctos extraídos (respecto al
secreto original), y el porcentaje de veces que el ataque se ha realizado con éxito
sobre cada byte, es decir, el número de veces que ha sido capaz de detectar el byte
en la cache (tasa de éxito).

5.1.1 Flush+Reload

Figura 4: Tiempo de acceso (en ciclos) a cada uno de los datos de probe_array medido por
Flush+Reload.

En el Capítulo 2 se indica que gran parte de los ataques basados en especulación
hacen uso de Flush+Reload como canal lateral para extraer al estado arquitectóni-
co los secretos. Este ataque de canal lateral permite inferir el secreto robado a
través de la observación del tiempo de acceso a un array de muestreo del atacan-
te, previamente accedido durante el ataque. La Figura 4 presenta los resultados
de realizar Flush+Reload sobre los 256 bytes del vector de muestreo (probe_array).
Para cada valor del vector, se obtienen los ciclos que ha tardado el dato en estar

21



5.1 experimentación 22

disponible, tardando 59 ciclos para el byte 84 (carácter "T"), mientras que el resto
se encuentran por encima de los 250 ciclos. Aunque la latencia del dato en L1 se
indique como 59 ciclos, ésta incluye el tiempo de sobrecarga aportado por las ins-
trucciones que realizan el rdtscp, que son aproximadamente entre 45 y 50 ciclos
(en la arquitectura de la máquina testeada).

5.1.2 Llenado de estructuras internas del procesador

Figura 5: Tasa de éxito (ataque completado) sobre un byte con distintas configuraciones
de llenado de la ventana de lanzamiento con ADDs antes de la ejecución de
Meltdown.

Como se comenta en la Subsección 3.2.2, se ha estudiado el efecto que provo-
ca añadir diferentes longitudes de cadenas de dependencias antes del ataque. La
Figura 5 representa, en el eje X, el número de ADDs dependientes introducidos
antes del ataque. El eje Y representa la mediana de 50 ensayos de la tasa de éxito
del ataque. Cada ensayo intenta extraer un byte del secreto 1000 veces consecutivas.

A la vista de los resultados, la realización del ataque aplicando la técnica descri-
ta influye directamente en la cantidad de veces que el ataque es capaz de extraer
el dato. Con cadenas inferiores a 40 instrucciones la tasa de éxito es nula, pues no
consigue leer prácticamente ningún byte. Para cadenas entre 40 y 70 instrucciones,
a medida que se va llenando la estación de reserva, los resultados mejoran con-
siderablemente, llegando a leer un byte correctamente el 56% de los intentos con
68 ADDs antes del ataque. Para cadenas superiores a este número, este porcentaje
decae un poco y se mantiene constante a ese valor. Sin embargo, en esta gráfica
destacan varios aspectos. El primero de ellos es que ocurre un patrón muy regular,
en la que el ataque funciona mejor con las cadenas que son múltiplos de 4, mien-
tras que en los demás valores decae el resultado. Aunque se han estudiado varias
alternativas capaces de causar de este comportamiento, todavía no se ha podido
validar ninguna de ellas, por lo que se propone como trabajo futuro. El Capítulo 6
detalla en mayor profundidad las posibles causas. Por otro lado, destacan un pico
negativo en el valor 117 así como una sección irregular desde 84 hasta 117 ADDs,
descrito en las siguientes secciones.



5.1 experimentación 23

5.1.3 Número de intentos por byte

Figura 6: Porcentaje de bytes de la cadena final leídos correctamente en base al número de
intentos (probes), sin aislamiento de lectura (NOPs).

En este apartado se intenta caracterizar cuántos intentos son necesarios para te-
ner una buena eficacia en el ataque, y la impacto que tiene una fuerte carga de
trabajo en el sistema en este número de intentos.

La Figura 6 representa el porcentaje de bytes leídos correctamente (eje Y) de
una cadena secreta arbitraria de otro proceso en base al número de intentos (pro-
bes) realizados sobre cada byte. La línea azul representa las pruebas sin carga de
trabajo, mientras que la roja representa las pruebas con carga de trabajo en todos
los núcleos del procesador. Todas las pruebas se han realizado con 68 ADDs antes
del ataque, dado que es el valor óptimo de tasa de éxito observado en el apartado
anterior.

Sin carga de trabajo, Meltdown M1 extrae correctamente aproximadamente el
55% de la cadena realizando la lectura tan solo una vez. De esta manera, se puede
volcar la memoria de un proceso hasta 30 KB/s. A medida que se aumenta el nú-
mero de lecturas sobre cada byte, la eficacia del ataque aumenta, obteniendo un
100% de acierto a partir de las 10 lecturas por byte a una velocidad de 3 KB/s.

Por otro lado, cuando el procesador está sometido a una carga de trabajo intensa
la eficacia del ataque se ve afectada, ya que al haber múltiples procesos accediendo
a memoria es más difícil muestrear la cache y detectar el dato que se quiere extraer,
lo que implica en un menor porcentaje de bytes correctos extraídos. Esto es así es-
pecialmente cuando se realiza un número pequeño de intentos sobre cada byte. En
este caso, aumentar el número de intentos no asegura al 100% una mayor eficacia
del ataque, pues sigue existiendo la posibilidad de leer datos basura a causa del
ruido generado por los datos de otros procesos en el muestreo del vector.



5.1 experimentación 24

5.1.4 Precisión de Flush+Reload

Tras optimizar el método de temporización de Flush+Reload (Subsección 3.2.3),
se han repetido los experimentos realizados en las secciones anteriores, dando
como resultado las Figuras 7 y 8.

Figura 7: Tasa de éxito (ataque completado) sobre un byte con distintas configuraciones
de llenado de la ventana de lanzamiento con ADDs antes de la ejecución de
Meltdown, con aislamiento de lectura (NOPs).

La Figura 7 corresponde a la Figura 5, pero incluyendo un aislamiento en la tem-
porización de la cache al incluir 500 NOPs antes de la realización del canal lateral
Flush+Reload, junto con el valor óptimo de instrucciones encadenadas comenta-
das en el apartado anterior para cada uno de los intentos realizados.

Se puede ver que en las dos figuras se comparte el mismo patrón de funciona-
miento hasta la cadena de 80 ADDs, aunque con una mayor tasa de éxito con esta
optimización. A diferencia del experimento anterior, esta figura presenta mayor
regularidad ya que al optimizar la temporización de Flush+Reload incluyendo un
número suficiente de NOPs en el pipeline es posible aislar cada una de las lecturas,
reduciendo el ruido, y aumentando consecuentemente la precisión del ataque y el
porcentaje total de ataques llevados a cabo correctamente. Por otro lado, en esta
figura se puede observar un pico negativo en el 49, al igual que aparece en el 117
en la Figura 5. Al igual que ocurre con la tasa de éxito, no se puede asegurar que
a qué se deben estos picos, y no se han podido validar las alternativas propuestas.
El estudio de este comportamiento se deja como trabajo futuro (Capítulo 6).

La Figura 8 corresponde a la Figura 6, pero incluyendo un aislamiento en la tem-
porización de la cache al incluir 500 NOPs antes de realizar cada lectura mediante
el canal lateral Flush+Reload. Al optimizar la temporización de Flush+Reload se
percibe un aumento considerable en la eficacia del ataque, dado que con sólo 4
intentos lectura, Meltdown M1 es capaz de leer el 100% de los bytes correctamente.
Sin embargo, esta sobrecarga de instrucciones tiene un impacto considerable en la
eficiencia del mismo, siendo capaz de leer datos a una velocidad de 7,6 KB/s.



5.1 experimentación 25

Figura 8: Porcentaje de bytes de la cadena final leídos correctamente en base al número de
intentos (probes), con aislamiento de lectura (NOPs).

5.1.5 Tabla comparativa de Meltdown y Meltdown M1

Cuadro 2: Comparación de resultados en las diferentes variantes de Meltdown

La Tabla 2 resume todos los resultados comentados en las secciones anteriores
de este capítulo. La primera de las variantes de esta tabla es la variante propia
de Meltdown M1, que incluye la cadena de dependencias que llenan las estructu-
ras internas del procesador (Subsección 3.2.2). El segundo ataque, corresponde al
mismo Meltdown M1, pero incluyendo la mejora que permite aumentar la preci-
sión de Flush+Reload (Subsección 3.2.3). La entrada clasificada como "Meltdown
Original", corresponde al código PoC proporcionado por los investigadores [6]. Las
entradas siguientes corresponden a este PoC, pero incluyendo progresivamente las
mejoras desarrolladas en Meltdown M1, como los ADDs (llenado de estructuras)
y los NOPs (optimización de temporización). Además, se incluyen también las va-
riantes que, como se comenta en la Subsección 3.2.4, eliminan los threads utilizados
por el PoC.



5.2 mitigaciones 26

En esta tabla se puede ver que al aplicar las técnicas desarrolladas, Meltdown
M1 con ADDs y NOPs, con 5 intentos es capaz de extraer datos 50 veces más rá-
pido que la versión original sin optimizaciones, con la misma eficacia del 100%.
Esta mejora también se puede observar en la última variante, resultado de aplicar
las mejoras directamente sobre el PoC. Por otro lado, usando Meltdown M1 con 1
intento, es posible conseguir tasas de extracción de datos muy altas, de entre 26 a
30 KB/s, a cambio de perder parte de la precisión en los datos.

Cabe destacar que en el artículo oficial de Meltdown [9], ellos mencionan que
utilizando signal handling, consiguen una eficacia de 103 KB/s, con un error del
0,03% de los datos. Es posible que no se hayan podido alcanzar estos resultados ya
que estos ataques van fuertemente ligados a la micro-arquitectura de la máquina,
y no especifican en cuál de las máquinas que prueban obtienen estos resultados.

5.1.6 Resultados de la prueba de concepto de Spectre

Cuadro 3: Resultados de la ejecución de Spectre

Partiendo del PoC disponible en un gist anónimo [3], se han introducido en el
código las modificaciones necesarias para obtener las métricas de rendimiento y
eficacia para Spectre. La Tabla 3 representa la mediana de 50 ejecuciones de Spectre,
repitiendo el ataque 1, 5, 10 y 15 veces sobre cada byte. Como es de esperar, el
rendimiento es mucho mayor con menos intentos, pudiendo volcar memoria a 26
KB/s en el mejor de los casos. Por otro lado, cuando se aumenta el número de
intentos, la eficacia aumenta a costa de una ligera caída de rendimiento.

5.2 mitigaciones

En esta sección se comentan los parches oficiales desplegados para mitigar Melt-
down y Spectre, así como una posible nueva manera de reducir el impacto del
ataque, propuesta en este trabajo.

5.2.1 Kernel

Los dos ataques presentados en esta sección se aprovechan de dos optimizacio-
nes hechas por el sistema operativo: el mapeo del kernel dentro de un proceso en
espacio de usuario, y a su vez, el mapeo de toda la memoria física en el kernel
(Sección 2.1). Desde hace tiempo, el kernel de Linux dispone de una técnica deno-
minada Kernel Address Space Layout Randomization (KASLR), que en cada arranque
del sistema aleatoriza las direcciones del espacio de direccionamiento del kernel.
Esto permite colocar la dirección base del direct-physical mapping en una dirección
diferente cada vez, pero no es suficiente ya que con unos pocos barridos de memo-
ria, un atacante puede encontrar la nueva dirección base de este mapeo.



5.2 mitigaciones 27

Para mitigar estos ataques, Gruss et al. [4] proponen una solución denominada
KAISER , posteriormente bautizada por el parche como Kernel Page Table Isola-
tion(KPTI), que reduce el mapeo del kernel en espacio de usuario a únicamente lo
necesario, y elimina el direct-physical mapping del kernel. Este parche es capaz de
mitigar completamente Meltdown, y la parte de Spectre que permite acceder a la
memoria de otros procesos utilizando la misma técnica.

Sin embargo, este parche tiene un impacto considerable en el rendimiento, espe-
cialmente en los escenarios en los que hay múltiples llamadas al sistema virtuales
implicadas.

Otra de las mitigaciones proporcionadas por el kernel, es la inclusión de más-
caras de comprobación de validez en el índice de un vector, antes de realizar un
acceso. Estas máscaras bit a bit son capaces de comprobar rápidamente si el valor
con el que se indexa un vector es válido o no. Esto consigue mitigar completamen-
te la variante 1 de Spectre, sin afectar demasiado al rendimiento del procesador.

Tras ejecutar de nuevo Meltdown y Spectre con las mitigaciones del kernel acti-
vadas, la eficacia del ataque se reduce al 0%, ya que es ahora es imposible disponer
del secreto de otro proceso mapeado en el espacio de usuario del atacante.

5.2.2 Firmware

A la par que las mitigaciones software, se han publicado parches de microcódigo
que actualizan el firmware del procesador, y la forma en la que las instrucciones
son decodificadas en µOPs. Estos parches, principalmente han sido enfocados a la
protección de ataques como Spectre V2, Foreshadow y ZombieLoad.

Tras ejecutar Meltdown y Spectre con este parche, el resultado obtenido ha sido
muy similar al de la ejecución con microcódigo vulnerable. Esto se debe princi-
palmente a que la principal vulnerabilidad que explotan Meltdown y Spectre es
vía software. Este resultado es el esperado, dado que este parche va enfocado a
mitigar los ataques que no se han probado en este trabajo.

5.2.3 Paralelismo del procesador

A la vista de los resultados de la Figura 6, en los que tener el sistema con al-
ta carga de trabajo parece aplacar la eficacia del ataque, una posible mitigación
o contra-medida que se propone en este trabajo es la explotación del paralelismo
del procesador. Si se fuerza al procesador a tener todos los puertos ocupados, las
posibilidades de que la temporización del ataque se den de la manera idónea para
que funcione se reducen, además del ruido generado en cache que dificulta la de-
tección del dato robado.

Esta contra-medida no pretende bloquear ni proteger contra el ataque, pero po-
dría reducir los daños provocados sin sufrir las impactos de las mitigaciones ante-
riores.



5.3 impacto de las mitigaciones 28

5.3 impacto de las mitigaciones

Para finalizar la fase de experimentación, con el fin de medir el impacto que
tienen en el rendimiento del sistema los parches desplegados para mitigar estos
ataques, se ha hecho uso de la herramienta stress-ng (Sección 4.2) para ejecutar los
diferentes benchmarks. Estas pruebas tienen como objetivo caracterizar la pérdida
de rendimiento que supone tener activadas la mitigaciones de la Sección 5.2.

Para la primera de las pruebas se valorará cómo afectan estas mitigaciones al
rendimiento en aplicaciones intensivas en cálculo. La Tabla 4 indica el rendimien-
to del procesador, en instrucciones por ciclo (IPC) para los diferentes estados de
protección del sistema.

Cuadro 4: Resultados del benchmark de CPU en cálculo

En este caso, ninguno de los parches provoca una caída de rendimiento notable
en el procesador.

Para la siguiente prueba, se estudiará como afectan las mitigaciones, especial-
mente el KPTI, a la ejecución de las llamadas al sistema como getclock, gettimeof-
day o getpid. Dado que el KPTI elimina la característica de mapeo de kernel en
espacio de usuario, se espera que el rendimiento en esta prueba se vea afectado
considerablemente.

Cuadro 5: Resultados del benchmark de CPU en llamadas al sistema

Como se puede ver en la Tabla 5, el impacto que sufre el rendimiento en el uso
de estas llamadas al sistema a raíz de esta mitigación es considerable.



6
C O N C L U S I O N E S Y T R A B A J O F U T U R O

6.1 conclusiones

La cantidad y la importancia de la información que procesamos con computado-
ras requiere garantizar su seguridad y confidencialidad. Estudiar el cumplimiento
de estas propiedades es arduo debido a la gran complejidad de los computadores.
Este TFG analiza varios ataques especulativos a procesadores para poder reprodu-
cir su comportamiento, y ha requerido un profundo estudio previo de todos los
mecanismos implicados en el funcionamiento de los procesadores así como los ata-
ques mismos, además de la anterior preparación de un entorno vulnerable en que
puedan ser reproducidos. Para facilitar la comprensión de los ataques, este TFG
agrupa buena parte de la literatura reciente sobre los mismos y aporta una sencilla
taxonomía sobre ellos.

Tras la puesta en marcha del entorno experimental, se han comprendido varios
ataques en profundidad lo que ha permitido caracterizar y mejorar una implemen-
tación del ataque Meltdown. Estas mejoras permiten al ataque rendir del orden de
50 veces más rápido con la misma eficacia, gracias al aumento de la tasa de éxito
proporcionado por otra de las mejoras propuestas. Las mejoras están orientadas
a asegurar que las instrucciones especulativas que roban la información se ejecu-
ten lo antes posible y que la excepción que producen ocurra lo más tarde posible.
Además, este trabajo vislumbra la posibilidad de otra mitigación basada en la ex-
plotación del paralelismo del procesador, rompiendo la temporización del ataque
y reduciendo así su impacto.

6.2 trabajo futuro

En la Sección 5.1, se comenta la existencia de comportamientos que afectan ne-
gativamente al ataque, pero no está claro el por qué debido a la gran complejidad
del procesador y la falta de documentación sobre ellos. Una de las hipótesis que se
baraja es que el ataque es muy dependiente de la alineación de los paquetes que
salen del ROB y su planificación en los puertos, que podría coincidir con los picos
de sierra cada 4 ADDs. Observar más de cerca este comportamiento está fuera del
alcance de este TFG y se estudiará con posterioridad así como la experimentación
con otros ataques similares y el diseño de arquitecturas seguras por construcción
que sigan permitiendo la especulación.

29



B I B L I O G R A F Í A

[1] ARM. (2018). Vulnerability of Speculative Processors to Cache Timing Side-
Channel Mechanism, dirección: https://developer.arm.com/support/arm-
security-updates/speculative-processor-vulnerability.

[2] I. Anati, S. Gueron, S. Johnson y V. Scarlata, «Innovative technology for CPU
based attestation and sealing», en Proceedings of the 2nd international workshop
on hardware and architectural support for security and privacy, ACM New York,
NY, USA, vol. 13, 2013.

[3] Anonymous. (2018). The proof-of-concept code for "Spectre Attacks: Exploi-
ting Speculative Execution"., dirección: https://gist.github.com/anonymous/
99a72c9c1003f8ae0707b4927ec1bd8a.

[4] D. Gruss, M. Lipp, M. Schwarz, R. Fellner, C. Maurice y S. Mangard, «KASLR
is Dead: Long Live KASLR», en Engineering Secure Software and Systems, E.
Bodden, M. Payer y E. Athanasopoulos, eds., Springer International Publis-
hing, 2017, págs. 161-176.

[5] J. L. Hennessy y D. A. Patterson, Computer architecture: a quantitative approach.
Elsevier, 2011.

[6] IAIK. (2018). Meltdown Proof-of-Concept, dirección: https://github.com/
IAIK/meltdown.

[7] IBM. (2018). Potential Impact on Processors in the POWER Family, dirección:
https://www.ibm.com/blogs/psirt/potential-impact-processors-power-

family/.

[8] P. Kocher, J. Horn, A. Fogh y col., «Spectre Attacks: Exploiting Speculative
Execution», en 40th IEEE Symposium on Security and Privacy (S&P’19), 2019.

[9] M. Lipp, M. Schwarz, D. Gruss y col., «Meltdown: Reading Kernel Memory
from User Space», en 27th USENIX Security Symposium (USENIX Security 18),
2018.

[10] M. Schwarz, M. Lipp, D. Moghimi, J. Van Bulck, J. Stecklina, T. Prescher
y D. Gruss, «ZombieLoad: Cross-Privilege-Boundary Data Sampling», ar-
Xiv:1905.05726, 2019.

[11] R. M. Tomasulo, «An efficient algorithm for exploiting multiple arithmetic
units», IBM JOURNAL OF RESEARCH AND DEVELOPMENT, 1967.

[12] J. Van Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci, F. Piessens, M.
Silberstein, T. F. Wenisch, Y. Yarom y R. Strackx, «Foreshadow: Extracting the
Keys to the Intel SGX Kingdom with Transient Out-of-Order Execution», en
Proceedings of the 27th USENIX Security Symposium, See also technical report
Foreshadow-NG [13], USENIX Association, 2018.

[13] O. Weisse, J. Van Bulck, M. Minkin, D. Genkin, B. Kasikci, F. Piessens, M. Sil-
berstein, R. Strackx, T. F. Wenisch e Y. Yarom, «Foreshadow-NG: Breaking the
Virtual Memory Abstraction with Transient Out-of-Order Execution», Techni-
cal report, 2018, See also USENIX Security paper Foreshadow [12].

30

https://developer.arm.com/support/arm-security-updates/speculative-processor-vulnerability
https://developer.arm.com/support/arm-security-updates/speculative-processor-vulnerability
https://gist.github.com/anonymous/99a72c9c1003f8ae0707b4927ec1bd8a
https://gist.github.com/anonymous/99a72c9c1003f8ae0707b4927ec1bd8a
https://github.com/IAIK/meltdown
https://github.com/IAIK/meltdown
https://www.ibm.com/blogs/psirt/potential-impact-processors-power-family/
https://www.ibm.com/blogs/psirt/potential-impact-processors-power-family/


Bibliografía 31

[14] Y. Yarom y K. Falkner, «FLUSH+RELOAD: A High Resolution, Low Noise,
L3 Cache Side-channel Attack», en Proceedings of the 23rd USENIX Conference
on Security Symposium, ép. SEC’14, USENIX Association, 2014, págs. 719-732.

[15] P. aka @trufae. (). Radare: The Unix-Friendly Framework for Reverse Engi-
neering, dirección: https://www.radare.org/n/.

https://www.radare.org/n/

	Abstract
	Índice general
	Índice de figuras
	Índice de cuadros
	Listings
	1 Introducción
	1.1 Motivación
	1.2 Objetivos
	1.3 Alcance
	1.4 Descripción del documento

	2 Estado del arte
	2.1 Mapa de memoria del Sistema Operativo
	2.2 Micro-arquitectura de un procesador moderno
	2.2.1 Ejecución fuera de orden (Out-of-order execution)
	2.2.2 Predictor de saltos
	2.2.3 Tratamiento de excepciones

	2.3 Ataques de canal lateral
	2.4 Ataques basados en especulación
	2.4.1 Flush+Reload
	2.4.2 Meltdown
	2.4.3 Spectre
	2.4.4 Foreshadow
	2.4.5 ZombieLoad

	2.5 Taxonomía

	3 Meltdown y Spectre
	3.1 Meltdown
	3.1.1 Obtención de la dirección de memoria del secreto
	3.1.2 Preparación del canal lateral
	3.1.3 Fases del ataque Meltdown
	3.1.4 Tratamiento de la excepción

	3.2 Estudio y caracterización de Meltdown
	3.2.1 Meltdown M1
	3.2.2 Llenado de estructuras internas del procesador
	3.2.3 Optimización de la temporización de Flush+Reload
	3.2.4 Aplicación de estas variaciones sobre el ataque original

	3.3 Spectre
	3.3.1 Preparación del ataque y el canal lateral
	3.3.2 Fases del ataque


	4 Metodología
	4.1 Plataforma
	4.2 Herramientas
	4.3 Preparación del entorno
	4.4 Métricas de experimentación

	5 Experimentación y análisis
	5.1 Experimentación
	5.1.1 Flush+Reload
	5.1.2 Llenado de estructuras internas del procesador
	5.1.3 Número de intentos por byte
	5.1.4 Precisión de Flush+Reload
	5.1.5 Tabla comparativa de Meltdown y Meltdown M1
	5.1.6 Resultados de la prueba de concepto de Spectre

	5.2 Mitigaciones
	5.2.1 Kernel
	5.2.2 Firmware
	5.2.3 Paralelismo del procesador

	5.3 Impacto de las mitigaciones

	6 Conclusiones y trabajo futuro
	6.1 Conclusiones
	6.2 Trabajo futuro

	Bibliografía
	A Anexos
	A.1 Tabla de horas dedicadas
	A.2 Diagrama de Gantt del proyecto
	A.3 Micro-arquitectura de Kaby Lake H
	A.4 Código de Meltdown M1
	A.5 Código de la víctima utilizada para las pruebas de Meltdown y Spectre


